
Simulink®

User's Guide

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® User's Guide
© COPYRIGHT 1990–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

November 1990 First printing New for Simulink 1
December 1996 Second printing Revised for Simulink 2
January 1999 Third printing Revised for Simulink 3 (Release 11)
November 2000 Fourth printing Revised for Simulink 4 (Release 12)
July 2002 Fifth printing Revised for Simulink 5 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Sixth printing Revised for Simulink 5.0 (Release 14)
October 2004 Seventh printing Revised for Simulink 6.1 (Release 14SP1)
March 2005 Online only Revised for Simulink 6.2 (Release 14SP2)
September 2005 Eighth printing Revised for Simulink 6.3 (Release 14SP3)
March 2006 Online only Revised for Simulink 6.4 (Release 2006a)
March 2006 Ninth printing Revised for Simulink 6.4 (Release 2006a)
September 2006 Online only Revised for Simulink 6.5 (Release 2006b)
March 2007 Online only Revised for Simulink 6.6 (Release 2007a)
September 2007 Online only Revised for Simulink 7.0 (Release 2007b)
March 2008 Online only Revised for Simulink 7.1 (Release 2008a)
October 2008 Online only Revised for Simulink 7.2 (Release 2008b)
March 2009 Online only Revised for Simulink 7.3 (Release 2009a)
September 2009 Online only Revised for Simulink 7.4 (Release 2009b)
March 2010 Online only Revised for Simulink 7.5 (Release 2010a)
September 2010 Online only Revised for Simulink 7.6 (Release 2010b)
April 2011 Online only Revised for Simulink 7.7 (Release 2011a)
September 2011 Online only Revised for Simulink 7.8 (Release 2011b)
March 2012 Online only Revised for Simulink 7.9 (Release 2012a)
September 2012 Online only Revised for Simulink 8.0 (Release 2012b)
March 2013 Online only Revised for Simulink 8.1 (Release 2013a)
September 2013 Online only Revised for Simulink 8.2 (Release 2013b)
March 2014 Online only Revised for Simulink 8.3 (Release 2014a)
October 2014 Online only Revised for Simulink 8.4 (Release 2014b)
March 2015 Online only Revised for Simulink 8.5 (Release 2015a)
September 2015 Online only Revised for Simulink 8.6 (Release 2015b)

v

Contents

Introduction to Simulink

Simulink Basics
1

Start the Simulink Software . 1-3
Start the MATLAB Software . 1-3
Open the Library Browser . 1-3
Open the Simulink Editor . 1-4

Create Models and Open Existing Models 1-6
Simulink Model File Types . 1-6
Create a Model Using a Template 1-6
Create an Empty Model . 1-7
Open a Model . 1-7
Load Variables When Opening a Model 1-8
Open a Model with Different Character Encoding 1-8

Programmatic Modeling Basics 1-10
Load a Model . 1-10
Create a Model and Specify Parameter Settings 1-10
Programmatically Load Variables When Opening a

Model . 1-11
Add a Block Programmatically 1-12
Position a Block Programmatically 1-12
Name a Signal Programmatically 1-12
Open the Same Model in Multiple Windows 1-12
Get a Simulink Identifier . 1-13

Build a Simple Model . 1-14
Start Simulink and Create a New Model 1-14
Add Blocks to the Model . 1-14
Align and Connect Blocks . 1-15

vi Contents

Set Block Parameters . 1-16
Add More Blocks . 1-16
Branch a Connection . 1-18
Organize Your Model . 1-20
Simulate Model and View Results 1-23
Modify the Model . 1-24

Save a Model . 1-27
How to Tell If a Model Needs Saving 1-27
Save a Model . 1-27
What Happens When You Save a Model? 1-28
Save Models in the SLX File Format 1-29
Save Models with Different Character Encodings 1-31
Export a Model to a Previous Simulink Version 1-33
Save from One Earlier Simulink Version to Another . . 1-33

Model Editing Environment . 1-35
Library Browser . 1-35
Simulink Editor . 1-35
Interactive Model Building . 1-37

Parts of a Model . 1-39
About Blocks . 1-39
Block Parameters and Properties in Simulink 1-40
Signals . 1-42

Preview Content of Hierarchical Items 1-43
What Is Content Preview? . 1-43
Enable Content Preview . 1-44
What Content Preview Displays 1-44

Use Viewmarks to Save Views of Models 1-46
What Are Viewmarks? . 1-46
Create a Viewmark . 1-47
Open and Navigate Viewmarks 1-48
Save a Viewmark with the Model 1-48
Manage Viewmarks . 1-48
Refresh a Viewmark . 1-49

Update Diagram and Run Simulation 1-50
Updating the Diagram . 1-50
Simulation Updates the Diagram 1-50
Update Diagram While Editing 1-50

vii

Simulate a Model . 1-51

Printing Capabilities . 1-52
Print Interactively or Programmatically 1-52
Printing Options . 1-52
Canvas Color . 1-52
Print Model Reports . 1-53

Basic Printing . 1-54
Print the vdp Model Using Default Settings 1-54
Print a Subsystem Hierarchy 1-56

Select the Systems to Print . 1-59
Print Current System . 1-59
Print Subsystems . 1-59
Print a Model Referencing Hierarchy 1-60

Specify the Page Layout and Print Job 1-61
Page and Print Job Setup . 1-61
Two Interfaces for Page and Print Job Setup 1-61

Tiled Printing . 1-62

Print Multiple Pages for Large Models 1-63

Add a Log of Printed Models . 1-64

Add a Sample Time Legend . 1-65

Print from the MATLAB Command Line 1-66
Printing Commands . 1-66
Print Systems with Multiline Names or Names with

Spaces . 1-66
Set Paper Orientation and Type 1-67
Position and Size a System . 1-67
Use Tiled Printing . 1-68

Export Models to Third-Party Applications 1-70

Print to a PDF . 1-71

Export Models to Image File Formats 1-72

viii Contents

Generate a Model Report . 1-73
Model Report Options . 1-74

Keyboard and Mouse Actions for Simulink Modeling . 1-76
Object Selection and Clipboard Operations 1-76
Block and Signal Line Shortcuts and Actions 1-77
Signal Name and Label Actions 1-78
Simulation Keyboard Shortcuts 1-78
Debugging and Breakpoints Keyboard Shortcuts 1-79
Zooming and Scrolling Shortcuts 1-79
Library Browser Shortcuts . 1-80
File Operations . 1-81

Simulation Stepping
2

How Simulation Stepper Helps With Model Analysis . . 2-2

How Stepping Through a Simulation Works 2-3
Simulation Snapshots . 2-3
How Simulation Stepper Uses Snapshots 2-4
How Simulation Stepper Differs from Simulink

Debugger . 2-5

Use Simulation Stepper . 2-8
Simulation Stepper Access . 2-8
Simulation Stepper Pause Status 2-8
Tune Parameters . 2-9
Referenced Models . 2-10
Simulation Stepper and Interval Logging 2-10
Simulation Stepper and Stateflow Debugger 2-10

Simulation Stepper Limitations 2-12
Interface . 2-12
Model Configuration . 2-12
Blocks . 2-12

Step Through a Simulation . 2-15
Step Forward and Back . 2-15

ix

Set Conditional Breakpoints for Stepping a
Simulation . 2-18

Add and Edit Conditional Breakpoints 2-18
Observe Conditional Breakpoint Values 2-19

How Simulink Works
3

How Simulink Works . 3-2

Modeling Dynamic Systems . 3-3
Block Diagram Semantics . 3-3
Creating Models . 3-4
Time . 3-4
States . 3-5
Block Parameters . 3-8
Tunable Parameters . 3-8
Block Sample Times . 3-9
Custom Blocks . 3-9
Systems and Subsystems . 3-10
Signals . 3-14
Block Methods . 3-15
Model Methods . 3-16

Simulation Phases in Dynamic Systems 3-17
Model Compilation . 3-17
Link Phase . 3-18
Simulation Loop Phase . 3-18

Solvers . 3-21
Fixed-Step Solvers Versus Variable-Step Solvers 3-21
Continuous Versus Discrete Solvers 3-21
Minor Time Steps . 3-22
Shape Preservation . 3-22

Zero-Crossing Detection . 3-23
Demonstrating Effects of Excessive Zero-Crossing

Detection . 3-23
How the Simulator Can Miss Zero-Crossing Events . . . 3-28
Preventing Excessive Zero Crossings 3-29

x Contents

Zero-Crossing Algorithms . 3-31
Understanding Signal Threshold 3-32
How Blocks Work with Zero-Crossing Detection 3-33

Algebraic Loops . 3-37
What Is an Algebraic Loop? . 3-37
Interpretations of Algebraic Loops 3-38
What is an Artificial Algebraic Loop? 3-41
Why Algebraic Loops Are Undesirable 3-42
Identify Algebraic Loops in Your Model 3-43
How to Handle Algebraic Loops in a Model 3-46
How the Algebraic Loop Solver Works 3-48
Remove Algebraic Loops . 3-50
Remove Artificial Algebraic Loops 3-53
How Simulink Eliminates Artificial Algebraic Loops . . 3-64
When Simulink Cannot Eliminate Artificial Algebraic

Loops . 3-70
Managing Large Models with Artificial Algebraic Loops 3-72
Changing Block Priorities When Using Algebraic Loop

Solver . 3-73

Modeling Dynamic Systems

Creating a Model
4

Create a Template from a Model 4-3

Specify Block Diagram Colors . 4-4
Set Block Diagram Colors Interactively 4-4
Platform Differences for Custom Colors 4-4
Choose a Custom Color . 4-5
Define a Custom Color . 4-6
Specify Colors Programmatically 4-7

Connect Blocks . 4-8
Automatically Connect Blocks . 4-8
Manually Connect Blocks . 4-11

xi

Disconnect Blocks . 4-17

Align, Distribute, and Resize Groups of Blocks 4-18

Box and Label Areas of a Model 4-19
Create an Area . 4-19
Move an Area . 4-20
Convert Area to a Subsystem 4-20

Annotations . 4-21
Possible Uses for Annotations 4-21
What Are Annotations? . 4-21
Three Types of Annotations . 4-22
Annotation Layout and Contents 4-23
Interactive Annotations . 4-24

Create an Annotation . 4-25
Add and Lay Out an Annotation 4-26
Add a Hyperlink and Format Text 4-27
Add a Bulleted List . 4-27
Copy and Paste an Image from a Web Page 4-28
Add a Numbered List . 4-28

Use TeX Commands in an Annotation 4-30
Add a TeX Annotation . 4-30

Add an Image-Only Annotation 4-32
Add an Image . 4-32
Change the Appearance of an Image 4-32

Add Lines to Connect Annotations to Blocks 4-34

Show or Hide Annotations . 4-35
Configure an Annotation for Hiding 4-35
Hide Markup Annotations . 4-35

Make an Annotation Interactive 4-36
Annotation Callback Functions 4-36
Associate Click Functions with Annotations 4-36
Select and Edit Click-Function Annotations 4-37

Create an Annotation Programmatically 4-38
Annotations API . 4-38

xii Contents

Create Annotations Programmatically 4-38
Delete an Annotation Programmatically 4-39
Find Annotations in a Model . 4-39
Show or Hide Annotations Programmatically 4-39

Create a Subsystem . 4-41
Subsystem Advantages . 4-41
Ways to Create a Subsystem . 4-41
Create a Subsystem in a Subsystem Block 4-42
Create a Subsystem from Selected Blocks 4-43
Create a Subsystem Using Context Options 4-44

Configure a Subsystem . 4-46
Subsystem Execution . 4-46
Label Subsystem Ports . 4-46
Control Access to Subsystems 4-46
Control Subsystem Behavior with Callbacks 4-47

Navigate Subsystems in the Model Hierarchy 4-48
Open a Subsystem . 4-48
Preview Contents of a Subsystem 4-51

Subsystem Expansion . 4-52
What Is Subsystem Expansion? 4-52
Why Expand a Subsystem? . 4-53
Subsystems That You Can Expand 4-54
Results of Expanding a Subsystem 4-55
Data Stores . 4-56

Expand Subsystem Contents . 4-57
Expand a Subsystem . 4-57
Expand a Subsystem from the Command Line 4-58

Use Control Flow Logic . 4-59
Equivalent C Language Statements 4-59
Conditional Control Flow Logic 4-59
While and For Loops . 4-62

Callbacks for Customized Model Behavior 4-68
Model, Block, and Port Callbacks 4-68
What You Can Do with Callbacks 4-68
Avoid run Commands in Callback Code 4-69
See Also . 4-69

xiii

Model Callbacks . 4-70
Create Model Callbacks . 4-70
View Model Callbacks . 4-71
Model Callback Parameters . 4-72

Block Callbacks . 4-75
Create Block Callbacks . 4-75
Block Callback Parameters . 4-75

Port Callbacks . 4-82

Callback Tracing . 4-83

Model Workspaces . 4-84
Model Workspace Differences from MATLAB

Workspace . 4-84
Troubleshooting Memory Issues 4-85
Manipulate Model Workspace Programmatically 4-85

Specify Source for Data in Model Workspace 4-87
Data source . 4-88
MAT-File and MATLAB File Source Controls 4-88
MATLAB Code Source Controls 4-89

Change Model Workspace Data 4-92
Change Workspace Data Whose Source Is the Model

File . 4-92
Change Workspace Data Whose Source Is a MAT-File or

MATLAB File . 4-93
Changing Workspace Data Whose Source Is MATLAB

Code . 4-93
Use MATLAB Commands to Change Workspace Data . 4-94

Symbol Resolution . 4-95
Symbols . 4-95
Symbol Resolution Process . 4-95
Numeric Values with Symbols 4-96
Other Values with Symbols . 4-97
Limit Signal Resolution . 4-97
Explicit and Implicit Symbol Resolution 4-98

Manage Model Versions . 4-100
How Simulink Helps You Manage Model Versions . . . 4-100

xiv Contents

Model File Change Notification 4-101
Specify the Current User . 4-102
Manage Model Properties . 4-103
Log Comments History . 4-111
Version Information Properties 4-113

Model Discretizer . 4-115
What Is the Model Discretizer? 4-115
Requirements . 4-115
Discretize a Model with the Model Discretizer 4-116
View the Discretized Model . 4-124
Discretize Blocks from the Simulink Model 4-127
Discretize a Model with the sldiscmdl Function 4-137

Model Advisor
5

Consulting the Model Advisor . 5-2
Model Advisor Overview . 5-2
Start the Model Advisor . 5-3
Model Advisor Window . 5-4
Model Advisor Dashboard . 5-7
More Information About Checking Your Model 5-8

Selecting Model Checks . 5-10
Check Support for Libraries . 5-10
Checks Triggering an Update Diagram 5-10

Model Advisor Limitations . 5-12

Select Checks and Run Model Advisor 5-13
Select Checks and Run Model Advisor 5-13

Save Model Analysis Time . 5-16

Run Model Checks in Background 5-19

Run Model Checks Programmatically 5-21

xv

Address Model Check Results . 5-22
Highlight Model Check Results 5-22
Fix a Model Check Warning or Failure 5-23
Revert Changes . 5-25

Save and View Model Advisor Reports 5-27
Save Model Advisor Reports . 5-27
View Model Advisor Reports . 5-27

Upgrade Advisor
6

Consult the Upgrade Advisor . 6-2

Working with Sample Times
7

What Is Sample Time? . 7-2

Specify Sample Time . 7-3
Designate Sample Times . 7-3
Specify Block-Based Sample Times Interactively 7-5
Specify Port-Based Sample Times Interactively 7-6
Specify Block-Based Sample Times Programmatically . . 7-7
Specify Port-Based Sample Times Programmatically . . . 7-7
Access Sample Time Information Programmatically . . . 7-8
Specify Sample Times for a Custom Block 7-8
Determining Sample Time Units 7-8
Change the Sample Time After Simulation Start Time . 7-8

View Sample Time Information . 7-9
View Sample Time Display . 7-9
Sample Time Legend . 7-10

Print Sample Time Information 7-13

xvi Contents

Types of Sample Time . 7-14
Discrete Sample Time . 7-14
Continuous Sample Time . 7-15
Fixed-in-Minor-Step . 7-15
Inherited Sample Time . 7-15
Constant Sample Time . 7-16
Variable Sample Time . 7-16
Triggered Sample Time . 7-17
Asynchronous Sample Time . 7-17

Blocks for Which Sample Time Is Not Recommended . 7-18
Best Practice to Model Sample Times 7-18
Appropriate Blocks for the Sample Time Parameter . . 7-19
Specify Sample Time in Blocks Where Hidden 7-19

Block Compiled Sample Time . 7-20

Sample Times in Subsystems . 7-23

Sample Times in Systems . 7-25
Purely Discrete Systems . 7-25
Hybrid Systems . 7-27

Resolve Rate Transitions . 7-31
Automatic Rate Transition . 7-31
Visualize Inserted Rate Transition Blocks 7-32

How Propagation Affects Inherited Sample Times . . . 7-35
Process for Sample Time Propagation 7-35
Simulink Rules for Assigning Sample Times 7-35

Backpropagation in Sample Times 7-37

Referencing a Model
8

Overview of Model Referencing . 8-2
About Model Referencing . 8-2
Referenced Model Advantages . 8-5
Masking Model Blocks . 8-6

xvii

Models That Use Model Referencing 8-6
Model Referencing Resources . 8-7

Create a Model Reference . 8-8

Subsystem to Model Reference Conversion 8-11
When to Convert to Model Referencing 8-11
Subsystems That You Can Convert 8-11
Conversion Process . 8-12
Conversion Checking . 8-13
Conversion Results . 8-14
Conversion Report . 8-15

Convert a Subsystem to a Referenced Model 8-16
Determine Whether to Convert the Subsystem 8-16
Update the Model Before Converting the Subsystem . . 8-16
Run the Model Reference Conversion Advisor 8-20
Compare Simulation Results Before and After

Conversion . 8-20
Revert the Conversion Results 8-22
Integrate the Referenced Model into the Parent Model 8-23

Sample Time Consistency . 8-24
Troubleshooting . 8-24

Inherit Sample Times . 8-25
How Sample-Time Inheritance Works for Model Blocks 8-25
Conditions for Inheriting Sample Times 8-25
Determining Sample Time of a Referenced Model 8-26
Blocks That Depend on Absolute Time 8-26
Blocks Whose Outputs Depend on Inherited Sample

Time . 8-27

Referenced Model Simulation Modes 8-29
Simulation Modes for Referenced Models 8-29
Specify the Simulation Mode . 8-31
Mixing Simulation Modes . 8-31
Using Normal Mode for Multiple Instances of Referenced

Models . 8-32
Accelerating a Freestanding or Top Model 8-40

View a Model Reference Hierarchy 8-42
Display Version Numbers . 8-42

xviii Contents

Model Reference Simulation Targets 8-44
Simulation Targets . 8-44
Build Simulation Targets . 8-45
Simulation Target Output File Control 8-46
Reduce Update Time for Referenced Models 8-48

Simulink Model Referencing Requirements 8-53
About Model Referencing Requirements 8-53
Name Length Requirement . 8-53
Configuration Parameter Requirements 8-53
Model Structure Requirements 8-57

Parameterize Model References 8-59
Introduction . 8-59
Global Parameters . 8-59
Model Arguments . 8-60

Conditional Referenced Models 8-64
Kinds of Conditional Referenced Models 8-64
Working with Conditional Referenced Models 8-65
Create Conditional Models . 8-65
Reference Conditional Models 8-67
Simulate Conditional Models . 8-68
Generate Code for Conditional Models 8-69
Requirements for Conditional Models 8-69

Protected Model . 8-71

Use Protected Model in Simulation 8-73
Protected Model Web View . 8-74

Refresh Model Blocks . 8-75

S-Functions with Model Referencing 8-76
S-Function Support for Model Referencing 8-76
Sample Times . 8-76
S-Functions with Accelerator Mode Referenced Models 8-77
Using C S-Functions in Normal Mode Referenced

Models . 8-77
Protected Models . 8-78
Simulink Coder Considerations 8-78

Buses in Referenced Models . 8-79

xix

Signal Logging in Referenced Models 8-80

Model Referencing Limitations 8-81
Introduction . 8-81
Limitations on All Model Referencing 8-81
Limitations on Normal Mode Referenced Models 8-84
Limitations on Accelerator Mode Referenced Models . . 8-84
Limitations on Rapid Accelerator Mode Referenced

Models . 8-87
Certain Diagnostic Configuration Parameters Ignored for

Models Referenced in Accelerator Mode 8-87
Limitations on SIL and PIL Mode Referenced Models . 8-88
Configuration Parameters Changed During Code

Generation . 8-88

Create Conditional Subsystems
9

Conditional Subsystems . 9-2

Export-Function Models . 9-4
About Export-Function Models 9-4
Requirements for Export-Function Models 9-5
Sample Time for Function-Call Subsystems in Export-

Function Models . 9-6
Execution Order for Function-Call Root-level Inport

Blocks . 9-8
Workflows for Export-Function Models 9-13
Nested Export-Function Models 9-18
Comparison between Export-Function Models and Models

with Asynchronous Function-Call Inputs 9-19

Create an Enabled Subsystem . 9-21
What Are Enabled Subsystems? 9-21
Create an Enabled Subsystem 9-22
Blocks an Enabled Subsystem Can Contain 9-24
Use Blocks with Constant Sample Times in Enabled

Subsystems . 9-27

xx Contents

Conditionally Reset Block States in a Subsystem 9-31
Behavior of Resettable Subsystems 9-31
Comparison of Resettable Subsystems and Enabled

Subsystems . 9-34

Create a Triggered Subsystem . 9-38
What Are Triggered Subsystems? 9-38
Using Model Referencing Instead of a Triggered

Subsystem . 9-40
Creating a Triggered Subsystem 9-40
Blocks That a Triggered Subsystem Can Contain 9-41

Create an Action Subsystem . 9-42
What Are Action Subsystems? 9-42
Set States when an Action Subsystem Executes 9-43

Create a Triggered and Enabled Subsystem 9-45
What Are Triggered and Enabled Subsystems? 9-45
Creating a Triggered and Enabled Subsystem 9-46
A Sample Triggered and Enabled Subsystem 9-46
Creating Alternately Executing Subsystems 9-47

Create a Function-Call Subsystem 9-50
What is a Function-Call Subsystem? 9-50
Creating Function-Call Subsystems 9-50
Sample Time Propagation in Function-Call Subsystems 9-50

Conditional Execution Behavior 9-52
What Is Conditional Execution Behavior? 9-52
Propagating Execution Contexts 9-54
Behavior of Switch Blocks . 9-55
Displaying Execution Contexts 9-55
Disabling Conditional Execution Behavior 9-56
Displaying Execution Context Bars 9-57

Conditional Subsystem Output Initialization 9-58
Why Initialize Conditional Subsystem Output with

Explicit Values? . 9-58
Initialization Mode . 9-58
When to Use Simplified Initialization 9-59
Simplified Mode Behavior and Requirements 9-60
When to Use Classic Initialization 9-61

xxi

Specify or Inherit Conditional Subsystem Initial
Values . 9-62

Inherit Initial Values from the Input Signal 9-62
Explicitly Specify an Initial Value 9-63
Setting Output Values When the Conditional Subsystem

Is Disabled . 9-64

Set Initialization Mode to Simplified or Classic 9-65

Convert from Classic to Simplified Initialization Mode 9-66

Address Classic Mode Issues by Using Simplified
Mode . 9-67

Classic Mode Issues . 9-67
Identity Transformation Can Change Model Behavior . 9-68
Discrete-Time Integrator or S-Function Block Can Produce

Inconsistent Output . 9-70
Sorted Order Can Affect Merge Block Output 9-72

Simulink Functions and Function Callers 9-80
What Are Functions in Simulink? 9-80
What Are Function Callers in Simulink? 9-81
Reusable Logic with Functions 9-81
Shared Resources with Functions 9-82
Diagnostic Messaging with Functions 9-83
How a Function Caller Identifies a Function 9-84
Reasons to Use a Simulink Function Block 9-84
When Not to Use a Simulink Function Block 9-85
Calling a Function from Multiple Sites 9-85
Call Simulink Function from Function Caller Block . . . 9-88
Call Simulink Function from MATLAB Function Block 9-90
Using Referenced Models with Simulink Functions and

Function Callers . 9-92
Simulink Functions in the Context of Reusable

Functions . 9-99

Diagnostics Using a Client-Server Architecture 9-101
Client-Server Architecture . 9-101
Modifier Pattern . 9-103
Observer Pattern . 9-105

xxii Contents

Modeling Variant Systems
10

What Are Variants and When to Use Them 10-2
What Are Variants? . 10-2
Advantages of Using Variants 10-3
When to Use Variants . 10-4
Options for Representing Variants in Simulink 10-5
Mapping Inports and Outports of Variant Choices 10-6

Switch Between Variant Choices 10-8
Construct Conditions That Control Variant Selection . 10-8
Operators and Operands in Variant Condition

Expressions . 10-9
Select Variant Control Specification 10-10
Convert Variant Control Variables into

Simulink.Parameter Objects 10-11
Default Variant Specification 10-13

Workflow for Implementing Variants 10-14

Create, Export, and Reuse Variant Controls 10-15
Create and Export Variant Controls 10-15
Reuse Variant Conditions . 10-15
Enumerated Types as Variant Controls 10-16

Define, Configure, and Activate Variants 10-17
Represent Variant Choices . 10-17
Include Simulink Model as Variant Choice 10-21
Configure Variant Activation Conditions 10-23

Set Up Model Variants . 10-25
Configure the Model Variants Block 10-26
Disable and Enable Model Variants 10-28
Parameterize Model Variants 10-29
Additional Examples . 10-29

Convert Subsystem Blocks to Variant Subsystem
Blocks . 10-31

Set and Open Active Variants 10-32
Set Default Variant . 10-32

xxiii

Set and Open Active Variant 10-32
Ignore Variant Choices . 10-33
Open Active Variant . 10-33

Variant Management . 10-35
Variant Manager . 10-35
Considerations in Model Hierarchy Validation 10-36

Add and Validate Variant Configurations 10-37

Import Control Variables to Variant Configuration . 10-41

Define Constraints and Export Variant
Configurations . 10-45

Exploring, Searching, and Browsing Models
11

Model Explorer Overview . 11-2
What You Can Do Using the Model Explorer 11-2
Opening the Model Explorer . 11-2
Model Explorer Components . 11-3
The Main Toolbar . 11-4
Adding Objects . 11-4
Customizing the Model Explorer Interface 11-5
Basic Steps for Using the Model Explorer 11-6
Focusing on Specific Elements of a Model or Chart . . . 11-7

Model Explorer: Model Hierarchy Pane 11-9
What You Can Do with the Model Hierarchy Pane . . . 11-9
Simulink Root . 11-10
Base Workspace . 11-10
Configuration Preferences . 11-11
Model Nodes . 11-11
Displaying Partial or Whole Model Hierarchy

Contents . 11-12
Displaying Linked Library Subsystems 11-13
Displaying Masked Subsystems 11-13
Linked Library and Masked Subsystems 11-14
Displaying Node Contents . 11-14

xxiv Contents

Navigating to the Block Diagram 11-14
Working with Configuration Sets 11-14
Expanding Model References 11-14
Cutting, Copying, and Pasting Objects 11-17

Model Explorer: Contents Pane 11-19
Contents Pane Tabs . 11-19
Data Displayed in the Contents Pane 11-21
Link to the Currently Selected Node 11-22
Horizontal Scrolling in the Object Property Table . . . 11-22
Working with the Contents Pane 11-23
Editing Object Properties . 11-24

Control Model Explorer Contents Using Views 11-25
Using Views . 11-25
Customizing Views . 11-28
Managing Views . 11-29

Organize Data Display in Model Explorer 11-33
Layout Options . 11-33
Sorting Column Contents . 11-33
Grouping by a Property . 11-34
Changing the Order of Property Columns 11-37
Adding Property Columns . 11-38
Hiding or Removing Property Columns 11-39
Marking Nonexistent Properties 11-41

Filter Objects in the Model Explorer 11-42
Controlling the Set of Objects to Display 11-42
Using the Row Filter Option 11-42
Filtering Contents . 11-44

Workspace Variables in Model Explorer 11-47
Finding Variables That Are Used by a Model or Block 11-47
Finding Blocks That Use a Specific Variable 11-50
Finding Unused Workspace Variables 11-51
Editing Workspace Variables 11-53
Rename Variables . 11-54
Compare Duplicate Workspace Variables 11-56
Export Workspace Variables 11-57
Importing Workspace Variables 11-59

xxv

Search Using Model Explorer 11-60
Searching in the Model Explorer 11-60
The Search Bar . 11-60
Show and Hide the Search Bar 11-61
Search Bar Controls . 11-61
Search Options . 11-63
Run a Search . 11-65
Refine a Search . 11-65

Model Explorer: Property Dialog Pane 11-66
What You Can Do with the Dialog Pane 11-66
Showing and Hiding the Dialog Pane 11-66
Editing Properties in the Dialog Pane 11-66

Locate Simulink Objects Using Find 11-69

Locate Stateflow Objects Using Find 11-71

Model Browser . 11-73
About the Model Browser . 11-73
Navigating with the Mouse . 11-74
Navigating with the Keyboard 11-75
Showing Library Links . 11-75
Showing Masked Subsystems 11-75

Model Dependency Viewer . 11-76
Model Dependency Views . 11-76
View Model File and Library Dependencies 11-79

View Linked Requirements in Models and Blocks . . . 11-81
Requirements Traceability in Simulink 11-81
Highlight Requirements in a Model 11-81
View Information About a Requirements Link 11-84
Navigate to Requirements from a Model 11-85
Filter Requirements in a Model 11-86

Trace Connections Using Interface Display 11-89
How Interface Display Works 11-89
Trace Connections in a Subsystem 11-89

xxvi Contents

Managing Model Configurations
12

About Model Configurations . 12-2

Multiple Configuration Sets in a Model 12-3

Share a Configuration for Multiple Models 12-4

Share a Configuration Across Referenced Models 12-6

Manage a Configuration Set . 12-11
Create a Configuration Set in a Model 12-11
Create a Configuration Set in the Base Workspace . . 12-11
Open a Configuration Set in the Configuration Parameters

Dialog Box . 12-12
Activate a Configuration Set 12-13
Set Values in a Configuration Set 12-13
Copy, Delete, and Move a Configuration Set 12-13
Save a Configuration Set . 12-14
Load a Saved Configuration Set 12-15
Copy Configuration Set Components 12-15

Manage a Configuration Reference 12-17
Create and Attach a Configuration Reference 12-17
Resolve a Configuration Reference 12-18
Activate a Configuration Reference 12-20
Manage Configuration Reference Across Referenced

Models . 12-21
Change Parameter Values in a Referenced Configuration

Set . 12-22
Save a Referenced Configuration Set 12-22
Load a Saved Referenced Configuration Set 12-23
Why is the Build Button Not Available for a Configuration

Reference? . 12-23

About Configuration Sets . 12-25
What Is a Configuration Set? 12-25
What Is a Freestanding Configuration Set? 12-26
Model Configuration Preferences 12-27

xxvii

About Configuration References 12-28
What Is a Configuration Reference? 12-28
Why Use Configuration References? 12-28
Unresolved Configuration References 12-29
Configuration Reference Limitations 12-29
Configuration References for Models with Older

Simulation Target Settings 12-30

Model Configuration Command Line Interface 12-32
Overview . 12-32
Load and Activate a Configuration Set at the Command

Line . 12-33
Save a Configuration Set at the Command Line 12-34
Create a Freestanding Configuration Set at the Command

Line . 12-34
Create and Attach a Configuration Reference at the

Command Line . 12-35
Attach a Configuration Reference to Multiple Models at

the Command Line . 12-36
Get Values from a Referenced Configuration Set 12-37
Change Values in a Referenced Configuration Set . . . 12-37
Obtain a Configuration Reference Handle 12-38
Use refresh When Replacing a Referenced Configuration

Set . 12-39

Configuring Models for Targets with Multicore
Processors

13
Concepts in Multicore Programming 13-2

Basics of Multicore Programming 13-2
Types of Parallelism . 13-3
System Partitioning for Parallelism 13-6
Challenges in Multicore Programming 13-7

Multicore Programming with Simulink 13-10
How Simulink Helps You to Overcome Challenges in

Multicore Programming . 13-10
Implement Data Parallelism in Simulink 13-13
Implement Task Parallelism in Simulink 13-16

xxviii Contents

Implement Pipelining in Simulink 13-19
Ways to Partition . 13-21
Supported Targets . 13-22
Simulation Limitations . 13-24

Modeling Process for Concurrent Execution 13-26

Configure Your Model . 13-27

Customize Concurrent Execution Settings 13-29
Configuring Data Transfer Communications 13-29
Select Target Architecture . 13-31
Configuring Periodic Triggers and Tasks 13-33
Configuring Aperiodic Triggers and Tasks 13-34
Map Blocks to Tasks, Triggers, and Nodes 13-36

Interpret Simulation Results . 13-38
Introduction . 13-38
Baseline Configuration . 13-38
Sample Configured Model with Multiple Target Tasks 13-39

Build and Download to a Multicore Target 13-43
Generating Code . 13-43
Customize the Generated C Code 13-44
Define a Custom Architecture File 13-44
Native Threads Example . 13-47
Profile and Evaluate . 13-49
Generate Profile Report . 13-50

Concurrent Execution Models 13-54

Command-Line Interface for Concurrent Execution . 13-55
Map Blocks to Tasks . 13-55

Modeling Best Practices
14

General Considerations when Building Simulink
Models . 14-2

Avoiding Invalid Loops . 14-2

xxix

Shadowed Files . 14-4
Model Building Tips . 14-6

Model a Continuous System . 14-8

Best-Form Mathematical Models 14-11
Series RLC Example . 14-11
Solving Series RLC Using Resistor Voltage 14-12
Solving Series RLC Using Inductor Voltage 14-13

Model a Simple Equation . 14-15

Model Differential Algebraic Equations 14-17
Overview of Robertson Reaction Example 14-17
Simulink Model from ODE Equations 14-17
Simulink Model from DAE Equations 14-20
Simulink Model from DAE Equations Using Algebraic

Constraint Block . 14-23

Componentization Guidelines 14-28
Componentization . 14-28
Componentization Techniques 14-28
General Componentization Guidelines 14-29
Summary of Componentization Techniques 14-30
Subsystems Summary . 14-31
Libraries Summary . 14-35
Model Referencing Summary 14-38

Modeling Complex Logic . 14-45

Modeling Physical Systems . 14-46

Modeling Signal Processing Systems 14-47

Simulink Project Setup
15

Organize Large Modeling Projects 15-2

What Are Simulink Projects? . 15-3

xxx Contents

Try Simulink Project Tools with the Airframe
Project . 15-5

Explore the Airframe Project . 15-5
Set Up Project Files and Open Simulink Project 15-6
View, Search, and Sort Project Files 15-6
Understand Project Startup and Shutdown Tasks 15-7
Create a Startup Shortcut . 15-9
Open and Run Frequently Used Files 15-9
Review Changes in Modified Files 15-10
Run Project Integrity Checks 15-12
Run Dependency Analysis . 15-12
Commit Modified Files . 15-15
View Project and Source Control Information 15-16

Create a Project from a Model 15-18

Create a New Project to Manage Existing Files 15-20

Add Files to the Project . 15-24

Create a New Project from an Archived Project 15-26

Create a New Project Using Templates 15-27

Use Project Templates from R2014a or Before 15-30

Open Recent Projects . 15-31

Change the Project Name, Root, Description, and
Startup Folder . 15-33

Specify Project Path . 15-35

What Can You Do With Project Shortcuts? 15-37

Automate Startup Tasks with Shortcuts 15-38

Automate Shutdown Tasks with Shortcuts 15-40

Create Shortcuts to Frequent Tasks 15-42
Create Shortcuts . 15-42
Group Shortcuts . 15-43
Annotate Shortcuts to Use Meaningful Names 15-44

xxxi

Use Shortcuts to Find and Run Frequent Tasks 15-46

Using Templates to Create Standard Project Settings 15-49

Create a Template from the Current Project 15-50

Create a Template from a Project Under Version
Control . 15-51

Edit a Template . 15-52

Explore the Example Templates 15-53

Simulink Project File Management
16

Group and Sort File Views . 16-2

Search and Filter File Views . 16-4

Work with Project Files . 16-6

Manage Shadowed and Dirty Model Files 16-9
Identify Shadowed Project Files When Opening a

Project . 16-9
Manage Open Models When Closing a Project 16-10

Move, Rename, Copy, or Delete Project Files 16-11

Back Out Changes . 16-12

Upgrade Model Files to SLX and Preserve Revision
History . 16-13

Project Tools for Migrating Model Files to SLX 16-13
Upgrade the Model and Commit the Changes 16-13
Verify Changes After Upgrade to SLX 16-16

Create Labels . 16-18

Add Labels to Files . 16-19

xxxii Contents

View and Edit Label Data . 16-20

Automate Project Management Tasks 16-22
Manipulate a Simulink Project at the Command Line 16-22
Get Simulink Project at the Command Line 16-22
Find Project Commands . 16-23
Examine Project Files . 16-23
Create New Category of Project Labels 16-24
Define a New Label . 16-25
Label a Project File . 16-25
Attach Data to a Label . 16-26
Attach New Label with Numeric Data Type 16-26
Query Shortcuts . 16-27
Close Project . 16-28
More Project API Examples . 16-29

Create a Batch Function . 16-30

Create Shortcuts to Batch Job Functions 16-31

Run a Simulink Project Batch Job 16-32

Sharing Simulink Projects . 16-34

Share Project by Email . 16-36

Share Project as a MATLAB Toolbox 16-37

Share Project on GitHub . 16-38

Archive Projects in Zip Files . 16-40

Simulink Project Dependency Analysis
17

What Is Dependency Analysis? 17-2
Project Dependency Analysis . 17-2
Model Dependency Analysis . 17-2

Run Dependency Analysis . 17-3

xxxiii

Check Dependency Results and Resolve Problems . . . 17-4
Investigate Problem Files in Table View 17-4
Investigate Problem Files in Impact View 17-6

Perform Impact Analysis . 17-7
About Impact Analysis . 17-7
Run Dependency Analysis . 17-8
Examine Impact of Selected Files 17-9
Explore Impact Graph . 17-11
Export Impact Results . 17-15

Find Requirements Documents in a Project 17-17

Save, Open, and Compare Dependency Analysis
Results . 17-18

Analyze Model Dependencies . 17-19
What Are Model Dependencies? 17-19
Generate Manifests . 17-20
Command-Line Dependency Analysis 17-25
Edit Manifests . 17-28
Compare Manifests . 17-31
Export Files in a Manifest . 17-32
Scope of Dependency Analysis 17-34
Best Practices for Dependency Analysis 17-37
Use the Model Manifest Report 17-38

Simulink Project Source Control
18

About Source Control with Projects 18-2
Classic and Distributed Source Control 18-3

Add a Project to Source Control 18-5
Add a Project to Git Source Control 18-5
Add a Project to SVN Source Control 18-6

Register Model Files with Source Control Tools 18-9

xxxiv Contents

Set Up SVN Source Control . 18-10
Set Up SVN Integration Provided with Simulink

Project . 18-10
Set Up SVN Integration for SVN Version Already

Installed . 18-11
Set Up SVN Integration for SVN Version Not Yet Provided

with Simulink Project . 18-11
Register Model Files with Subversion 18-12
Enforce SVN Locking Model Files Before Editing . . . 18-16
Share a Subversion Repository 18-16

Set Up Git Source Control . 18-18
About Git Source Control . 18-18
Use Git Source Control in Simulink Project 18-19
Install Command-Line Git Client 18-20
Register Model Files with Git 18-21

Disable Source Control . 18-23

Change Source Control . 18-24

Write a Source Control Integration with the SDK . . . 18-25

Retrieve a Working Copy of a Project from Source
Control . 18-26

Troubleshooting . 18-29

Tag and Retrieve Versions of Project Files 18-31

Refresh Status of Project Files 18-33

Check for Modifications . 18-37

Update Revisions of Project Files 18-38
Update Revisions with SVN 18-38
Update Revisions with Git . 18-39
Update Selected Files . 18-39

Get File Locks . 18-40

View Modified Files . 18-43
Project Definition Files . 18-44

xxxv

Compare Revisions . 18-45

Precommit Actions . 18-47

Commit Modified Files to Source Control 18-49

Revert Changes . 18-51
Revert Local Changes . 18-51
Revert a File to a Specified Revision 18-51
Revert the Project to a Specified Revision 18-52

Branch and Merge Files with Git 18-53
Create a Branch . 18-53
Switch Branch . 18-55
Merge Branches . 18-55
Revert to Head . 18-56
Delete Branches . 18-56

Push and Fetch Files with Git 18-57
Push . 18-57
Fetch . 18-58
Push Empty Folders . 18-58

Resolve Conflicts . 18-60
Resolve Conflicts . 18-60
Merge Text Files . 18-62
Merge Models . 18-63
Extract Conflict Markers . 18-63

Work with Derived Files in Projects 18-65

Project Reference
19

Componentization Using Referenced Projects 19-2

Add or Remove a Reference to Another Project 19-5

View or Run Referenced Project Files 19-7

xxxvi Contents

Open a Referenced Project . 19-8

Extract a Folder to Create a Referenced Project 19-9

Large-Scale Modeling
20

Design Partitioning . 20-2
When to Partition a Design . 20-2
When Not to Partition a Design 20-3
Plan for Componentization in Model Design 20-4
Guidelines for Component Size and Functionality 20-4
Choose Components for Team-Based Development . . . 20-8
Partition an Existing Design 20-10
Manage Components Using Libraries 20-11

Interface Design . 20-13
Why Interface Definitions Are Important 20-13
Recommendations for Interface Design 20-13
Partitioning Data . 20-15

Configuration Management . 20-17
Manage Designs Using Source Control 20-17
Determine the Files Used by a Component 20-18
Manage Model Versions . 20-18
Create Configurations . 20-19

Power Window Example
21

Power Window . 21-2
Study Power Windows . 21-2
MathWorks Software Used in This Example 21-3
Quantitative Requirements . 21-4
Simulink Power Window Controller in Simulink

Project . 21-13
Simulink Power Window Controller 21-15

xxxvii

Create Model Using Model-Based Design 21-34
Automatic Code Generation for Control Subsystem . . 21-56
References . 21-57

Simulating Dynamic Systems

Running Simulations
22

Simulate a Model Interactively 22-2
Simulation Basics . 22-2
Run, Pause, and Stop a Simulation 22-3
Use Blocks to Stop or Pause a Simulation 22-3

Specify Simulation Start and Stop Time 22-6

Solvers . 22-7

Choose a Solver . 22-9
Solver Classification Criteria 22-12
Choose a Fixed-Step Solver . 22-16
Choose a Variable-Step Solver 22-20
Choose a Jacobian Method for an Implicit Solver 22-27

Use Auto Solver to Select a Solver 22-34
Use Auto Solver with vdp Model 22-34

Save and Restore Simulation State as SimState 22-36
SimState and Repetitive Simulations 22-36
Information Saved in a SimState 22-37
Benefits of Using SimState . 22-37
When You Can Save a SimState 22-38
Save SimState . 22-38
Restore SimState . 22-39
Change the States of a Block Within SimState 22-40
S-Functions . 22-40
Model Changes and SimState 22-40
Limitations of SimState . 22-41

xxxviii Contents

View Diagnostics . 22-44
Toolbar . 22-44
Diagnostic Message Pane . 22-45

Systematic Diagnosis of Errors and Warnings 22-47

Customize Diagnostic Messages 22-51
Display Custom Text . 22-51
Create Hyperlinks to Files, Folders, or Blocks 22-52
Create Programmatic Hyperlinks 22-52

Report Diagnostic Messages Programmatically 22-54
Create Diagnostic Stages . 22-54
Report Diagnostic Messages 22-55
Log Diagnostic Messages . 22-56

Running a Simulation Programmatically
23

About Programmatic Simulation 23-2

Run Simulation Using the sim Command 23-3
Single-Output Syntax for the sim Command 23-3
Examples of Implementing the sim Command 23-4
Calling sim from Within parfor 23-5
Backwards Compatible Syntax 23-5

Control Simulation Using the set_param Command . . 23-7
How Using set_param to Control Simulation Works . . 23-7
set_param Syntax . 23-7
Update Workspace Variables Dynamically During

Simulation . 23-8
Check Status of Simulation . 23-8
Control Simulation Using Block Callbacks 23-8

Run Parallel Simulations . 23-10
Overview of Calling sim from Within parfor 23-10
Simulink and Parallel Computing Toolbox Software . 23-14
Simulink and MATLAB Distributed Computing Server

Software . 23-15

xxxix

sim in parfor with Normal Mode 23-15
sim in parfor with Normal Mode and MATLAB

Distributed Computing Server Software 23-17
sim in parfor with Rapid Accelerator Mode 23-18
Workspace Access Issues . 23-19
Resolving Workspace Access Issues 23-20
Data Concurrency Issues . 23-21
Resolving Data Concurrency Issues 23-22

Error Handling in Simulink Using MSLException . . 23-25
Error Reporting in a Simulink Application 23-25
The MSLException Class . 23-25
Methods of the MSLException Class 23-25
Capturing Information about the Error 23-25

Visualizing and Comparing Simulation Results
24

Scope Blocks and Scope Viewer Overview 24-2
Overview of Methods . 24-2
Simulink Scope Versus Floating Scope 24-3
Simulink Floating Scope Versus Scope Viewer 24-4
Simulink Scope Versus DSP System Toolbox Time

Scope . 24-5

Scope Trigger Panel . 24-8
What Is the Trigger Panel? . 24-8
Main Pane . 24-9
Type Pane . 24-10
Timing Pane . 24-21
Holdoff Pane . 24-25

Scope Measurement Panels . 24-26
What Are Measurement Panels? 24-26
Trace Selection Panel . 24-26
Cursor Measurement Panel . 24-26
Signal Statistics Panel . 24-28
Bilevel Measurements Panel 24-30
Peak Finder Panel . 24-43

xl Contents

Scope Tasks . 24-47
Add Scope Block to Model . 24-47
Open Scope Configuration Properties Dialog Box 24-47

Floating Scope and Scope Viewer Tasks 24-48
Add Floating Scope Block to Model 24-48
Add Scope Viewer to Model . 24-48
Connect Signals to Scope . 24-51
Save Simulation Data Using a Scope 24-52
Run Simulation from Scope . 24-53
Delete Scope Viewer . 24-54
Quick Method for Viewing Signals with Floating

Scope . 24-54
Quick Method for Connecting Scope Viewers 24-55

Signal Generator Tasks . 24-56
Attach Signal Generator . 24-56
Attach and Remove Signal Generator 24-56

Signal and Scope Manager . 24-57
About the Signal & Scope Manager 24-57
Change Scope Viewer Parameters 24-57
Viewing Test Point Data . 24-58

Signal Selector . 24-59
About the Signal Selector . 24-59
Select Signals . 24-60
Model Hierarchy . 24-60
Inputs/Signals List . 24-60

Control Scopes Programmatically 24-63
Use Simulink Configuration Object 24-63
Scope Configuration Properties 24-65

Inspecting and Comparing Logged Signal Data
25

Inspect Signal Data with Simulation Data Inspector . 25-2

xli

Open the Simulation Data Inspector 25-4
Why Is the Simulation Data Inspector Empty? 25-4

Stream Data to the Simulation Data Inspector 25-6
Use Signal Streaming to Iterate Model Design 25-7

Requirements for Recording Data 25-10

Record Logged Simulation Data 25-11
Configure Model for Recording Logged Data 25-11
Simulate Model and Record a Run 25-12

Import Signal Data . 25-14
Import Signal Data from the Base Workspace 25-14
Import Signal Data from a MAT-File 25-16

Save and Load Simulation Data Inspector Sessions . 25-17
Save a Session to a MAT-File 25-17
Load a Saved Simulation Data Inspector Session 25-17

Inspect Signal Data . 25-18
View Signal Data . 25-18
Explore Signal Data . 25-20
View Signals on Multiple Plots 25-22
Filter Runs and Signals . 25-25

Compare Signal Data from Multiple Simulations . . . 25-28
Compare Two Signals . 25-28
Compare Two Runs . 25-29

Create Simulation Data Inspector Report 25-33

Export Results from the Simulation Data Inspector . 25-35
Export Data to the Base Workspace 25-35
Export Data to a MAT-File . 25-36

How the Simulation Data Inspector Compares Time
Series Data . 25-37

How the Simulation Data Inspector Applies
Tolerances . 25-37

How the Simulation Data Inspector Aligns Signals . . 25-38

xlii Contents

Run Management Configuration 25-40
Append New Runs . 25-40
Specify a Run Naming Rule 25-40
Overwrite a Run . 25-41

Customize the Simulation Data Inspector Interface . 25-42
Add or Remove a Column in the Runs or Comparisons

Pane . 25-42
View Signal and Run Properties 25-45
Rename a Run . 25-47
Modify Grouping in Runs Pane 25-47
Modify Signal Alignment for Comparisons 25-50
Specify the Line Color and Style 25-51
Modify Streamed Signal Properties 25-51
Modify a Plot in the Simulation Data Inspector 25-52

Limitations of the Simulation Data Inspector 25-54

Inspect and Compare Signal Data Programmatically 25-55
Overview . 25-55
Run Management . 25-55
Signal Management . 25-56
Import/Export Data . 25-57
Comparison Results . 25-57
Create a Run in the Simulation Data Inspector 25-57
Compare Signal Data . 25-58
Compare Runs of Simulation Data 25-58
Specify Signal Tolerances . 25-60
Record Data During Parallel Simulations 25-60

Keyboard Shortcuts for the Simulation Data
Inspector . 25-62

General Actions . 25-62
Plot Zooming . 25-62
Data Cursors . 25-62

Tune and Visualize Your Model with Dashboard
Blocks . 25-64

Dashboard Blocks . 25-64
Open the Model and Dashboard Library 25-64
Connect Parameter to a Knob 25-64
View Signal Data . 25-65
Tune Parameters During Simulation 25-66

xliii

Analyzing Simulation Results
26

Decide How to Visualize Simulation Data 26-2
Visualizing Simulation Data . 26-2
Port Value Displays . 26-3
Scope Blocks and Scope Viewers 26-3
Simulation Data Inspector . 26-5
Dashboard Scope and Gauges 26-6
Outport Block . 26-7
To Workspace Block . 26-7
Signal Logging Without Blocks 26-8

Linearizing Models . 26-9
About Linearizing Models . 26-9
Linearization with Referenced Models 26-11
Linearization Using the 'v5' Algorithm 26-13

Finding Steady-State Points . 26-14

Improving Simulation Performance and
Accuracy

27
How Optimization Techniques Improve Performance

and Accuracy . 27-2

Speed Up Simulation . 27-3

How Profiler Captures Performance Data 27-5
How Profiler Works . 27-5
Start Profiler . 27-7
Save Profiler Results . 27-10

Check and Improve Simulation Accuracy 27-11
Check Simulation Accuracy . 27-11
Unstable Simulation Results 27-11
Inaccurate Simulation Results 27-11

xliv Contents

Modeling Techniques That Improve Performance . . . 27-13
Accelerate the Initialization Phase 27-13
Reduce Model Interactivity . 27-14
Reduce Model Complexity . 27-15
Choose and Configure a Solver 27-16
Save the Simulation State . 27-18

How Parallel Simulations Reduce Simulation Time . 27-19

Use Performance Advisor to Improve Simulation
Efficiency . 27-20

Performance Advisor
28

How Performance Advisor Improves Simulation
Performance . 28-2

Performance Advisor Workflow 28-3

Get Started with Performance Advisor 28-5
Prepare to Use Performance Advisor 28-5
Start Performance Advisor . 28-5

Performance Advisor Window . 28-7

Prepare a Model for Performance Advisor 28-9
Enable Data Logging for the Model 28-9
Select How Performance Advisor Applies Advice 28-10
Select Validation Actions for the Advice 28-10
Create a Performance Advisor Baseline Measurement 28-10

Perform a Quick Scan Diagnosis 28-13
Run Quick Scan on a Model 28-13
Checks in Quick Scan Mode 28-13

Run Performance Advisor . 28-15
Run Performance Advisor Checks 28-15

xlv

Use Performance Advisor Reports 28-18
View Performance Advisor Reports 28-18
Save Performance Advisor Reports 28-19

Operate on Performance Advisor Results 28-21
View Results . 28-21
Respond to Results . 28-22
Review the Actions Taken . 28-22

Improve vdp Model Performance 28-24
Enable Data Logging for the Model 28-24
Create Baseline . 28-24
Select Checks and Run . 28-25
Review Results . 28-26
Apply Advice and Validate Manually 28-28

Simulink Debugger
29

Introduction to the Debugger . 29-2

Debugger Graphical User Interface 29-3
Displaying the Graphical Interface 29-3
Toolbar . 29-4
Breakpoints Pane . 29-5
Simulation Loop Pane . 29-5
Outputs Pane . 29-7
Sorted List Pane . 29-7
Status Pane . 29-8

Debugger Command-Line Interface 29-9
Controlling the Debugger . 29-9
Method ID . 29-9
Block ID . 29-9
Accessing the MATLAB Workspace 29-10

Debugger Online Help . 29-11

Start the Simulink Debugger . 29-12
Starting from a Model Window 29-12

xlvi Contents

Starting from the Command Window 29-12

Start a Simulation . 29-14

Run a Simulation Step by Step 29-16
Introduction . 29-16
Block Data Output . 29-17
Stepping Commands . 29-18
Continuing a Simulation . 29-19
Running a Simulation Nonstop 29-19

Set Breakpoints . 29-20
About Breakpoints . 29-20
Setting Unconditional Breakpoints 29-20
Setting Conditional Breakpoints 29-22

Display Information About the Simulation 29-26
Display Block I/O . 29-26
Display Algebraic Loop Information 29-28
Display System States . 29-28
Display Solver Information . 29-29

Display Information About the Model 29-31
Display Model’s Sorted Lists 29-31
Display a Block . 29-32

Accelerating Models
30

What Is Acceleration? . 30-2

How Acceleration Modes Work 30-4
Overview . 30-4
Normal Mode . 30-4
Accelerator Mode . 30-5
Rapid Accelerator Mode . 30-6

Code Regeneration in Accelerated Models 30-8
Determine If the Simulation Will Rebuild 30-8
Parameter Tuning in Rapid Accelerator Mode 30-8

xlvii

Choosing a Simulation Mode . 30-11
Simulation Mode Tradeoffs . 30-11
Comparing Modes . 30-12
Decision Tree . 30-14

Design Your Model for Effective Acceleration 30-17
Select Blocks for Accelerator Mode 30-17
Select Blocks for Rapid Accelerator Mode 30-18
Control S-Function Execution 30-18
Accelerator and Rapid Accelerator Mode Data Type

Considerations . 30-19
Behavior of Scopes and Viewers with Rapid Accelerator

Mode . 30-19
Factors Inhibiting Acceleration 30-20

Perform Acceleration . 30-24
Customize the Build Process 30-24
Run Acceleration Mode from the User Interface 30-25
Making Run-Time Changes . 30-26

Interact with the Acceleration Modes
Programmatically . 30-28

Why Interact Programmatically? 30-28
Build Accelerator Mode MEX-files 30-28
Control Simulation . 30-28
Simulate Your Model . 30-29
Customize the Acceleration Build Process 30-30

Run Accelerator Mode with the Simulink Debugger . 30-32
Advantages of Using Accelerator Mode with the

Debugger . 30-32
How to Run the Debugger . 30-32
When to Switch Back to Normal Mode 30-32

Comparing Performance . 30-34
Performance of the Simulation Modes 30-34
Measure Performance . 30-36

How to Improve Performance in Acceleration Modes 30-38
Techniques . 30-38
C Compilers . 30-38

xlviii Contents

Managing Blocks

Working with Blocks
31

Nonvirtual and Virtual Blocks . 31-2

Set Block Properties . 31-4
Block Properties Dialog Box . 31-4
General Block Properties . 31-6
Block Annotation Properties . 31-6
Block Callbacks . 31-8
Create Block Annotations Programmatically 31-10

Change the Appearance of a Block 31-12
Change a Block Orientation 31-12
Resize a Block . 31-14
Displaying Parameters Beneath a Block 31-15
Drop Shadows . 31-15
Manipulate Block Names . 31-15
Specify Block Color . 31-17

Display Port Values for Debugging 31-18
Display Port Values for Easy Debugging 31-18
Display Value for a Specific Port 31-22
Display Port Values for a Model 31-25
Port Value Display Limitations 31-26

Control and Display the Sorted Order 31-29
What Is Sorted Order? . 31-29
Display the Sorted Order . 31-29
Sorted Order Notation . 31-30
How Simulink Determines the Sorted Order 31-40
Assign Block Priorities . 31-43
Rules for Block Priorities . 31-44
Block Priority Violations . 31-47

Access Block Data During Simulation 31-48
About Block Run-Time Objects 31-48
Access a Run-Time Object . 31-48

xlix

Listen for Method Execution Events 31-49
Synchronizing Run-Time Objects and Simulink

Execution . 31-50

Configure a Block for Code Generation 31-51

Working with Block Parameters
32

Specify Block Parameter Values 32-2
Access Block Parameters . 32-2
Specify Parameter Values . 32-2

Block Parameter Data Types . 32-6
How Simulink Determines Parameter Data Type 32-6
Display Parameter Data Type 32-8

Calibrate Block Behavior Between Simulation Runs . 32-9

Manage Variables from Block Parameter 32-11
Rename Variable . 32-11
Edit Variable Value or Property 32-12
Navigate to Mask Parameter 32-12
Create Variable . 32-12

Check Parameter Values . 32-14
About Value Checking . 32-14
Blocks That Perform Parameter Range Checking . . . 32-14
Specify Ranges for Parameters 32-15
Perform Parameter Range Checking 32-15

Tunable Block Parameters . 32-18
Tune a Block Parameter . 32-18
Specify Ranges for Tunable Parameters 32-18
Block Parameter Tunability During Rapid Accelerator

Simulations . 32-19
Tunable Parameters in Generated Code 32-19

l Contents

Organize Related Parameters in Structures and Arrays
of Structures . 32-20

About Structure Parameters 32-20
Define Structure Parameters 32-21
Referencing Structure Parameters 32-22
Structure Parameter Arguments 32-23
Parameter Structure Limitations 32-23
Generate Code with Structure Parameters 32-24

Working with Lookup Tables
33

About Lookup Table Blocks . 33-2

Anatomy of a Lookup Table . 33-4

Lookup Tables Block Library . 33-5

Guidelines for Choosing a Lookup Table 33-7
Data Set Dimensionality . 33-7
Data Set Numeric and Data Types 33-7
Data Accuracy and Smoothness 33-7
Dynamics of Table Inputs . 33-8
Efficiency of Performance . 33-8
Summary of Lookup Table Block Features 33-9

Enter Breakpoints and Table Data 33-11
Entering Data in a Block Parameter Dialog Box 33-11
Entering Data in the Lookup Table Editor 33-11
Entering Data Using Inports of the Lookup Table Dynamic

Block . 33-13

Characteristics of Lookup Table Data 33-15
Sizes of Breakpoint Data Sets and Table Data 33-15
Monotonicity of Breakpoint Data Sets 33-16
Representation of Discontinuities in Lookup Tables . . 33-17
Formulation of Evenly Spaced Breakpoints 33-18

Methods for Estimating Missing Points 33-20
About Estimating Missing Points 33-20

li

Interpolation Methods . 33-20
Extrapolation Methods . 33-21
Rounding Methods . 33-22
Example Output for Lookup Methods 33-23

Edit Lookup Tables . 33-24
Edit N-Dimensional Lookup Tables 33-24
Edit Custom Lookup Table Blocks 33-26

Import Lookup Table Data from MATLAB 33-28
Import Standard Format Lookup Table Data 33-28
Propagate Standard Format Lookup Table Data 33-29
Import Nonstandard Format Lookup Table Data 33-30
Propagate Nonstandard Format Lookup Table Data . 33-31

Import Lookup Table Data from Excel 33-35

Create a Logarithm Lookup Table 33-36

Prelookup and Interpolation Blocks 33-39

Optimize Generated Code for Lookup Table Blocks . 33-40
Remove Code That Checks for Out-of-Range Inputs . . 33-40
Optimize Breakpoint Spacing in Lookup Tables 33-42

Update Lookup Table Blocks to New Versions 33-44
Comparison of Blocks with Current Versions 33-44
Compatibility of Models with Older Versions of Lookup

Table Blocks . 33-45
How to Update Your Model . 33-46
What to Expect from the Model Advisor Check 33-46

Lookup Table Glossary . 33-49

Working with Block Masks
34

Block Masks . 34-2
What Are Masks? . 34-2
When to Use Masks? . 34-2

lii Contents

How Mask Parameters Work . 34-4

Mask Code Execution . 34-7
Mask Code Placement . 34-7
Drawing Command Execution 34-7
Initialization Command Execution 34-8
Callback Code Execution . 34-9

Mask Terminology . 34-10

Mask a Block . 34-11
Create mask . 34-11
Define mask parameters . 34-11
Set mask parameter values . 34-12

Draw Mask Icon . 34-14
Draw static icon . 34-14
Draw dynamic icon . 34-16
Additional examples . 34-17

Create Mask Documentation . 34-18

Initialize Mask . 34-20
Mask Editor Initialization Pane 34-20
Dialog variables . 34-21
Initialization Commands . 34-22
Initialization Command Limitations 34-22

Best Practices for Masking . 34-24
Use These Best Practices . 34-24
Avoid These Practices . 34-24

Considerations for Masking Model Blocks 34-25
Referenced Model Name . 34-25
Variable Workspace . 34-25

Masks on Blocks in User Libraries 34-27
About Masks and User-Defined Libraries 34-27
Masking a Block for Inclusion in a User Library 34-27
Masking a Block that Resides in a User Library 34-27
Masking a Block Copied from a User Library 34-28

liii

Parameter Promotion . 34-29
Promote Underlying Parameters to Block Mask 34-31
Promote Underlying Parameters to Subsystem Mask . 34-32
Best Practices . 34-34

Operate on Existing Masks . 34-35
Change a Block Mask . 34-35
View Mask Parameters . 34-35
Look Under Block Mask . 34-35
Remove and Cache Mask . 34-36
Restore Cached Mask . 34-37
Permanently Delete Mask . 34-37

Calculate Values Used Under the Mask 34-38

Control Masks Programmatically 34-41
Use Simulink.Mask and Simulink.MaskParameter . . 34-41
Use get_param and set_param 34-42
Programmatically Create Mask Parameters and

Dialogs . 34-43

Create Dynamic Mask Dialog Boxes 34-48
About Dynamic Masked Dialog Boxes 34-48
Show parameter . 34-49
Enable parameter . 34-49
Create Dynamic Mask Dialog Box 34-49
Setting Nested Masked Block Parameters 34-50

Create Dynamic Masked Subsystems 34-52
Allow library block to modify its contents 34-52
Create Self-Modifying Masks for Library Blocks 34-52
Evaluate Blocks Under Self-Modifying Mask 34-56

Debug Masks That Use MATLAB Code 34-58
Code Written in Mask Editor 34-58
Code Written Using MATLAB Editor/Debugger 34-58

Masking Linked Blocks . 34-59
Guidelines for Mask Parameters 34-60
Mask Behavior for Masked, Linked Blocks 34-61

Mask a Linked Block . 34-62
Create a Custom Library With Mask on Link Block . . 34-62

liv Contents

Add a Mask to the Masked, Link Block 34-62
View Masks Below the Top Mask 34-63

Creating Custom Blocks
35

When to Create Custom Blocks 35-2

Types of Custom Blocks . 35-3
MATLAB Function Blocks . 35-3
MATLAB System Blocks . 35-3
Subsystem Blocks . 35-4
S-Function Blocks . 35-4

Comparison of Custom Block Functionality 35-7
Custom Block Considerations 35-7
Modeling Requirements . 35-11
Speed and Code Generation Requirements 35-14

Expanding Custom Block Functionality 35-18

Create a Custom Block . 35-19
How to Design a Custom Block 35-19
Defining Custom Block Behavior 35-21
Deciding on a Custom Block Type 35-22
Placing Custom Blocks in a Library 35-26
Adding a User Interface to a Custom Block 35-29
Adding Block Functionality Using Block Callbacks . . 35-37

Custom Block Examples . 35-42
Creating Custom Blocks from Masked Library Blocks 35-42
Creating Custom Blocks from MATLAB Functions . . 35-42
Creating Custom Blocks from System Objects 35-43
Creating Custom Blocks from S-Functions 35-43

lv

Working with Block Libraries
36

About Block Libraries and Linked Blocks 36-2
Block Libraries . 36-2
Benefits of Block Libraries . 36-2
Library Browser . 36-2
Linked Blocks . 36-2

Create and Work with Linked Blocks 36-4
About Linked Blocks . 36-4
Create a Linked Block . 36-4
Update a Linked Block . 36-5
Modify Linked Blocks . 36-6
Find a Linked Block's Prototype 36-7
Find Linked Blocks in a Model 36-7

Work with Library Links . 36-8
Display Library Links . 36-8
Lock Links to Blocks in a Library 36-9
Disable Links to Library Blocks 36-11
Restore Disabled or Parameterized Links 36-12
Check and Set Link Status Programmatically 36-15
Break a Link to a Library Block 36-17
Fix Unresolved Library Links 36-18

Create Block Libraries . 36-19
Create a Library . 36-19
Create a Sublibrary . 36-19
Modify and Lock Libraries . 36-20
Make Backward-Compatible Changes to Libraries . . . 36-21

Add Libraries to the Library Browser 36-30

Using the MATLAB Function Block
37

Integrate MATLAB Algorithm in Model 37-3
Defining Local Variables for Code Generation 37-3

lvi Contents

What Is a MATLAB Function Block? 37-5
Calling Functions in MATLAB Function Blocks 37-5

Why Use MATLAB Function Blocks? 37-7

Use Nondirect Feedthrough in a MATLAB Function
Block . 37-8

Create Model That Uses MATLAB Function Block . . . 37-9
Adding a MATLAB Function Block to a Model 37-9
Programming the MATLAB Function Block 37-10
Building the Function and Checking for Errors 37-11
Defining Inputs and Outputs 37-13

Code Generation Readiness Tool 37-15
Information That the Code Generation Readiness Tool

Provides . 37-15
Summary Tab . 37-16
Code Structure Tab . 37-17
See Also . 37-20

Check Code Using the Code Generation Readiness
Tool . 37-21

Run Code Generation Readiness Tool at the Command
Line . 37-21

Run the Code Generation Readiness Tool From the
Current Folder Browser . 37-21

Debugging a MATLAB Function Block 37-22
Debugging the Function in Simulation 37-22
Watching Function Variables During Simulation 37-25
Checking for Data Range Violations 37-27
Debugging Tools . 37-28

MATLAB Function Block Editor 37-31
Customizing the MATLAB Function Block Editor . . . 37-31
MATLAB Function Block Editor Tools 37-31
Editing and Debugging MATLAB Function Block

Code . 37-32
Ports and Data Manager . 37-33

MATLAB Function Reports . 37-46
About MATLAB Function Reports 37-46

lvii

Opening MATLAB Function Reports 37-46
Description of MATLAB Function Reports 37-47
Viewing Your MATLAB Function Code 37-47
Viewing Call Stack Information 37-48
Viewing the Compilation Summary Information 37-49
Viewing Error and Warning Messages 37-49
Viewing Variables in Your MATLAB Code 37-50
Keyboard Shortcuts for the MATLAB Function Report 37-56
Report Limitations . 37-57

Type Function Arguments . 37-59
About Function Arguments . 37-59
Specifying Argument Types . 37-59
Inheriting Argument Data Types 37-61
Built-In Data Types for Arguments 37-62
Specifying Argument Types with Expressions 37-62
Specifying Fixed-Point Designer Data Properties 37-63

Size Function Arguments . 37-66
Specifying Argument Size . 37-66
Inheriting Argument Sizes from Simulink 37-66
Specifying Argument Sizes with Expressions 37-67

Add Parameter Arguments . 37-68

Resolve Signal Objects for Output Data 37-69
Implicit Signal Resolution . 37-69
Eliminating Warnings for Implicit Signal Resolution in the

Model . 37-69
Disabling Implicit Signal Resolution for a MATLAB

Function Block . 37-69
Forcing Explicit Signal Resolution for an Output Data

Signal . 37-70

Types of Structures in MATLAB Function Blocks . . . 37-71

Attach Bus Signals to MATLAB Function Blocks 37-72
Structure Definitions in Example 37-72
Bus Objects Define Structure Inputs and Outputs . . . 37-72

How Structure Inputs and Outputs Interface with Bus
Signals . 37-74

Working with Virtual and Nonvirtual Buses 37-74

lviii Contents

Rules for Defining Structures in MATLAB Function
Blocks . 37-75

Index Substructures and Fields 37-76

Create Structures in MATLAB Function Blocks 37-77

Assign Values to Structures and Fields 37-79

Initialize a Matrix Using a Non-Tunable Structure
Parameter . 37-81

Define and Use Structure Parameters 37-84
Defining Structure Parameters 37-84
FIMATH Properties of Non-Tunable Structure

Parameters . 37-84

Limitations of Structures and Buses in MATLAB
Function Blocks . 37-85

What Is Variable-Size Data? . 37-86

How MATLAB Function Blocks Implement Variable-Size
Data . 37-87

Enable Support for Variable-Size Data 37-88

Declare Variable-Size Inputs and Outputs 37-89

Filter a Variable-Size Signal . 37-90
About the Example . 37-90
Simulink Model . 37-90
Source Signal . 37-91
MATLAB Function Block: uniquify 37-91
MATLAB Function Block: avg 37-93
Variable-Size Results . 37-94

Enumerated Types Supported in MATLAB Function
Blocks . 37-97

Enumeration Class Base Types in MATLAB Function
Block . 37-98

C Code Representation for Simulink.IntEnumType Base
Type . 37-98

lix

C Code Representation for Built-In Integer Base
Types . 37-99

Define Enumerated Data Types for MATLAB Function
Blocks . 37-100

Define Enumerated Type in Class Definition File . . 37-100

Add Inputs, Outputs, and Parameters as Enumerated
Data . 37-102

Use Enumerated Data in MATLAB Function Blocks 37-104

Instantiate Enumerated Data in MATLAB Function
Blocks . 37-105

Control an LED Display . 37-106
About the Example . 37-106
Class Definition: switchmode 37-106
Class Definition: led . 37-106
Simulink Model . 37-107
MATLAB Function Block: checkState 37-108
How the Model Displays Enumerated Data 37-109

Operations on Enumerated Data 37-110

Enumerated Data in MATLAB Function Blocks 37-111
When to Use Enumerated Data 37-111
Limitations of Enumerated Types 37-111

Share Data Globally . 37-112
When Do You Need to Use Global Data? 37-112
Using Global Data with the MATLAB Function Block 37-112
Choosing How to Store Global Data 37-113
How to Use Data Store Memory Blocks 37-114
How to Use Simulink.Signal Objects 37-116
Using Data Store Diagnostics to Detect Memory Access

Issues . 37-118
Limitations of Using Shared Data in MATLAB Function

Blocks . 37-118

Create Custom Block Libraries 37-119
When to Use MATLAB Function Block Libraries . . . 37-119

lx Contents

How to Create Custom MATLAB Function Block
Libraries . 37-119

Example: Creating a Custom Signal Processing Filter
Block Library . 37-120

Code Reuse with Library Blocks 37-132
Debugging MATLAB Function Library Blocks 37-137
Properties You Can Specialize Across Instances of Library

Blocks . 37-137

Use Traceability in MATLAB Function Blocks 37-138
Extent of Traceability in MATLAB Function Blocks . 37-138
Traceability Requirements . 37-138
Basic Workflow for Using Traceability 37-138
Tutorial: Using Traceability in a MATLAB Function

Block . 37-139

Include MATLAB Code as Comments in Generated
Code . 37-142

How to Include MATLAB Code as Comments in the
Generated Code . 37-142

Location of Comments in Generated Code 37-143
Including MATLAB Function Help Text in the Function

Banner . 37-145
Limitations of MATLAB Source Code as Comments . 37-145

Integrate C Code Using the MATLAB Function Block 37-147
Call C Code from a Simulink model 37-147
Control Imported Bus and Enumeration Type

Definitions . 37-149

Enhance Code Readability for MATLAB Function
Blocks . 37-151

Requirements for Using Readability Optimizations . 37-151
Converting If-Elseif-Else Code to Switch-Case

Statements . 37-151
Example of Converting Code for If-Elseif-Else Decision

Logic to Switch-Case Statements 37-153

Control Run-Time Checks . 37-159
Types of Run-Time Checks 37-159
When to Disable Run-Time Checks 37-159
How to Disable Run-Time Checks 37-160

lxi

Track Object Using MATLAB Code 37-161
Learning Objectives . 37-161
Tutorial Prerequisites . 37-161
Example: The Kalman Filter 37-162
Files for the Tutorial . 37-165
Tutorial Steps . 37-166
Best Practices Used in This Tutorial 37-184
Key Points to Remember . 37-185
Where to Learn More . 37-185

Filter Audio Signal Using MATLAB Code 37-187
Learning Objectives . 37-187
Tutorial Prerequisites . 37-187
Example: The LMS Filter . 37-188
Files for the Tutorial . 37-191
Tutorial Steps . 37-192

Encapsulating the Interface to External Code 37-216

Encapsulate Interface to an External C Library . . . 37-217

Best Practices for Using coder.ExternalDependency 37-220
Terminate Code Generation for Unsupported External

Dependency . 37-220
Parameterize Methods for MATLAB and Generated

Code . 37-220
Parameterize updateBuildInfo for Multiple Platforms 37-221

Update Build Information from MATLAB code 37-222

System Objects
38

What Are System Objects? . 38-2

System Design and Simulation in Simulink 38-4

System Objects in MATLAB Code Generation 38-5
System Objects in Generated Code 38-5
System Objects in codegen . 38-9

lxii Contents

System Objects in the MATLAB Function Block 38-10
System Objects in the MATLAB System Block 38-10
System Objects and MATLAB Compiler Software . . . 38-10

System Objects Methods That Support Code
Generation . 38-11

Code Generation Supported System Objects Methods 38-11
Simulation-Only System Objects Methods 38-11

System Objects in Simulink . 38-13
System Objects in the MATLAB Function Block 38-13
System Objects in the MATLAB System Block 38-13

System Object Methods . 38-14
What Are System Object Methods? 38-14
The Step Method . 38-14
Common Methods . 38-15

System Design in Simulink Using System Objects . . . 38-17
Define New Kinds of System Objects for Use in

Simulink . 38-17
Test New System Objects in MATLAB 38-22
Add System Objects to Your Simulink Model 38-23

Define New System Objects
39

System Objects Methods for Defining New Objects . . . 39-3

Define Basic System Objects . 39-5

Change Number of Step Inputs or Outputs 39-7

Specify System Block Input and Output Names 39-11

Validate Property and Input Values 39-13

Initialize Properties and Setup One-Time
Calculations . 39-16

lxiii

Set Property Values at Construction Time 39-19

Reset Algorithm State . 39-21

Define Property Attributes . 39-23

Hide Inactive Properties . 39-27

Limit Property Values to Finite String Set 39-29

Process Tuned Properties . 39-32

Release System Object Resources 39-34

Define Composite System Objects 39-36

Define Finite Source Objects . 39-39

Save System Object . 39-41

Load System Object . 39-45

Define System Object Information 39-49

Define System Block Icon . 39-51

Add Header to System Block Dialog 39-53

Add Property Groups to System Object and Block
Dialog . 39-55

Control Simulation Type in System Block Dialog . . . 39-60

Add Button to System Block Dialog Box 39-62

Specify Locked Input Size . 39-65

Set Output Size . 39-67

Set Output Data Type . 39-70

Set Output Complexity . 39-74

lxiv Contents

Specify Whether Output Is Fixed- or Variable-Size . . 39-76

Specify Discrete State Output Specification 39-82

Use Update and Output for Nondirect Feedthrough . 39-84

Enable For Each Subsystem Support 39-87

Methods Timing . 39-89
Setup Method Call Sequence 39-89
Step Method Call Sequence . 39-90
Reset Method Call Sequence 39-90
Release Method Call Sequence 39-91

System Object Input Arguments and ~ in Code
Examples . 39-92

What Are Mixin Classes? . 39-93

Best Practices for Defining System Objects 39-94

System Objects in Simulink
40

What Is the MATLAB System Block? 40-2
Why Use the MATLAB System Block? 40-2
Choosing the Right Block Type 40-2
System Objects . 40-3
Interpreted Execution or Code Generation 40-3
MATLAB System Block Limitations 40-4
MATLAB System and System Objects Examples 40-5

Implement a MATLAB System Block 40-7
Understanding the MATLAB System Block 40-8

Change Blocks Implemented with System Objects . . 40-10

Change Block Icon and Port Labels 40-11
Modify MATLAB System Block Dialog 40-11

lxv

Nonvirtual buses and MATLAB System Block 40-13

Use System Objects in Feedback Loops 40-14

Simulation Modes . 40-16
Interpreted Execution vs. Code Generation 40-16
Simulation Using Code Generation 40-17

Mapping System Objects to Block Dialog Box 40-18
System Object to Block Dialog Box Default Mapping . 40-18
System Object to Block Dialog Box Custom Mapping . 40-20

Considerations for Using System Objects in Simulink 40-23
System Objects in Simulink 40-23
System Objects in For Each Subsystems 40-24

Simulink Engine Interaction with System Object
Methods . 40-25

Simulink Engine Phases Mapped to System Object
Methods . 40-25

Add and Implement Propagation Methods 40-28
When to Use Propagation Methods 40-28
Add Propagation Methods to System Objects 40-28
Implement Propagation Methods 40-29

Troubleshoot System Objects in Simulink 40-31
Class Not Found . 40-31
Error Invoking Object Method 40-31
Performance . 40-32

Design Considerations for C/C++ Code
Generation

41
When to Generate Code from MATLAB Algorithms . . . 41-2

When Not to Generate Code from MATLAB
Algorithms . 41-2

Which Code Generation Feature to Use 41-4

lxvi Contents

Prerequisites for C/C++ Code Generation from
MATLAB . 41-5

MATLAB Code Design Considerations for Code
Generation . 41-6

See Also . 41-7

Differences in Behavior After Compiling MATLAB
Code . 41-8

Why Are There Differences? . 41-8
Character Size . 41-8
Order of Evaluation in Expressions 41-8
Termination Behavior . 41-10
Size of Variable-Size N-D Arrays 41-10
Size of Empty Arrays . 41-10
Shape of Array When Index and Assigned Value Are

Empty . 41-10
Floating-Point Numerical Results 41-11
NaN and Infinity Patterns . 41-12
Code Generation Target . 41-12
MATLAB Class Initial Values 41-12
Variable-Size Support for Code Generation 41-12
Complex Numbers . 41-12

MATLAB Language Features Supported for C/C++ Code
Generation . 41-13

MATLAB Features That Code Generation Supports . 41-13
MATLAB Language Features That Code Generation Does

Not Support . 41-14

Functions, Classes, and System Objects
Supported for Code Generation

42
Functions and Objects Supported for C and C++ Code

Generation — Alphabetical List 42-2

Functions and Objects Supported for C and C++ Code
Generation — Category List 42-147

Aerospace Toolbox . 42-149

lxvii

Arithmetic Operations in MATLAB 42-149
Bit-Wise Operations MATLAB 42-150
Casting in MATLAB . 42-151
Communications System Toolbox 42-151
Complex Numbers in MATLAB 42-157
Computer Vision System Toolbox 42-158
Control Flow in MATLAB . 42-167
Data and File Management in MATLAB 42-168
Data Types in MATLAB . 42-171
Desktop Environment in MATLAB 42-172
Discrete Math in MATLAB 42-173
DSP System Toolbox . 42-173
Error Handling in MATLAB 42-181
Exponents in MATLAB . 42-181
Filtering and Convolution in MATLAB 42-182
Fixed-Point Designer . 42-183
HDL Coder . 42-193
Histograms in MATLAB . 42-193
Image Acquisition Toolbox . 42-194
Image Processing in MATLAB 42-194
Image Processing Toolbox . 42-194
Input and Output Arguments in MATLAB 42-204
Interpolation and Computational Geometry in

MATLAB . 42-204
Linear Algebra in MATLAB 42-208
Logical and Bit-Wise Operations in MATLAB 42-209
MATLAB Compiler . 42-210
Matrices and Arrays in MATLAB 42-210
Neural Network Toolbox . 42-219
Numerical Integration and Differentiation in

MATLAB . 42-219
Optimization Functions in MATLAB 42-220
Phased Array System Toolbox 42-221
Polynomials in MATLAB . 42-231
Programming Utilities in MATLAB 42-232
Relational Operators in MATLAB 42-232
Robotics System Toolbox . 42-232
Rounding and Remainder Functions in MATLAB . . 42-233
Set Operations in MATLAB 42-234
Signal Processing in MATLAB 42-239
Signal Processing Toolbox . 42-240
Special Values in MATLAB 42-245
Specialized Math in MATLAB 42-246
Statistics in MATLAB . 42-246

lxviii Contents

Statistics and Machine Learning Toolbox 42-247
String Functions in MATLAB 42-257
System Identification Toolbox 42-259
Trigonometry in MATLAB . 42-260

System Objects Supported for Code Generation
43

Code Generation for System Objects 43-2

Defining MATLAB Variables for C/C++ Code
Generation

44
Variables Definition for Code Generation 44-2

Best Practices for Defining Variables for C/C++ Code
Generation . 44-3

Define Variables By Assignment Before Using Them . . 44-3
Use Caution When Reassigning Variables 44-5
Use Type Cast Operators in Variable Definitions 44-5
Define Matrices Before Assigning Indexed Variables . . 44-6

Eliminate Redundant Copies of Variables in Generated
Code . 44-7

When Redundant Copies Occur 44-7
How to Eliminate Redundant Copies by Defining

Uninitialized Variables . 44-7
Defining Uninitialized Variables 44-8

Reassignment of Variable Properties 44-9

Define and Initialize Persistent Variables 44-10

Reuse the Same Variable with Different Properties . 44-11
When You Can Reuse the Same Variable with Different

Properties . 44-11

lxix

When You Cannot Reuse Variables 44-11
Limitations of Variable Reuse 44-14

Avoid Overflows in for-Loops . 44-15

Supported Variable Types . 44-17

Defining Data for Code Generation
45

Data Definition for Code Generation 45-2

Code Generation for Complex Data 45-4
Restrictions When Defining Complex Variables 45-4
Code Generation for Complex Data with Zero-Valued

Imaginary Parts . 45-4
Results of Expressions That Have Complex Operands . 45-7

Code Generation for Characters and Strings 45-8

Array Size Restrictions for Code Generation 45-9
See Also . 45-9

Code Generation for Constants in Structures and
Arrays . 45-10

Code Generation for Variable-Size Data
46

What Is Variable-Size Data? . 46-2

Variable-Size Data Definition for Code Generation . . 46-3

Bounded Versus Unbounded Variable-Size Data 46-4

lxx Contents

Specify Variable-Size Data Without Dynamic Memory
Allocation . 46-5

Fixing Upper Bounds Errors . 46-5
Specifying Upper Bounds for Variable-Size Data 46-5

Variable-Size Data in Code Generation Reports 46-7
What Reports Tell You About Size 46-7
How Size Appears in Code Generation Reports 46-8
How to Generate a Code Generation Report 46-8

Define Variable-Size Data for Code Generation 46-9
When to Define Variable-Size Data Explicitly 46-9
Using a Matrix Constructor with Nonconstant

Dimensions . 46-9
Inferring Variable Size from Multiple Assignments . . 46-10
Defining Variable-Size Data Explicitly Using

coder.varsize . 46-11

C Code Interface for Arrays . 46-15
C Code Interface for Statically Allocated Arrays 46-15

Diagnose and Fix Variable-Size Data Errors 46-17
Diagnosing and Fixing Size Mismatch Errors 46-17
Diagnosing and Fixing Errors in Detecting Upper

Bounds . 46-19

Incompatibilities with MATLAB in Variable-Size
Support for Code Generation 46-21

Incompatibility with MATLAB for Scalar Expansion . 46-21
Incompatibility with MATLAB in Determining Size of

Variable-Size N-D Arrays 46-23
Incompatibility with MATLAB in Determining Size of

Empty Arrays . 46-24
Incompatibility with MATLAB in Determining Class of

Empty Arrays . 46-25
Incompatibility with MATLAB in Vector-Vector

Indexing . 46-26
Incompatibility with MATLAB in Matrix Indexing

Operations for Code Generation 46-26
Incompatibility with MATLAB in Concatenating Variable-

Size Matrices . 46-27

lxxi

Differences When Curly-Brace Indexing of Variable-
Size Cell Array Inside Concatenation Returns No
Elements . 46-27

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 46-29

Variable-Sizing Restrictions for Code Generation of
Toolbox Functions . 46-30

Common Restrictions . 46-30
Toolbox Functions with Variable Sizing Restrictions . 46-31

Code Generation for MATLAB Structures
47

Structure Definition for Code Generation 47-2

Structure Operations Allowed for Code Generation . . 47-3

Define Scalar Structures for Code Generation 47-4
Restrictions When Defining Scalar Structures by

Assignment . 47-4
Adding Fields in Consistent Order on Each Control Flow

Path . 47-4
Restriction on Adding New Fields After First Use 47-5

Define Arrays of Structures for Code Generation 47-6
Ensuring Consistency of Fields 47-6
Using repmat to Define an Array of Structures with

Consistent Field Properties 47-6
Defining an Array of Structures by Using struct 47-7
Defining an Array of Structures Using Concatenation . 47-7

Make Structures Persistent . 47-8

Index Substructures and Fields 47-9

Assign Values to Structures and Fields 47-11

Pass Large Structures as Input Parameters 47-13

lxxii Contents

Code Generation for Cell Arrays
48

Homogeneous vs. Heterogeneous Cell Arrays 48-2

Control Whether a Cell Array is Homogeneous or
Heterogeneous . 48-4

Cell Array Requirements and Limitations for Code
Generation . 48-5

Cell Array Definition . 48-5
Cell Array Indexing . 48-6
Variable-Size Cell Arrays . 48-6
Cell Array Contents . 48-6
Cell Arrays in Structures . 48-7
Passing to External C/C++ Functions 48-7
Use in MATLAB Function Block 48-7

Cell Arrays in Code Generation Reports 48-8
Cell Array Variable in the MATLAB Code Pane 48-8
Cell Array Variable on the Variables Tab 48-8

Code Generation for Enumerated Data
49

Enumerated Data Definition for Code Generation . . . 49-2

Customize Enumerated Types for MATLAB Function
Blocks . 49-3

Restrictions on Use of Enumerated Data in for-
Loops . 49-4

Toolbox Functions That Support Enumerated Types for
Code Generation . 49-5

lxxiii

Code Generation for MATLAB Classes
50

MATLAB Classes Definition for Code Generation 50-2
Language Limitations . 50-2
Code Generation Features Not Compatible with

Classes . 50-3
Defining Class Properties for Code Generation 50-4
Calls to Base Class Constructor 50-5
Inheritance from Built-In MATLAB Classes Not

Supported . 50-6

Classes That Support Code Generation 50-8

Generate Code for MATLAB Value Classes 50-9

Generate Code for MATLAB Handle Classes and System
Objects . 50-14

MATLAB Classes in Code Generation Reports 50-16
What Reports Tell You About Classes 50-16
How Classes Appear in Code Generation Reports . . . 50-16
How to Generate a Code Generation Report 50-18

Troubleshooting Issues with MATLAB Classes 50-19
Class class does not have a property with name name 50-19

Handle Object Limitations for Code Generation 50-21
A Variable Outside a Loop Cannot Refer to a Handle

Object Created Inside a Loop 50-21
A Handle Object That a Persistent Variable Refers To

Must Be a Singleton Object 50-21

System Objects Requirements and Limitations for Code
Generation . 50-24

lxxiv Contents

Code Generation for Function Handles
51

Function Handle Definition for Code Generation 51-2

Define and Pass Function Handles for Code
Generation . 51-3

Function Handle Limitations for Code Generation . . . 51-5

Defining Functions for Code Generation
52

Specify Variable Numbers of Arguments 52-2

Supported Index Expressions . 52-3

Apply Operations to a Variable Number of
Arguments . 52-4

When to Force Loop Unrolling 52-4
Using Variable Numbers of Arguments in a for-Loop . . 52-5

Implement Wrapper Functions 52-6
Passing Variable Numbers of Arguments from One

Function to Another . 52-6

Pass Property/Value Pairs . 52-7

Variable Length Argument Lists for Code Generation 52-9

Calling Functions for Code Generation
53

Resolution of Function Calls for Code Generation . . . 53-2
Key Points About Resolving Function Calls 53-4
Compile Path Search Order . 53-4

lxxv

When to Use the Code Generation Path 53-5

Resolution of File Types on Code Generation Path . . . 53-6

Compilation Directive %#codegen 53-8

Call Local Functions . 53-9

Call Supported Toolbox Functions 53-10

Call MATLAB Functions . 53-11
Declaring MATLAB Functions as Extrinsic Functions 53-12
Calling MATLAB Functions Using feval 53-16
How MATLAB Resolves Extrinsic Functions During

Simulation . 53-16
Working with mxArrays . 53-17
Restrictions on Extrinsic Functions for Code

Generation . 53-19
Limit on Function Arguments 53-19

Generate Efficient and Reusable Code
54

Optimization Strategies . 54-2

Modularize MATLAB Code . 54-5

Eliminate Redundant Copies of Function Inputs 54-6

Inline Code . 54-9
Prevent Function Inlining . 54-9
Use Inlining in Control Flow Statements 54-9

Control Inlining . 54-11
Control Size of Functions Inlined 54-11
Control Size of Functions After Inlining 54-12
Control Stack Size Limit on Inlined Functions 54-12

Fold Function Calls into Constants 54-14

lxxvi Contents

Control Stack Space Usage . 54-16

Stack Allocation and Performance 54-17

Dynamic Memory Allocation and Performance 54-18
When Dynamic Memory Allocation Occurs 54-18

Minimize Dynamic Memory Allocation 54-19

Provide Maximum Size for Variable-Size Arrays 54-20

Disable Dynamic Memory Allocation During Code
Generation . 54-26

Set Dynamic Memory Allocation Threshold 54-27
Set Dynamic Memory Allocation Threshold Using the

MATLAB Coder App . 54-27
Set Dynamic Memory Allocation Threshold at the

Command Line . 54-28

Excluding Unused Paths from Generated Code 54-29

Prevent Code Generation for Unused Execution
Paths . 54-30

Prevent Code Generation When Local Variable Controls
Flow . 54-30

Prevent Code Generation When Input Variable Controls
Flow . 54-31

Generate Code with Parallel for-Loops (parfor) 54-32

Minimize Redundant Operations in Loops 54-34

Unroll for-Loops . 54-36
Limit Copying the for-loop Body in Generated Code . 54-36

Support for Integer Overflow and Non-Finites 54-39
Disable Support for Integer Overflow 54-39
Disable Support for Non-Finite Numbers 54-40

Integrate Custom Code . 54-41

lxxvii

MATLAB Coder Optimizations in Generated Code . . 54-47
Constant Folding . 54-47
Loop Fusion . 54-48
Successive Matrix Operations Combined 54-48
Unreachable Code Elimination 54-49

Generate Reusable Code . 54-50

Managing Data

Working with Data
55

About Data Types in Simulink . 55-2
About Data Types . 55-2
Data Typing Guidelines . 55-3
Data Type Propagation . 55-3

Data Types Supported by Simulink 55-5
Block Support for Data and Signal Types 55-5

Control Signal Data Types . 55-7
Entering Valid Data Type Values 55-9
Using the Model Explorer for Batch Editing 55-12

Validate a Floating-Point Embedded Model 55-17
Apply a Data Type Override to Floating-Point Data

Types . 55-17
Validate a Single-Precision Model 55-18

Specify Fixed-Point Data Types 55-22
Overriding Fixed-Point Specifications 55-22

Specify Data Types Using Data Type Assistant 55-24
Specifying a Fixed-Point Data Type 55-27
Specify an Enumerated Data Type 55-34
Specify a Bus Object Data Type 55-34

lxxviii Contents

Data Types for Bus Signals . 55-37

Data Objects . 55-38
Data Class Naming Conventions 55-39
Use Data Objects in Simulink Models 55-39
Data Object Properties . 55-41
Create Parameter Object with Specific Numeric Data

Type . 55-42
Create Data Objects from Built-In Data Class Package
Simulink . 55-42

Create Data Objects from Another Data Class
Package . 55-43

Create Data Objects Directly from Dialog Boxes 55-44
Create Data Objects for a Model Using Data Object

Wizard . 55-45
Create Data Objects from External Data Source

Programmatically . 55-50
Data Object Methods . 55-51
Handle Versus Value Classes 55-52
Compare Data Objects . 55-54
Save and Load Data Objects 55-54
Create Persistent Data Objects 55-55

Define Data Classes . 55-56

Determine Where to Store Data for Simulink Models 55-61
Types of Data . 55-61
Store Data for Your Design . 55-62
Storage Locations . 55-64

Upgrade Level-1 Data Classes 55-68

Associating User Data with Blocks 55-70

Design Minimum and Maximum 55-71
Use of Design Minimum and Maximum 55-71
Valid Values for Design Minimum and Maximum . . . 55-71

Support Limitations for Simulink Software Features 55-73

Supported and Unsupported Simulink Blocks 55-76

lxxix

Support Limitations for Stateflow Software Features 55-87
ml Namespace Operator, ml Function, ml Expressions 55-87
C Math Functions . 55-87
Atomic Subcharts That Call Exported Graphical Functions

Outside a Subchart . 55-88
Atomic Subchart Input and Output Mapping 55-88
Recursion and Cyclic Behavior 55-88
Custom C or C++ Code . 55-90
Machine-Parented Data . 55-90
Textual Functions with Literal String Arguments . . . 55-90

Enumerations and Modeling
56

Simulink Enumerations . 56-2
Simulink Constructs that Support Enumerations 56-2
Simulink Enumeration Limitations 56-5

Use Enumerated Data in Simulink Models 56-7
Define Simulink Enumerations 56-7
Simulate with Enumerations 56-14
Specify Enumerations as Data Types 56-16
Get Information About Enumerated Data Types 56-17
Enumeration Value Display 56-17
Instantiate Enumerations . 56-19
Enumerated Values in Computation 56-22

Importing and Exporting Simulation Data
57

Using Simulation Data . 57-3
Working with Simulation Data 57-3

Export Simulation Data . 57-4
Simulation Data . 57-4
Approaches for Exporting Signal Data 57-4
Enable Simulation Data Export 57-7

lxxx Contents

View Logged Simulation Data With the Simulation Data
Inspector . 57-7

Memory Performance . 57-7

Data Format for Exported Simulation Data 57-9
Data Format for Block-Based Exported Data 57-9
Data Format for Model-Based Exported Data 57-9
Signal Logging Format . 57-9
Logged Data Store Format . 57-10
Time, State, and Output Data Format 57-10

Data Set Conversion for Logged Data 57-15
Why Convert to Dataset Format 57-15
Results of Conversion . 57-16
Dataset Conversion Limitations 57-18

Convert Logged Data to Dataset Format 57-19
Convert Workspace Data to Dataset 57-19
Convert Structure Without Time to Dataset 57-21
Programmatically Access Logged Signal Data Saved in

Dataset Format . 57-25

Limit Amount of Exported Data 57-31
Decimation . 57-31
Limit Data Points to Last . 57-31
Logging Intervals . 57-32

Samples to Export for Variable-Step Solvers 57-33
Output Options . 57-33
Refine Output . 57-33
Produce Additional Output . 57-34
Produce Specified Output Only 57-35

Export Signal Data Using Signal Logging 57-36
Signal Logging . 57-36
Signal Logging Workflow . 57-36
Signal Logging in Rapid Accelerator Mode 57-37
Signal Logging for Array of Buses Signals 57-38
Signal Logging Limitations . 57-38

Configure a Signal for Logging 57-39
Mark a Signal for Signal Logging 57-39
Specify Signal-Level Logging Name 57-41

lxxxi

Limit the Data Logged for a Signal 57-43
Set Sample Time for a Logged Signal 57-44

View the Signal Logging Configuration 57-46
Approaches for Viewing the Signal Logging

Configuration . 57-46
Use Simulink Editor to View Signal Logging

Configuration . 57-47
Use Signal Logging Selector to View Signal Logging

Configuration . 57-49
Use Model Explorer to View Signal Logging

Configuration . 57-51

Enable Signal Logging for a Model 57-52
Enable and Disable Logging at the Model Level 57-52
Specify the Signal Logging Data Format 57-52
Specify a Name for the Signal Logging Data for a

Model . 57-57

Override Signal Logging Settings 57-58
Benefits of Overriding Signal Logging Settings 57-58
Two Interfaces for Overriding Signal Logging Settings 57-58
Scope of Signal Logging Setting Overrides 57-59
Override Signal Logging Settings with the Signal Logging

Selector . 57-59
Override Signal Logging Settings from MATLAB . . . 57-65

Access Signal Logging Data . 57-71
View Signal Logging Data . 57-71
Signal Logging Object . 57-71
View Logged Signal Data with the Simulation Data

Inspector . 57-72
Handling Spaces and Newlines in Logged Names . . . 57-72
Programmatically Access Logged Signal Data Saved in

ModelDataLogs Format . 57-74

Techniques for Importing Signal Data 57-75
Signal Data Import Techniques Summary 57-75
Comparison of Techniques . 57-76
Time and Signal Values for Imported Data 57-77

Import Data to Model a Continuous Plant 57-80
Share Simulation Data Across Models 57-80

lxxxii Contents

Example of Importing Data to Model a Continuous
Plant . 57-80

Import Data to Test a Discrete Algorithm 57-82
Specify a Signal-Only Structure 57-82
Example of Importing Data to Test a Discrete

Algorithm . 57-82

Import Data for an Input Test Case 57-83
Guidelines for Importing a Test Case 57-83
Example of Test Case Data . 57-83
Use From Workspace Block to Import an Input Test

Case . 57-84
Use Signal Builder Block to Import an Input Test

Case . 57-85

Import Signal Logging Data . 57-86

Import Data to Root-Level Input Ports 57-87
Root-Level Input Ports . 57-87
Enable Data Import . 57-88
Input Data . 57-88
Import Bus Data . 57-90

Import Bus Data to Root-Level Input Ports 57-91
Imported Bus Data Requirements 57-91
Convert Simulink.TsArray Objects 57-91
Import Bus Data to a Root Inport 57-92
Import Array of Buses Data 57-94

Import and Map Root-Level Inport Data 57-100
Root Inport Mapping . 57-100
Importing and Mapping Workflow 57-101
Identify Signal Data to Import and Map 57-101
Import Signal and Bus Data 57-105
View and Inspect Signal Data 57-107
Select Map Mode . 57-110
Set Options for Mapping . 57-111
Map Data . 57-112
Understand Mapping Results 57-113
Export Data . 57-116
Work with Scenarios . 57-117
Convert Test Harness Model to Harness-Free Mode . 57-119

lxxxiii

Converting Harness-Driven Models to Use Harness-Free
External Inputs . 57-120

Import Test Vectors from Simulink Design Verifier
Environment . 57-126

Alternative Workflows to Load Data 57-127
Create Custom Mapping File Function 57-128

Import Dataset Data . 57-131
Specify a Dataset Using the Input Parameter 57-131
Dataset Elements . 57-131
Import Dataset Objects for Buses 57-131

Import MATLAB timeseries Data 57-132
Specify Time Dimension . 57-132
Models with Multiple Root Inport Blocks 57-133

Import Simulink.Timeseries and Simulink.TsArray
Data . 57-134

Use MATLAB Timeseries for New Models 57-134
Simulink.TsArray Data . 57-134

Import Data Arrays . 57-135
Data Array Format . 57-135
Specify the Input Expression 57-135
Arrays for Input Ports Driving Function-Call

Subsystems . 57-136

Import MATLAB Time Expression Data 57-138
Specify the Input Expression 57-138

Import Data Structures . 57-139
Data Structures . 57-139
One Structure for All Ports or a Structure for Each

Port . 57-140
Specify Signal Data . 57-140
Specify Time Data . 57-141
Examples of Specifying Signal and Time Data 57-142

State Information . 57-144
Simulation State Information 57-144
Types of State Information 57-144
Format for State Information Saved Without

SimState . 57-147

lxxxiv Contents

State Information for Referenced Models 57-148

Save State Information . 57-150
Save State Information for Each Simulation Step . . 57-150
Save Partial Final State Information 57-150
Examine State Information Saved Without the

SimState . 57-151
Save Final State Information with SimState 57-152

Load State Information . 57-154
Import Initial States . 57-154
Initialize a State . 57-154
Initialize States in Referenced Models 57-155

Working with Data Stores
58

Local and Global Data Stores . 58-2
Customized Data Store Access Functions in Generated

Code . 58-2

When to Use a Data Store . 58-3

Create Data Stores . 58-4

Apply Data Stores . 58-6

Data Stores with Buses and Arrays of Buses 58-8
Setting Up a Model to Use Data Stores with Buses and

Arrays of Buses . 58-8

Data Stores with Data Store Memory Blocks 58-10
Creating the Data Store . 58-10
Specifying Data Store Memory Block Attributes 58-10

Data Stores with Signal Objects 58-14
Creating the Data Store . 58-14
Local and Global Data Stores 58-14
Signal Object Attributes for Data Stores 58-14

lxxxv

Access Data Stores with Simulink Blocks 58-17
Writing to a Data Store . 58-17
Reading from a Data Store . 58-17
Accessing a Global Data Store 58-18
Accessing Specific Bus and Matrix Elements 58-19

Rename Data Stores . 58-26
Rename Data Store Defined by Block 58-26
Rename Data Store Defined by Signal Object 58-26

Data Store Examples . 58-28
Overview . 58-28
Local Data Store Example . 58-28
Global Data Store Example . 58-29

Log Data Stores . 58-31
Logging Local and Global Data Store Values 58-31
Supported Data Types, Dimensions, and Complexity for

Logging Data Stores . 58-31
Data Store Logging Limitations 58-31
Logging Data Stores Created with a Data Store Memory

Block . 58-32
Logging Icon for the Data Store Memory Block 58-32
Logging Data Stores Created with a Simulink.Signal

Object . 58-33
Accessing Data Store Logging Data 58-33

Order Data Store Access . 58-36
About Data Store Access Order 58-36
Ordering Access Using Function Call Subsystems . . . 58-36
Ordering Access Using Block Priorities 58-40

Data Store Diagnostics . 58-43
About Data Store Diagnostics 58-43
Detecting Access Order Errors 58-43
Detecting Multitasking Access Errors 58-46
Detecting Duplicate Name Errors 58-48
Data Store Diagnostics in the Model Advisor 58-50

Data Stores and Software Verification 58-52

lxxxvi Contents

Simulink Data Dictionary
59

What Is a Data Dictionary? . 59-2
Dictionary Capabilities . 59-2
Sections of a Dictionary . 59-3
Import and Export File Formats 59-4

Considerations before Migrating to Data Dictionary . 59-5
Check for Data-Loading Callbacks 59-5
Check Scripts . 59-5
Check Tunable Parameters . 59-6
Data Shared by Model References 59-6
Valid Design Data Classes . 59-7
Invalid Other Data Classes . 59-7
Data Dictionary Limitations . 59-8

Migrate Enumerated Types into Data Dictionary . . . 59-10

Enumerations in Data Dictionary 59-15
Rename Enumerated Type Definition 59-15
Rename Enumeration Members 59-15
Delete Enumeration Members 59-15
Change Underlying Value of Enumeration Member . . 59-16

Migrate Single Model to Use Dictionary 59-17

Migrate Model Reference Hierarchy to Use
Dictionary . 59-20

Import Data to Dictionary from File 59-22
Import Design Data from File 59-22
Import Other Data from File 59-24

Export Design Data from Dictionary 59-28

View and Revert Changes to Dictionary Entries 59-29

View and Revert Changes to Entire Dictionary 59-33

Partition Data Dictionary . 59-35

lxxxvii

Partition Data for Model Reference Hierarchy Using
Data Dictionaries . 59-37

Create a Dictionary for Each Component 59-37
Migrate Model Hierarchy to Dictionaries

Incrementally . 59-47

Store Data in Dictionary Programmatically 59-52
Data Dictionary Management 59-52
Dictionary Section Management 59-53
Dictionary Entry Manipulation 59-54
Transition to Using Data Dictionary 59-55
Programmatically Migrate Single Model to Use

Dictionary . 59-55
Import Directly From External File to Dictionary . . . 59-56
Programmatically Partition Data Dictionary 59-58
Sweep Data Dictionary Parameter Using Parallel

Simulation . 59-59

Managing Signals

Working with Signals
60

Signal Basics . 60-2
About Signals . 60-2
Creating Signals . 60-3
Signal Line Styles . 60-3
Signal Properties . 60-4
Testing Signals . 60-6

Signal Types . 60-8
Summary of Signal Types . 60-8
Control Signals . 60-8
Composite (Bus) Signals . 60-9

Virtual Signals . 60-11
About Virtual Signals . 60-11
Mux Signals . 60-11

lxxxviii Contents

Signal Values . 60-15
Signal Data Types . 60-15
Signal Dimensions, Size, and Width 60-15
Complex Signals . 60-15
Initializing Signal Values . 60-16
Viewing Signal Values . 60-16
Displaying Signal Values in Model Diagrams 60-17
Exporting Signal Data . 60-18

Signal Label Propagation . 60-19
Propagated Signal Labels . 60-19
Blocks That Support Signal Label Propagation 60-19
Display Propagated Signal Labels 60-20
How Simulink Propagates Signal Labels 60-21

Signal Dimensions . 60-30
About Signal Dimensions . 60-30
Simulink Blocks that Support Multidimensional

Signals . 60-31

Determine Output Signal Dimensions 60-32
About Signal Dimensions . 60-32
Determining the Output Dimensions of Source Blocks 60-32
Determining the Output Dimensions of Nonsource

Blocks . 60-33
Signal and Parameter Dimension Rules 60-33
Scalar Expansion of Inputs and Parameters 60-34

Display Signal Sources and Destinations 60-38
About Signal Highlighting . 60-38
Highlighting Signal Sources 60-38
Highlighting Signal Destinations 60-39
Removing Highlighting . 60-40
Resolving Incomplete Highlighting to Library Blocks . 60-40

Signal Ranges . 60-41
About Signal Ranges . 60-41
Blocks That Allow Signal Range Specification 60-41
Specifying Ranges for Signals 60-42
Checking for Signal Range Errors 60-43

Initialize Signals and Discrete States 60-48
About Initialization . 60-48

lxxxix

Using Block Parameters to Initialize Signals and Discrete
States . 60-49

Use Signal Objects to Initialize Signals and Discrete
States . 60-49

Using Signal Objects to Tune Initial Values 60-53
Example: Using a Signal Object to Initialize a Subsystem

Output . 60-53
Initialization Behavior Summary for Signal Objects . 60-54

Test Points . 60-57
What Is a Test Point? . 60-57
Designating a Signal as a Test Point 60-57
Displaying Test Point Indicators 60-58

Display Signal Attributes . 60-60
Ports & Signals Menu . 60-60
Port Data Types . 60-61
Design Ranges . 60-61
Signal Dimensions . 60-62
Signal to Object Resolution Indicator 60-62
Wide Nonscalar Lines . 60-63

Signal Groups . 60-65
About Signal Groups . 60-65
Using the Signal Builder Block with Fast Restart . . . 60-65
Signal Builder Window . 60-66
Creating Signal Group Sets . 60-79
Editing Waveforms . 60-106
Signal Builder Time Range 60-111
Exporting Signal Group Data 60-112
Printing, Exporting, and Copying Waveforms 60-113
Simulating with Signal Groups 60-113
Simulation Options Dialog Box 60-114

Using Composite Signals
61

Composite Signals . 61-3
What is a Composite Signal? . 61-3
Techniques for Combining Signals 61-3

xc Contents

Buses . 61-5
What is a Bus? . 61-5
Types of Simulink Buses . 61-6
Bus Objects . 61-6
View Information about Buses 61-6

Virtual and Nonvirtual Buses 61-11
About Virtual and Nonvirtual Buses 61-11
Choose Between Virtual and Nonvirtual Buses 61-12
Nonvirtual Bus Sample Times 61-13
Automatic Bus Conversion . 61-13
Explicit Bus Conversion . 61-13

Create Bus Signals . 61-15
Create a Bus . 61-15
Create a Nonvirtual Bus . 61-16

Nest Buses . 61-19
Circular Bus Definitions . 61-20

Bus-Capable Blocks . 61-21

Bus Objects . 61-23
About Bus Objects . 61-23
Bus Object Capabilities . 61-24
Associating Bus Objects with Simulink Blocks 61-24

Bus Object API . 61-26

Manage Bus Objects with the Bus Editor 61-27
Introduction . 61-27
Open the Bus Editor . 61-28
Display Bus Objects . 61-29
Create Bus Objects . 61-31
Create Bus Elements . 61-34
Nest Bus Definitions . 61-37
Change Bus Entities . 61-40
Export Bus Objects . 61-44
Import Bus Objects . 61-45
Close the Bus Editor . 61-46

Store and Load Bus Objects . 61-47
Data Dictionary . 61-47

xci

MATLAB Code Files . 61-47
MATLAB Data Files (MAT-Files) 61-48
Database or Other External Source Files 61-48

Map Bus Objects to Models . 61-49
Use a Rigorous Naming Convention 61-49

Filter Displayed Bus Objects . 61-51
Filter by Name . 61-52
Filter by Relationship . 61-53
Change Filtered Objects . 61-55
Clear the Filter . 61-56

Customize Bus Object Import and Export 61-57
Prerequisites for Customization 61-58
Writing a Bus Object Import Function 61-58
Writing a Bus Object Export Function 61-59
Registering Customizations . 61-59
Changing Customizations . 61-61

Use Buses for Inports and Outports 61-62
Use Buses with Root Level Inports 61-62
Use Buses with Root Level Outports 61-62
Use Buses with Nonvirtual Inports 61-62

Specify Initial Conditions for Bus Signals 61-65
Bus Signal Initialization . 61-65
Create Initial Condition (IC) Structures 61-66
Three Ways to Initialize Bus Signals Using Block

Parameters . 61-74
Initialize Arrays of Buses . 61-78
Setting Diagnostics to Support Bus Signal

Initialization . 61-80

Combine Buses into an Array of Buses 61-82
What Is an Array of Buses? 61-82
Benefits of an Array of Buses 61-83
Array of Buses Limitations . 61-84
Define an Array of Buses . 61-86
See Also . 61-87

Arrays of Buses in Models . 61-88
Blocks That Support Arrays of Buses 61-88

xcii Contents

Arrays of Buses with Bus-Related Blocks 61-90
Set Up a Model to Use Arrays of Buses 61-90
Set Diagnostic . 61-94
Signal Line Style . 61-94

Convert Models to Use Arrays of Buses 61-95
General Conversion Approach 61-95

Repeat an Algorithm Using a For Each Subsystem . . 61-98
Explore Example Model . 61-98
Reduce Signal Line Density with Buses 61-99
Repeat Algorithm Using For Each Subsystem Blocks and

Arrays of Buses . 61-102
Organize Parameters into Arrays of Structures 61-105
Inspect the Converted Model 61-107

Code Generation for Arrays of Buses 61-109

Bus Data Crossing Model Reference Boundaries . . . 61-110
Connect Multi-Rate Buses to Referenced Models . . . 61-110

Buses and Libraries . 61-112

Prevent Bus and Mux Mixtures 61-113
What Are Bus and Mux Signal Mixtures? 61-113
Why Avoid Mixing Bus and Mux Signals? 61-114
When to Configure a Model to Prevent Bus and Mux

Mixtures? . 61-115
Two Upgrade Procedures . 61-115

Correct Mux Blocks That Create Bus Signals 61-117
Choose the Appropriate Procedure 61-117
Models Without Model Referencing 61-117
Models With Model Referencing 61-118
Address Compatibility Issues After Running Upgrade

Advisor . 61-119

Correct Buses Used as Muxes 61-122
Three Approaches . 61-122
Use the Model Advisor . 61-122
Explicitly Add Bus to Vector Blocks 61-122
Reorganize the Model . 61-124
Bus to Vector Block Compatibility Issues 61-125

xciii

Buses in Generated Code . 61-126

Composite Signal Limitations 61-127

Working with Variable-Size Signals
62

Variable-Size Signal Basics . 62-2
About Variable-Size Signals . 62-2
Creating Variable-Size Signals 62-2
How Variable-Size Signals Propagate 62-3
Empty Signals . 62-4
Subsystem Initialization of Variable-Size Signals 62-4
See Also . 62-5

Simulink Models Using Variable-Size Signals 62-6
Variable-Size Signal Generation and Operations 62-6
Variable-Size Signal Length Adaptation 62-10
Mode-Dependent Variable-Size Signals 62-14
See Also . 62-19

S-Functions Using Variable-Size Signals 62-20
Level-2 MATLAB S-Function with Variable-Size

Signals . 62-20
C S-Function with Variable-Size Signals 62-21
See Also . 62-22

Simulink Block Support for Variable-Size Signals . . 62-23
Simulink Block Data Type Support 62-23
Conditionally Executed Subsystem Blocks 62-23
Switching Blocks . 62-24
See Also . 62-26

Variable-Size Signal Limitations 62-27
See Also . 62-27

xciv Contents

Customizing Simulink Environment and Printed Models

Customizing the Simulink User Interface
63

Add Items to Model Editor Menus 63-2
About Adding Items . 63-2
Code for Adding Menu Items . 63-2
Define Menu Items . 63-4
Register Menu Customizations 63-9
Callback Info Object . 63-10
Debugging Custom Menu Callbacks 63-10
Menu Tags . 63-11

Disable and Hide Model Editor Menu Items 63-15
About Disabling and Hiding Model Editor Menu Items 63-15
Example: Disabling the New Model Command on the

Simulink Editor's File Menu 63-15
Creating a Filter Function . 63-15
Registering a Filter Function 63-16

Disable and Hide Dialog Box Controls 63-17
About Disabling and Hiding Controls 63-17
Disable a Button on a Dialog Box 63-18
Write Control Customization Callback Functions . . . 63-18
Dialog Box Methods . 63-19
Dialog Box and Widget IDs . 63-19
Register Control Customization Callback Functions . 63-20

Customize the Library Browser 63-22
Reorder Libraries . 63-22
Disable and Hide Libraries . 63-22
Reorder Blocks in Libraries . 63-23

Registering Customizations . 63-25
About Registering User Interface Customizations . . . 63-25
Customization Manager . 63-25

xcv

Frames for Printed Models
64

Print Frames . 64-2
What are Print Frames? . 64-2
PrintFrame Editor . 64-3
Single Use or Multiple Use Print Frames 64-4
Text and Variable Content . 64-5

Create a Print Frame . 64-6

Add Rows and Cells to Print Frames 64-7
Add and Remove Rows . 64-7
Add and Remove Cells . 64-7
Resize Rows and Cells . 64-7

Add Content to Print Frame Cells 64-9
Types of Content . 64-9
Add Content to Cells . 64-9
Block Diagram . 64-10
Variables . 64-10
Text . 64-11
Format Content in Cells . 64-12

Print Using Print Frames . 64-13

Running Models on Target Hardware

About Run on Target Hardware Feature
65

Simulink Supported Hardware 65-2

Tune and Monitor Models Running on Target
Hardware . 65-3

Overview of Using External Mode 65-3
Run Your Simulink Model in External Mode 65-4

xcvi Contents

Stop External Mode . 65-5
External Mode Control Panel 65-5

Block Produces Zeros or Does Nothing in Simulation . 65-7

Running Simulations in Fast Restart
66

How Fast Restart Improves Iterative Simulations 66-2

Fast Restart Workflow . 66-4

Get Started with Fast Restart . 66-6
Prepare a Model to Use Fast Restart 66-6
Enable Fast Restart . 66-6

Simulate a Model Using Fast Restart 66-8

Stop Simulation and Exit Fast Restart 66-10
Stop a Simulation . 66-10
Exit Fast Restart . 66-10

Fast Restart Methodology . 66-11
Simulation Modes . 66-11
Tuning Parameters Between Simulations 66-11
Model Methods and Callbacks in Fast Restart 66-11
SimState and Initial State Values 66-13
Analyze Data Using the Simulation Data Inspector 66-13
Custom Code in the Initialize Function 66-13

Factors Affecting Fast Restart . 66-14

Introduction to Simulink

1

Simulink Basics

The following sections explain how to perform basic tasks when using the Simulink
product.

• “Start the Simulink Software” on page 1-3
• “Create Models and Open Existing Models” on page 1-6
• “Programmatic Modeling Basics” on page 1-10
• “Build a Simple Model” on page 1-14
• “Save a Model” on page 1-27
• “Model Editing Environment” on page 1-35
• “Parts of a Model” on page 1-39
• “Preview Content of Hierarchical Items” on page 1-43
• “Use Viewmarks to Save Views of Models” on page 1-46
• “Update Diagram and Run Simulation” on page 1-50
• “Printing Capabilities” on page 1-52
• “Basic Printing” on page 1-54
• “Select the Systems to Print” on page 1-59
• “Specify the Page Layout and Print Job” on page 1-61
• “Tiled Printing” on page 1-62
• “Print Multiple Pages for Large Models” on page 1-63
• “Add a Log of Printed Models” on page 1-64
• “Add a Sample Time Legend” on page 1-65
• “Print from the MATLAB Command Line” on page 1-66
• “Export Models to Third-Party Applications” on page 1-70
• “Print to a PDF” on page 1-71
• “Export Models to Image File Formats” on page 1-72
• “Generate a Model Report” on page 1-73

1 Simulink Basics

1-2

• “Keyboard and Mouse Actions for Simulink Modeling” on page 1-76

 Start the Simulink Software

1-3

Start the Simulink Software

To build models, use the Simulink software interfaces, which include the Library
Browser and the Simulink Editor. Use the Library Browser to search for and access
blocks for building models. Build your models in the Simulink Editor.

Start the MATLAB Software

Before you start Simulink, start MATLAB®. See “Startup and Shutdown”.

Configure MATLAB to Start Simulink

The first model that you open in a MATLAB session takes longer to open than
subsequent models because, by default, MATLAB starts Simulink when opening the first
model. This just-in-time starting of Simulink reduces MATLAB startup time and avoids
unnecessary system memory use.

To speed up opening the first model, you can configure MATLAB startup to also start
Simulink. You can use either of these commands:

• start_simulink — Start Simulink without opening models or the Library Browser.
• simulink — Start Simulink and open the Library Browser.

Depending on how you start MATLAB, use the command:

• In the MATLAB startup.m file

• At the operating system command line, with the matlab command and the -r switch

For example, to start Simulink when MATLAB starts on a computer running the
Microsoft® Windows® operating system, create a desktop shortcut with this target:

matlabroot\bin\win32\matlab.exe -r start_simulink

On Macintosh and Linux® computers, use this command to start the Simulink software
when you start MATLAB:

matlab -r start_simulink

Open the Library Browser

Use one of these techniques to open the Simulink Library Browser from MATLAB :

1 Simulink Basics

1-4

• On the Home tab, click Simulink Library.
• At the command prompt, enter simulink.

The Library Browser opens and displays a tree view of the Simulink block libraries on
your system. As you click libraries in the tree, the contents of the library appear in the
right pane.

Open the Simulink Editor

To open the Simulink Editor, you can:

• Open an existing model. For example, at the MATLAB command prompt, enter the
name of a model, such as vdp. For additional ways to open a model, see “Open a
Model” on page 1-7.

• Create a model. For example, in the Library Browser, click the New Model button .
For additional ways to create a model, see “Create a Model Using a Template” on page
1-6.

Tip The Simulink Editor opens on top of the MATLAB desktop. To move the MATLAB
desktop on top, in the Simulink Editor, select View > MATLAB Desktop.

 Start the Simulink Software

1-5

Related Examples
• “Build a Simple Model” on page 1-14

More About
• “Model Editing Environment” on page 1-35

1 Simulink Basics

1-6

Create Models and Open Existing Models

In this section...

“Simulink Model File Types” on page 1-6
“Create a Model Using a Template” on page 1-6
“Create an Empty Model” on page 1-7
“Open a Model” on page 1-7
“Load Variables When Opening a Model” on page 1-8
“Open a Model with Different Character Encoding” on page 1-8

Simulink Model File Types

New models that you create have the .slx extension by default. Models created before
R2012b have the extension .mdl. Models you can edit can have the .slx or .mdl
extension, depending on when they were created or whether you converted them. .slxp
and .mdlp extensions denote protected models that you cannot open and edit. See
“Protected Model” on page 8-71.

Simulink libraries also use the .slx extension, but you cannot simulate them. To learn
more, see “Create Block Libraries” on page 36-19.

Create a Model Using a Template

Model templates are starting points to apply common modeling approaches. They help
you reuse settings and block configurations and share knowledge. Create models from
templates to apply best practices and take advantage of previous modeling solutions.
Model templates have the extension .sltx.

You can create a model from:

• A built-in template
• A template that you create from a model that is configured for your requirements. See

“Create a Template from a Model” on page 4-3.

1 In the Simulink Library Browser, click the New Model button arrow and select
From Template.

2 From the Simulink Template Gallery, select a template.

 Create Models and Open Existing Models

1-7

You can browse or search the templates. Click Browse to locate templates that are
not on the MATLAB search path. Click a template to read the description.

3 Click Create.

A new model using the template settings and contents appears in the Simulink
Editor.

Create an Empty Model

To create an empty model, you can:

• From MATLAB, on the Home tab, in the File section, select New > Simulink
Model.

• In the Simulink Library Browser, click the New Model button .

The Simulink Editor opens with an empty model. An empty model uses the Blank Model
template from the Simulink Template Gallery, which uses default settings. For example,
models that you create with this template use the ode45 solver and log signals to the
variable logsout. If the default settings do not meet your needs, select another template
or create your own template. See “Create a Template from a Model” on page 4-3.

Open a Model

Opening a model loads the model into memory and displays it in the Simulink Editor.
Use one of these techniquesl:

• On the MATLAB Toolstrip Home tab, click Open.
• At the MATLAB command prompt, enter the name of the model without a file

extension, for example, vdp. The model must be in the current folder or on the
MATLAB search path.

• In the Simulink Library Browser, click the Open model or library button .
• In the Simulink Editor, select File > Open.
• Open the model using your operating system file browser.

Note: To open a model created in a later version of Simulink software in an earlier
version, first export the model to the earlier version. See “Export a Model to a Previous
Simulink Version” on page 1-33.

1 Simulink Basics

1-8

Load Variables When Opening a Model

As you build models, you sometimes define variables for a model. For example, suppose
that you have a model that contains a Gain block. You can specify the variable K as the
gain rather than setting the value on the block. When you use this approach, you must
define the variable K for the model to simulate.

You can use a model callback to load variables when you open a model.

1 In a model that uses the Gain block, set the block Gain value to K.
2 Define the variable in a MATLAB script. In MATLAB, select New > Script. In the

script, enter your variable definitions:

K=27

3 Save the script as loadvar.m.
4 In the model, select File > Model Properties > Model Properties.
5 In the Callbacks tab of the Model Properties dialog box, select PreLoadFcn as

the callback thatyou want to define. In the Model pre-load function pane, enter
loadvar and click OK.

6 Save the model.

The next time that you open the model, the PreloadFcn callback loads the variables into
the MATLAB workspace.

To learn about callbacks, see “Callbacks for Customized Model Behavior” on page
4-68 and “Callbacks for Customized Model Behavior” on page 4-68. To define a
callback for loading variables programmatically, see “Programmatically Load Variables
When Opening a Model” on page 1-11.

Open a Model with Different Character Encoding

If you open a model that uses a particular character set encoding in a MATLAB session
that uses a different encoding, a warning appears. For example, suppose that you
create a model in a MATLAB session configured for Shift_JIS and open it in a session
configured for US_ASCII. The warning message shows the encoding of the current
session and the encoding used to create the model. If you encounter any problems with
corrupted characters, for example when using MATLAB files associated with the model,
then try using the slCharacterEncoding function to change the character encoding of
the current MATLAB session to match the model character encoding.

 Create Models and Open Existing Models

1-9

Simulink can check if models contain characters unsupported in the current locale. For
more details, see “Check model for foreign characters” and “Save Models with Different
Character Encodings” on page 1-31.

See Also
open_system

Related Examples
• “Open the Same Model in Multiple Windows” on page 1-12
• “Save Models with Different Character Encodings” on page 1-31
• “Check model for foreign characters”
• “Create a Template from a Model” on page 4-3

More About
• “Search Path”

1 Simulink Basics

1-10

Programmatic Modeling Basics

In this section...

“Load a Model” on page 1-10
“Create a Model and Specify Parameter Settings” on page 1-10
“Programmatically Load Variables When Opening a Model” on page 1-11
“Add a Block Programmatically” on page 1-12
“Position a Block Programmatically” on page 1-12
“Name a Signal Programmatically” on page 1-12
“Open the Same Model in Multiple Windows” on page 1-12
“Get a Simulink Identifier” on page 1-13

You can perform most Simulink modeling basics programmatically at the MATLAB
command prompt. The commands that correspond to basic modeling operations, such
as creating models, adding blocks to models, and setting parameters, are listed in the
Functions section of “Modeling Fundamentals”. These examples show some of these
commands and how you can use them.

Load a Model

Loading a model brings it into memory but does not open it in the Simulink Editor for
editing. After you load a model, you can work with it programmatically. You can use the
Simulink Editor to edit the model only if you open the model.

To load a system, use the load_system command. For example, to load the vdp model,
at the MATLAB command prompt, enter:

load_system('vdp')

Create a Model and Specify Parameter Settings

You can write a function that creates a model and uses the settings that you prefer. For
example, this function creates a model that has a green background and uses the ode3
solver:

function new_model(modelname)

% NEW_MODEL Create a new, empty Simulink model

 Programmatic Modeling Basics

1-11

% NEW_MODEL('MODELNAME') creates a new model with

% the name 'MODELNAME'. Without the 'MODELNAME'

% argument, the new model is named 'my_untitled'.

if nargin == 0

 modelname = 'my_untitled';

end

% create and open the model

open_system(new_system(modelname));

% set default screen color

set_param(modelname,'ScreenColor','green');

% set default solver

set_param(modelname,'Solver','ode3');

% save the model

save_system(modelname);

Programmatically Load Variables When Opening a Model

If you assign a variable as a block parameter value, you must define the value of the
variable in the model. See “Load Variables When Opening a Model” on page 1-8. You
can define the variable programmatically using the PreloadFcn callback with the
set_param function. Use the function in this form:

set_param('mymodel','PreloadFcn','expression')

expression is a MATLAB command or a MATLAB script on your MATLAB search
path. This command sets the model PreloadFcn callback to the value that you specify.
Save the model to save the setting.

For example, when you define the variables in a MATLAB script loadvar.m for the
model modelname.slx, use this command:

set_param('modelname','PreloadFcn','loadvar')

To assign the variable K the value 15, use this command:

set_param('modelname','PreloadFcn','K=15')

After you save the model, the PreloadFcn callback executes when you next open the
model.

1 Simulink Basics

1-12

Add a Block Programmatically

To add a block programmatically, use the add_block function.

By default, the add_block function copies the parameter values of the source block to
the new block. You can also specify values for parameters of the new block. For example,
add a Gain block from the Simulink library to the model f14 and name it Speed. Set the
value of the Gain parameter to 4. (Before you use this command, open the destination
model.)

add_block('built-in/Gain','f14/Speed','Gain','4')

Position a Block Programmatically

You can position and size a block programmatically, using set_param with the
Position parameter. For example, move the currently selected block so that the left, top
corner of the block is at 10, 20 (in pixels) relative to the Simulink Editor origin. Set the
right, bottom corner at 30, 50. The gcb function returns the currently selected block.

set_param(gcb,'Position',[10 20 30 50]);

See the Position parameter in “Common Block Properties”.

Name a Signal Programmatically

1 Select the block that is the source for the signal line.
2 Use get_param to assign the port handle of the currently selected block to the

variable p. Use get_param to assign the name of the signal line from that port to
the variable l. Then set the name of the signal line to 's9'.

p = get_param(gcb,'PortHandles')

l = get_param(p.Outport,'Line')

set_param(l,'Name','s9')

Open the Same Model in Multiple Windows

When you open a model, the model appears in a Simulink Editor window. For example, if
you have one model open and then you open a second model, the second model appears in
a second window.

 Programmatic Modeling Basics

1-13

To open the same model in two Simulink Editor windows, at the MATLAB command
prompt, enter the open_system command and use the window argument. For example,
if you have the vdp model open, to open another instance of the vdp model, enter:

open_system('vdp','window')

Get a Simulink Identifier

Every block in your model has a Simulink Identifier (SID), a unique and unmodifiable
identifier. The SID persists for the lifetime of the object and is saved with a model.
If the name of the object changes, the SID stays the same. The SID has the form
model_name:number.

To find out the SID of a block, use the Simulink.ID.getSID function.

sid = Simulink.ID.getSID('SIDObject')

SIDObject is the full path name of the block whose SID you want to return. For
example:

load_system('vdp')

sid = Simulink.ID.getSID('vdp/Mu')

sid =

vdp:4

You can use the SID to highlight a block using the Simulink.ID.hilite function.

Simulink.ID.hilite('vdp:4')

The vdp model opens with the Mu block highlighted.

See Also
add_block | gcb | get_param | load_system | new_system | open_system |
save_system | set_param

More About
• “Common Block Properties”

1 Simulink Basics

1-14

Build a Simple Model

In this section...

“Start Simulink and Create a New Model” on page 1-14
“Add Blocks to the Model” on page 1-14
“Align and Connect Blocks” on page 1-15
“Set Block Parameters” on page 1-16
“Add More Blocks” on page 1-16
“Branch a Connection” on page 1-18
“Organize Your Model” on page 1-20
“Simulate Model and View Results” on page 1-23
“Modify the Model” on page 1-24

This example shows the basics of how to create a model, add blocks to it, connect blocks,
and simulate the model. You also learn how to organize your model with subsystems,
name parts of a model, and change the existing model configuration.

Start Simulink and Create a New Model

1 At the MATLAB command prompt, enter simulink.
2 Create an empty model and open the Simulink Editor. In the Library Browser, click

the New Model button .

Add Blocks to the Model

A minimal model takes an input signal, operates on it, and outputs the result. In the
Library Browser, the Sources library contains blocks that represent input signals. The
Sinks library has blocks that you can use to capture and display outputs. The other
libraries contain blocks you can use for a variety of purposes, such as math operations.

In this example, the input is a sine wave, the operation is a gain (which increases the
signal value by multiplying), and you output the result to a scope.

1 In the tree view of the Library Browser, click the Sources library.

 Build a Simple Model

1-15

2 In the right pane, hover over the Sine Wave block to see a tooltip describing its
purpose.

3 Right-click the block and select Add block to model untitled. (To learn more about
the block, select the Help command from the context menu.)

4 In the library tree view, click Math Operations. In the Math Operations library,
locate the Gain block and drag it to your model to the right of the Sine Wave block.

5 In the library tree view, click Simulink to view the sublibraries as icons in the right
pane. This view is an alternative way to navigate the library structure. Double-click
the Sinks library icon.

6 In the Sinks library, locate the Scope block and add it to your model using the
context menu or by dragging it.

The figure shows your model so far.

Align and Connect Blocks

Reading the model is easier when you line up the blocks according to how they interact
with each other. Connect the blocks so the model can operate. Shortcuts help you to align
and connect the blocks.

1 Drag the Gain block so it lines up with the Sine Wave block. An alignment guide
appears when the blocks line up horizontally. Release the block, and a blue arrow
appears as a preview of the suggested connection.

2 To make the connection, click the end of the arrow. A solid line appears in place of
the guide.

1 Simulink Basics

1-16

3 Line up and connect the Scope block to the Gain block using the same technique.

Tip Use the Diagram > Arrange menu for additional alignment options.

Set Block Parameters

You can set parameters on most blocks. Parameters help you to specify how a block
operates in your model. You can use the default values or you can set values as needed.
Use the block dialog box to set parameters.

In your model, set the amplitude in the Sine Wave block and the value of the gain in the
Gain block.

1 To open the Sine Wave block dialog box, double-click the block.
2 For the Amplitude parameter, enter 2 and click OK.
3 In the Gain block dialog box, set the Gain value to 3. The value appears on the

block.

Add More Blocks

In this model, you want to perform another gain but on the absolute value of the output
from the Sine Wave block. Add more blocks to your model using additional techniques.

1 When you already know the name of the block that you want to add, you can use a
shortcut. With your cursor on the blank area of the model where you want to add the
block, type the block name, in this case Gain. A list of possible blocks appears at the
cursor.

 Build a Simple Model

1-17

2 When you see the name of the block that you want, double-click it, which adds the
block to the model at the cursor location. You can use this mechanism any time the
blue magnifying glass appears, for example at the end of a broken connection or at a
port. Start typing the block name when you see the magnifying glass.

3 For many blocks, a prompt appears for entering a value for one of the block
parameters. The Gain block prompts you to enter the Gain value. Type 3 and press
Enter.

The name of each additional instance of a block has a number appended. The
number increments for each new copy.

4 If you do not know the library a block is in or the full name of the block, you can
search for it using the search box in the Library Browser. Enter abs in the search
box and press Enter. When you find the Abs block, add it to the model to the left of
the Gain1 block.

5 Add another Scope block. You can right-click the existing Scope block and drag to
create the copy. Or, you can use Edit > Copy and Edit > Paste.

The figure shows the current state of your model.

Note: When you name blocks in a model in order numerically (for example Gain1,
Gain2, and so on), copying and pasting them creates names that follow standard
sorting order conventions for ASCII characters. This sorting order can result in a
sequence of numbers on the block names that is hard to understand. To number
blocks so that copying and pasting them creates names that follow a typical reading
order, use a leading zero in the block names, for example Gain001, Gain002, and so
on.

1 Simulink Basics

1-18

Branch a Connection

The input to the second gain is the absolute value of the sine wave. To use a single Sine
Wave block as the input to both gain operations, create a branch from the Sine Wave
block output signal.

1 For the first set of blocks in your model, you used the horizontal alignment guides to
help you align and connect blocks. You can also use guides to align blocks vertically.
Drag the Scope1 block so that it lines up under the Scope block. Release it when the
vertical alignment guide shows that the blocks are aligned.

In this figure, the horizontal alignment guide shows that the Scope1 and Gain1
blocks are already aligned.

2 Align and connect the Abs and Gain1 blocks as shown.

3 Create a branch from the Sine Wave block output to the Abs block. With your cursor
over the output signal line from the Sine Wave block, Ctrl+drag down. Drag the
branch until the end is to next to the Abs block.

 Build a Simple Model

1-19

4 Drag toward the Abs block until the line connects to it. Move the vertex as needed to
straighten the line. (A circle appears over the vertex.)

Try these other methods to connect blocks:

• Drag a connection from the output of one block to the input of the other block. Use
this technique when your blocks are already aligned, that is, no guideline appears.

• Select the first block and Ctrl+click the block you want to connect it to. This
technique is useful when you do not want the blocks to align. The connection line
bends as needed to make the connection, as shown in the figure.

Note: You can select multiple blocks to connect to multiple inputs.

1 Simulink Basics

1-20

To approximate a diagonal line from line segments, Shift+drag a vertex.

Organize Your Model

You can group blocks in subsystems and label blocks, subsystems, and signals. For more
about subsystems, see “Create a Subsystem” on page 4-41.

1 Drag a selection box around the Abs and Gain1 blocks.
2 An action bar prompts you. Click Create Subsystem.

 Build a Simple Model

1-21

3 A subsystem block appears in the model in place of the Abs and Gain1 blocks. To
resize the subsystem block for the best fit in your model, use the block handles.

4 Double-click the block name and type Absolute Value to give the subsystem a
meaningful name.

5 Open the Absolute Value subsystem by double-clicking it.

Tip To use the Explorer Bar to navigate the model hierarchy, right-click the block
and select Open in New Tab.

The subsystem contains the Abs and Gain1 blocks that you selected as the basis of
the subsystem. They are connected in sequence to two new blocks: In1 (an Inport
block) and Out1 (an Outport block). Inport and Outport blocks correspond to the
input and output ports on the subsystem block.

1 Simulink Basics

1-22

6 Double-click the name Out1 and type To Scope1.

Click the Simulink Editor Up to Parent button to return to the top level of the
model. The output port of the Absolute Value subsystem is now named To Scope1.

7 You can name any signal. Double-click a signal and type the name. For example,
double-click the signal from the Gain block and type To Scope. Be sure to double-
click the signal and not a blank area of the canvas or you create an annotation. For
other techniques that you can use with signal names, see “Signal Name and Label
Actions” on page 1-78.

The figure shows the model after you create the subsystem, name it, rename its
output port, and name a signal.

 Build a Simple Model

1-23

Simulate Model and View Results

1 You can simulate a model using the Simulation > Run command (Ctrl+T) or the

Run button . Simulate the model using the technique that you prefer.

In this example, simulation runs for 10 seconds, the default setting.
2 Double-click both scope blocks to open them and view the results. In each scope, click

the Autoscale button to view the entire signal.

The figure shows the two results. In the second plot, as expected, absolute value of
the sine wave is always positive.

1 Simulink Basics

1-24

Modify the Model

You can add blocks on an existing connection and remove blocks from models and redraw
connections. Add a bias to the input to both branches of your model. Also, replace one of
the scopes with a different sink.

1 Add a Bias block to the model and set the Bias parameter to 2.

 Build a Simple Model

1-25

2 Drag the block and place it on the signal line after the Sine Wave block but before
the branch. If you need to make room for the block, drag the Sine Wave block to the
left or move the end of the branch by dragging it to the right.

When you drag the block onto the signal line, the block connects to the signal line at
both ends. Release the block when you are satisfied with its position.

3 Remove the Scope1 block. Shift+drag the Scope1 block if you want to disconnect it
from the model but do not want to delete it. Cut or delete it using the Edit menu
commands or a keystroke. The broken connection appears as a red dotted line.

When you delete a block with one input and one output, a prompt appears between
the broken connection lines. Click the prompt to connect the signals.

4 Add a To Workspace block to the model and place it at the end of the broken
connection. The To Workspace block outputs the results to a variable in the
MATLAB workspace.

5 Rename the output port on the Absolute Value subsystem. Open the subsystem and
rename the To Scope1 block as Workspace. Then, return to the top level of the model.
The figure shows the current model.

6 Simulate the model. The simout variable appears in the MATLAB workspace. You
can double-click the variable to explore the results.

1 Simulink Basics

1-26

Tip To toggle between simulating the model with and without the effects of the Bias
block, right-click the Bias block and select Comment Through. The block stays
in the model but does not affect the operation. Right-click the Bias block and select
Uncomment to enable the block. The Comment Out command comments out
the block’s output signal, so signal data does not pass through. Try each of these
commands to better understand their effects.

More About
• “Keyboard and Mouse Actions for Simulink Modeling” on page 1-76
• “Signal Basics” on page 60-2

 Save a Model

1-27

Save a Model

In this section...

“How to Tell If a Model Needs Saving” on page 1-27
“Save a Model” on page 1-27
“What Happens When You Save a Model?” on page 1-28
“Save Models in the SLX File Format” on page 1-29
“Save Models with Different Character Encodings” on page 1-31
“Export a Model to a Previous Simulink Version” on page 1-33
“Save from One Earlier Simulink Version to Another” on page 1-33

How to Tell If a Model Needs Saving

To tell whether a model needs saving, look at the title bar in the Simulink Editor. If the
model needs saving, an asterisk appears next to the model name in the title bar (known
as the dirty flag: *).

To determine programmatically whether a model needs saving, use the model parameter
Dirty. For example:

if strcmp(get_param(gcs, 'Dirty'), 'on')

 save_system;

end

Save a Model

To save a model for the first time, in the Simulink Editor, select File > Save. Provide a
location and name for the model file. For name requirements, see “Model Names” on page
1-28.

1 Simulink Basics

1-28

To save a previously saved model:

• To replace the file contents, in the Simulink Editor, select File > Save.
• To save the model with a new name or location, or to change from MDL to SLX

format, in the Simulink Editor, select File > Save As.

Note: For details about the SLX format, see “Upgrade Models to SLX” on page
1-29.

• To save the model in a format compatible with the earlier version, select File >
Export Model to > Previous Version. See “Export a Model to a Previous Simulink
Version” on page 1-33.

Model Names

Model file names must start with a letter and can contain letters, numbers, and
underscores. The file name must not be:

• A language keyword (e.g., if, for , end)
• A reserved name: 'simulink', 'sl', 'sf'
• A MATLAB software command

The total number of characters in the model name must not be greater than a certain
maximum, usually 63 characters. To find out whether the maximum for your system is
greater than 63 characters, use the MATLAB namelengthmax command.

To understand how MATLAB determines which function to call when you specify a model
name, see “Function Precedence Order”.

What Happens When You Save a Model?

Simulink saves the model (block diagram) and block properties in the model file.

If you have any pre- or post-save functions, they execute in this order:

1 All block PreSaveFcn callback routines execute first, then the model PreSaveFcn
callback routine executes.

2 Simulink writes the model file.
3 All block PostSaveFcn callback routines execute, then the model PostSaveFcn

executes.

 Save a Model

1-29

During the save process, Simulink maintains a temporary backup copy (named
modelname.bak) for restoring in case of an error. If an error occurs during saving or
during any callback during the save process, Simulink:

• Restores the original file
• Writes any content saved before the error occurred in a file named modelname.err
• Issues an error message

When saving a model loaded from an SLX file, the original SLX file must still be present.
Simulink performs incremental loading and saving of SLX files, so if the original file is
missing at save-time, Simulink warns that it cannot reconstruct the file fully.

Save Models in the SLX File Format

Save New Models as SLX

Simulink saves new models and libraries in the SLX format by default, with file
extension .slx. SLX is a compressed package that conforms to the Open Packaging
Conventions (OPC) interoperability standard. SLX stores model information using
Unicode® UTF-8 in XML and other international formats. Saving Simulink models in the
SLX format:

• Typically reduces file size compared to MDL. The file size reduction between MDL
and SLX varies depending on the model.

• Solves some problems in previous releases with loading and saving MDL files
containing Korean and Chinese characters.

• Enables incremental loading and saving. Simulink optimizes performance and
memory usage by loading only required parts of the model and saving only modified
parts of the model.

You can specify your file format for saving new models and libraries with the Simulink
preference “File format for new models and libraries”.

Upgrade Models to SLX

If you upgrade an MDL file to SLX file format, the file contains the same information
as the MDL file, and you always have a backup file. All functionality and APIs that
currently exist for working with models, such as the get_param and set_param
commands, are also available when using the SLX file format. If you upgrade an MDL

1 Simulink Basics

1-30

file to SLX file format without changing the model name or location, then Simulink
creates a backup file by renaming the MDL (if writable).

If you save an existing MDL file using File > Save, Simulink respects the file’s current
format and saves your model in MDL format.

To save an existing MDL file in the SLX file format:

1 Select File > Save As.
2 Leave the default Save as type as SLX, and click Save.

Simulink saves your model in SLX format, and creates a backup file by renaming the
MDL (if writable) to mymodel.mdl.releasename, e.g., mymodel.mdl.R2010b.

Alternatively, use save_system:

save_system mymodel mymodel.slx

This command creates mymodel.slx, and if the existing file mymodel.mdl is writable it
is renamed mymodel.mdl.releasename.

SLX files take precedence over MDL files, so if both exist with the same name and you do
not specify a file extension, you load the SLX file.

Simulink Projects can help you migrate files to SLX. For an example, see “Upgrade
Model Files to SLX and Preserve Revision History” on page 16-13.

Caution If you use third-party source control tools, be sure to register the model file
extension .slx as a binary file format. If you do not, these third-party tools might
corrupt SLX files when you submit them.

Operations with Possible
Compatibility Considerations
when using SLX

What Happens Action

Hard-coded references to
file names with extension
.mdl.

Scripts cannot find or
process models saved with
new file extension .slx.

Make your code work with
both the .mdl and .slx
extension.
Use functions like which and
what instead of strings with
.mdl.

 Save a Model

1-31

Operations with Possible
Compatibility Considerations
when using SLX

What Happens Action

Third-party source control
tools that assume a text
format by default.

Binary format of SLX files
can cause third-party tools
to corrupt the files when
you submit them.

Register .slx as a binary
file format with third-party
source control tools. Also
recommended for .mdl files.
See “Register Model Files
with Source Control Tools”
on page 18-9.

Changing character
encoding.

Some cases are improved,
e.g., SLX solves some
problems in previous
releases with loading and
saving MDL files containing
Korean and Chinese
characters. However,
sharing models between
different locales remains
problematic.

See “SLX Files and
Character Encodings” on
page 1-32.

The format of content within MDL and SLX files is subject to change. To operate
on model data, use documented APIs (such as get_param, find_system, and
Simulink.MDLInfo class.

Save Models with Different Character Encodings

• “MDL Files and Character Encodings” on page 1-31
• “SLX Files and Character Encodings” on page 1-32

MDL Files and Character Encodings

When you save a model, the current character encoding is used to encode the text stored
in the model file. With MDL files, this can lead to model corruption if you save a model
whose original encoding differs from current encoding.

If you change character encoding, it is possible to introduce characters that cannot
be represented in the current encoding. If this is the case, the model is saved as
model.mdl.err, where model is the model name, leaving the original model file

1 Simulink Basics

1-32

unchanged. Simulink also displays an error message that specifies the line and column
number of the first character which cannot be represented.

To recover from this error, either:

• Save the model in SLX format (see “Save Models in the SLX File Format” on page
1-29).

• Use the following procedure to locate and remove characters one by one.

1 Use a text editor to find the character in the .err file at the position specified by
the save error message.

2 Find and delete the corresponding character in the open model and resave the
model.

3 Repeat this process until you are able to save the model without error.

It's possible that your model's original encoding can represent all the text changes that
you've made in the current session, albeit incorrectly. For example, suppose you open
a model whose original encoding is A in a session whose current encoding is B. Further
suppose that you edit the model to include a character that has different encodings in A
and B and then save the model. If in addition the encoding for x in B is the same as the
encoding for y in A, and if you insert x in the model while B is in effect, save the model,
and then reopen the model with A in effect the Simulink software will display x as y. To
alert you to the possibility of such corruptions, the software displays a warning message
whenever you save a model in which the current and original encoding differ but the
original encoding can encode, possibly incorrectly, all of the characters to be saved in the
model file.

SLX Files and Character Encodings

Saving Simulink models in the SLX format typically reduces file size and solves some
problems in previous releases with loading and saving MDL files containing Korean and
Chinese characters.

Considerations for choosing a model file format:

• Use SLX if you are loading and saving models with Korean or Chinese characters
• Use SLX if you would benefit from a compressed model file
• Whether you use SLX or MDL, Simulink can detect and warn if models contain

characters unsupported in the current locale. For SLX, you can use the Model Advisor
to help you, see “Check model for foreign characters”.

 Save a Model

1-33

Export a Model to a Previous Simulink Version

You can export (save) a model created with the latest version of the Simulink software in
a format used by an earlier version. For example, to share a model with colleagues who
only have access to a previous version of the Simulink product.

To export a model in an earlier format:

1 In the Simulink Editor, select File > Save. This saves a copy in the latest version of
Simulink. This step avoids compatibility problems.

2 Simulink Editor, select File > Export Model to > Previous Version.

The Export to Previous Version dialog box appears.
3 In the dialog box, from the Save as type list, select the previous version to which to

export the model. The list supports 7 years of previous releases.
4 Click the Save button.

When you export a model to a previous version’s format, the model is saved in the
earlier format, regardless of whether the model contains blocks and features that were
introduced after that version. If the model does contain blocks or use features that
postdate the earlier version, the model might not give correct results when you run it
in the earlier version of Simulink software. In addition, Simulink converts blocks that
postdate an earlier version into yellow empty masked Subsystem blocks. For example,
if you use save_system to export a model to Release R2007b, and the model contains
Polynomial blocks, Simulink converts the Polynomial blocks into yellow empty masked
Subsystem blocks. Simulink also removes any unsupported functionality from the model.
See save_system.

Save from One Earlier Simulink Version to Another

You can open a model created in an earlier version of Simulink and export that model
to a different earlier version. To prevent compatibility problems, use the following
procedure if you need to save a model from one earlier version to another earlier version.

1 Use the current version of Simulink to open the model created with the earlier
version.

2 Before you make any changes, save the model in the current version by selecting
File > Save.

1 Simulink Basics

1-34

After saving the model in the current version, you can change and resave it as
needed.

3 Save the model in the earlier version of Simulink by selecting File > Export Model
to > Previous Version.

4 Start the earlier Simulink version and use it to open the model that you exported to
that earlier version.

5 Save the model in the earlier version by selecting File > Save.

You can now use the model in the earlier version of Simulink exactly as you could if it
had been created in that version.

See also the Simulink preferences that can help you work with models from earlier
versions:

• “Do not load models created with a newer version of Simulink”
• “Save backup when overwriting a file created in an older version of Simulink”

 Model Editing Environment

1-35

Model Editing Environment

In this section...

“Library Browser” on page 1-35
“Simulink Editor” on page 1-35
“Interactive Model Building” on page 1-37

The Simulink model editing environment consists of two main tools: the Library Browser
and the Simulink Editor. You find the blocks for your model in the Library Browser and
build the model by adding and connecting the blocks in the Simulink Editor.

Library Browser

Use the Library Browser to locate blocks to add to your model. To locate blocks in the
library, navigate the libraries using the tree structure in the left pane or by double-
clicking the libraries in the right pane. Or, search for the block using the search controls.
If you want to use regular expressions, whole word search, or do a case-sensitive search,
use the Search for subsystems or blocks button arrow .

When you find the block you want to use, you can drag it into your model, or you can use
a context menu to add it.

You can also create your own libraries and, optionally, have them appear in the library
browser. See “Create Block Libraries” on page 36-19.

Tip The Recently Used Blocks structure at the bottom of the tree contains the blocks and
libraries that you used most recently from the supplied libraries.

Simulink Editor

The Simulink Editor is an intuitive tool for building models. In addition to using
standard methods for working with diagrams in a vector graphics editor, the editor
provides shortcuts that help you to add and connect blocks. The Simulink Editor also
gives you access to the tools you need for technical operations such as importing data,
simulating your model, and analyzing model performance.

1 Simulink Basics

1-36

The figure shows the Simulink Editor with the example model vdp open.

The Simulink Editor has menus of commands and a toolbar of shortcuts for performing
frequent operations or opening tools. Tooltips appear when you hover over the toolbar
buttons. Commands also appear on context menus. Context menus appear when you
right-click an object or a blank area of the editor. For example, right-click a block, and
the menus display the commands relevant for working on blocks, such as clipboard and
alignment operations. Some commands appear only on a context menu.

Palette

The palette along the left side of the editor provides more shortcuts. The palette
shortcuts have to do with the model appearance and how you navigate the model rather
than how you build and operate it. For example, the palette includes a shortcut for
adding annotations and other visuals, like boxed-in areas for labeling the model. It also

 Model Editing Environment

1-37

provides a zoom button for zooming in on a particular part of the model. The Hide/Show
Explorer Bar button displays an interface that aids in navigating the model hierarchy.

Additional Model Views

The control in the lower-right corner opens additional views of the model. One such view
is the interface view, which helps you to trace model interfaces. Click the control to see
these views.

Interactive Model Building

When you build a model in the Simulink Editor, you use common conventions for
working with graphics objects. Some of these actions include:

• Object selection using click, shift-click, and drag selection
• Resizing objects using handles and moving objects by dragging
• Clipboard operations, that is, cut, copy, and paste
• Undo/redo capability (up to 101 operations)

You zoom and scroll the editing area using familiar methods, such as the commands on
the View > Zoom menu. If you are using a supported touch display platform, you can
pinch to zoom and swipe to scroll. The supported touch display devices include Microsoft
Windows platforms with a Windows 7 certified or Windows 8 certified touch display and
Macintosh platforms with an Apple Magic Trackpad.

The editor supports additional shortcuts for scrolling that are unique to Simulink.
Shortcuts and the other interactive model building techniques are summarized in
“Keyboard and Mouse Actions for Simulink Modeling” on page 1-76. For a tutorial,
see “Build a Simple Model” on page 1-14.

Related Examples
• “Build a Simple Model” on page 1-14
• “Trace Connections Using Interface Display” on page 11-89

1 Simulink Basics

1-38

More About
• “Keyboard and Mouse Actions for Simulink Modeling” on page 1-76

 Parts of a Model

1-39

Parts of a Model

In this section...

“About Blocks” on page 1-39
“Block Parameters and Properties in Simulink” on page 1-40
“Signals” on page 1-42

You create a Simulink model by adding blocks, specifying block behavior, and using
signal lines to connect the blocks to each other according to the dynamics of the system
that you want to simulate.

About Blocks

Blocks are the main elements that you use to build models in Simulink. Generally, you
add blocks from the supplied Simulink libraries to perform specific operations, such as
math, as shown in “Build a Simple Model” on page 1-14.

You can further classify blocks in Simulink.

• Virtual blocks — These blocks serve only to organize a model and do not affect
simulation. See “Nonvirtual and Virtual Blocks” on page 31-2.

• Subsystem blocks — Subsystems help you to organize your models hierarchically.
You use a Subsystem block to encapsulate related parts of a model, that is, a
representation of a system within the larger system that you are modeling. See
“Model Hierarchy”.

• Masked blocks — You can add a mask to any block in a model. A mask is a custom
interface that enables you to show only the block parameters and settings that you
want the user of the block to have access to. A mask also provides an interface for
setting parameters on blocks inside a subsystem without having to navigate the
hierarchy. You can change the block appearance using a mask. See “Block Masks”.

• Referenced models — A model reference is a way to include one model in another
model. You use a Model block to reference a model. See “Model Reference”.

• Linked blocks — A linked block is an instance of a library block and contains a link
to that library block. You can create a library of blocks that you configure for your
specific purposes. For example, you can create subsystems and masked blocks and
store them in a library for reuse. When you add a block to a model from a library that

1 Simulink Basics

1-40

you created, the block keeps a link to the library version, called a library link. You can
modify a linked block only by disabling the link. See “Libraries”.

Block Parameters and Properties in Simulink

For most blocks, you can specify settings that determine how the block works. These
settings are called block parameters. You set block parameters in the block dialog box. To
open this dialog box, you can use the Block Parameters command on the block context
menu or, for most blocks, double-click the block. These block parameters help you to
control block behavior. For example, in the Trigonometric Function block, you specify
the trigonometry function that you want to perform. In some blocks, you can specify the
number of inputs or outputs. Whether the block has parameters that you can set and
the nature of those parameters is specific to each block. See “Specify Block Parameter
Values” on page 32-2.

The figure shows the block dialog box for the Trigonometric Function block.

Blocks have properties that you can set using the Block Properties dialog box. Right-
click a block and select Properties to specify properties for that block. Unlike the block
parameters, these properties are not specific to the purpose of the block. In the Block

 Parts of a Model

1-41

Properties dialog box, you can configure the block to execute code when you perform
actions such as opening the block or starting simulation. For example, you can set up a
MATLAB script to execute, to perform tasks such as loading or defining variables for a
block or any other callback functions. See “Callbacks for Customized Model Behavior” on
page 4-68. Block properties also enable you to annotate the block and define callback
functions. See “Set Block Properties” on page 31-4.

Additional Parameters and Properties

Simulink has these additional types of parameters and properties.

• Programmatically accessible parameters — Blocks and models have parameters
whose value you do not set explicitly using a dialog box. For example, each block
has a position parameter that is based on where you place the block in the model.
There is no single interface to these properties, but you can query and set any
of them programmatically. You can also set any of the block-specific parameters
programmatically. See “Common Block Properties” and “Model Parameters”.

• Model configuration parameters — Use configuration parameters (Simulation >
Model Configuration Parameters) to specify simulation conditions, such as the
solver to use, the types of errors and warnings to display, and how you want to store
simulation data. See “Configuration Parameters Dialog Box Overview”.

• Model properties — The Model Properties dialog box (File > Model Properties >
Model Properties) helps you to define callbacks for the model. It also enables you to
add a description and specify data to load or scripts to run, along with other settings.
See “Manage Model Properties” on page 4-103.

Note: Simulink preferences (File > Simulink Preferences) help you to customize your
model editing environment, such as the default font and how your scroll wheel functions.
You can also set defaults for your configuration parameters in your Simulink preferences.
See “Set Simulink Preferences”.

Setting Parameter Values in Workspaces

Simulink gives you access to two workspaces where you can set values for parameters.
Workspaces enable you to set parameters by using variables rather than setting every
value on every block in a model. This approach is especially useful when your model is
large and complex because you do not need to locate every block whose parameter value
you want to set or change. Instead, assign a variable as the value of a parameter and

1 Simulink Basics

1-42

define the variable in a workspace. This mechanism also allows you to use different sets
of parameter values for the same model.

In the MATLAB base workspace, you can define parameters using any MATLAB
mechanism for defining a variable. For example, you can use a MAT-file and load the
variables when you open the model (see “Load Variables When Opening a Model” on page
1-8). Using the MATLAB base workspace to define variables is useful when you are using
the same set of parameters for more than one model.

You can also define parameters by assigning values to variables in a model workspace.
You define a set of parameters that are specific to the model and save them with the
model. See “Model Workspaces” on page 4-84.

Signals

As you can see in “Build a Simple Model” on page 1-14, you use signal lines to connect
blocks in a model. At a minimum, a model takes an input signal, operates on it, and
outputs the result. In the Library Browser, the Sources library contains blocks that
represent input signals. The Sinks library contains blocks for capturing and displaying
outputs.

Simulink represents signals as lines. The line style varies with the type of signal. You
create signals between the output port of one block and the input port of another block by
drawing or using shortcuts.

For more on signals, see “Signals” and “Block and Signal Line Shortcuts and Actions” on
page 1-77.

Related Examples
• “Build a Simple Model” on page 1-14

More About
• “Workspace Variables in Model Explorer” on page 11-47
• “Maximum Size Limits of Simulink Models”
• “Blocks”

 Preview Content of Hierarchical Items

1-43

Preview Content of Hierarchical Items

In this section...

“What Is Content Preview?” on page 1-43
“Enable Content Preview” on page 1-44
“What Content Preview Displays” on page 1-44

What Is Content Preview?

Content preview displays a representation of the contents of a hierarchical item, such as
a subsystem, on the block. Content preview helps you to understand at a glance the kind
of processing performed by the hierarchical item.

Hierarchical items that support content preview are:

• Subsystem blocks (but not masked subsystems)
• Model blocks (for referenced models)
• Stateflow® charts, subcharts, and graphical functions

By default, the Simulink Editor displays models without content preview. Enable or
disable content preview for individual items. For example, in the following model, the
Throttle & Manifold subsystem has content preview enabled, and the Compression
subsystem does not.

1 Simulink Basics

1-44

Content preview displays a representation of the contents of a hierarchical item. For
details, see “What Content Preview Displays” on page 1-44.

A slight delay can occur in drawing models that contain many hierarchical items that
enable content preview if those items contain many blocks.

Enable Content Preview

Content preview settings apply across Simulink sessions.

Enable for Individual Hierarchical Items

1 In the Simulink or Stateflow Editor, select one or more Subsystem or Model blocks or
charts.

2 Right-click and select Format > Content Preview.

Enable for the Currently Displayed System

1 In the Simulink Editor, select Edit > Select All.
2 Select Diagram > Format > Content Preview.

Enable for Model Blocks

Enabling content preview for Model blocks requires opening the referenced model.

1 In the Simulink Editor, right-click the Model block.
2 Select Format > Content Preview.
3 Open the Model block.

Note: To enable content preview for multiple instances of the same referenced model,
enable content preview for each Model block that references an instance.

Scope of Content Preview Settings

Content preview settings apply across Simulink sessions.

What Content Preview Displays

Simulink scales the content preview to fit the size of the block. To improve the
readability of the content preview, you can:

 Preview Content of Hierarchical Items

1-45

• Zoom the hierarchical block.
• Resize the hierarchical block icon.

As you edit a model and apply updates to the appearance of the model (for example, move
blocks or change background color), the content preview reflects those changes.

In addition to block icons and signals, content preview displays the following, if present
in the system:

• Block labels
• Signal labels
• Highlighted blocks for signals with Highlight Signal to Source or Highlight

Signal to Destination enabled
• Sample time color coding
• Stateflow animation

Simulink does not display content preview for:

• Masked blocks
• Hierarchical block icons when they are smaller than their default size in the Library

Browser
• Subsystem blocks when they have the Read/Write permissions block parameter set

to NoReadOrWrite.
• Protected Model blocks
• Model blocks whose referenced models are not loaded
• Models that have Simulink Preferences > Editor Preferences > Use classic

diagram theme enabled.

The content preview image does not show:

• Block icon graphics, including masked block images
• The content of other hierarchical items contained in the content preview
• Signal line styles (for example, for buses)
• Port information such as port values

1 Simulink Basics

1-46

Use Viewmarks to Save Views of Models

In this section...

“What Are Viewmarks?” on page 1-46
“Create a Viewmark” on page 1-47
“Open and Navigate Viewmarks” on page 1-48
“Save a Viewmark with the Model” on page 1-48
“Manage Viewmarks” on page 1-48
“Refresh a Viewmark” on page 1-49

What Are Viewmarks?

Viewmarks are bookmarks to parts of a model. Use viewmarks to capture graphical
views of a model so you can navigate directly to that view. You can capture viewmarks
for specific levels in a model hierarchy. You can also pan and zoom to capture a point of
interest.

Some examples of ways you can use viewmarks include:

• Navigate to specific locations in complex models without opening multiple Simulink
Editor tabs or windows.

• Review model designs.
• Visually compare versions of a model.
• Share views of a model by storing viewmarks within the model.

You manage viewmarks in the viewmarks gallery. By default, viewmarks are stored
locally on your computer. If you want to include a viewmark to share with a model, see
“Save a Viewmark with the Model” on page 1-48. The figure shows the viewmark
gallery.

 Use Viewmarks to Save Views of Models

1-47

Create a Viewmark

1 Navigate to the part of the model that you want to capture in a viewmark.
2 Pan and zoom to the part of the system that you want to capture.
3 Resize the Simulink Editor window so that it frames the part of the model you want

to capture.

1 Simulink Basics

1-48

4 In the palette, click the Viewmark This View button .

The viewmark displays briefly and becomes part of the viewmarks gallery.

Open and Navigate Viewmarks

The viewmarks gallery has two tabs. The Personal tab consists of viewmarks that you
created in a model and are stored locally on your computer. The Model tab consists of
viewmarks that are saved in the Simulink model file.

1
In the Simulink Editor palette, click the Viewmarks button .

2 Select the tab (Personal or Model) that contains your viewmark, and then click the
viewmark.

The Simulink Editor opens the model, if necessary, and displays the part of the
model captured in the viewmark.

Save a Viewmark with the Model

You can save viewmarks only with Simulink models saved in SLX format.

1
In the Simulink Editor palette, click the Viewmarks button .

2 In the viewmarks gallery, click Manage.
3 Select the check box in the viewmarks you want to copy to the model.
4

Click the Add viewmarks to model button .

These viewmarks become part of the model and are saved with the model.

Manage Viewmarks

In the viewmarks gallery, you can rename viewmarks, add or edit a description for
viewmark, and delete viewmarks.

• To rename a viewmark, click the name and edit it.

 Use Viewmarks to Save Views of Models

1-49

•
To add a description, click the viewmark Description button and enter a
description.

•
To delete a viewmark, click the Delete button on the viewmark. To delete all the
viewmarks for a model, hover over the model name and click Delete.

You can replace the generated viewmark name.

1 Place the cursor in the viewmark name edit box.
2 Enter the new name.

You can also add a viewmark description. For example, you can add a description of the
part of the model in the viewmark or add review comments.

1 Hover over the viewmark.
2

Click the Description button .
3 In the description edit box, enter the description.

Refresh a Viewmark

A viewmark is a static view of a part of a model. For currently loaded models, you can
refresh a viewmark so that it reflects the current model. Open the viewmark gallery and

click the Refresh button on the viewmark.

If the viewmark shows a subsystem that has been removed, then the viewmark appears
dimmed.

See Also
“Print to a PDF” on page 1-71

1 Simulink Basics

1-50

Update Diagram and Run Simulation

Updating the Diagram

You can leave many attributes of a block diagram, such as signal data types and sample
times, unspecified. The Simulink software then infers the values of block diagram
attributes, based on the block connectivity and attributes that you specify. The process
that Simulink uses is known as updating the diagram.

Simulink attempts to infer the most appropriate values for attributes that you do not
specify. If Simulink cannot infer an attribute, it halts the update and displays an error.

Simulation Updates the Diagram

Simulink updates the diagram at the start of a simulation. The updated diagram
provides the simulation with the results of the latest changes that you have made to a
model.

Update Diagram While Editing

As you create a model, at any point you can update the diagram. Updating the diagram
periodically can help you to identify and fix potential simulation issues as you develop
the model. This approach can make it easier to identify the sources of problems by
focusing on a set of recent changes. Also, the update diagram processing takes less time
than performing a simulation, so you can identify issues more efficiently.

To update the diagram select Simulation > Update Diagram, or press Ctrl+D.

This example shows the effects of updating the diagram.

1 Create the following model.

2 Select Display > Signals & Ports > Port Data Types.

The data types of the output ports of the Constant and Gain blocks appear. The data
type of both ports is double, the default value.

 Update Diagram and Run Simulation

1-51

3 In the Constant block dialog box, set Output data type to single.

The output port data type displays on the block diagram do not show this change.
4 Select Simulation > Update Diagram.

The updated block diagram shows the change to the output data type for the
Constant block.

In this example, Simulink infers a data type for the output of the Gain block because
you did not specify a data type for it. The data type inferred is single, because
single precision is all that is needed to simulate the model accurately given that the
precision of the block input is single.

Simulate a Model

For any type of model you build in Simulink, you need to know how to simulate the
model. Simulating performs the operations specified by the blocks in the model and its
specific configuration and produces results. See “Simulation”for complete information,
such as how to configure your model for simulation.

Use any of these methods to simulate a model:

• Select Simulation > Run.
• Press Ctrl+T.
• Click the Run button .

1 Simulink Basics

1-52

Printing Capabilities

In this section...

“Print Interactively or Programmatically” on page 1-52
“Printing Options” on page 1-52
“Canvas Color” on page 1-52
“Print Model Reports” on page 1-53

Print Interactively or Programmatically

You can print a block diagram:

• Interactively in the Simulink Editor, by selecting File > Print
• Programmatically, by using the MATLAB print command

To control some additional aspects of printing a block diagram, use the set_param
command with model parameters. You can use set_param with the interactive and
programmatic printing interface.

Printing Options

In addition to printing a model using default settings, you can:

• “Select the Systems to Print” on page 1-59.
• “Specify the Page Layout and Print Job” on page 1-61
• “Print Multiple Pages for Large Models” on page 1-63
• “Print Using Print Frames” on page 64-13
• “Add a Log of Printed Models” on page 1-64
• “Add a Sample Time Legend” on page 1-65

Canvas Color

By default, the canvas (background) of the printed model is white. To match the color of
the model, set the Simulink Preferences > Print preference.

 Printing Capabilities

1-53

Print Model Reports

In the Simulink Editor, you can generate a model report, which is an HTML document
that describes the structure and content of a model. The report includes block diagrams
of the model and its subsystems and the settings of its block parameters. To print
the report, click File > Print > Print Details and specify report options. For more
information, see “Generate a Model Report” on page 1-73.

If you have the Simulink Report Generator™ installed, you can generate a detailed
report about a system and print it. To do so, in the Simulink Editor, select File >
Reports > System Design Description. For more information, see “System Design
Description”.

1 Simulink Basics

1-54

Basic Printing

In this section...

“Print the vdp Model Using Default Settings” on page 1-54
“Print a Subsystem Hierarchy” on page 1-56

Print the vdp Model Using Default Settings

The default print settings produce good quality printed output for quickly capturing a
model in printed form.

1 Open the vdp model.

2 In the Simulink Editor, select File > Print > Print.
3 In the Print Model dialog box, use the default settings. Click Print.

 Basic Printing

1-55

The output looks like this. The model, as it appears in the Simulink Editor, prints on a
single page, using portrait orientation and not using a print frame.

1 Simulink Basics

1-56

Print a Subsystem Hierarchy

You can print levels in nested subsystems.

1 Open the sldemo_enginewc model.

2 Open the Throttle & Manifold subsystem.

 Basic Printing

1-57

3 Open the Throttle subsystem.

4 In the Simulink Editor, select File > Print > Print.

1 Simulink Basics

1-58

5 In the Print Model dialog box, click Current system and above and click Print.

The printed output shows the Throttle subsystem (the current system) and the two levels
above it in the subsystem hierarchy.

For details, see “Print Subsystems” on page 1-59.

 Select the Systems to Print

1-59

Select the Systems to Print

In this section...

“Print Current System” on page 1-59
“Print Subsystems” on page 1-59
“Print a Model Referencing Hierarchy” on page 1-60

Print Current System

To select a specific system in a model to print, display that system in the currently open
Simulink Editor tab and select File > Print > Print.

Print Subsystems

For models with subsystems, use the Simulink Editor and the Print Model dialog box to
specify the systems in the model to print.

By default, Simulink does not print masked subsystems or library links. For information
about masked subsystem and library link printing, see “Print Masked Subsystems and
Library Links” on page 1-60.

Print All Subsystems in a Model

Use this procedure to print all of the subsystems in a model, including hierarchies of
subsystems.

1 Display the top-level model in the currently open Simulink Editor tab.
2 In the Simulink Editor, select File > Print > Print.
3 In the Print Model dialog box, select All systems.
4 Click Print.

Print the Contents of a Specific Subsystem

In the currently open Simulink Editor tab, display the subsystem that you want to print
and click Print.

Print a Subsystem Hierarchy

Use this procedure to print nested subsystems.

1 Simulink Basics

1-60

1 In the current tab of the Simulink Editor, display the subsystem level that you want
to use as the starting point for printing the subsystem hierarchy.

2 In the Print Model dialog box, select one of the following:

• Current system and below
• Current system and above

3 Click Print.

Simulink prints the hierarchy for all of the subsystems in the current tab.

Print Masked Subsystems and Library Links

To print the contents of masked subsystems, in the Print Model dialog box, click Look
under mask dialog.

To print the contents of library links, in the Print Model dialog box, click Expand
unique library links. Simulink prints one copy, regardless of how many copies of the
block the model contains.

If a subsystem is both a masked subsystem and a library link, Simulink uses the Look
under mask dialog setting and ignores the Expand unique library links setting.

Print a Model Referencing Hierarchy

To print a model referencing hierarchy, open each level of the hierarchy and print that
level.

Clicking All systems does not print different levels in the model referencing hierarchy.

You cannot print the contents of protected models.

 Specify the Page Layout and Print Job

1-61

Specify the Page Layout and Print Job

In this section...

“Page and Print Job Setup” on page 1-61
“Two Interfaces for Page and Print Job Setup” on page 1-61

Page and Print Job Setup

Use the Print Model dialog box to specify the page orientation (portrait or landscape) for
the current printing session.

To open the print dialog box for your operating system, in the Print Model dialog box,
click Print using system dialog. The operating system print dialog box provides
additional printing options for models, such as page range, copies, double-sided printing,
printing in color (if your print driver supports color printing), and nonstandard paper
sizes.

Two Interfaces for Page and Print Job Setup

In general, to set up the page for printing a model, you can use the Print Model dialog
box.

However, on Microsoft Windows platforms, you can also use the Print Setup dialog box
(File > Print > Printer Setup). The settings in the Print Setup dialog box persist
across Simulink sessions.

The setting for page orientation in the Print Setup dialog box overrides the corresponding
Print Model dialog box setting.

1 Simulink Basics

1-62

Tiled Printing

By default, each block diagram is scaled during the printing process so that it fits on a
single page. In the case of a large diagram, this automatic scaling can make the printed
image difficult to read.

Tiled printing enables you to print even the largest block diagrams without sacrificing
clarity and detail. Tiled printing allows you to distribute a block diagram over multiple
pages. For example, you can use tiling to divide a model as shown below, with each white
box and each gray box representing a separate printed page.

You can control the number of pages over which Simulink prints the block diagram.

Also, you can set different tiled-print settings for each of the systems in your model.

Note: If you enable the print frame option, then Simulink does not use tiled printing.

For details, see “Print Multiple Pages for Large Models” on page 1-63

 Print Multiple Pages for Large Models

1-63

Print Multiple Pages for Large Models

1 In the Simulink Editor, open the model in the current tab.
2 Select File > Print > Print.
3 In the Print Model dialog box, click Enable tile printing.

The default Enable tile printing setting in the Print Model dialog box is the same as
the File > Print > Enable Tiled Printing setting. If you change the Print Model
dialog box Enable tile printing setting, the Print Model dialog box setting takes
precedence.

4 Confirm that tiling divides the model into separate pages the way you want it to
appear in the printed pages. In the Simulink Editor, select File > Print > Show
Page Boundaries. The gray and white squares indicate the page boundaries.

5 Optionally, from the MATLAB command line, specify the model scaling, tile margins,
or both. See “Set Tiled Page Scaling and Margins” on page 1-68.

6 Optionally, specify a subset of pages to print. In the Print Model dialog box, specify
the Page Range.

7 Click Print.

1 Simulink Basics

1-64

Add a Log of Printed Models

A print log lists the blocks and systems printed. To print the print log when you print a
model:

1 In the Simulink Editor, open the model for which you want a log.
2 Select File > Print > Print.
3 In the Print Model dialog box, click Include print log.
4 Click Print.

The print log appears on the last page.

For example, here is the print log for the sldemo_enginewc model, with All systems
enabled and Enable tiled printing cleared.

 Add a Sample Time Legend

1-65

Add a Sample Time Legend

You can print a legend that contains sample time information for your entire system,
including any subsystems. The legend appears on a separate page from the model. To
print a sample time legend:

1 In the Simulink Editor, select Simulation > Update diagram.
2 Select File > Print > Print.
3 In the Print Model dialog box, click Print sample time legend.
4 Click Print.

A sample time legend appears on the last page. For example, here is the sample time
legend for the sldemo_enginewc model, with All systems enabled.

For more information about sample time legends, see “View Sample Time Information”
on page 7-9.

1 Simulink Basics

1-66

Print from the MATLAB Command Line

In this section...

“Printing Commands” on page 1-66
“Print Systems with Multiline Names or Names with Spaces” on page 1-66
“Set Paper Orientation and Type” on page 1-67
“Position and Size a System” on page 1-67
“Use Tiled Printing” on page 1-68

Printing Commands

The MATLAB print command provides several options for printing Simulink models.
For example, to print the Compression subsystem in the sldemo_enginewc model to
your default printer, use the following commands:

open_system('sldemo_enginewc');

print -sCompression

Tip When you use the print command, you can print only one specific system. To print
multiple levels in a model, use multiple print commands, one for each system that
you want to print. To print multiple systems in a model, consider using the Print Model
dialog box in the Simulink Editor. For details, see “Select the Systems to Print” on page
1-59.

You can use set_param to specify printing options for models. For details, see “Model
Parameters”.

You can use orient to control the paper orientation.

Print Systems with Multiline Names or Names with Spaces

To print a system whose name appears on multiple lines, assign the newline character
to a variable and use that variable in the print command. This example shows how to
print a subsystem whose name, Aircraft Dynamics Model, appears on three lines.

open_system('f14');

 Print from the MATLAB Command Line

1-67

open_system('f14/Aircraft Dynamics Model');

sys = sprintf('f14/Aircraft\nDynamics\nModel');

print (['-s' sys])

To print a system whose name includes one or more spaces, specify the name as a string.
For example, to print the Throttle & Manifold subsystem, enter:

open_system('sldemo_enginewc');

open_system('sldemo_enginewc/Throttle & Manifold');

print (['-sThrottle & Manifold'])

Set Paper Orientation and Type

To set just the paper orientation, use the MATLAB orient command.

You can also set the paper orientation by with set_param with the PaperOrientation
model parameter. Set the paper type with the PaperType model parameter.

Position and Size a System

To position and size the model diagram on the printed page, use set_param command
with the PaperPositionMode and PaperPosition model parameters.

The value of the PaperPosition parameter is a vector of form [left bottom width
height]. The first two elements specify the bottom-left corner of a rectangular area on
the page, measured from the bottom-left corner. The last two elements specify the width
and height of the rectangle.

If you set the PaperPositionMode parameter to manual, Simulink positions
(and scales, if necessary) the model to fit inside the specified print rectangle. If
PaperPositionMode is auto, Simulink centers the model on the printed page, scaling
the model, if necessary, to fit the page.

For example, to print the vdp model in the lower-left corner of a U.S. letter-size page in
landscape orientation:

open_system('vdp');

set_param('vdp', 'PaperType', 'usletter');

set_param('vdp', 'PaperOrientation', 'landscape');

set_param('vdp', 'PaperPositionMode', 'manual');

set_param('vdp', 'PaperPosition', [0.5 0.5 4 4]);

1 Simulink Basics

1-68

print -svdp

Use Tiled Printing

Enable Tiled Printing

1 Use set_param to set the PaperPositionMode parameter to tiled.
2 Use the print command with the -tileall argument.

For example, to enable tiled printing for the Compression subsystem in the
sldemo_enginewc model:

open_system('sldemo_enginewc');

set_param('sldemo_enginewc/Compression', 'PaperPositionMode', ...

'tiled');

print('-ssldemo_enginewc/Compression', '-tileall')

Display Tiled Page Boundaries

To display the page boundaries programmatically, use the set_param command, with
the model parameter ShowPageBoundaries set to on. For example:

open_system('sldemo_enginewc');

set_param('sldemo_enginewc', 'ShowPageBoundaries', 'on')

Set Tiled Page Scaling and Margins

To scale the block diagram so that more or less of it appears on a single tiled page, use
set_param with the TiledPageScale parameter. By default, the value is 1. Values
greater than 1 proportionally scale the model to use a smaller percentage of the tiled
page, while values between 0 and 1 proportionally scale the model to use a larger
percentage of the tiled page. For example, a TiledPageScale of 0.5 makes the printed
diagram appear twice its size on a tiled page, while a TiledPageScale value of 2 makes
the printed diagram appear half its size on a tiled page.

By decreasing the margin sizes, you can increase the printable area of the tiled pages.
To specify the margin sizes associated with tiled pages, use set_param with the
TiledPaperMargins parameter. Each margin to 0.5 inches by default. The value of
TiledPaperMargins is a vector that specifies margins in this order: [left top right
bottom]. Each element specifies the size of the margin at a particular edge of the page.
The value of the PaperUnits parameter determines the units of measurement for the
margins.

 Print from the MATLAB Command Line

1-69

Specify Range of Tiled Pages to Print

To specify a range of tiled page numbers programmatically, use print with the -
tileall argument and the -pages argument. Append to -pages a two-element vector
that specifies the range.

Note: Simulink uses a row-major scheme to number tiled pages. For example, the first
page of the first row is 1, the second page of the first row is 2, and so on.

For example, to print the second, third, and fourth pages:

open_system('vdp');

print('-svdp', '-tileall', '-pages[2 4]')

1 Simulink Basics

1-70

Export Models to Third-Party Applications

On Microsoft Windows platforms, you can copy a model in either bitmap or metafile
format. You can then paste the clipboard model to an application, such as word
processing software, that accepts figures in bitmap or metafile format.

On Macintosh platforms, when you copy a model to the clipboard, Simulink saves the
model in a scalable format, in addition to a bitmap format. When you paste from the
clipboard to an application, that application selects the format that best meets its
requirements.

By default, the canvas (background) of the copied model matches the color of the model.
To use a white or transparent canvas for model files that you copy to another application,
set the Simulink Preferences > Clipboard preference.

1 Copy a Simulink model to the operating system clipboard.
2 Paste the model from the clipboard to a third-party application.

 Print to a PDF

1-71

Print to a PDF

You can print a model to a .pdf file. Simulink creates one file for all of the systems in
the model.

1 In the Simulink Editor, select File > Print > Print.
2 Select the Print to File check box.
3 Specify a location and file name to save the new .pdf file. Include the extension

.pdf in the file name.
4 Click Print.

1 Simulink Basics

1-72

Export Models to Image File Formats

To export a model to another file format, such as .png or .jpeg, use the -device
argument of the MATLAB print command. For example, to print the vdp model to a
.png format, use this command:

print -dpng -svdp vdp_model.png

By default, the canvas (background) of the exported model matches the color of the
model. To use a white or transparent canvas for model files that you export to another
file format, set the Simulink Preferences > Export preference.

 Generate a Model Report

1-73

Generate a Model Report

A model report is an HTML document that describes the structure and content of a
model. The report includes block diagrams of the model and its subsystems and the
settings of its block parameters.

Tip If you have the Simulink Report Generator installed, you can generate a detailed
report about a system. To do so, in the Simulink Editor, select File > Reports >
System Design Description. For more information, see “System Design Description”.

To generate a model report for the current model:

1 In the Simulink Editor, select File > Print > Print Details.

The Print Details dialog box appears.
2 Select the desired report options. For details, see “Model Report Options” on page

1-74.
3 Select Print.

The Simulink software generates the HTML report and displays the report in your
default HTML browser.

While generating the report, Simulink displays status messages on a messages pane that
replaces the options pane on the Print Details dialog box.

1 Simulink Basics

1-74

Select the detail level of the messages from the list at the top of the messages pane.
When the report generation process begins, the Print button changes to a Stop button.
To terminate the report generation, press Stop. When the report generation process
finishes, the Stop button changes to an Options button. Clicking this button redisplays
the report generation options, allowing you to generate another report without having to
reopen the Print Details dialog box.

Model Report Options

Use the Print Details dialog box allows you to specify the following report options.

Directory

The folder where the HTML report is stored. The options include your system's
temporary folder (the default), your system's current folder, or another folder whose path
you specify in the adjacent edit field.

Increment filename to prevent overwriting old files

Creates a unique report file name each time you generate a report for the same model in
the current session. This preserves each report.

Current object

Include only the currently selected object in the report.

 Generate a Model Report

1-75

Current and above

Include the current object and all levels of the model above the current object in the
report.

Current and below

Include the current object and all levels below the current object in the report.

Entire model

Include the entire model in the report.

Look under mask dialog

Include the contents of masked subsystems in the report.

Expand unique library links

Include the contents of library blocks that are subsystems. The report includes a library
subsystem only once even if it occurs in more than one place in the model.

1 Simulink Basics

1-76

Keyboard and Mouse Actions for Simulink Modeling

In this section...

“Object Selection and Clipboard Operations” on page 1-76
“Block and Signal Line Shortcuts and Actions” on page 1-77
“Signal Name and Label Actions” on page 1-78
“Simulation Keyboard Shortcuts” on page 1-78
“Debugging and Breakpoints Keyboard Shortcuts” on page 1-79
“Zooming and Scrolling Shortcuts” on page 1-79
“Library Browser Shortcuts” on page 1-80
“File Operations” on page 1-81

Note: On Macintosh platforms, use the command key instead of Ctrl.

Object Selection and Clipboard Operations

Objects include blocks, signal lines, signal labels, and annotations.

Task Acton

Select an object Click
Select additional objects Shift+click
Select all objects Ctrl+A
Copy object Drag with right mouse button

Ctrl+drag
Move any object, including
signal labels

Drag

Delete selected object Delete or Backspace

Edit > Clear
Cut Ctrl+X
Paste Ctrl+V

 Keyboard and Mouse Actions for Simulink Modeling

1-77

Task Acton

Duplicate object Ctrl+C, Ctrl+V
Undo Ctrl+Z
Redo Ctrl+Y

Block and Signal Line Shortcuts and Actions

Task Action

Copy block or model from
another Simulink Editor window

Drag between windows

Move block Arrow keys
Resize block, keeping same ratio
of width and height

Shift+drag handle

Resize block from the center Ctrl+drag handle
Rotate block clockwise Ctrl+R
Rotate block counterclockwise Ctrl+Shift+R
Flip block Ctrl+I
Connect blocks Select first block, Ctrl+click second block

Drag from port to port
Draw branch line Ctrl+drag line

Right-mouse button+drag
Route lines around blocks Shift+drag while drawing
Disconnect block Shift+drag block
Create subsystem from selected
blocks

Ctrl+G

Open selected subsystem Enter
Go to parent of selected
subsystem

Esc

Find block Ctrl+F
Mask subsystem Ctrl+M

1 Simulink Basics

1-78

Task Action

Look under block mask Ctrl+U
Comment through a block Ctrl+Shift+Y
Comment Out/Uncomment a
block

Ctrl+Shift+X

Refresh Model blocks Ctrl+K
Open Model Explorer Ctrl+H

Signal Name and Label Actions

The signal name appears in a label on the signal line.

Task Action

Name a signal line Double-click signal and type name
Name a branch of a named signal
line

Double-click the branch

Name every branch of a signal Right-click the signal, select Properties, and use the
dialog box

Delete signal label and name Delete characters in label or delete name in Signal
Properties dialog box.

Delete signal label only Right-click label and select Delete Label.
Open signal label text box for edit Double-click signal line

Click label
Move signal label Drag label to a new location on same signal line
Copy signal label Ctrl+drag signal label
Change the label font Select the signal line (not the label) and use

Diagram > Format > Font Style

Simulation Keyboard Shortcuts

Task Action

Open Configuration Parameters
dialog box

Ctrl+E

 Keyboard and Mouse Actions for Simulink Modeling

1-79

Task Action

Update diagram Ctrl+D
Start simulation Ctrl+T
Stop simulation Ctrl+Shift+T
Build model (for code
generation)

Ctrl+B

Debugging and Breakpoints Keyboard Shortcuts

Task Action

Step F10
Step in F11
Step out Shift + F11
Run F5
Set/Clear breakpoint F12

Zooming and Scrolling Shortcuts

Task Action

Zoom in Ctrl++
Zoom out Ctrl+-
Zoom to normal (100%) Alt+1
Zoom with mouse Ctrl+scroll wheel

Select the File > Simulink Preferences > Editor
Preferences > Scroll wheel controls zooming
preference to zoom using just the scroll wheel.

Zoom in on object Drag the Zoom button from the palette to the
object

Fit diagram to screen Spacebar
Scroll view Arrow keys

Shift+arrow for larger pans

1 Simulink Basics

1-80

Task Action

Scroll with mouse Spacebar+drag

Hold the scroll wheel down and drag the mouse

Library Browser Shortcuts

Task Shortcut

Open a model Ctrl+O
Open Library Browser from a
model

Ctrl+Shift+L

Move selection down in the
Blocks or Libraries pane

Down arrow

Move selection up in the Blocks
or Libraries pane

Up arrow

Expand a node in the Libraries
pane

Right arrow

Collapse a node in the Libraries
pane

Left arrow

Refresh Libraries pane F5
Show parent library in Blocks
pane

Esc

Select a block found with the
search tool in the Blocks pane

Ctrl+R

Insert the selected block in a
new model

Ctrl+I

Increase zoom in the Blocks
pane

Ctrl++

Decrease zoom in the Blocks
pane

Ctrl+-

Reset zoom to default in the
Blocks pane

Alt+1

Find a block Ctrl+F

 Keyboard and Mouse Actions for Simulink Modeling

1-81

Task Shortcut

Close Ctrl+W

File Operations

Task Action

Open model Ctrl+O
Create a model Ctrl+N
Print Ctrl+P
Save Ctrl+S
Close model Ctrl+W

2

Simulation Stepping

• “How Simulation Stepper Helps With Model Analysis” on page 2-2
• “How Stepping Through a Simulation Works” on page 2-3
• “Use Simulation Stepper” on page 2-8
• “Simulation Stepper Limitations” on page 2-12
• “Step Through a Simulation” on page 2-15
• “Set Conditional Breakpoints for Stepping a Simulation” on page 2-18

2 Simulation Stepping

2-2

How Simulation Stepper Helps With Model Analysis

Simulation Stepper enables you to step through major time steps of a simulation. Using
discrete time steps, you can step forward or back to a particular instant in simulation
time. At each time step, Stepper displays all of the simulation data the model produces.

Use Simulation Stepper to analyze your model in these ways:

• Step forward and back through a simulation.
• Pause a simulation in progress and step back.
• Continue running a simulation after stepping back.
• Analyze plotted data in your model at a particular moment in simulation time.
• Set conditions before and during simulation to pause a simulation.

Related Examples
• “Step Through a Simulation” on page 2-15

More About
• “How Stepping Through a Simulation Works” on page 2-3
• “How Simulation Stepper Differs from Simulink Debugger” on page 2-5

 How Stepping Through a Simulation Works

2-3

How Stepping Through a Simulation Works

In this section...

“Simulation Snapshots” on page 2-3
“How Simulation Stepper Uses Snapshots” on page 2-4
“How Simulation Stepper Differs from Simulink Debugger” on page 2-5

These topics explain how Simulation Stepper steps through a simulation.

Simulation Snapshots

When you set up Simulation Stepper, you specify:

• The number of time steps where Stepper creates ‘snapshots’
• The number of steps to skip between snapshots
• The total number of snapshots stored

A simulation snapshot contains simulation state (SimState) and information related
to logged data and visualization blocks. Simulation Stepper stores simulation states
in snapshots at the specified interval of time steps when it steps forward through a
simulation.

It is important to understand the difference between a Simulation Stepper step and a
simulation time step. A simulation time step is the fixed amount of time by which the
simulation advances. A Simulation Stepper step is where Simulation Stepper creates a
snapshot. Each step (that Simulation Stepper takes) consists of one or more simulation
time steps (that you specify).

When you step back through a simulation, the software uses simulation snapshots,
stored as SimStates, to display previous states of the simulation. The model does not
simulate in reverse when stepping back. Therefore, to enable the step back capability,
you must first simulate the model or step it forward to save snapshots.

Keep in mind that snapshots for stepping back are available only during a single
simulation. The Simulation Stepper does not save the steps from one simulation to the
next.

2 Simulation Stepping

2-4

How Simulation Stepper Uses Snapshots

A simulation snapshot captures all the information required to continue a simulation
from that point. When you set up simulation stepping, you specify:

• The maximum number of snapshots to capture while simulating forward. The greater
the number, the more memory the simulation uses and the longer the simulation
takes to run.

• The number of time steps to skip between snapshots. This setting enables you to save
snapshots of simulation state when stepping forward at periodic intervals, such as
every three steps. This interval is independent of the number of forward or backward
time steps taken. Because taking simulation snapshots affects simulation speed,
saving snapshots less frequently can improve simulation speed.

The figure shows how you can step through a simulation depending on how you set the
parameters in the Simulation Stepping Options dialog box. Because you can change
the stepping parameters as you step through the simulation, you can step through a
simulation as shown in this figure: sometimes by single steps and sometimes by two or
more steps.

In the figure, the interval for snapshot captures is three.

This next figure shows the advantage of changing the stepping options while stepping
forward. At the fourth step, the interval between stored steps changed the snapshot steps
from three to one. This enables you to capture more snapshots around a simulation time
of interest.

 How Stepping Through a Simulation Works

2-5

The next figure shows how the snapshot settings of Simulation Stepper can change what
happens when stepping back. Suppose that the interval between snapshots is set to
three, and starting at state six, the stepper Move back/forward by setting is set to one.
The stepper first restores the simulation state to the last saved snapshot (state three),
and then simulates two major times steps to arrive at the desired state (state five).

Thus, when you step back to a particular time step in a simulation, Simulation Stepper
restores the last saved snapshot before that time step. Then, it steps forward to the
time step you specify. This capability is helpful for memory usage and simulation
performance.

How Simulation Stepper Differs from Simulink Debugger

Simulation Stepper and Simulink Debugger both enable you to start, stop, and step
through a model simulation. Both tools allow you to use breakpoints as part of a
debugging session. However, you use Simulation Stepper and Simulink Debugger for
different purposes. The table shows the actions you can perform with each tool.

Action Simulation Stepper Simulink Debugger

Look at state of system after
executing a major time step.

2 Simulation Stepping

2-6

Action Simulation Stepper Simulink Debugger

Observe dynamics of the
entire model from step to
step.

Step simulation back.

Pause across major steps.

Control a Stateflow
debugging session.

Step through simulation by
major steps.

Monitor single block
dynamics (for example,
output and update) during a
single major time step.

Look at state of system
while executing a major
time step.

Observe solver dynamics
during a single major step.

Show various stages of
Simulink simulation.

Pause within a major step.

Step through a simulation
block by block.

Access via a command-line
interface.

Understanding the simulation process can help you to better understand the differences
between Simulation Stepper and Simulink Debugger.

Related Examples
• “Step Through a Simulation” on page 2-15

 How Stepping Through a Simulation Works

2-7

More About
• “Use Simulation Stepper” on page 2-8

2 Simulation Stepping

2-8

Use Simulation Stepper

In this section...

“Simulation Stepper Access” on page 2-8
“Simulation Stepper Pause Status” on page 2-8
“Tune Parameters” on page 2-9
“Referenced Models” on page 2-10
“Simulation Stepper and Interval Logging” on page 2-10
“Simulation Stepper and Stateflow Debugger” on page 2-10

Simulation Stepper Access

You run Simulation Stepper and access the settings from the Simulink Editor toolbar .

Click the Stepping Options button to open the Simulation Stepping Options dialog
box.

Use the dialog box to enable stepping back through a simulation. When stepping back is

enabled, after you start the simulation, the Stepping Options button changes to , and
then you can use it to step back. In that case, you can access the dialog box again only by
using Simulation > Stepping Options.

If you clear the Enable previous stepping check box, the software clears the stored
snapshot cache.

Simulation Stepper Pause Status

The status bar at the bottom of the Simulink Editor displays the simulation time of the
last completed simulation step. While a simulation is running, the editor updates the
time display to indicate the simulation progress. This display is approximate because the
status bar updates only at every major time step and not at every simulation time step.

 Use Simulation Stepper

2-9

When you pause a simulation, the status bar display time catches up to the actual time of
the last completed step.

The value (the time of the last completed step) that is displayed on the status bar is not
always the same as the time of the solver. This happens because different solvers use
different ways to propagate the simulation time in a single iteration of the simulation
loop. Simulation Stepper pauses at a single position within the simulation loop. Some
solvers perform their time advance before Simulation Stepper pauses. However, other
solvers perform their time advance after Simulation Stepper pauses, and the time
advance then becomes part of the next step. As a result, for continuous and discrete
solvers, the solver time is always one major step ahead of the time of the last model
output.

When this condition occurs, and the simulation is paused, the status bar time displays an
asterisk. The asterisk indicates that the solver in this simulation has already advanced
past the displayed time (which is the time of the last completed simulation step).

Tune Parameters

While using Simulation Stepper, when the simulation is paused, you can change tunable
parameters, including some solver settings. However, changes to the solver step size take
effect when the solver advances the simulation time. For some solvers, this occurs after
the next simulation step is taken.

Simulation Stepper takes into account the size of a movement (Move back/forward
by) and the frequency of saving steps (Interval between stored back steps). If you
specify a frequency that is larger than the step size, Simulation Stepper first steps back
to the last saved step and then simulates forward until the total step count difference
reaches the size of the desired movement. Simulation Stepper applies values for tunable
parameters when simulating forward. For this reason, if you change any tunable
parameter before stepping back, the resulting simulation output might not match the
previous simulation output at that step before the parameter change. This can cause
unexpected results when stepping forward from the snapshot to the chosen time step.

For example, assume a snapshot save frequency of three and a step size of one. The
stepper first steps back to the last saved step, up to three steps, and then simulates
forward until the total step count difference reaches one. If you change tunable

2 Simulation Stepping

2-10

parameters before stepping back, the resulting simulation output might not match the
previous simulation output at that step.

Referenced Models

When using Simulation Stepper and the Model block, the referenced model shares
the stepping options of the top model throughout a simulation. As a result, changing
Simulation Stepper settings for the referenced model during simulation changes the
Simulation Stepper settings of the top model. When the simulation ends, the settings of
the referenced model revert to the original values; the Stepper settings of the top model
stay at the changed settings.

• When the model is not simulating, the top model and referenced model retain their
own independent stepping options.

• When the model is simulating and you change a referenced model stepping option, the
top model stepping option changes to the same value.

• When the model is simulating and you change a top model stepping option, the
referenced model stepping option changes to the same value.

• When the model stops simulating, the referenced model stepping options revert to
how they were set before simulation started; the top model keeps the values set
during simulation.

Simulation Stepper and Interval Logging

When you change the logging interval of a simulation before rolling back, Simulink does
not log data for time steps that were outside the original logging interval until the first
forward step after a rollback operation. For more information, see “Logging intervals”.

Simulation Stepper and Stateflow Debugger

When you debug a Stateflow chart (for example, when the simulation stops at a Stateflow
breakpoint), Simulation Stepper adds buttons to control the Stateflow debugging session.
When the Stateflow debugging session ends, the Simulation Stepper interface returns
to the default. For more information about controlling the Stateflow debugger using the
Simulink Editor toolbar, see “Control Chart Execution from the Stateflow Editor”.

Related Examples
• “Step Through a Simulation” on page 2-15

 Use Simulation Stepper

2-11

• “Set Conditional Breakpoints for Stepping a Simulation” on page 2-18

More About
• “How Stepping Through a Simulation Works” on page 2-3
• “Simulation Stepping Options”
• “Simulation Stepper Limitations” on page 2-12

2 Simulation Stepping

2-12

Simulation Stepper Limitations

In this section...

“Interface” on page 2-12
“Model Configuration” on page 2-12
“Blocks” on page 2-12

Interface

• There is no command-line interface for Simulation Stepper.

Model Configuration

• Simulation stepping (forward and backward) is available only for Normal and
Accelerator modes.

• The step back capability relies on SimState technology for saving and restoring the
state of a simulation. As a result, the step back capability is available only for models
that support SimState. For more information, see “Save and Restore Simulation State
as SimState” on page 22-36.

• Simulation Stepper steps through the major time steps of a simulation without
changing the course of a simulation. Choosing a refine factor greater than unity
produces loggable outputs at times between the major time steps of the solver. These
times are not major time steps, and you cannot step to a model state at those times.

• If you run a simulation with stepping back enabled, the Simulink software checks
whether the model can step back. If it cannot, a warning appears at the MATLAB
command prompt. For some simulations, Simulink cannot step back. The step back
capability is then disabled until the end of that simulation. Then the setting resets to
the value you requested.

• When you place custom code in Configuration Parameters > Simulation Target
> Custom Code > Initialize function in the Model Configuration Parameters
dialog box, this gets called only during the first simulation in Simulation Stepper.

Blocks

• Some blocks do not support stepping back for reasons other than SimState support.
These blocks are:

 Simulation Stepper Limitations

2-13

• S-functions that have P-work vectors but do not declare their SimState compliance
level or declare it to be unknown or disallowed (see “S-Function Compliance with
the SimState”)

• SimMechanics™ First Generation blocks
• Model blocks configured for Accelerator mode
• SimEvents® blocks

• MATLAB Function blocks generally support stepping back. However, the use of
certain constructs in the MATLAB code of these blocks can prevent the block from
supporting stepping back. These scenarios prevent the MATLAB Function blocks
from stepping back:

• Persistent variables of opaque data type. Attempts to step back under this
condition cause an error message based on the specific variable type.

• Extrinsic functions calls that can contain state (such as properties of objects or
persistent data of functions). No warnings or error messages appear, but the result
likely will be incorrect.

• Calls to custom C code (through MEX function calls) that do not contain static
variables. No warnings or error messages appear, but the result likely will be
incorrect.

• Some visualization blocks do not support stepping back. Because these blocks are not
critical to the state of the simulation, no errors or warnings appear when you step
back in a model that contains these blocks:

• XY Graph

• Signal Viewer

• Auto Correlator

• Cross Correlator

• Spectrum Analyzer

• Averaging Spectrum Analyzer

• Power Spectral Density

• Averaging Power Spectral Density

• Floating Bar Plot

• 3Dof Animation

2 Simulation Stepping

2-14

• MATLAB Animation

• VR Sink

• Any blocks that implement custom visualization in their output method (for
example, an S-function that outputs to a MATLAB figure) are not fully supported
for stepping back because the block method Output does not execute while
stepping back. While the state of such blocks remains consistent with the
simulation time (if the blocks comply with SimState), the visualization component
is inconsistent until the next step forward in the simulation.

Because these blocks do not affect the numerical result of a simulation, stepping
back is not disabled for these blocks. However, the values these blocks output are
inaccurate until the simulation steps forward again.

Related Examples
• “Step Through a Simulation” on page 2-15

More About
• “How Simulation Stepper Helps With Model Analysis” on page 2-2

 Step Through a Simulation

2-15

Step Through a Simulation

Step Forward and Back

This example shows how to step forward and back through a simulation.

1 At the MATLAB prompt, type

vdp

2 In the Simulink Editor for the vdp model, click to open the Simulation Stepping
Options dialog box.

3 In the dialog box, select the Enable previous stepping check box, and then click
OK.

4
In the Simulation toolbar, click the Step Forward button .

The simulation simulates one step, and the software stores a simulation snapshot for
that step.

5 Click the Step Forward button again to step forward again and store simulation
data. When you view the results of the simulation, 25 clicks plots this data:

2 Simulation Stepping

2-16

6

In the Simulation toolbar, click the Step Back button one or more times to step
backward to the simulation snapshot of the previous step.

You must step forward before you can step backward to create the simulation state
that the step backward operation requires.

The scope updates to reflect the step back.

 Step Through a Simulation

2-17

Related Examples
• “Set Conditional Breakpoints for Stepping a Simulation” on page 2-18

More About
• “How Simulation Stepper Helps With Model Analysis” on page 2-2
• “How Stepping Through a Simulation Works” on page 2-3

2 Simulation Stepping

2-18

Set Conditional Breakpoints for Stepping a Simulation

A conditional breakpoint is triggered based on a specified expression evaluated on a
signal. When the breakpoint is triggered, the simulation pauses.

Set conditional breakpoints to stop Simulation Stepper when a specified condition is met.
One example of a use for conditional breakpoints is when you want to examine results
after a certain number of iterations in a loop.

Simulation Stepper allows you to set conditional breakpoints for scalar signals. These
breakpoints appear for signals:

BreakpointDescription

Enabled breakpoint. Appears when you add the conditional breakpoint.

Enabled breakpoint hit. Appears when the simulation reaches the condition
specified and triggers the breakpoint.
Disabled breakpoint. Appears when you disable a conditional breakpoint.

Invalid breakpoint. Appears when the software determines that a breakpoint
is invalid for the signal. An enabled breakpoint image changes to this one
when, during simulation, the software determines that the conditional
breakpoint is invalid.

When setting conditional breakpoints, keep in mind that:

• When simulation arrives at a conditional breakpoint, simulation does not stop when
the block is executed. Instead, simulation stops after the current simulation step
completes.

• You can add multiple conditional breakpoints to a signal line.

Add and Edit Conditional Breakpoints

1 In a model, right-click a signal and select Add Conditional Breakpoint.
2 In the Add Conditional Breakpoint dialog box, from the drop-down list, select the

condition for the signal. For example, select greater than or less than.
3 Enter the signal value where you want simulation to pause and click OK. For the

condition values:

• Use numeric values. Do not use expressions.

 Set Conditional Breakpoints for Stepping a Simulation

2-19

• Do not use NaN.

The affected signal line displays a conditional breakpoint icon: .
4 Click the breakpoint to view and edit all conditions set for the signal.

5 Simulate the model and notice that the model pauses as simulation steps through
the conditional breakpoints.

Conditional Breakpoints Limitations

• You can set conditional breakpoints only on real scalar signals of these data types:

• double
• single
• int
• bool
• fixed point (based on the converted double value)

• You cannot set conditional breakpoints (or port value display labels) on non-Simulink
signals, such as Simscape or SimEvents signals.

• Conditional breakpoints also have the limitations that port value display have(“Port
Value Display Limitations” on page 31-26).

Observe Conditional Breakpoint Values

To observe a conditional breakpoint value of a block signal, use data tips to display block
port values. You can add data tips before or after you add conditional breakpoints.

2 Simulation Stepping

2-20

1 Enable the value display for a signal. Right-click the signal line that has a
conditional breakpoint and select Show Value Label of Selected Port.

The data tip for the value display appears.

2 Simulate the model and observe the conditional breakpoint and data tip when the
simulation triggers the breakpoint.

Related Examples
• “Step Through a Simulation” on page 2-15

More About
• “How Stepping Through a Simulation Works” on page 2-3

3

How Simulink Works

• “How Simulink Works” on page 3-2
• “Modeling Dynamic Systems” on page 3-3
• “Simulation Phases in Dynamic Systems” on page 3-17
• “Solvers” on page 3-21
• “Zero-Crossing Detection” on page 3-23
• “Algebraic Loops” on page 3-37

3 How Simulink Works

3-2

How Simulink Works

Simulink is a software package that enables you to model, simulate, and analyze systems
whose outputs change over time. Such systems are often referred to as dynamic systems.
The Simulink software can be used to explore the behavior of a wide range of real-world
dynamic systems, including electrical circuits, shock absorbers, braking systems, and
many other electrical, mechanical, and thermodynamic systems. This section explains
how Simulink works.

Simulating a dynamic system is a two-step process. First, a user creates a block diagram,
using the Simulink model editor, that graphically depicts time-dependent mathematical
relationships among the system's inputs, states, and outputs. The user then commands
the Simulink software to simulate the system represented by the model from a specified
start time to a specified stop time.

For more information on this process, see:

• “Modeling Dynamic Systems” on page 3-3
• “Simulation Phases in Dynamic Systems” on page 3-17

 Modeling Dynamic Systems

3-3

Modeling Dynamic Systems

In this section...

“Block Diagram Semantics” on page 3-3
“Creating Models” on page 3-4
“Time” on page 3-4
“States” on page 3-5
“Block Parameters” on page 3-8
“Tunable Parameters” on page 3-8
“Block Sample Times” on page 3-9
“Custom Blocks” on page 3-9
“Systems and Subsystems” on page 3-10
“Signals” on page 3-14
“Block Methods” on page 3-15
“Model Methods” on page 3-16

Block Diagram Semantics

A classic block diagram model of a dynamic system graphically consists of blocks and
lines (signals). The history of these block diagram models is derived from engineering
areas such as Feedback Control Theory and Signal Processing. A block within a block
diagram defines a dynamic system in itself. The relationships between each elementary
dynamic system in a block diagram are illustrated by the use of signals connecting the
blocks. Collectively the blocks and lines in a block diagram describe an overall dynamic
system.

The Simulink product extends these classic block diagram models by introducing the
notion of two classes of blocks, nonvirtual blocks and virtual blocks. Nonvirtual blocks
represent elementary systems. Virtual blocks exist for graphical and organizational
convenience only: they have no effect on the system of equations described by the block
diagram model. You can use virtual blocks to improve the readability of your models.

In general, blocks and lines can be used to describe many “models of computations.” One
example would be a flow chart. A flow chart consists of blocks and lines, but one cannot
describe general dynamic systems using flow chart semantics.

3 How Simulink Works

3-4

The term “time-based block diagram” is used to distinguish block diagrams that describe
dynamic systems from that of other forms of block diagrams, and the term block diagram
(or model) is used to refer to a time-based block diagram unless the context requires
explicit distinction.

To summarize the meaning of time-based block diagrams:

• Simulink block diagrams define time-based relationships between signals and
state variables. The solution of a block diagram is obtained by evaluating these
relationships over time, where time starts at a user specified “start time” and ends at
a user specified “stop time.” Each evaluation of these relationships is referred to as a
time step.

• Signals represent quantities that change over time and are defined for all points in
time between the block diagram's start and stop time.

• The relationships between signals and state variables are defined by a set of
equations represented by blocks. Each block consists of a set of equations (block
methods). These equations define a relationship between the input signals, output
signals and the state variables. Inherent in the definition of a equation is the notion of
parameters, which are the coefficients found within the equation.

Creating Models

The Simulink product provides a graphical editor that allows you to create and
connect instances of block types vikramsselected from libraries of block types (see
“Block Libraries”) via a library browser. Libraries of blocks are provided representing
elementary systems that can be used as building blocks. The blocks supplied with
Simulink are called built-in blocks. Users can also create their own block types and use
the Simulink editor to create instances of them in a diagram. User-defined blocks are
called custom blocks.

Time

Time is an inherent component of block diagrams in that the results of a block diagram
simulation change with time. Put another way, a block diagram represents the
instantaneous behavior of a dynamic system. Determining a system's behavior over time
thus entails repeatedly solving the model at intervals, called time steps, from the start
of the time span to the end of the time span. The process of solving a model at successive
time steps is referred to as simulating the system that the model represents.

 Modeling Dynamic Systems

3-5

States

Typically the current values of some system, and hence model, outputs are functions of
the previous values of temporal variables. Such variables are called states. Computing
a model's outputs from a block diagram hence entails saving the value of states at the
current time step for use in computing the outputs at a subsequent time step. This task
is performed during simulation for models that define states.

Two types of states can occur in a Simulink model: discrete and continuous states. A
continuous state changes continuously. Examples of continuous states are the position
and speed of a car. A discrete state is an approximation of a continuous state where the
state is updated (recomputed) using finite (periodic or aperiodic) intervals. An example
of a discrete state would be the position of a car shown on a digital odometer where it is
updated every second as opposed to continuously. In the limit, as the discrete state time
interval approaches zero, a discrete state becomes equivalent to a continuous state.

Blocks implicitly define a model's states. In particular, a block that needs some or all of
its previous outputs to compute its current outputs implicitly defines a set of states that
need to be saved between time steps. Such a block is said to have states.

The following is a graphical representation of a block that has states:

Blocks that define continuous states include the following standard Simulink blocks:

• Integrator

• State-Space

• Transfer Fcn

• Variable Transport Delay

• Zero-Pole

The total number of a model's states is the sum of all the states defined by all its
blocks. Determining the number of states in a diagram requires parsing the diagram to
determine the types of blocks that it contains and then aggregating the number of states
defined by each instance of a block type that defines states. This task is performed during
the Compilation phase of a simulation.

3 How Simulink Works

3-6

Working with States

The following facilities are provided for determining, initializing, and logging a model's
states during simulation:

• The model command displays information about the states defined by a model,
including the total number of states defined by the model, the block that defines each
state, and the initial value of each state.

• The Simulink debugger displays the value of a state at each time step during a
simulation, and the Simulink debugger's states command displays information
about the model's current states (see “Simulink Debugger”).

• The Data Import/Export pane of a model's Configuration Parameters dialog box
(see “State Information” on page 57-144) allows you to specify initial values for
a model's states, and to record the values of the states at each time step during
simulation as an array or structure variable in the MATLAB workspace.

• The Block Parameters dialog box (and the ContinuousStateAttributes
parameter) allows you to give names to states for those blocks (such as the Integrator)
that employ continuous states. This can simplify analyzing data logged for states,
especially when a block has multiple states.

The Two Cylinder Model with Load Constraints model illustrates the logging of
continuous states.

Continuous States

Computing a continuous state entails knowing its rate of change, or derivative. Since
the rate of change of a continuous state typically itself changes continuously (i.e., is
itself a state), computing the value of a continuous state at the current time step entails
integration of its derivative from the start of a simulation. Thus modeling a continuous
state entails representing the operation of integration and the process of computing the
state's derivative at each point in time. Simulink block diagrams use Integrator blocks
to indicate integration and a chain of blocks connected to an integrator block's input to
represent the method for computing the state's derivative. The chain of blocks connected
to the integrator block's input is the graphical counterpart to an ordinary differential
equation (ODE).

In general, excluding simple dynamic systems, analytical methods do not exist for
integrating the states of real-world dynamic systems represented by ordinary differential
equations. Integrating the states requires the use of numerical methods called ODE
solvers. These various methods trade computational accuracy for computational
workload. The Simulink product comes with computerized implementations of the most

 Modeling Dynamic Systems

3-7

common ODE integration methods and allows a user to determine which it uses to
integrate states represented by Integrator blocks when simulating a system.

Computing the value of a continuous state at the current time step entails integrating
its values from the start of the simulation. The accuracy of numerical integration in turn
depends on the size of the intervals between time steps. In general, the smaller the time
step, the more accurate the simulation. Some ODE solvers, called variable time step
solvers, can automatically vary the size of the time step, based on the rate of change
of the state, to achieve a specified level of accuracy over the course of a simulation.
The user can specify the size of the time step in the case of fixed-step solvers, or the
solver can automatically determine the step size in the case of variable-step solvers. To
minimize the computation workload, the variable-step solver chooses the largest step
size consistent with achieving an overall level of precision specified by the user for the
most rapidly changing model state. This ensures that all model states are computed to
the accuracy specified by the user.

Discrete States

Computing a discrete state requires knowing the relationship between its value at
the current time step and its value at the previous time step. This is referred to this
relationship as the state's update function. A discrete state depends not only on its value
at the previous time step but also on the values of a model's inputs. Modeling a discrete
state thus entails modeling the state's dependency on the systems' inputs at the previous
time step. Simulink block diagrams use specific types of blocks, called discrete blocks, to
specify update functions and chains of blocks connected to the inputs of discrete blocks to
model the dependency of a system's discrete states on its inputs.

As with continuous states, discrete states set a constraint on the simulation time step
size. Specifically, the step size must ensure that all the sample times of the model's states
are hit. This task is assigned to a component of the Simulink system called a discrete
solver. Two discrete solvers are provided: a fixed-step discrete solver and a variable-step
discrete solver. The fixed-step discrete solver determines a fixed step size that hits all the
sample times of all the model's discrete states, regardless of whether the states actually
change value at the sample time hits. By contrast, the variable-step discrete solver varies
the step size to ensure that sample time hits occur only at times when the states change
value.

Modeling Hybrid Systems

A hybrid system is a system that has both discrete and continuous states. Strictly
speaking, any model that has both continuous and discrete sample times is treated as a

3 How Simulink Works

3-8

hybrid model, presuming that the model has both continuous and discrete states. Solving
such a model entails choosing a step size that satisfies both the precision constraint
on the continuous state integration and the sample time hit constraint on the discrete
states. The Simulink software meets this requirement by passing the next sample time
hit, as determined by the discrete solver, as an additional constraint on the continuous
solver. The continuous solver must choose a step size that advances the simulation up
to but not beyond the time of the next sample time hit. The continuous solver can take a
time step short of the next sample time hit to meet its accuracy constraint but it cannot
take a step beyond the next sample time hit even if its accuracy constraint allows it to.

You can simulate hybrid systems using any one of the integration methods, but certain
methods are more effective than others. For most hybrid systems, ode23 and ode45 are
superior to the other solvers in terms of efficiency. Because of discontinuities associated
with the sample and hold of the discrete blocks, do not use the ode15s and ode113
solvers for hybrid systems.

Block Parameters

Key properties of many standard blocks are parameterized. For example, the Constant
value of the Simulink Constant block is a parameter. Each parameterized block has
a block dialog that lets you set the values of the parameters. You can use MATLAB
expressions to specify parameter values. Simulink evaluates the expressions before
running a simulation. You can change the values of parameters during a simulation. This
allows you to determine interactively the most suitable value for a parameter.

A parameterized block effectively represents a family of similar blocks. For example,
when creating a model, you can set the Constant value parameter of each instance of the
Constant block separately so that each instance behaves differently. Because it allows
each standard block to represent a family of blocks, block parameterization greatly
increases the modeling power of the standard Simulink libraries. See “Block Parameters”
on page 3-8 and “Block Libraries” for more information.

Tunable Parameters

Many block parameters are tunable. A tunable parameter is a parameter whose value
can be changed without recompiling the model (see “Model Compilation” on page 3-17
for more information on compiling a model). For example, the gain parameter of the
Gain block is tunable. You can alter the block's gain while a simulation is running. If a
parameter is not tunable and the simulation is running, the dialog box control that sets
the parameter is disabled.

 Modeling Dynamic Systems

3-9

When you change the value of a tunable parameter, the change takes effect at the start
of the next time step. See “Block Parameters” on page 3-8 and “Tunable Block
Parameters” on page 32-18 for more information.

Block Sample Times

Every Simulink block has a sample time which defines when the block will execute.
Most blocks allow you to specify the sample time via a SampleTime parameter. Common
choices include discrete, continuous, and inherited sample times.

Common Sample Time Types Sample Time Examples

Discrete [Ts, To] Unit Delay, Digital Filter
Continuous [0, 0] Integrator, Derivative
Inherited [–1, 0] Gain, Sum

For discrete blocks, the sample time is a vector [Ts, To] where Ts is the time interval or
period between consecutive sample times and To is an initial offset to the sample time. In
contrast, the sample times for nondiscrete blocks are represented by ordered pairs that
use zero, a negative integer, or infinity to represent a specific type of sample time (see
“View Sample Time Information” on page 7-9). For example, continuous blocks have
a nominal sample time of [0, 0] and are used to model systems in which the states change
continuously (e.g., a car accelerating). Whereas you indicate the sample time type of an
inherited block symbolically as [–1, 0] and Simulink then determines the actual value
based upon the context of the inherited block within the model.

Note that not all blocks accept all types of sample times. For example, a discrete block
cannot accept a continuous sample time.

For a visual aid, Simulink allows the optional color-coding and annotation of any block
diagram to indicate the type and speed of the block sample times. You can capture all of
the colors and the annotations within a legend (see “View Sample Time Information” on
page 7-9).

For a more detailed discussion of sample times, see “Sample Time”

Custom Blocks

You can create libraries of custom blocks that you can then use in your models. You
can create a custom block either graphically or programmatically. To create a custom
block graphically, you draw a block diagram representing the block's behavior, wrap

3 How Simulink Works

3-10

this diagram in an instance of the Simulink Subsystem block, and provide the block
with a parameter dialog, using the Simulink block mask facility. To create a block
programmatically, you create a MATLAB file or a MEX-file that contains the block's
system functions (see “S-Function Basics”). The resulting file is called an S-function.
You then associate the S-function with instances of the Simulink S-Function block in
your model. You can add a parameter dialog to your S-Function block by wrapping it in
a Subsystem block and adding the parameter dialog to the Subsystem block. See “Block
Creation” for more information.

Systems and Subsystems

A Simulink block diagram can consist of layers. Each layer is defined by a subsystem. A
subsystem is part of the overall block diagram and ideally has no impact on the meaning
of the block diagram. Subsystems are provided primarily to help with the organizational
aspects of a block diagram. Subsystems do not define a separate block diagram.

The Simulink software differentiates between two different types of subsystems: virtual
and nonvirtual. The primary difference is that nonvirtual subsystems provide the ability
to control when the contents of the subsystem are evaluated.

Virtual Subsystems

Virtual subsystems provide graphical hierarchy in models. Virtual subsystems do not
impact execution. During model execution, the Simulink engine flattens all virtual
subsystems, i.e., Simulink expands the subsystem in place before execution. This
expansion is very similar to the way macros work in a programming language such as C
or C++. Roughly speaking, there will be one system for the top-level block diagram which
is referred to as the root system, and several lower-level systems derived from nonvirtual
subsystems and other elements in the block diagram. You will see these systems in the
Simulink Debugger. The act of creating these internal systems is often referred to as
flattening the model hierarchy.

Nonvirtual Subsystems

Nonvirtual subsystems, which are drawn with a bold border, provide execution and
graphical hierarchy in models. Nonvirtual subsystems are executed as a single unit
(atomic execution) by the Simulink engine. You can create conditionally executed
subsystems that are executed only when a precondition—such as a trigger, an enable,
a function-call, or an action— occurs (see “Conditional Subsystems”). Simulink always
computes all inputs used during the execution of a nonvirtual subsystem before executing
the subsystem. Simulink defines the following nonvirtual subsystems.

 Modeling Dynamic Systems

3-11

Atomic subsystems

The primary characteristic of an atomic subsystem is that blocks in an atomic subsystem
execute as a single unit. This provides the advantage of grouping functional aspects of
models at the execution level. Any Simulink block can be placed in an atomic subsystem,
including blocks with different execution rates. You can create an atomic subsystem
by selecting the Treat as atomic unit option on a virtual subsystem (see the Atomic
Subsystem block for more information).
Enabled subsystems

An enabled subsystem behaves similarly to an atomic subsystem, except that it executes
only when the signal driving the subsystem enable port is greater than zero. To create
an enabled subsystem, place an Enable Port block within a Subsystem block. You
can configure an enabled subsystem to hold or reset the states of blocks within the
enabled subsystem prior to a subsystem enabling action. Simply select the States when
enabling parameter of the Enable Port block. Similarly, you can configure each output
port of an enabled subsystem to hold or reset its output prior to the subsystem disabling
action. Select the Output when disabled parameter in the Outport block.
Triggered subsystems

You create a triggered subsystem by placing a trigger port block within a subsystem.
The resulting subsystem executes when a rising or falling edge with respect to zero is
seen on the signal driving the subsystem trigger port. The direction of the triggering edge
is defined by the Trigger type parameter on the trigger port block. Simulink limits
the type of blocks placed in a triggered subsystem to blocks that do not have explicit
sample times (i.e., blocks within the subsystem must have a sample time of -1) because
the contents of a triggered subsystem execute in an aperiodic fashion. A Stateflow chart
can also have a trigger port which is defined by using the Stateflow editor. Simulink does
not distinguish between a triggered subsystem and a triggered chart.
Function-call subsystems

A function-call subsystem is a subsystem that another block can invoke directly during a
simulation. It is analogous to a function in a procedural programming language. Invoking
a function-call subsystem is equivalent to invoking the output and update methods of the
blocks that the subsystem contains in sorted order. The block that invokes a function-
call subsystem is called the function-call initiator. Stateflow, Function-Call Generator,
and S-function blocks can all serve as function-call initiators. To create a function-call
subsystem, drag a Function-Call Subsystem block from the Ports & Subsystems library
into your model and connect a function-call initiator to the function-call port displayed
on top of the subsystem. You can also create a function-call subsystem from scratch by

3 How Simulink Works

3-12

first creating a Subsystem block in your model and then creating a Trigger block in the
subsystem and setting the Trigger block Trigger type to function-call.

You can configure a function-call subsystem to be triggered (the default) or periodic by
setting its Sample time type to be triggered or periodic, respectively. A function-
call initiator can invoke a triggered function-call subsystem zero, once, or multiple times
per time step. The sample times of all the blocks in a triggered function-call subsystem
must be set to inherited (-1).

A function-call initiator can invoke a periodic function-call subsystem only once per
time step and must invoke the subsystem periodically. If the initiator invokes a
periodic function-call subsystem aperiodically, Simulink halts the simulation and
displays an error message. The blocks in a periodic function-call subsystem can specify
a noninherited sample time or inherited (-1) sample time. All blocks that specify a
noninherited sample time must specify the same sample time, that is, if one block
specifies .1 as its sample time, all other blocks must specify a sample time of .1 or -1.
If a function-call initiator invokes a periodic function-call subsystem at a rate that
differs from the sample time specified by the blocks in the subsystem, Simulink halts the
simulation and displays an error message.

Enabled and triggered subsystems

You can create an enabled and triggered subsystem by placing a Trigger Port block and
an Enable Port block within a Subsystem block. The resulting subsystem is essentially
a triggered subsystem that executes when the subsystem is enabled and a rising or
falling edge with respect to zero is seen on the signal driving the subsystem trigger
port. The direction of the triggering edge is defined by the Trigger type parameter
on the trigger port block. Because the contents of a triggered subsystem execute in an
aperiodic fashion, Simulink limits the types of blocks placed in an enabled and triggered
subsystem to blocks that do not have explicit sample times. In other words, blocks within
the subsystem must have a sample time of -1).

Resettable subsystems

A resettable subsystem computes its outputs at every sample time hit but also resets the
states of the subsystem on triggering. The resettable subsystem resets the states of all
blocks within it, triggered by a rising or falling edge with respect to zero. On triggering,
the resettable subsystem resets its states and also computes the outputs.

The resettable subsystem supports only single sample time for all the blocks it contains.
Different sample times for different blocks within the subsystem result in an error. For
more information, see Resettable Subsystem.

 Modeling Dynamic Systems

3-13

Action subsystems

Action subsystems can be thought of as an intersection of the properties of enabled
subsystems and function-call subsystems. Action subsystems are restricted to a single
sample time (e.g., a continuous, discrete, or inherited sample time). Action subsystems
must be executed by an action subsystem initiator. This is either an If block or a Switch
Case block. All action subsystems connected to a given action subsystem initiator must
have the same sample time. An action subsystem is created by placing an Action Port
block within a Subsystem block. The subsystem icon will automatically adapt to the type
of block (i.e., If or Switch Case block) that is executing the action subsystem.

Action subsystems can be executed at most once by the action subsystem initiator.
Action subsystems give you control over when the states reset via the States when
execution is resumed parameter on the Action Port block. Action subsystems also
give you control over whether or not to hold the outport values via the Output when
disabled parameter on the outport block. This is analogous to enabled subsystems.

Action subsystems behave very similarly to function-call subsystems because they must
be executed by an initiator block. Function-call subsystems can be executed more than
once at any given time step whereas action subsystems can be executed at most once. This
restriction means that a larger set of blocks (e.g., periodic blocks) can be placed in action
subsystems as compared to function-call subsystems. This restriction also means that
you can control how the states and outputs behave.

While iterator subsystems

A while iterator subsystem will run multiple iterations on each model time step. The
number of iterations is controlled by the While Iterator block condition. A while iterator
subsystem is created by placing a While Iterator block within a subsystem block.

A while iterator subsystem is very similar to a function-call subsystem in that it can run
for any number of iterations at a given time step. The while iterator subsystem differs
from a function-call subsystem in that there is no separate initiator (e.g., a Stateflow
Chart). In addition, a while iterator subsystem has access to the current iteration
number optionally produced by the While Iterator block. A while iterator subsystem also
gives you control over whether or not to reset states when starting via the States when
starting parameter on the While Iterator block.

For iterator subsystems

A for iterator subsystem will run a fixed number of iterations at each model time step.
The number of iterations can be an external input to the for iterator subsystem or

3 How Simulink Works

3-14

specified internally on the For Iterator block. A for iterator subsystem is created by
placing a For Iterator block within a subsystem block.

A for iterator subsystem has access to the current iteration number that is optionally
produced by the For Iterator block. A for iterator subsystem also gives you control over
whether or not to reset states when starting via the States when starting parameter
on the For Iterator block. A for iterator subsystem is very similar to a while iterator
subsystem with the restriction that the number of iterations during any given time step
is fixed.

For each subsystems

The for each subsystem allows you to repeat an algorithm for individual elements (or
subarrays) of an input signal. Here, the algorithm is represented by the set of blocks in
the subsystem and is applied to a single element (or subarray) of the signal. You can
configure the decomposition of the subsystem inputs into elements (or subarrays) using
the For Each block, which resides in the subsystem. The For Each block also allows you
to configure the concatenation of individual results into output signals. An advantage of
this subsystem is that it maintains separate sets of states for each element or subarray
that it processes. In addition, for certain models, the for each subsystem improves the
code reuse of the code generated by Simulink Coder™.

Signals

The term signal refers to a time varying quantity that has values at all points in time.
You can specify a wide range of signal attributes, including signal name, data type
(e.g., 8-bit, 16-bit, or 32-bit integer), numeric type (real or complex), and dimensionality
(one-dimensional, two-dimensional, or multidimensional array). Many blocks can
accept or output signals of any data or numeric type and dimensionality. Others impose
restrictions on the attributes of the signals they can handle.

On the block diagram, signals are represented with lines that have an arrowhead. The
source of the signal corresponds to the block that writes to the signal during evaluation
of its block methods (equations). The destinations of the signal are blocks that read the
signal during the evaluation of the block's methods (equations).

A good way to understand the definition of a signal is to consider a classroom. The
teacher is the one responsible for writing on the white board and the students read what
is written on the white board when they choose to. This is also true of Simulink signals:
a reader of the signal (a block method) can choose to read the signal as frequently or
infrequently as so desired.

 Modeling Dynamic Systems

3-15

For more information about signals, see “Signals”.

Block Methods

Blocks represent multiple equations. These equations are represented as block methods.
These block methods are evaluated (executed) during the execution of a block diagram.
The evaluation of these block methods is performed within a simulation loop, where each
cycle through the simulation loop represents the evaluation of the block diagram at a
given point in time.

Method Types

Names are assigned to the types of functions performed by block methods. Common
method types include:

• Outputs

Computes the outputs of a block given its inputs at the current time step and its
states at the previous time step.

• Update

Computes the value of the block's discrete states at the current time step, given its
inputs at the current time step and its discrete states at the previous time step.

• Derivatives

Computes the derivatives of the block's continuous states at the current time step,
given the block's inputs and the values of the states at the previous time step.

Method Naming Convention

Block methods perform the same types of operations in different ways for different types
of blocks. The Simulink user interface and documentation uses dot notation to indicate
the specific function performed by a block method:

BlockType.MethodType

For example, the method that computes the outputs of a Gain block is referred to as

Gain.Outputs

The Simulink debugger takes the naming convention one step further and uses the
instance name of a block to specify both the method type and the block instance on which
the method is being invoked during simulation, e.g.,

3 How Simulink Works

3-16

g1.Outputs

Model Methods

In addition to block methods, a set of methods is provided that compute the model's
properties and its outputs. The Simulink software similarly invokes these methods
during simulation to determine a model's properties and its outputs. The model methods
generally perform their tasks by invoking block methods of the same type. For example,
the model Outputs method invokes the Outputs methods of the blocks that it contains in
the order specified by the model to compute its outputs. The model Derivatives method
similarly invokes the Derivatives methods of the blocks that it contains to determine the
derivatives of its states.

 Simulation Phases in Dynamic Systems

3-17

Simulation Phases in Dynamic Systems

In this section...

“Model Compilation” on page 3-17
“Link Phase” on page 3-18
“Simulation Loop Phase” on page 3-18

Model Compilation

The first phase of simulation occurs when the system’s model is open and you simulate
the model. In the Simulink Editor, select Simulation > Run. Running the simulation
causes the Simulink engine to invoke the model compiler. The model compiler converts
the model to an executable form, a process called compilation. In particular, the compiler:

• Evaluates the model's block parameter expressions to determine their values.
• Determines signal attributes, e.g., name, data type, numeric type, and dimensionality,

not explicitly specified by the model and checks that each block can accept the signals
connected to its inputs.

• A process called attribute propagation is used to determine unspecified attributes.
This process entails propagating the attributes of a source signal to the inputs of the
blocks that it drives.

• Performs block reduction optimizations.
• Flattens the model hierarchy by replacing virtual subsystems with the blocks that

they contain (see “Solvers” on page 3-21).
• Determines the block sorted order (see “Control and Display the Sorted Order” on

page 31-29 for more information).
• Determines the sample times of all blocks in the model whose sample times you did

not explicitly specify (see “How Propagation Affects Inherited Sample Times” on page
7-35).

These events are essentially the same as what occurs when you update a diagram
(“Update Diagram and Run Simulation” on page 1-50). The difference is that the
Simulink software starts model compilation as part of model simulation, where
compilation leads directly into the linking phase, as described in “Link Phase” on page
3-18. In contrast, you start an explicit model update as a standalone operation on a
model.

3 How Simulink Works

3-18

Link Phase

In this phase, the Simulink engine allocates memory needed for working areas (signals,
states, and run-time parameters) for execution of the block diagram. It also allocates and
initializes memory for data structures that store run-time information for each block. For
built-in blocks, the principal run-time data structure for a block is called the SimBlock. It
stores pointers to a block's input and output buffers and state and work vectors.

Method Execution Lists

In the Link phase, the Simulink engine also creates method execution lists. These lists
list the most efficient order in which to invoke a model's block methods to compute its
outputs. The block sorted order lists generated during the model compilation phase is
used to construct the method execution lists.

Block Priorities

You can assign update priorities to blocks (see “Assign Block Priorities” on page
31-43). The output methods of higher priority blocks are executed before those of
lower priority blocks. The priorities are honored only if they are consistent with its block
sorting rules.

Simulation Loop Phase

Once the Link Phase completes, the simulation enters the simulation loop phase. In this
phase, the Simulink engine successively computes the states and outputs of the system
at intervals from the simulation start time to the finish time, using information provided
by the model. The successive time points at which the states and outputs are computed
are called time steps. The length of time between steps is called the step size. The step
size depends on the type of solver (see “Solvers” on page 3-21) used to compute
the system's continuous states, the system's fundamental sample time (see “Sample
Times in Systems” on page 7-25), and whether the system's continuous states have
discontinuities (see “Zero-Crossing Detection” on page 3-23).

The Simulation Loop phase has two subphases: the Loop Initialization phase and the
Loop Iteration phase. The initialization phase occurs once, at the start of the loop. The
iteration phase is repeated once per time step from the simulation start time to the
simulation stop time.

At the start of the simulation, the model specifies the initial states and outputs of the
system to be simulated. At each step, new values for the system's inputs, states, and

 Simulation Phases in Dynamic Systems

3-19

outputs are computed, and the model is updated to reflect the computed values. At the
end of the simulation, the model reflects the final values of the system's inputs, states,
and outputs. The Simulink software provides data display and logging blocks. You can
display and/or log intermediate results by including these blocks in your model.

Loop Iteration

At each time step, the Simulink engine:

1 Computes the model's outputs.

The Simulink engine initiates this step by invoking the Simulink model Outputs
method. The model Outputs method in turn invokes the model system Outputs
method, which invokes the Outputs methods of the blocks that the model contains
in the order specified by the Outputs method execution lists generated in the Link
phase of the simulation (see “Solvers” on page 3-21).

The system Outputs method passes the following arguments to each block Outputs
method: a pointer to the block's data structure and to its SimBlock structure. The
SimBlock data structures point to information that the Outputs method needs to
compute the block's outputs, including the location of its input buffers and its output
buffers.

2 Computes the model's states.

The Simulink engine computes a model's states by invoking a solver. Which solver
it invokes depends on whether the model has no states, only discrete states, only
continuous states, or both continuous and discrete states.

If the model has only discrete states, the Simulink engine invokes the discrete solver
selected by the user. The solver computes the size of the time step needed to hit the
model's sample times. It then invokes the Update method of the model. The model
Update method invokes the Update method of its system, which invokes the Update
methods of each of the blocks that the system contains in the order specified by the
Update method lists generated in the Link phase.

If the model has only continuous states, the Simulink engine invokes the continuous
solver specified by the model. Depending on the solver, the solver either in turn
calls the Derivatives method of the model once or enters a subcycle of minor
time steps where the solver repeatedly calls the model's Outputs methods and
Derivatives methods to compute the model's outputs and derivatives at successive
intervals within the major time step. This is done to increase the accuracy of the

3 How Simulink Works

3-20

state computation. The model Outputs method and Derivatives methods in turn
invoke their corresponding system methods, which invoke the block Outputs and
Derivatives in the order specified by the Outputs and Derivatives methods execution
lists generated in the Link phase.

3 Optionally checks for discontinuities in the continuous states of blocks.

A technique called zero-crossing detection is used to detect discontinuities in
continuous states. See “Zero-Crossing Detection” on page 3-23 for more
information.

4 Computes the time for the next time step.

Steps 1 through 4 are repeated until the simulation stop time is reached.

 Solvers

3-21

Solvers

A dynamic system is simulated by computing its states at successive time steps over a
specified time span, using information provided by the model. The process of computing
the successive states of a system from its model is known as solving the model. No single
method of solving a model suffices for all systems. Accordingly, a set of programs, known
as solvers, are provided that each embody a particular approach to solving a model. The
Configuration Parameters dialog box allows you to choose the solver most suitable for
your model (see “Solver Classification Criteria” on page 22-12).

Fixed-Step Solvers Versus Variable-Step Solvers

The solvers provided in the Simulink software fall into two basic categories: fixed-step
and variable-step.

Fixed-step solvers solve the model at regular time intervals from the beginning to the
end of the simulation. The size of the interval is known as the step size. You can specify
the step size or let the solver choose the step size. Generally, decreasing the step size
increases the accuracy of the results while increasing the time required to simulate the
system.

Variable-step solvers vary the step size during the simulation, reducing the step size to
increase accuracy when a model's states are changing rapidly and increasing the step
size to avoid taking unnecessary steps when the model's states are changing slowly.
Computing the step size adds to the computational overhead at each step but can reduce
the total number of steps, and hence simulation time, required to maintain a specified
level of accuracy for models with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers

The Simulink product provides both continuous and discrete solvers.

Continuous solvers use numerical integration to compute a model's continuous states
at the current time step based on the states at previous time steps and the state
derivatives. Continuous solvers rely on the individual blocks to compute the values of the
model's discrete states at each time step.

Mathematicians have developed a wide variety of numerical integration techniques for
solving the ordinary differential equations (ODEs) that represent the continuous states
of dynamic systems. An extensive set of fixed-step and variable-step continuous solvers

3 How Simulink Works

3-22

are provided, each of which implements a specific ODE solution method (see “Solver
Classification Criteria” on page 22-12).

Discrete solvers exist primarily to solve purely discrete models. They compute the next
simulation time step for a model and nothing else. In performing these computations,
they rely on each block in the model to update its individual discrete states. They do not
compute continuous states.

Note You must use a continuous solver to solve a model that contains both continuous
and discrete states. You cannot use a discrete solver because discrete solvers cannot
handle continuous states. If, on the other hand, you select a continuous solver for a model
with no states or discrete states only, Simulink software uses a discrete solver.

Two discrete solvers are provided: A fixed-step discrete solver and a variable-step
discrete solver. The fixed-step solver by default chooses a step size and hence simulation
rate fast enough to track state changes in the fastest block in your model. The variable-
step solver adjusts the simulation step size to keep pace with the actual rate of discrete
state changes in your model. This can avoid unnecessary steps and hence shorten
simulation time for multirate models (see “Sample Times in Systems” on page 7-25
for more information).

Minor Time Steps

Some continuous solvers subdivide the simulation time span into major and minor time
steps, where a minor time step represents a subdivision of the major time step. The
solver produces a result at each major time step. It uses results at the minor time steps
to improve the accuracy of the result at the major time step.

Shape Preservation

Usually the integration step size is only related to the current step size and the current
integration error. However, for signals whose derivative changes rapidly, you can obtain
a more accurate integration results by including the derivative input information at each
time step. To do so, enable the Model Configuration Parameters > Solver > Shape
Preservation option.

 Zero-Crossing Detection

3-23

Zero-Crossing Detection

A variable-step solver dynamically adjusts the time step size, causing it to increase when
a variable is changing slowly and to decrease when the variable changes rapidly. This
behavior causes the solver to take many small steps in the vicinity of a discontinuity
because the variable is rapidly changing in this region. This improves accuracy but can
lead to excessive simulation times.

The Simulink software uses a technique known as zero-crossing detection to accurately
locate a discontinuity without resorting to excessively small time steps. Usually this
technique improves simulation run time, but it can cause some simulations to halt before
the intended completion time.

Two algorithms are provided in the Simulink software: Nonadaptive and Adaptive. For
information about these techniques, see “Zero-Crossing Algorithms” on page 3-31.

Demonstrating Effects of Excessive Zero-Crossing Detection

The Simulink software comes with three models that illustrate zero-crossing behavior:
sldemo_bounce_two_integrators, sldemo_doublebounce, and sldemo_bounce.

• The sldemo_bounce_two_integrators model demonstrates how excessive zero
crossings can cause a simulation to halt before the intended completion time unless
you use the adaptive algorithm.

• The sldemo_bounce model uses a better model design than
sldemo_bounce_two_integrators.

• The sldemo_doublebounce model demonstrates how the adaptive algorithm
successfully solves a complex system with two distinct zero-crossing requirements.

3 How Simulink Works

3-24

The Bounce Model with Two Integrators

1 At the MATLAB command prompt, type sldemo_bounce_two_integrators to
load the example.

2 Once the block diagram appears, set the Model Configuration Parameters >
Solver > Algorithm parameter to Nonadaptive.

3 Also in the Solver pane, set the Stop time parameter to 20 s.
4 Run the model. In the Simulink Editor, select Simulation > Run.
5 After the simulation completes, click the Scope block window to see the results.

You may need to click on Autoscale to view the results in their entirety.

 Zero-Crossing Detection

3-25

6 Use the scope zoom controls to closely examine the last portion of the simulation.
You can see that the velocity is hovering just above zero at the last time point.

3 How Simulink Works

3-26

7 Change the simulation Stop time edit box in the Simulink Editor toolbar to 25
seconds, and run the simulation again.

8 This time the simulation halts with an error shortly after it passes the simulated 20
second time point.

Excessive chattering as the ball repeatedly approaches zero velocity has caused
the simulation to exceed the default limit of 1000 for the number of consecutive
zero crossings allowed. Although you can increase this limit by adjusting the
Model Configuration Parameters > Solver > Number of consecutive
zero crossings parameter. In this case, making that change does not allow the
simulation to simulate for 25 seconds.

9 Also in the Solver pane, from the Algorithm pull down menu, select the Adaptive
algorithm.

10 Run the simulation again.
11 This time the simulation runs to completion because the adaptive algorithm

prevented an excessive number of zero crossings from occurring.

 Zero-Crossing Detection

3-27

Bounce Model with a Second-Order Integrator

3 How Simulink Works

3-28

The Double-Bounce Model

1 At the MATLAB command prompt, type sldemo_doublebounce to load the
example. The model and an animation window open. In the animation window, two
balls are resting on two platforms.

2 In the animation window, click the Nonadaptive button to run the example using
the nonadaptive algorithm. This is the default setting used by the Simulink software
for all models.

3 The ball on the right is given a larger initial velocity. Consequently, the two balls hit
the ground and recoil at different times.

4 The simulation halts after 14 seconds because the ball on the left exceeded the
number of zero crossings limit. The ball on the right is left hanging in mid air.

5 An error message dialog opens. Click OK to close it.
6 Click on the Adaptive button to run the simulation with the adaptive algorithm.
7 Notice that this time the simulation runs to completion, even after the ground shifts

out from underneath the ball on the left at 20 seconds.

How the Simulator Can Miss Zero-Crossing Events

The bounce and double-bounce models show that high-frequency fluctuations about a
discontinuity ('chattering') can cause a simulation to prematurely halt.

 Zero-Crossing Detection

3-29

It is also possible for the solver to entirely miss zero crossings if the solver error
tolerances are too large. This is possible because the zero-crossing detection technique
checks to see if the value of a signal has changed sign after a major time step. A sign
change indicates that a zero crossing has occurred, and the zero-crossing algorithm will
then hunt for the precise crossing time. However, if a zero crossing occurs within a time
step, but the values at the beginning and end of the step do not indicate a sign change,
the solver steps over the crossing without detecting it.

The following figure shows a signal that crosses zero. In the first instance, the integrator
steps over the event because the sign has not changed between time steps. In the second,
the solver detects change in sign and so detects the zero-crossing event.

Preventing Excessive Zero Crossings

Use the following table to prevent excessive zero-crossing errors in your model.

Make this change... How to make this change... Rationale for making this change...

Increase the
number of allowed
zero crossings

Increase the value of the
Number of consecutive zero
crossings. option on the Solver
pane in the Configuration
Parameters dialog box.

This may give your model
enough time to resolve the zero
crossing.

Relax the Signal
threshold

Select Adaptive from the
Algorithm pull down and
increase the value of the Signal
threshold option on the Solver
pane in the Configuration
Parameters dialog box.

The solver requires less time
to precisely locate the zero
crossing. This can reduce
simulation time and eliminate
an excessive number of
consecutive zero-crossing errors.
However, relaxing the Signal
threshold may reduce accuracy.

Use the Adaptive
Algorithm

Select Adaptive from the
Algorithm pull down on

This algorithm dynamically
adjusts the zero-crossing

3 How Simulink Works

3-30

Make this change... How to make this change... Rationale for making this change...

the Solver pane in the
Configuration Parameters dialog
box.

threshold, which improves
accuracy and reduces the
number of consecutive zero
crossings detected. With this
algorithm you have the option
of specifying both the Time
tolerance and the Signal
threshold.

Disable zero-
crossing detection
for a specific block

1 Clear the Enable zero-
crossing detection check
box on the block's parameter
dialog box.

2 Select Use local
settings from the Zero-
crossing control pull down
on the Solver pane of the
Configuration Parameters
dialog box.

Locally disabling zero-crossing
detection prevents a specific
block from stopping the
simulation because of excessive
consecutive zero crossings. All
other blocks continue to benefit
from the increased accuracy that
zero-crossing detection provides.

Disable zero-
crossing detection
for the entire model

Select Disable all from the
Zero-crossing control pull
down on the Solver pane of the
Configuration Parameters dialog
box.

This prevents zero crossings
from being detected anywhere
in your model. A consequence
is that your model no longer
benefits from the increased
accuracy that zero-crossing
detection provides.

If using the ode15s
solver, consider
adjusting the order
of the numerical
differentiation
formulas

Select a value from the Maximum
order pull down on the Solver
pane of the Configuration
Parameters dialog box.

For more information, see
“Maximum order”.

 Zero-Crossing Detection

3-31

Make this change... How to make this change... Rationale for making this change...

Reduce the
maximum step size

Enter a value for the Max step
size option on the Solver pane
of the Configuration Parameters
dialog box.

This can insure the solver takes
steps small enough to resolve
the zero crossing. However,
reducing the step size can
increase simulation time, and
is seldom necessary when using
the Adaptive algorithm.

Zero-Crossing Algorithms

The Simulink software includes two zero-crossing detection algorithms: Nonadaptive and
Adaptive.

To choose the algorithm, either use the Algorithm option in the Solver pane of the
Configuration Parameter dialog box, or use the ZeroCrossAlgorithm command. The
command can either be set to 'Nonadaptive' or 'Adaptive'.

The Nonadaptive algorithm is provided for backwards compatibility with older versions
of Simulink and is the default. It brackets the zero-crossing event and uses increasingly
smaller time steps to pinpoint when the zero crossing has occurred. Although adequate
for many types of simulations, the Nonadaptive algorithm can result in very long
simulation times when a high degree of 'chattering' (high frequency oscillation around
the zero-crossing point) is present.

The Adaptive algorithm dynamically turns the bracketing on and off, and is a good choice
when:

• The system contains a large amount of chattering.
• You wish to specify a guard band (tolerance) around which the zero crossing is

detected.

The Adaptive algorithm turns off zero-crossing bracketing (stops iterating) if either of the
following are satisfied:

• The zero crossing error is exceeded. This is determined by the value specified in the
Signal threshold option in the Solver pane of the Configuration Parameters dialog
box. This can also be set with the ZCThreshold command. The default is Auto, but
you can enter any real number greater than zero for the tolerance.

3 How Simulink Works

3-32

• The system has exceeded the number of consecutive zero crossings specified in
the Number of consecutive zero crossings option in the Solver pane of the
Configuration Parameters dialog box. Alternatively, this can be set with the
MaxConsecutiveZCs command.

Understanding Signal Threshold

The Adaptive algorithm automatically sets a tolerance for zero-crossing detection.
Alternatively, you can set the tolerance by entering a real number greater than or equal
to zero in the Configuration Parameters Solver pane, Signal threshold pull down.
This option only becomes active when the zero-crossing algorithm is set to Adaptive.

This graphic shows how the Signal threshold sets a window region around the zero-
crossing point. Signals falling within this window are considered as being at zero.

Signal
Threshold

Tn-1 Tn

The zero-crossing event is bracketed by time steps Tn-1 and Tn. The solver iteratively
reduces the time steps until the state variable lies within the band defined by the
signal threshold, or until the number of consecutive zero crossings equals or exceeds the
value in the Configuration Parameters Solver pane, Number of consecutive zero
crossings pull down.

It is evident from the figure that increasing the signal threshold increases the distance
between the time steps which will be executed. This often results in faster simulation
times, but might reduce accuracy.

 Zero-Crossing Detection

3-33

How Blocks Work with Zero-Crossing Detection

A block can register a set of zero-crossing variables, each of which is a function of a state
variable that can have a discontinuity. The zero-crossing function passes through zero
from a positive or negative value when the corresponding discontinuity occurs. The
registered zero-crossing variables are updated at the end of each simulation step, and
any variable that has changed sign is identified as having had a zero-crossing event.

If any zero crossings are detected, the Simulink software interpolates between the
previous and current values of each variable that changed sign to estimate the times of
the zero crossings (that is, the discontinuities).

Note: The Zero-Crossing detection algorithm can bracket zero-crossing events only for
signals of data type double

Blocks That Register Zero Crossings

The following table lists blocks that register zero crossings and explains how the blocks
use the zero crossings:

Block Description of Zero Crossing

Abs One: to detect when the input signal crosses zero in either the
rising or falling direction.

Backlash Two: one to detect when the upper threshold is engaged, and one
to detect when the lower threshold is engaged.

Compare To Constant One: to detect when the signal equals a constant.
Compare To Zero One: to detect when the signal equals zero.
Dead Zone Two: one to detect when the dead zone is entered (the input

signal minus the lower limit), and one to detect when the dead
zone is exited (the input signal minus the upper limit).

Enable One: If an Enable port is inside of a Subsystem block, it provides
the capability to detect zero crossings. See the Enable Subsystem
block for details “Create an Enabled Subsystem” on page
9-21.

From File One: to detect when the input signal has a discontinuity in either
the rising or falling direction

3 How Simulink Works

3-34

Block Description of Zero Crossing

From Workspace One: to detect when the input signal has a discontinuity in either
the rising or falling direction

Hit Crossing One or two. If there is no output port, there is only one zero
crossing to detect when the input signal hit the threshold value.
If there is an output port, the second zero crossing is used to
bring the output back to 0 from 1 to create an impulse-like
output.

If One: to detect when the If condition is met.
Integrator If the reset port is present, to detect when a reset occurs.

If the output is limited, there are three zero crossings: one to
detect when the upper saturation limit is reached, one to detect
when the lower saturation limit is reached, and one to detect
when saturation is left.

MinMax One: for each element of the output vector, to detect when an
input signal is the new minimum or maximum.

Relational

Operator

One: to detect when the specified relation is true.

Relay One: if the relay is off, to detect the switch-on point. If the relay
is on, to detect the switch-off point.

Saturation Two: one to detect when the upper limit is reached or left, and
one to detect when the lower limit is reached or left.

Second-Order

Integrator

Five: two to detect when the state x upper or lower limit is
reached; two to detect when the state dx/dt upper or lower limit
is reached; and one to detect when a state leaves saturation.

Sign One: to detect when the input crosses through zero.
Signal Builder One: to detect when the input signal has a discontinuity in either

the rising or falling direction
Step One: to detect the step time.
Switch One: to detect when the switch condition occurs.
Switch Case One: to detect when the case condition is met.

 Zero-Crossing Detection

3-35

Block Description of Zero Crossing

Trigger One: If a Triggered port is inside of a Subsystem block, it
provides the capability to detect zero crossings. See the
Triggered Subsystem block for details: “Create a Triggered
Subsystem” on page 9-38.

Enabled and

Triggered

Subsystem

Two: one for the enable port and one for the trigger port. See the
Triggered and Enabled Subsystem block for details: “Create a
Triggered and Enabled Subsystem” on page 9-45

Note: Zero-crossing detection is also available for a Stateflow chart that uses continuous-
time mode. See “Configure a Stateflow Chart to Update in Continuous Time” in the
Stateflow documentation for more information.

Implementation Example: Saturation Block

An example of a Simulink block that registers zero crossings is the Saturation block.
Zero-crossing detection identifies these state events in the Saturation block:

• The input signal reaches the upper limit.
• The input signal leaves the upper limit.
• The input signal reaches the lower limit.
• The input signal leaves the lower limit.

Simulink blocks that define their own state events are considered to have intrinsic zero
crossings. Use the Hit Crossing block to receive explicit notification of a zero-crossing
event. See “Blocks That Register Zero Crossings” on page 3-33 for a list of blocks that
incorporate zero crossings.

The detection of a state event depends on the construction of an internal zero-crossing
signal. This signal is not accessible by the block diagram. For the Saturation block,
the signal that is used to detect zero crossings for the upper limit is zcSignal =
UpperLimit - u, where u is the input signal.

Zero-crossing signals have a direction attribute, which can have these values:

• rising — A zero crossing occurs when a signal rises to or through zero, or when a
signal leaves zero and becomes positive.

3 How Simulink Works

3-36

• falling — A zero crossing occurs when a signal falls to or through zero, or when a
signal leaves zero and becomes negative.

• either — A zero crossing occurs if either a rising or falling condition occurs.

For the Saturation block's upper limit, the direction of the zero crossing is either. This
enables the entering and leaving saturation events to be detected using the same zero-
crossing signal.

 Algebraic Loops

3-37

Algebraic Loops

In this section...

“What Is an Algebraic Loop?” on page 3-37
“Interpretations of Algebraic Loops” on page 3-38
“What is an Artificial Algebraic Loop?” on page 3-41
“Why Algebraic Loops Are Undesirable” on page 3-42
“Identify Algebraic Loops in Your Model” on page 3-43
“How to Handle Algebraic Loops in a Model” on page 3-46
“How the Algebraic Loop Solver Works” on page 3-48
“Remove Algebraic Loops” on page 3-50
“Remove Artificial Algebraic Loops” on page 3-53
“How Simulink Eliminates Artificial Algebraic Loops” on page 3-64
“When Simulink Cannot Eliminate Artificial Algebraic Loops” on page 3-70
“Managing Large Models with Artificial Algebraic Loops” on page 3-72
“Changing Block Priorities When Using Algebraic Loop Solver” on page 3-73

What Is an Algebraic Loop?

In a Simulink model, an algebraic loop occurs when a signal loop exists with only direct
feedthrough blocks within the loop. Direct feedthrough means that the block output
depends on the value of an input port; the value of the input directly controls the value of
the output.

Some blocks have input ports with direct feedthrough. Simulink cannot compute the
output of these blocks without knowing the values of the signals entering the blocks at
these input ports at the current time step.

Some examples of blocks with direct feedthrough inputs are:

• Math Function

• Gain

• Product

3 How Simulink Works

3-38

• State-Space, when the D matrix coefficient is nonzero
• Sum

• Transfer Fcn, when the numerator and denominator are of the same order
• Zero-Pole, when the block has as many zeros as poles

Nondirect feedthrough blocks maintain a State variable. Two examples are Integrator
and Unit Delay.

Tip To determine if a block has direct feedthrough, read the Characteristics section of
the block reference page.

The figure shows an example of an algebraic loop (for demonstration only, not a
recommended modeling pattern). The Sum block is an algebraic variable xa that is
constrained to equal the first input u minus xa (for example, xa = u – xa).

The solution of this simple loop is xa = u/2.

Interpretations of Algebraic Loops

Mathematical Interpretation

Simulink contains a suite of numerical solvers for simulating ordinary differential
equations (ODEs), which are systems of equations that you can write as

&x f x t= (,),

where:

• x is the state vector.

 Algebraic Loops

3-39

• t is the independent time variable.

Some systems of equations contain additional constraints that involve the independent
variable and the state vector, but not the derivative of the state vector. Such systems are
differential algebraic equations (DAEs), not ODEs.

The term algebraic refers to equations that do not involve any derivatives. You can
express DAEs that arise in engineering in the semi-explicit form

&x f x x

g x x

a

a

=

=

(, ,)

(, ,),

t

t0

where:

• f and g can be vector functions.
• The first equation is the differential equation.
• The second equation is the algebraic equation.
• The vector of differential variables is x.
• The vector of algebraic variables is xa.

In Simulink models, algebraic loops are algebraic constraints. Models with algebraic
loops define a system of differential algebraic equations. Simulink does not solve DAEs
directly. Simulink solves the algebraic equations (the algebraic loop) numerically for xa at
each step of the ODE solver.

The model in the figure is equivalent to this system of equations in semi-explicit form:

&x f x x t x

g x x t x u x

a a

a a

= =

= = - + -

(, ,)

(, ,) .0 2

3 How Simulink Works

3-40

At each step of the ODE solver, the algebraic loop solver must solve the algebraic
constraint for xa before calculating the derivative &x .

Physical Interpretation

Algebraic constraints:

• Occur when modeling physical systems, often due to conservation laws, such as
conservation of mass and energy

• Occur when you choose a particular coordinate system for a model
• Help impose design constraints on system responses in a dynamic system

Use Simscape™ to model systems that span mechanical, electrical, hydraulic, and
other physical domains as physical networks. Simscape constructs the DAEs that

 Algebraic Loops

3-41

characterize the behavior of a model. The software integrates these equations with the
rest of the model and then solves the DAEs directly. Simulink solves the variables for the
components in the different physical domains simultaneously, avoiding problems with
algebraic loops.

What is an Artificial Algebraic Loop?

An artificial algebraic loop occurs when an atomic subsystem or Model block causes
Simulink to detect an algebraic loop, even though the contents of the subsystem do not
contain an algebraic constraint. When you create an atomic subsystem, all Inport blocks
are direct feedthrough, resulting in an algebraic loop.

Example of an Artificial Algebraic Loop

Start with this model, which does not contain an algebraic loop. It simulates without
error.

3 How Simulink Works

3-42

1 Enclose the Controller and Plant blocks in a subsystem.
2 In the subsystem block dialog box, select Treat as atomic unit to make the

subsystem atomic.
3 In the Diagnostics pane of Model Configuration Parameters, set the Algebraic

loop parameter to error.

When simulating this model, an algebraic loop occurs because the subsystem is
direct feedthrough, even though the path within the atomic subsystem is not direct
feedthrough. Simulation stops with an algebraic loop error.

Why Algebraic Loops Are Undesirable

If your model contains an algebraic loop:

• You cannot generate code for the model.

 Algebraic Loops

3-43

• The Simulink algebraic loop solver might not be able to solve the algebraic loop.
• While Simulink is trying to solve the algebraic loop, the simulation can execute

slowly.

For most models, the algebraic loop solver is computationally expensive for the first
time step. Simulink solves subsequent time steps rapidly because a good starting
point for xa is available from the previous time step.

Identify Algebraic Loops in Your Model

Use these techniques to search for algebraic loops in your model:

• “Highlight Algebraic Loops in the Model” on page 3-43
• “Use The Algebraic Loop Diagnostic” on page 3-44
• “Use The ashow Debugger Command” on page 3-45

Highlight Algebraic Loops in the Model

Use getAlgebraicLoops to identify algebraic loops in a model and highlight them in
the Simulink Editor. With this approach:

• You can traverse multiple layers of model hierarchy to locate algebraic loops.
• You can identify real and artificial algebraic loops.
• You can visualize all loops in your model simultaneously.
• You do not need to drill in and out of the model, across boundaries.
• You do not need to detect loops in serial order. Also, you do not need to compile the

model every time you detect and solve a loop. Therefore you can solve loops quickly.

You perform algebraic loop highlighting on an entire model, not on specific subsystems.

1 Open the model.
2 In the Diagnostics pane of Model Configuration Parameters, set Algebraic loop

to none or warning. Setting this parameter to error prevents the model from
compiling.

3 Compile the model without any errors. The model must compile before you can
highlight any algebraic loops.

4 At the MATLAB command prompt, enter:

Simulink.BlockDiagram.getAlgebraicLoops(bdroot)

3 How Simulink Works

3-44

The getAlgebraicLoops function highlights algebraic loops in the model, including
algebraic loops in subsystems. It also creates a report with information about each loop:

• Solid lines represent real algebraic loops.
• Dotted lines represent artificial algebraic loops.
• A red highlight appears around a block assigned with an algebraic variable.
• The Loop ID helps you identify the system that contains a particular loop.

Customize the report by selecting or clearing the Visible checkbox for a loop.

Once you have identified algebraic loops in a model, you can remove them by editing
the model. Close the highlight report and make changes to the model. You can edit the
model only after you close the report. For information on removing real algebraic loops,
see “Remove Algebraic Loops” on page 3-50.

Simulink does not save loop highlighting. Closing the model or exiting the display using
the table removes the loop highlighting.

Use The Algebraic Loop Diagnostic

Simulink detects algebraic loops during simulation initialization, for example, when you
update your diagram. You can set the Algebraic loop diagnostic to report an error or
warning if the software detects any algebraic loops in your model.

In the Diagnostics pane of the Model Configuration Parameters, set the Algebraic
loop parameter.

Setting Simulation Response

none Simulink tries to solve the algebraic loop; reports an
error only if the algebraic loop cannot be solved.

warning Algebraic loops result in warnings. Simulink tries to
solve the algebraic loop; reports an error only if the
algebraic loop cannot be solved.

error Algebraic loops stop the initialization. Review the loop
manually before Simulink tries to solve the loop.

This example shows how to use the algebraic loop diagnostic to highlight algebraic loops
in the sldemo_hydcyl model.

1 Open the sldemo_hydcyl model.

 Algebraic Loops

3-45

2 In the Diagnostics pane of the Model Configuration Parameters, set the Algebraic
loop parameter to error.

3 Simulate the model.

When Simulink detects an algebraic loop during initialization, the simulation stops.
The Diagnostic Viewer displays an error message and lists all the blocks in the
model that are part of that algebraic loop.

In the model, red highlights show the blocks and signals that make up the loop.

4 Close the Diagnostic Viewer to remove the highlights.
5 Close sldemo_hydcyl model. Do not save the changes.

Use The ashow Debugger Command

Use the ashow command in the Simulink debugger to highlight algebraic loops and step
through a simulation.

1 Open the sldemo_hydcyl model.

3 How Simulink Works

3-46

By default, the Algebraic loop parameter for this model is set to none.
2 Start the Simulink debugger. Select Simulation > Debug > Debug Model.

Run the debugger.
3 In the MATLAB command prompt, enter:

ashow

The command returns the algebraic loop in sldemo_hydcyl and the number of
blocks in the loop.

Found 1 Algebraic loop(s):

System number#Algebraic loop id, number of blocks in loop

- 0#1, 9 blocks in loop

4 To list the blocks in this algebraic loop, at the MATLAB command prompt, enter:

ashow 0#1

The Control Valve Flow subsystem in the Valve/Cylinder/Piston/Spring Assembly
subsystem opens with the algebraic loop in the model highlighted. The function lists
the nine blocks in the algebraic loop:

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/IC

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/signed sqrt

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/Product

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/laminar flow pressure drop

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Sum7

- sldemo_hydcyl/Pump/IC

- sldemo_hydcyl/Valve//Cylinder//Piston//Spring Assembly/Control Valve Flow/

Sum1 (algebraic variable)

- sldemo_hydcyl/Pump/Sum1

- sldemo_hydcyl/Pump/leakage (algebraic variable)

How to Handle Algebraic Loops in a Model

If Simulink reports an algebraic loop in your model, the algebraic loop solver may be
able to solve the loop. If Simulink cannot solve the loop, there are several techniques to
eliminate the loop.

Use this workflow to decide how you want to eliminate an algebraic loop.

 Algebraic Loops

3-47

Yes

Simulink detects
an algebraic loop

Can
Simulink
solve the
algebraic

loop?

Is the
solution
correct

and
efficient?

Done

No

Yes

Yes

Yes

No

No

Modify model
(may have side effects)

Modify
model or

adjust model
settings?

Adjust
model

settings

Change algorithm
 (TrustRegion / LineSearch)
Change solver parameters

*

*

Loop
solved? Done

Is
there a
DAE?

Algebraic constraint does not exist.
 Add delays
 Add real dynamics (e.g., sensor)
 Convert to Simscape model (if
 physical system)
 Eliminate nonzero matrix

If you are generating code
for your model, you must

eliminate the
algebraic loop.

 Use IC block
 Convert atomic subsystem
 to virtual
 Enable Minimize algebraic
 loop occurrences
 Restructure model

*
*

*

*

Algebraic constraint exists. Convert
DAE to ODE by restructuring

underlying equations

No

Loop
solved? Done

*
*
*

*

Yes Loop
solved?Done

No

Done

No

Yes

3 How Simulink Works

3-48

How the Algebraic Loop Solver Works

When a model contains an algebraic loop, Simulink uses a nonlinear solver at each time
step to solve the algebraic loop. The solver performs iterations to determine the solution
to the algebraic constraint, if there is one. As a result, models with algebraic loops can
run more slowly than models without algebraic loops.

Simulink uses a dogleg trust region algorithm to solve algebraic loops. The tolerance used
is smaller than the ODE solver Reltol and Abstol. This is because Simulink uses the
“explicit ODE method” to solve Index-1 differential algebraic equations (DAEs).

For the algebraic loop solver to work,

• There must be one block where the loop solver can break the loop and attempt to solve
the loop.

• The model should have real double signals.
• The underlying algebraic constraint must be a smooth function

For example, suppose your model has a Sum block with two inputs—one additive, the
other subtractive. If you feed the output of the Sum block to one of the inputs, you create
an algebraic loop where all of the blocks include direct feedthrough.

The Sum block cannot compute the output without knowing the input. Simulink detects
the algebraic loop, and the algebraic loop solver solves the loop using an iterative loop. In
the Sum block example, the software computes the correct result this way:
xa(t) = u(t) / 2.

The algebraic loop solver uses a gradient-based search method, which requires
continuous first derivatives of the algebraic constraint that correspond to the algebraic
loop. As a result, if the algebraic loop contains discontinuities, the algebraic loop solver
can fail.

 Algebraic Loops

3-49

For more information, see Solving Index-1 DAEs in MATLAB and Simulink 1

Trust-Region and Line-Search Algorithms in the Algebraic Loop Solver

The Simulink algebraic loop solver uses one of two algorithms to solve algebraic loops:

• Trust-Region
• Line-Search

By default, the algebraic loop solver uses the trust-region algorithm.

If the algebraic loop solver cannot solve the algebraic loop with the trust-region
algorithm, try simulating the model using the line-search algorithm.

To switch to the line-search algorithm, at the MATLAB command line, enter:

set_param(model_name, 'AlgebraicLoopSolver', 'LineSearch');

To switch back to the trust-region algorithm, at the MATLAB command line, enter:

set_param(model_name, 'AlgebraicLoopSolver', 'TrustRegion');

For more information, see:

• Shampine and Reichelt’s nleqn.m code
• The Fortran program HYBRD1 in the User Guide for MINPACK-1 2

• Powell’s “A Fortran subroutine for solving systems in nonlinear equations,” in
Numerical Methods for Nonlinear Algebraic Equations3

• “Trust-Region Methods for Nonlinear Minimization” in the Optimization Toolbox™
documentation.

• “Line Search” in the Optimization Toolbox documentation.

Limitations of the Algebraic Loop Solver

Algebraic loop solving is an iterative process. The Simulink algebraic loop solver is
successful only if the algebraic loop converges to a definite answer. When the loop fails to
converge, or converges too slowly, the simulation exits with an error.

1. Shampine, Lawrence F., M.W.Reichelt, and J.A.Kierzenka. ”Solving Index-1 DAEs in MATLAB and
Simulink.”Siam Review.Vol.18,No.3,1999,pp.538–552.

2. More,J.J.,B.S.Garbow, and K.E.Hillstrom. User guide for MINPACK-1. Argonne, IL:Argonne National
Laboratory,1980.

3. Rabinowitz, Philip, ed. Numerical Methods for Nonlinear Algebraic Equations, New York: Gordon and
Breach Science Publishers, 1970.

http://www.mathworks.com/matlabcentral/fileexchange/7481-manuscript-of-solving-index-1-daes-in-matlab-and-simulink
http://www.mathworks.com/matlabcentral/fileexchange/14240-eckart-inertias/content/I_Eckart_no_toolbox/nleqn.m
http://cds.cern.ch/record/126569/files/

3 How Simulink Works

3-50

The algebraic loop solver cannot solve algebraic loops that contain any of the following:

• Blocks with discrete-valued outputs
• Blocks with nondouble or complex outputs
• Discontinuities
• Stateflow charts

Remove Algebraic Loops

Use these techniques to remove algebraic loops in a model.

• “Introduce a Delay” on page 3-50
• “Solve Algebraic Loops Manually” on page 3-52
• “Create Initial Guesses Using the IC and Algebraic Constraint Blocks” on page

3-53

Introduce a Delay

Algebraic loops can occur in large models when atomic subsystems create feedback loops.

In the generic model here, there are two algebraic loops that involve subsystems.

• BlackBox_A —> BlackBox_B —> BlackBox_C —> BlackBox_A
• BlackBox_B —> BlackBox_C —> BlackBox_B

 Algebraic Loops

3-51

When you update this model, Simulink detects the loop BlackBox_A —> BlackBox_B —>
BlackBox_C —> BlackBox_A.

Since you do not know the contents of these subsystems, break the loops by adding a Unit
Delay block outside the subsystems. There are three ways to use the Unit Delay to break
these loops:

• Add a unit delay between BlackBox_A and BlackBox_C
• Add a unit delay between BlackBox_B and BlackBox_C
• Add unit delays to both algebraic loops

Add a unit delay between BlackBox_A and BlackBox_C

If you add a unit delay on the feedback signal between the subsystems BlackBox_A and
BlackBox_C, you introduce the minimum number of unit delays (1) to the system. By
introducing the delay before BlackBox_A, BlackBox_B and BlackBox_C use data from the
current time step.

Add a unit delay between BlackBox_B and BlackBox_C

If you add a unit delay between the subsystems BlackBox_B and BlackBox_C, you break
the algebraic loop between BlackBox_B and BlackBox_C. In addition, you break the loop
between BlackBox_A and BlackBox_C, because that signal completes the algebraic loop.
By inserting the Unit Delay block before BlackBox_C, BlackBox_C now works with data
from the previous time step only.

3 How Simulink Works

3-52

Add unit delays to both algebraic loops

In the example here, you insert Unit Delay blocks to break both algebraic loops. In this
model, BlackBox_A and BlackBox_B use data from the previous time step. BlackBox_C
uses data from the current time step.

Solve Algebraic Loops Manually

If Simulink cannot solve the algebraic loop, the software reports an error. Use one of
these techniques to solve the loop manually:

• Restructure the underlying DAEs using techniques such as differentiation or change
of coordinates. These techniques put the DAEs in a form that is easier for the
algebraic loop solver to solve.

• Convert the DAEs to ODEs, which eliminates any algebraic loops.

 Algebraic Loops

3-53

• “Create Initial Guesses Using the IC and Algebraic Constraint Blocks” on page
3-53

Create Initial Guesses Using the IC and Algebraic Constraint Blocks

Your model might contain loops for which the loop solver cannot converge without a good,
initial guess for the algebraic states. You can specify an initial guess for the algebraic
state variables, but use this technique only when you think the loop is legitimate.

There are two ways to specify an initial guess:

• Place an IC block in the algebraic loop.
• Specify an initial guess for a signal in an algebraic loop using an Algebraic

Constraint block.

Remove Artificial Algebraic Loops

Use these techniques to remove artificial algebraic loops in a model:

• “Eliminate Artificial Algebraic Loops Caused by Atomic Subsystems” on page 3-53
• “Bundled Signals That Create Artificial Algebraic Loops” on page 3-54
• “Model and Block Parameters to Diagnose and Eliminate Artificial Algebraic Loops”

on page 3-58
• “Block Reduction and Artificial Algebraic Loops” on page 3-59

Eliminate Artificial Algebraic Loops Caused by Atomic Subsystems

If an atomic subsystem causes an artificial algebraic loop, convert the atomic subsystem
to a virtual subsystem. This change has no effect on the behavior of the model. When
the subsystem is atomic and you simulate the model, Simulink invokes the algebraic
loop solver. The solver terminates after one iteration. The algebraic loop is automatically
solved because there is no algebraic constant. After you make the subsystem virtual,
Simulink does not invoke the algebraic loop solver during simulation.

To convert an atomic subsystem to a virtual subsystem:

1 Open the model that contains the atomic subsystem.
2 Right-click the atomic subsystem and select Subsystem Parameters.
3 Clear the Treat as atomic unit parameter.
4 Save the changes.

3 How Simulink Works

3-54

If you replace the atomic subsystem with a virtual subsystem and the simulation still
fails with an algebraic loop error, examine the model for one of these:

• An algebraic constraint
• An artificial algebraic loop that was not caused by this atomic subsystem

Bundled Signals That Create Artificial Algebraic Loops

Some models bundle signals together. This bundling can cause Simulink to detect an
algebraic loop, even when an algebraic constraint does not exist. If you redirect one or
more signals, you may be able to remove the artificial algebraic loop.

In this example, a linearized model simulates the dynamics of a two-tank system fed by a
single pump. In this model:

• Output q1 is the rate of the fluid flow into the tank from the pump.
• Output h2 is the height of the fluid in the second tank.
• The State-Space block defines the dynamic response of the tank system to the pump

operation:

• The output from the State-Space block is a vector that contains q1 and h2.

 Algebraic Loops

3-55

If you simulate this model with the Algebraic loop parameter set to warn or error,
Simulink identifies the algebraic loop.

3 How Simulink Works

3-56

To eliminate this algebraic loop:

1 Change the C and D matrices as follows:

 Algebraic Loops

3-57

2 Pass q1 directly to the Scope instead of through the State-Space block.

Now, the input (q1) does not pass directly to the output (the D matrix is 0), so the
State-Space block no longer has direct feedthrough. The feedback signal has only
one element now, so the Selector block is no longer necessary, as you can see in the
following model.

3 How Simulink Works

3-58

Model and Block Parameters to Diagnose and Eliminate Artificial Algebraic Loops

There are two parameters to consider when you think that your model has an artificial
algebraic loop:

• Minimize algebraic loop occurrences parameter — Specify that Simulink try to
eliminate any artificial algebraic loops for:

• Atomic subsystems — In the Subsystem Parameters dialog box, select Minimize
algebraic loop occurrences.

• Model blocks — For the referenced model, in the Model Referencing pane of
Configuration Parameters, select Minimize algebraic loop occurrences.

• Minimize algebraic loop parameter — Specifies what diagnostic action Simulink
takes if the Minimize algebraic loop occurrences parameter has no effect.

The Minimize algebraic loop parameter is in the Diagnostics pane of
Configuration Parameters. The diagnostic actions for this parameter are:

 Algebraic Loops

3-59

Setting Simulation Response

none Simulink takes no action.
warning Simulink displays a warning that the Minimize

algebraic loop occurrences parameter has no
effect.

error Simulink terminates the simulation and displays
an error that the Minimize algebraic loop
occurrences parameter has no effect.

Block Reduction and Artificial Algebraic Loops

When you enable the Block reduction optimization in Model Configuration
Parameters, Simulink collapses certain groups of blocks into a single, more efficient
block, or removes them entirely. Enabling block reduction results in faster execution
during model simulation and in generating code.

Enabling block reduction can also help Simulink solve artificial algebraic loops.

Consider the following example model.

3 How Simulink Works

3-60

 Algebraic Loops

3-61

Initially, block reduction is turned off. When you simulate this model, the Atomic Unit
subsystem and Gain and Compare to Constant blocks are part of an algebraic loop that
Simulink cannot solve.

3 How Simulink Works

3-62

If you enable block reduction and sorted order, and resimulate the model, Simulink does
not display the sorted order for blocks that have been reduced. You can now quickly see
which blocks have been reduced.

 Algebraic Loops

3-63

The Compare to Constant and Gain blocks have been eliminated from the model, so
they no longer generate an algebraic loop error. The Atomic Unit subsystem generates a
warning:
Warning: If the inport 'ex_aloop_block_reduction_errwarn/

Atomic Unit/In1' of subsystem 'ex_aloop_block_reduction_errwarn/

Atomic Unit' involves direct feedback, then an algebraic loop

exists, which Simulink cannot remove. Consider clearing the

'Minimize algebraic loop occurrences' parameter to avoid this

warning.

Tip Use Bus Selector blocks to pass only the required signals into atomic subsystems.

3 How Simulink Works

3-64

How Simulink Eliminates Artificial Algebraic Loops

When you enable Minimize algebraic loop occurrences, Simulink tries to eliminate
artificial algebraic loops. In this example, the model contains an atomic subsystem that
causes an artificial algebraic loop.

The contents of the atomic subsystem are not direct feedthrough, but Simulink identifies
the atomic subsystem as direct feedthrough.

 Algebraic Loops

3-65

If the Algebraic loop diagnostic is set to error, simulating the model results in
an error because the model contains an artificial algebraic loop involving its atomic
subsystem.

To eliminate this algebraic loop,

1 Create the model from the preceding graphics, with the atomic subsystem that
causes the artificial algebraic loop.

2 In the Diagnostics pane of Model Configuration Parameters, set the Algebraic
loop parameter to warning or none.

3 In the Data Import/Export pane, make sure the Signal logging parameter is
disabled. If signal logging is enabled, Simulink cannot eliminate artificial algebraic
loops.

4 To display the sorted order for this model and the atomic subsystem, select Display
> Blocks > Sorted Execution Order.

3 How Simulink Works

3-66

Reviewing the sorted order can help you understand how to eliminate the artificial
algebraic loop.

All the blocks in the subsystem execute at the same level: 1. (0 is the lowest level,
indicating the first blocks to execute.)

Note: For more information about sorted order, see “Control and Display the Sorted
Order” on page 31-29.

5 In the top-level model’s Subsystem Parameters dialog box, select Minimize
algebraic loop occurrences. This parameter directs Simulink to try to eliminate
the algebraic loop that contains the atomic subsystem, when it simulates the model.
Save the changes.

6 Click Simulation > Update Diagram to recalculate the sorted order.

 Algebraic Loops

3-67

Now there are two levels of sorted order inside the subsystem: 1 and 2.

To eliminate the artificial algebraic loop, Simulink tries to make the input of the
subsystem or referenced model non-direct feedthrough.

When you simulate a model, all blocks execute methods in this order:

1 mdlOutputs

2 mdlDerivatives

3 mdlUpdate

In the original version of this model, the execution of the mdlOutputs method starts
with the Plant block because the Plant block is non-direct feedthrough. The execution
finishes with the Controller block.

3 How Simulink Works

3-68

Note: For more information about these methods, see “Block Methods” on page 3-15.

If you enable the Minimize algebraic loop occurrences parameter for the atomic
subsystem, Simulink divides the subsystem into two atomic units.

 Algebraic Loops

3-69

Atomic unit 1 Atomic unit 2

These conditions are true:

• Atomic unit 2 is not direct feedthrough.
• Atomic unit 1 has only a mdlOutputs method.

Only the mdlDerivatives or mdlUpdate methods of Atomic unit 2 need the output of
Atomic unit 1. Simulink can execute what normally would have been executed during the
mdlOutput method of Atomic unit 1 in the mdlDerivatives methods of Atomic unit 2.

The new execution order for the model is:

1 mdlOutputs method of model

a mdlOutputs method of Atomic unit 2
b mdlOutputs methods of other blocks

2 mdlDerivatives method of model

a mdlOutputs method of Atomic unit 1
b mdlDerivatives method of Atomic unit 2
c mdlDerivatives method of other blocks

For the Minimize algebraic loop occurrences technique to be successful, the
subsystem or referenced model must have a non-direct-feedthrough block connected
directly to an Inport. Simulink can then set the DirectFeedthrough property of the
block Inport to false to indicate that the input port does not have direct feedthrough.

3 How Simulink Works

3-70

When Simulink Cannot Eliminate Artificial Algebraic Loops

Setting the Minimize algebraic loop occurrences parameter does not always work.
Simulink cannot change the DirectFeedthrough property of an Inport for an atomic
subsystem if the Inport is connected to an Outport only through direct-feedthrough
blocks.

In this model, the subsystem Plant+Controller causes an algebraic loop, but it has an
extra Gain block and an extra output.

 Algebraic Loops

3-71

Simulink cannot move the mdlOutputs method of the Controller block to the
mdlDerivative method of an Atomic unit 1 because the output of the atomic subsystem
depends on the output of the Controller block. You cannot make the subsystem non-
direct-feedthrough.

You can modify this model to eliminate the artificial algebraic loop by redefining the
atomic subsystem by adding additional Inport and Gain blocks, as you can see in the
model here. Doing so makes In1 non-direct-feedthrough and In2 direct feedthrough, thus
breaking the algebraic loop.

3 How Simulink Works

3-72

Managing Large Models with Artificial Algebraic Loops

Adopt these design techniques for large models with algebraic loops:

• Avoid creating loops that contain discontinuities or nondouble data types. The
Simulink algebraic loop solver is gradient-based and must solve algebraic constraints
to high precision.

• Develop a scheme for clearly identifying atomic subsystems as direct feedthrough or
not direct feedthrough. Use a visual scheme such as coloring the blocks or defining a
block-naming convention.

• If you plan to generate code for your model, enable the Minimize algebraic loop
occurrences parameter for all atomic subsystems. When possible, make sure that

 Algebraic Loops

3-73

the input ports for the atomic subsystems are connected directly to non-direct-
feedthrough blocks.

• Avoid combining non-direct-feedthrough and direct-feedthrough paths using the Bus
Creator or Mux blocks. Simulink may not be able to eliminate any resulting artificial
algebraic loops. Instead, consider clustering the non-direct-feedthrough and direct-
feedthrough objects in separate subsystems.

Use Bus Selector blocks to pass only the required signals into atomic subsystems.

Changing Block Priorities When Using Algebraic Loop Solver

During the updating phase of simulation, Simulink determines the simulation execution
order of block methods. This block invocation ordering is the sorted order.

If you assign priorities to nonvirtual blocks to indicate to Simulink their execution order
relative to other blocks, the algebraic loop solver does not honor these priorities when
attempting to solve any algebraic loops.

Modeling Dynamic Systems

4

Creating a Model

• “Create a Template from a Model” on page 4-3
• “Specify Block Diagram Colors” on page 4-4
• “Connect Blocks” on page 4-8
• “Align, Distribute, and Resize Groups of Blocks” on page 4-18
• “Box and Label Areas of a Model” on page 4-19
• “Annotations” on page 4-21
• “Create an Annotation” on page 4-25
• “Use TeX Commands in an Annotation” on page 4-30
• “Add an Image-Only Annotation” on page 4-32
• “Add Lines to Connect Annotations to Blocks” on page 4-34
• “Show or Hide Annotations” on page 4-35
• “Make an Annotation Interactive” on page 4-36
• “Create an Annotation Programmatically” on page 4-38
• “Create a Subsystem” on page 4-41
• “Configure a Subsystem” on page 4-46
• “Navigate Subsystems in the Model Hierarchy” on page 4-48
• “Subsystem Expansion” on page 4-52
• “Expand Subsystem Contents” on page 4-57
• “Use Control Flow Logic” on page 4-59
• “Callbacks for Customized Model Behavior” on page 4-68
• “Model Callbacks” on page 4-70
• “Block Callbacks” on page 4-75
• “Port Callbacks” on page 4-82
• “Callback Tracing” on page 4-83
• “Model Workspaces” on page 4-84

4 Creating a Model

4-2

• “Specify Source for Data in Model Workspace” on page 4-87
• “Change Model Workspace Data” on page 4-92
• “Symbol Resolution” on page 4-95
• “Manage Model Versions” on page 4-100
• “Model Discretizer” on page 4-115

 Create a Template from a Model

4-3

Create a Template from a Model

Create a template from a model to reuse or share the settings and contents of the model
without copying the model each time. Create templates only from models that do not
have external file dependencies (for example, model references, data dictionary, scripts,
S-functions, or other file dependencies). If you want to include other dependent files, use
a project template instead. See “Using Templates to Create Standard Project Settings” on
page 15-49.

1 In the model, select File > Export Model to > Template.
2 In the Export modelname to Template dialog box, enter the template title and

description of the template.

When you use the template, the Simulink Template Gallery displays this title and
description.

3 In the Template file box, select a file name and location for the template SLTX file.

Tip Save the template on the MATLAB path to make it visible in the Simulink
Template Gallery. If you save in a location that is not on the path, the new template
is visible in the gallery only in the current MATLAB session. Saving the template
does not add the destination folder to the path.

4 Click Export.

Related Examples
• “Create a Model Using a Template” on page 1-6
• “Using Templates to Create Standard Project Settings” on page 15-49

4 Creating a Model

4-4

Specify Block Diagram Colors

In this section...

“Set Block Diagram Colors Interactively” on page 4-4
“Platform Differences for Custom Colors” on page 4-4
“Choose a Custom Color” on page 4-5
“Define a Custom Color” on page 4-6
“Specify Colors Programmatically” on page 4-7

Set Block Diagram Colors Interactively

You can specify the foreground and background colors of any block or annotation in a
diagram, as well as the background color of the diagram.

Type of Color How to Set

Block diagram background Select Diagram > Format > Canvas
Color.

Block or annotation background 1 Select the blocks and annotations.
2 Select Diagram > Format >

Background Color
Block or annotation foreground 1 Select the blocks and annotations.

2 Select Diagram > Format >
Foreground Color

In all cases, you see a menu of color choices. Choose the desired color from the menu. If
you select a color other than Custom, the background or foreground color of the diagram
or diagram element changes to the selected color.

Platform Differences for Custom Colors

On Mac platforms, choosing Custom invokes the Mac color picker interface. Use the
color picker to choose and define custom colors.

 Specify Block Diagram Colors

4-5

On Windows and Linux platforms, use the Simulink interface, as described in:

• “Choose a Custom Color” on page 4-5
• “Define a Custom Color” on page 4-6

Choose a Custom Color

If you choose Custom, and there are no custom colors already defined, Simulink displays
the Choose Custom Color dialog box.

If you choose Custom, and there are custom colors already defined, Simulink displays
the Select Color dialog box.

4 Creating a Model

4-6

The Select Color dialog box displays a palette of basic colors and a palette of already
defined custom colors. To choose a color from either palette, click the color and then click
OK.

Define a Custom Color

To define the first custom color, in the Choose Custom Color dialog box, click the Define
Custom Colors button.

The dialog box expands to display the Select Color dialog box. To define a custom color:

1 Specify the color using one of these approaches:

• Enter the red, green, and blue components of the color as values between 0
(darkest) and 255 (brightest).

• Enter hue, saturation, and luminescence components of the color as values in the
range 0 to 255.

• Move the hue-saturation cursor to select the hue and saturation of the desired
color and the luminescence cursor to select the luminescence of the desired color.

2 Adjust the values until the color in the box to the right of the custom colors palette is
the custom color that you want.

 Specify Block Diagram Colors

4-7

3 Click the Add to Custom Colors button.

To replace an existing custom color, select the custom color in the custom color palette
before defining the new custom color.

Specify Colors Programmatically

You can use the set_param command at the MATLAB command line or in a MATLAB
program to set parameters that determine the background color of a diagram and
the background color and foreground color of diagram elements. The following table
summarizes the parameters that control block diagram colors.

Parameter Determines

ScreenColor Block diagram background
BackgroundColor Block and annotation background
ForegroundColor Block and annotation foreground

Set the color parameter to either a named color or an RGB value.

• Named color: 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta',
'yellow', 'gray', 'lightBlue', 'orange', 'darkGreen'

• RGB value: '[r,g,b]'

where r, g, and b are the red, green, and blue components of the color normalized to
the range 0.0 to 1.0.

For example, the following command sets the background color of the currently selected
system or subsystem to a light green color:

set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]')

4 Creating a Model

4-8

Connect Blocks

In this section...

“Automatically Connect Blocks” on page 4-8
“Manually Connect Blocks” on page 4-11
“Disconnect Blocks” on page 4-17

Automatically Connect Blocks

You can have the Simulink software connect blocks automatically. This eliminates the
need to draw the connecting lines yourself. When connecting blocks, Simulink routes the
lines around intervening blocks to avoid cluttering the diagram.

Autoconnect Two Blocks

When connecting two blocks with multiple ports, Simulink draws as many connections as
possible between the two blocks.

To autoconnect two blocks:

1 Select the source block. In this example, the Sine Wave block is the source block.

 Connect Blocks

4-9

2 Hold down Ctrl and left-click the destination block. In this example, the Integrator
block is the destination block.

The source block is connected to the destination block, and the lines are routed
around intervening blocks if necessary.

Note: On Macintosh platforms, use the command key instead of Ctrl.

Connect Groups of Blocks

To connect a group of source blocks to a destination block:

1 Select the source blocks.

4 Creating a Model

4-10

2 Hold down Ctrl and left-click the destination block.

To connect a source block to a group of destination blocks:

1 Select the destination blocks.

 Connect Blocks

4-11

2 Hold down Ctrl and left-click the source block.

Manually Connect Blocks

You can draw lines manually between blocks or between lines and blocks. You might
want to do this if you need to control the path of the line or to create a branch line.

Draw a Line Between Blocks

You can create lines either from output to input ports, or from input to output ports. For
example, to connect the output port of a Constant block to the input port of Gain block:

1 Position the cursor over the output port of the Constant block. You do not need to
position the cursor precisely on the port.

The cursor shape changes to crosshairs.

4 Creating a Model

4-12

2 Hold down the left mouse button.
3 Drag the cursor to the input port of the Gain block. Position the cursor on or near the

port or in the block. If you position the cursor in the block, the line connects to the
closest input port.

4 Release the mouse button. A connecting line with an arrow showing the direction of
the signal flow replaces the port symbol.

The arrow appears at the appropriate input port, and the signal is the same.

Draw a Branch Line

A branch line is a line that starts from an existing line and carries its signal to the input
port of a block. Both the existing line and the branch line represent the same signal. Use
branch lines to connect a signal to more than one block.

This example shows how to connect the Product block output to both the Scope block and
the To Workspace block.

 Connect Blocks

4-13

To add a branch line:

1 Position the cursor on the line where you want the branch line to start.
2 While holding down the Ctrl key, press and hold down the left or right mouse

button.
3 Drag the cursor to the input port of the target block, then release the mouse button

and the Ctrl key.

Draw Line Segments

Manually draw line segments when you want to draw:

• Line segments differently than autoconnect feature draws the lines
• A line, before you copy the block to which the line connects

To draw a line segment:

1 Draw a line from the block port to an unoccupied area of the canvas. Release the
mouse button where you want the line segment to end.

The cursor turns into a circle, and blue arrow guides appear.

2 For each additional line segment, position the cursor over the blue arrow guide that
points in the direction in which you want to draw a line segment. The cursor turns
into an empty arrowhead.

4 Creating a Model

4-14

Tip To reroute the whole line instead of extending it, select the end of the line itself
when the circle cursor is displayed and drag the line end to a new location.

3 Drag the cursor to draw the second line segment and release the mouse button to
finish drawing the line.

Move a Line Segment

To move a line segment:

1 Position the cursor on the segment that you want to move.
2 Press and hold down the left mouse button.
3 Drag the cursor to the desired location and release the mouse button.

Draw a Diagonal Line

You cannot draw a single diagonal line between two ports. You can draw very short line
segments connecting to each port, with a longer diagonal segment in the middle. For
example, suppose you position two blocks as shown below:

To approximate a diagonal line:

1 Draw a short line segment from the output port of the Constant block.
2 At the end of the first line segment, draw a second line segment.

 Connect Blocks

4-15

3 Draw a third line segment to connect to the Scope block.
4 Position the cursor at the bend of the second and third line segments. The cursor

turns into a circle.

5 Hold the Shift key down and drag the cursor to make the second line segment a
diagonal.

4 Creating a Model

4-16

Move a Line Vertex

To move a vertex of a line:

1 Position the cursor on the vertex, then press and hold down the left mouse button.

The cursor changes to a circle.

2 Drag the vertex to the desired location.

 Connect Blocks

4-17

3 Release the mouse button.

Insert a Block in a Line

You can insert a block in a line, if the block has only one input and one output.

1 Drag the block over the line in which you want to insert the block.
2 Release the mouse button. Simulink inserts the block for you at the point where you

drop the block.

Disconnect Blocks

To disconnect a block from its connecting lines, hold down the Shift key, then drag the
block to a new location.

4 Creating a Model

4-18

Align, Distribute, and Resize Groups of Blocks

1 Select the blocks that you want to align.

One of the selected blocks displays empty selection handles, like the Constant block
in the figure. This block is the reference for aligning the other selected blocks. If you
want to use another block as the alignment reference, click it.

2 From the Diagram > Arrange menu, select an alignment, distribution, or sizing
option. For example, select Align Top to align the top edges of the selected blocks
with the top edge of the reference block.

More About
• “Keyboard and Mouse Actions for Simulink Modeling” on page 1-76

 Box and Label Areas of a Model

4-19

Box and Label Areas of a Model

In this section...

“Create an Area” on page 4-19
“Move an Area” on page 4-20
“Convert Area to a Subsystem” on page 4-20

You can select an area of a model containing blocks, label the area, and move it as a
group.

Create an Area

1 In your model, drag to select the part of the model you want to create an area
around.

2 In the action bar, click Create Area.

A text cursor appears in the upper-left corner of the area.
3 Type the name of the area if you want.
4 Click outside the area.

To enter a name later, select the area, select the ? that appears in the upper-left corner,
and start typing.

4 Creating a Model

4-20

Move an Area

1
Hover near the outer border of the area until the move cursor appears .

2 Drag the area to a new region of your model.

To move an area without moving its contents, hold Alt (option on a Mac) and drag the
area.

Convert Area to a Subsystem

To convert an area to a subsystem, right-click the area and select Create Subsystem
from Area. The resulting subsystem retains the name, description, blocks, and the
requirements traceability information of the area.

 Annotations

4-21

Annotations

In this section...

“Possible Uses for Annotations” on page 4-21
“What Are Annotations?” on page 4-21
“Three Types of Annotations” on page 4-22
“Annotation Layout and Contents” on page 4-23
“Interactive Annotations” on page 4-24

Possible Uses for Annotations

Use annotations to make information about the model visible from within the block
diagram. Examples of the kinds of information you can include in an annotation include:

• Descriptions of the model design, to help model developers and reviewers
• An image or equation relating to the model
• Links to background information related to the model
• Documentation about how to use the model
• Requirements information, to help validate the model
• Design review and workflow notes

What Are Annotations?

Annotations are visual elements that you can include in a model to document the model
or to enable interacting with the model via a link or callback.

For example, this model includes an annotation that provides background information
about the model and how to interact with the model.

4 Creating a Model

4-22

Three Types of Annotations

You can create three types of annotations:

• Text and images
• TeX formatted (for equations)
• Image-only

 Annotations

4-23

You create an text and image annotation as plain text. Then you can apply formatting
to the annotation. As soon as you apply formatting, the annotation becomes a rich text
annotation.

You can include images and text in the same annotation, but you cannot resize or move
the image in that annotation. Alternatively, you can add an image-only annotation,
which contains an image without any text. You can resize an image-only annotation.

Annotation Layout and Contents

You can specify the layout for an annotation, including”

• Borders
• Text alignment and wordwrap
• Text color and background color
• Margins between the text and the borders of the annotation

You can include the following kinds of content in an annotation:

• Formatted text
• Lists
• Tables
• Images
• Hyperlinks

You have several options for formatting text and adding content, including:

• Type text or copy and paste text from a Microsoft Word or an HTML document.
• Format text for a whole paragraph or for specific text in a paragraph, including

selecting fonts, styles, and size.
• Apply formatting from one piece of annotation text to text in another part of the same

annotation. See “Copy Formatting” on page 4-24.
• Create a new table or copy a table (or part of a table) from an HTML page or a

Microsoft Word document and paste it into the annotation.

Edit the table using common Microsoft Word editing features. You can interactively
resize table columns and rows.

4 Creating a Model

4-24

• Add images by either copying and pasting an image or by inserting an image from an
image file.

Note: If you copy text from an HTML page, formatting may be lost when you paste
the information into an annotation.

• Copy a link from a Microsoft Word or an HTML document or specify the URL and link
text.

Copy Formatting

You can apply formatting from one piece of annotation text to text in another part of the
same annotation.

1 Click in the annotation text whose format you want to use.
2

In the annotation edit bar, click the Format Painter button (.
3 In the same annotation, select the text to apply the format to.
4 Release the mouse button.

Interactive Annotations

You can make an annotation interactive, so that clicking the annotation performs an
action, such as opening a document. The information in an annotation is not dynamic,
but you can include links to dynamic information.

Related Examples
• “Create an Annotation” on page 4-25
• “Use TeX Commands in an Annotation” on page 4-30
• “Add an Image-Only Annotation” on page 4-32
• “Add Lines to Connect Annotations to Blocks” on page 4-34
• “Show or Hide Annotations” on page 4-35
• “Make an Annotation Interactive” on page 4-36
• “Create an Annotation Programmatically” on page 4-38

 Create an Annotation

4-25

Create an Annotation

In this section...

“Add and Lay Out an Annotation” on page 4-26
“Add a Hyperlink and Format Text” on page 4-27
“Add a Bulleted List” on page 4-27
“Copy and Paste an Image from a Web Page” on page 4-28
“Add a Numbered List” on page 4-28

In this example, you create this annotation:

4 Creating a Model

4-26

Add and Lay Out an Annotation

1 Open the sldemo_foucault model.
2 Delete the two annotations below the model. The first annotation includes text that

starts with This model solves..., and the second annotation is a copyright line.

Drag a box that touches a part of each annotation. Press the Delete key.
3 In the Simulink Editor palette, drag the annotation button to where you want the

annotation.

 Create an Annotation

4-27

Tip Alternatively, you can double-click where you want the annotation.
4 In the annotation, type Background.
5 Drag the lower-right corner of the annotation so that the annotation is about the

width of the model and about twice as tall.
6 Right-click the annotation and select Format > Shadow.
7 Click in the annotation and select Diagram > Properties.
8 In the Annotation properties dialog box, set each Internal Margin parameter to 10

and click OK.

Add a Hyperlink and Format Text

1 Place the cursor at the end of the first line of text (Background) and press Enter
twice to create a blank line and a new paragraph.

2 Enter this text: This model represents a Foucault pendulum.
3 Select the string Foucault pendulum, right-click, and select Hyperlink.
4 In the Hyperlink dialog box set these parameters and click OK.

• Check that the Display text box contains Foucault pendulum.
• Use the default Target setting URL Address.
• In the Code text box, enter this URL: en.wikipedia/wiki/

Foucault_pendulum.
5 Select the text Background. From the toolbar that appears, make the font bold and

set the font size to 12.

Add a Bulleted List

1 Place the cursor at the end of the paragraph with the hyperlink and press Enter
twice.

2 In the new paragraph, copy and paste this text:

The pendulum can be modeled as a point mass suspended on a wire

of length L. The pendulum is located at the geographical latitude

lambda. It is convenient to use these reference frames:

3 Press Enter. Type * and press the spacebar to start a bulleted list.

4 Creating a Model

4-28

4 In the bullet item, enter The inertial frame I (relative to the center
of the Earth). and press Enter.

5 For the second bullet, enter The non-inertial frame N (relative to an
observer on Earth's surface). The non-inertial frame accelerates

as a result of rotation. and press Enter.
6 Delete the last bullet using the keyboard.

Copy and Paste an Image from a Web Page

1 In SVG-enabled browser (such as Google® Chrome), open the Foucault pendulum
example.

http://www.mathworks.com/help/simulink/examples/modeling-a-foucault-
pendulum.html

2 Scroll about halfway down the example, to the Analysis and Physics section.
3 In the Analysis and Physics section, copy the image of the two frames.
4 In the annotation, place the cursor in a new paragraph below the second bullet.

Paste the image.

Add a Numbered List

1 Place the cursor after the image and press Enter twice.
2 In the new paragraph, enter Interact with the Model. Press Enter twice.
3 In the new paragraph, right-click and select Paragraph > Numbering > Decimal

Dot.
4 For the first step, enter Open the model.
5 For the second step, enter Use MATLAB workspace variables to examine and

modify initial conditions (g, L, initial conditons, Omega, and

lamda).

6 For the third step, enter Simulate the model.
7 Select the text Interact with the Model. From the toolbar that appears, make

the font bold and set the font size to 12.

Related Examples
• “Use TeX Commands in an Annotation” on page 4-30

http://www.mathworks.com/help/simulink/examples/modeling-a-foucault-pendulum.html
http://www.mathworks.com/help/simulink/examples/modeling-a-foucault-pendulum.html

 Create an Annotation

4-29

• “Add an Image-Only Annotation” on page 4-32
• “Add Lines to Connect Annotations to Blocks” on page 4-34
• “Show or Hide Annotations” on page 4-35
• “Make an Annotation Interactive” on page 4-36
• “Create an Annotation Programmatically” on page 4-38

More About
• “Annotations” on page 4-21

4 Creating a Model

4-30

Use TeX Commands in an Annotation

You can use TeX formatting commands to include mathematical and other symbols and
Greek letters in block diagram annotations. For example, the following model uses TeX
commands in an annotation that describes the equation used for the model.

You cannot include TeX commands and rich text formatted text.

Add a TeX Annotation

1 Double-click in the model where you want to add the annotation.

 Use TeX Commands in an Annotation

4-31

2 Enter or edit the text of the annotation, using TeX commands where needed to
achieve the desired appearance.

3 Right-click the annotation border, and in the context menu, select Diagram >
Format > Enable TeX Commands.

The text reflects the TeX formatting.

Related Examples
• “Create an Annotation” on page 4-25
• “Add an Image-Only Annotation” on page 4-32
• “Make an Annotation Interactive” on page 4-36

More About
• “Text with Mathematical Expression Using LaTeX”
• “Annotations” on page 4-21

4 Creating a Model

4-32

Add an Image-Only Annotation

In this section...

“Add an Image” on page 4-32
“Change the Appearance of an Image” on page 4-32

Add an Image

You can add an image-only annotation. Either paste an image in an image annotation or
insert an image from an image file into the image annotation.

To copy an image from the clipboard into an image annotation:

1 Copy an image from an HTML page or other document.
2 In the Simulink Editor palette, drag the Image icon into the model.
3 Right-click the annotation and select Paste Image.

To insert an image from an image file into an image annotation:

1 In the Simulink Editor palette, drag the Image icon into the model.
2 Right-click the image annotation and select Insert Image.
3 Select the image file to insert.

Change the Appearance of an Image

To resize an image:

• To preserve the height and width aspect ratio, press Shift and drag a corner of the
annotation.

• To change the height and width aspect ratio, grab a corner of the annotation and drag
the cursor.

To reset the image annotation to the size of the image that you initially inserted, right-
click the image annotation and select Reset Image Size.

To add a drop shadow to the image annotation, right-click the image annotation and
select Format > Shadow.

 Add an Image-Only Annotation

4-33

Related Examples
• “Create an Annotation” on page 4-25
• “Make an Annotation Interactive” on page 4-36

More About
• “Annotations” on page 4-21

4 Creating a Model

4-34

Add Lines to Connect Annotations to Blocks

In a model, you can add connector lines between an annotation and a block. The
connector is similar to a callout, identifying the block that an annotation applies to.

1 Place the cursor over the annotation outline where you want the connector to start.
2 When the cursor is a cross hair, drag to draw the connector line.
3 When the cursor is over the block you want to connect to, release the mouse button.

If you move the annotation or block, the connector moves or resizes along with them.

Tip To specify the color or width of the annotation connector, right-click it and use the
Format menu.

 Show or Hide Annotations

4-35

Show or Hide Annotations

In this section...

“Configure an Annotation for Hiding” on page 4-35
“Hide Markup Annotations” on page 4-35

By default, all annotations appear in the model. To hide annotations that are converted
to markup, select Display > Hide Markup.

Configure an Annotation for Hiding

When you create an annotation, by default it is visible in the model. You can configure an
annotation so that you can choose to hide it. The ability to hide annotations allows you to
include annotations that provide information about a model without adding clutter.

To configure an annotation so that you can hide it:

1 Right-click the annotation.
2 From the context menu, select Convert to Markup.

This configures the annotation as a markup annotation.

A markup annotation has a light-blue background, regardless of the original background
color. If you change a markup annotation back to a regular annotation, the annotation
uses the original background color.

To change a markup annotation to a regular annotation (one that you cannot hide), from
the annotation context menu, select Convert to Annotation.

Hide Markup Annotations

By default, all annotations are visible in a model. To hide all markup annotations, select
Display > Hide Markup.

To display hidden markup annotations, select Display > Show Markup.

Note: In a model reference hierarchy, Show Markup and Hide Markup apply only to
the current model reference level.

4 Creating a Model

4-36

Make an Annotation Interactive

In this section...

“Annotation Callback Functions” on page 4-36
“Associate Click Functions with Annotations” on page 4-36
“Select and Edit Click-Function Annotations” on page 4-37

Annotation Callback Functions

You can make an annotation interactive by adding a callback. For example, you can use
an annotation click-callback function to open related models from an annotation.

You can associate the following callback functions with annotations.

Click Function

A click function is a MATLAB function that Simulink invokes when you click an
annotation. You can associate a click function with any model annotation.

You can use click functions to add custom command buttons to a model. For example, a
click function can display the values of workspace variables referenced by the model or to
open related models.

Simulink uses the color blue for an annotations associated with a click function.

Load Function

Simulink invokes this function when you load the model that contains the associated
annotation. To associate a load function with an annotation, set the LoadFcn property of
the annotation to the desired function (see “Annotations API” on page 4-38).

Delete Function

This function is invoked before deleting the associated annotation. To associate a delete
function with an annotation, set the DeleteFcn property of the annotation to the desired
function (see “Annotations API” on page 4-38).

Associate Click Functions with Annotations

To associate a click function with an annotation, use one of these approaches:

 Make an Annotation Interactive

4-37

• Specify the annotation itself as the click function.
• Specify a separately defined click function.

To specify the annotation itself as the click function:

1 Click in the annotation and select Diagram > Properties.
2 In the Annotation Properties dialog box ClickFcn area, select Use display text as

click callback.

To specify a separately-defined click function:

1 Right-click the annotation border and select Properties.
2 Click the ClickFcn tab.
3 In text box below Use display text as click callback, enter the MATLAB code that

defines the click function.

Note: You can also use MATLAB code to associate a click function with an annotation.
See “Annotations API” on page 4-38 for more information.

Select and Edit Click-Function Annotations

If you associate an annotation with a click function, then you cannot select the
annotation by clicking it. Instead, use a boundary box to select the annotation.

Similarly, you cannot edit the annotation text by clicking on the text. To edit the
annotation:

1 Use a boundary box to select the annotation
2 Right-click the selected annotation.
3 In the context menu, select Properties.
4 In the Properties dialog box, in the Text field, edit the text.

More About
• “Annotations” on page 4-21

4 Creating a Model

4-38

Create an Annotation Programmatically

In this section...

“Annotations API” on page 4-38
“Create Annotations Programmatically” on page 4-38
“Delete an Annotation Programmatically” on page 4-39
“Find Annotations in a Model” on page 4-39
“Show or Hide Annotations Programmatically” on page 4-39

Annotations API

Use MATLAB code to get and set the properties of annotations.

• Simulink.Annotation class

Set the properties of annotations.
• getCallbackAnnotation function

Get the Simulink.Annotation object for the annotation associated with the
currently executing annotation callback function. Use this function to determine
which annotation invoked the current callback. This function is also useful if you
write a callback function in a separate MATLAB file that contains multiple callback
calls.

Create Annotations Programmatically

To create annotations at the command line or in a MATLAB program, use the
add_block command. For example:

open_system('vdp');

block = add_block('built-in/Note', ...

'vdp/This simulates a nonlinear second order system', ...

'Position', [200 250])

Alternatively, you can use a Simulink.Annotation object to create an annotation. For
example:

open_system('vdp')

 Create an Annotation Programmatically

4-39

note = Simulink.Annotation('vdp/This is an annotation');

note.position = [10,50]

Delete an Annotation Programmatically

To delete an annotation programmatically, use the find_system command to get the
annotation handle. Then use the delete function to delete the annotation. For example:

delete(find_system(gcs, 'FindAll', 'on', 'type', 'annotation',...

'text', 'programmatically created'));

Find Annotations in a Model

Use command such as this to find all of the annotations in a model.

open_system('vdp')

annotations = find_system(gcs,'FindAll','on','Type','annotation')

annotations =

 34.0004

 33.0009

See the find_system documentation for specifying levels of the model to search.

To identify the annotation handle of annotations, enter:

get_param(annotations,'Name')

ans =

 'Copyright 2004-2014 The MathWorks, Inc.'

 'van der Pol Equation'

Show or Hide Annotations Programmatically

When you create an annotation, by default it appears in the model. You can configure an
annotation to be a markup annotation, which you can hide.

To find out whether the first annotation is a markup annotation, use commands such as
this:

open_system('vdp')

4 Creating a Model

4-40

annotations = find_system(gcs,'FindAll','on','Type','annotation')

get_param(annotations(1),'MarkupType')

To configure the first annotation in a model so that it can be hidden, use a commands
such as this:

set_param(annotations(1),'MarkupType','markup')

To reconfigure that annotation to always appear, use this command:

set_param(annotations(1),'MarkupType','model')

To find out whether a model is configured to show or hide markup annotations, use a
command such as this command for the vdp model:

get_param(vdp,'ShowMarkup')

To configure a model to hide markup annotations, use a command such as this:

get_param(vdp,'ShowMarkup','off')

Related Examples
• “Create an Annotation” on page 4-25
• “Use TeX Commands in an Annotation” on page 4-30
• “Add an Image-Only Annotation” on page 4-32
• “Make an Annotation Interactive” on page 4-36

More About
• “Annotations” on page 4-21

 Create a Subsystem

4-41

Create a Subsystem

In this section...

“Subsystem Advantages” on page 4-41
“Ways to Create a Subsystem” on page 4-41
“Create a Subsystem in a Subsystem Block” on page 4-42
“Create a Subsystem from Selected Blocks” on page 4-43
“Create a Subsystem Using Context Options” on page 4-44

Subsystem Advantages

Subsystems allow you to create a hierarchical model comprising many layers. A
subsystem is a set of blocks that you replace with a single Subsystem block. As your
model increases in size and complexity, you can simplify it by grouping blocks into
subsystems. Using subsystems:

• Establishes a hierarchical block diagram, where a Subsystem block is on one layer
and the blocks that make up the subsystem are on another

• Keeps functionally related blocks together
• Helps reduce the number of blocks displayed in your model window

When you make a copy of a subsystem, that copy is independent of the source subsystem.
To reuse the contents of a subsystem across a model or across models, use either model
referencing or a library.

Ways to Create a Subsystem

You can create a subsystem using these approaches:

• Add a Subsystem block to your model, and then open the block and add blocks to the
subsystem window. “Create a Subsystem in a Subsystem Block” on page 4-42.

• Select the blocks that you want in the subsystem, and from the right-click context
menu, select Create Subsystem from Selection. “Create a Subsystem from
Selected Blocks” on page 4-43.

• Copy a model to a subsystem. In the Simulink Editor, copy and paste the model into a
subsystem window, or use Simulink.BlockDiagram.copyContentsToSubSystem.

• Copy an existing Subsystem block to a model.

4 Creating a Model

4-42

• Drag a box around the blocks you want in a subsystem, and select the type of
subsystem you want from the context options. “Create a Subsystem Using Context
Options” on page 4-44.

Create a Subsystem in a Subsystem Block

Add a Subsystem block to the model, and then add the blocks that make up the
subsystem.

1 Copy the Subsystem block from the Ports & Subsystems library into your model.
2 Open the Subsystem block by double-clicking it.
3 In the empty subsystem window, create the subsystem contents. Use Inport blocks to

represent input from outside the subsystem and Outport blocks to represent external
output.

For example, this subsystem includes a Sum block and Inport and Outport blocks to
represent input to and output from the subsystem.

When you close the subsystem window, the Subsystem block includes a port for each
Inport and Outport block.

 Create a Subsystem

4-43

Create a Subsystem from Selected Blocks

1 Select the blocks that you want to include in a subsystem. To select multiple
blocks in one area of the model, drag a bounding box that encloses the blocks and
connecting lines that you want to include in the subsystem.

The figure shows a model that represents a counter. The bounding box selects the
Sum and Unit Delay blocks.

2 Select Diagram > Subsystems & Model Reference > Create Subsystem from
Selection.

A Subsystem block appears, which encloses the selected blocks.

Tip Resize the Subsystem block so the port labels are readable.

To edit the subsystem contents, open the Subsystem block. For example:

4 Creating a Model

4-44

adds Inport and Outport blocks to represent input from and output to blocks outside the
subsystem.

You can change the name of the Subsystem block and modify the block the way that you
do with any other block (for example, you can mask the subsystem).

Create a Subsystem Using Context Options

1 Drag a box around the blocks you want in your subsystem.

2 View the subsystems you can create with these blocks by hovering over the first
context option that appears.

 Create a Subsystem

4-45

3 Select the type of subsystem you want to create from these options.

A Subsystem block appears, which encloses the selected blocks.

Note: You can create only enabled, triggered, virtual, and function-call subsystems using
this method.

Related Examples
• “Configure a Subsystem” on page 4-46
• “Navigate Subsystems in the Model Hierarchy” on page 4-48

More About
• “Componentization Guidelines” on page 14-28
• “Subsystem Expansion” on page 4-52
• “Conditional Subsystems”

4 Creating a Model

4-46

Configure a Subsystem

In this section...

“Subsystem Execution” on page 4-46
“Label Subsystem Ports” on page 4-46
“Control Access to Subsystems” on page 4-46
“Control Subsystem Behavior with Callbacks” on page 4-47

Subsystem Execution

You can configure a subsystem to execute either conditionally or unconditionally.

• An unconditionally executed subsystem always executes.
• A conditionally executed subsystem may or may not execute, depending on the value

of an input signal. For details, see “Conditional Subsystems”.

Label Subsystem Ports

By default, Simulink labels ports on a Subsystem block. The labels are the names of the
Inport and Outport blocks that connect the subsystem to blocks outside of the subsystem.

You can specify how Simulink labels the ports of a subsystem.

1 Select the Subsystem block.
2 Select one of the labeling options from Diagram > Format > Port Labels menu

(for example, From Port Block Name).

Control Access to Subsystems

You can control user access to subsystems. For example, you can prevent a user from
viewing or modifying the contents of a library subsystem while still allowing the user to
employ the subsystem in a model.

Note: This method does not necessarily prevent a user from changing the access
restrictions. To hide proprietary information that is in a subsystem, consider using
protected model referencing models (see “Protected Model” on page 8-71).

 Configure a Subsystem

4-47

To restrict access to a library subsystem, open the subsystem parameter dialog box and
set Read/Write permissions to one of these values:

• ReadOnly: A user can view the contents of the library subsystem but cannot modify
the reference subsystem without disabling its library link or changing its Read/Write
permissions to ReadWrite.

• NoReadOrWrite: A user cannot view the contents of the library subsystem, modify
the reference subsystem, or change reference subsystem permissions.

Both options allow a user to employ the library subsystem in models by creating
links (see “Libraries”). For more information about subsystem access options, see the
Subsystem block documentation.

Note: You do not receive a response if you attempt to view the contents of a subsystem
whose Read/Write permissions parameter is set to NoReadOrWrite. For example,
when double-clicking such a subsystem, Simulink does not open the subsystem and does
not display any messages.

Control Subsystem Behavior with Callbacks

You can use block callbacks to perform actions in response to subsystem modeling actions
such as:

• Handling an error
• Deleting a block or line in a subsystem
• Closing a subsystem

For details, see “Block Callbacks” on page 31-8.

4 Creating a Model

4-48

Navigate Subsystems in the Model Hierarchy

In this section...

“Open a Subsystem” on page 4-48
“Preview Contents of a Subsystem” on page 4-51

Open a Subsystem

Subsystems allow you to create a hierarchical model comprising many layers. You can
navigate this hierarchy using the “Model Browser” on page 11-73 or with Simulink
Editor model navigation commands.

To open a subsystem using the Simulink Editor context menu for the Subsystem block:

1 In the Simulink Editor, right-click the Subsystem block.

2 From the context menu, select one of these options:

• Open — Open the subsystem, in the same window and tab as used for the top
model.

 Navigate Subsystems in the Model Hierarchy

4-49

• Open In New Tab — Open the subsystem, creating an additional tab for the
subsystem.

• Open In New Window— Open the subsystem, opening a new Simulink Editor
window.

4 Creating a Model

4-50

For any operation to open a subsystem, you can use a keyboard shortcut to have the
subsystem open in a new tab or window:

Where to Open the Subsystem Keyboard Shortcut

In a new tab Hold the CTRL key while opening the
subsystem.

In a new window Hold the SHIFT key while opening the
subsystem.

Tip To navigate up and out of a subsystem, select View > Navigate > Up to Parent.
The subsystem you navigated from appears highlighted so you can identify where you
came from.

 Navigate Subsystems in the Model Hierarchy

4-51

Preview Contents of a Subsystem

You can use content preview to display a representation of the contents of a subsystem,
without opening the subsystem. Content preview helps you to understand at a glance
the kind of processing performed by the subsystem. For details, see “Preview Content of
Hierarchical Items” on page 1-43.

4 Creating a Model

4-52

Subsystem Expansion

In this section...

“What Is Subsystem Expansion?” on page 4-52
“Why Expand a Subsystem?” on page 4-53
“Subsystems That You Can Expand” on page 4-54
“Results of Expanding a Subsystem” on page 4-55
“Data Stores” on page 4-56

What Is Subsystem Expansion?

Subsystem expansion involves moving the contents of a virtual subsystem into the
system that contains that subsystem.

For example, the sldemo_enginewc model includes the Combustion subsystem.

 Subsystem Expansion

4-53

After you expand the Combustion subsystem, the top level of the sldemo_enginewc
model includes the blocks and signals of the Combustion subsystem. The expansion
removes the Subsystem block and the Inport and Outport blocks.

Why Expand a Subsystem?

Expand a subsystem if you want to flatten a model hierarchy by bringing the contents of
a subsystem up one level.

4 Creating a Model

4-54

Expanding a subsystem is useful when refactoring a model. Flattening a model hierarchy
can be the end result, or just one step in refactoring. For example, you could pull a set of
blocks up to the parent system by expanding the subsystem, deselect the blocks that you
want to leave in the parent, and then create a subsystem from the remaining selected
blocks.

Subsystems That You Can Expand

You can expand virtual subsystems that are not masked, linked, or commented.

Subsystems That You Can Automatically Modify to Enable Expansion

If you try to expand one of these subsystems using the Simulink Editor, a message gives
you the option of having Simulink modify the subsystem so that you can then expand it.

Kind of Subsystem Modification

Masked subsystem Removes all masking information
Library links Breaks the link
Commented-out subsystem Removes the comment-out setting

Subsystems That You Cannot Expand

You cannot expand these subsystems:

• Atomic subsystems
• Conditional subsystems
• Configurable subsystems
• Variant subsystems
• Subsystems in a referenced model
• Subsystems with the Read/Write permissions parameter set to ReadOnly or

NoReadWrite

• Subsystems with an InitFcn, StartFcn, PauseFcn, ContinueFcn, or StopFcn
callback

• Subsystems with linked requirements (using Simulink Verification and Validation™
software)

 Subsystem Expansion

4-55

Results of Expanding a Subsystem

When you expand a subsystem, Simulink:

• Removes the Subsystem block
• Removes the root Inport, root Outport, and Simscape Connection Port blocks that

were in the subsystem
• Connects the signal lines that went to the input and output ports of the subsystem

directly to the ports of the blocks in the model that connected to the subsystem

Block Paths

The paths for blocks that were in the subsystem that you expanded change. After
expansion, update scripts and test harnesses that rely on the hierarchical paths to blocks
that were in the subsystem that you expanded.

Signal Names and Properties

If you expand a subsystem with a missing connection on the outside or inside of the
subsystem, Simulink keeps the line labels, but uses the signal name and properties from
just one of the lines. For lines corresponding to:

• A subsystem input port, Simulink uses the signal name and properties from the
signal in the system in which the subsystem exists

• A subsystem output port, Simulink uses the signal name and properties from the
subsystem

Display Layers

The display layers of blocks (in other words, which blocks appear in front or in back for
overlapping blocks) does not change after expansion. Blocks in front of the Subsystem
block remain above the expanded contents, and blocks below the Subsystem block remain
under the expanded contents.

Sorted Order and Block Priorities

When you compile a model, Simulink sorts the blocks in terms of the order of block
execution. Expanding a subsystem can change block path names, which, in rare cases,
can impact the block execution order.

If you explicitly set block execution order by setting block priorities within a subsystem,
Simulink removes those block priority settings when you expand that subsystem.

4 Creating a Model

4-56

Data Stores

Expanding a subsystem that contains a Data Store Memory block that other subsystems
read from or write to can change the required data store write and read sequence. You
may need to restructure your model. For details, see “Order Data Store Access” on page
58-36.

Related Examples
• “Expand Subsystem Contents” on page 4-57

 Expand Subsystem Contents

4-57

Expand Subsystem Contents

In this section...

“Expand a Subsystem” on page 4-57
“Expand a Subsystem from the Command Line” on page 4-58

Expand a subsystem to flatten a model hierarchy by bringing the contents of a subsystem
up one level.

Expand a Subsystem

1 In the Simulink Editor, right-click the Subsystem block for the subsystem that you
want to expand.

2 From the context menu, select Subsystem & Model Reference > Expand
Subsystem.

The Expand Subsystem is disabled for subsystems that you cannot convert. For
some kinds of subsystems, you have the option of having Simulink modify the
subsystem so that you can then expand it. For details, see “Subsystems That You
Can Automatically Modify to Enable Expansion” on page 4-54.

3 If necessary, modify the model layout for readability.

Simulink distributes blocks and routes signals for readability, but you can refine
the model layout to enhance readability. Also, you may want to modify the model to
adjust for how the subsystem expansion handles aspects of the model such as signal
naming. For details, see “Results of Expanding a Subsystem” on page 4-55.

4 Update scripts and test harnesses that rely on the hierarchical paths to blocks that
were in the subsystem that you expanded.

Nested Subsystems

Subsystem expansion applies to the currently selected subsystem level. Simulink does
not expand other subsystems in a nested subsystem hierarchy.

To improve readability when you expand nested subsystems, start by expanding the
highest-level subsystem that you want to expand, and then work your way down the
hierarchy as far as you want to expand.

4 Creating a Model

4-58

Expand a Subsystem from the Command Line

To expand a subsystem programmatically, use the
Simulink.BlockDiagram.expandSubsystem function.

More About
• “Subsystem Expansion” on page 4-52

 Use Control Flow Logic

4-59

Use Control Flow Logic

In this section...

“Equivalent C Language Statements” on page 4-59
“Conditional Control Flow Logic” on page 4-59
“While and For Loops” on page 4-62

Equivalent C Language Statements

You can use block diagrams to model control flow logic equivalent to the following C
programming language statements:

• for

• if-else

• switch

• while

Conditional Control Flow Logic

You can use the following blocks to perform conditional control flow logic.

C Statement Equivalent Blocks

if-else If, If Action Subsystem
switch Switch Case, Switch Case Action Subsystem

If-Else Control Flow

The following diagram represents if-else control flow.

4 Creating a Model

4-60

Construct an if-else control flow diagram as follows:

1 Provide data inputs to the If block for constructing if-else conditions.

In the If block parameters dialog box, set inputs to the If block. Internally, the inputs
are designated as u1, u2,..., un and are used to construct output conditions.

2 In the If block parameters dialog box, set output port if-else conditions for the If
block.

In the If block parameters dialog box, set Output ports. Use the input values u1,
u2, ..., un to express conditions for the if, elseif, and else condition fields in
the dialog box. Of these, only the if field is required. You can enter multiple elseif
conditions and select a check box to enable the else condition.

3 Connect each condition output port to an Action subsystem.

Connect each if, elseif, and else condition output port on the If block to a subsystem
to be executed if the port's case is true.

Create these subsystems by placing an Action Port block in a subsystem. This
creates an atomic Action subsystem with a port named Action, which you then
connect to a condition on the If block.

Once connected, the subsystem takes on the identity of the condition it is connected
to and behaves like an enabled subsystem.

For more detailed information, see the If and Action Port blocks.

 Use Control Flow Logic

4-61

Note All blocks in an Action subsystem driven by an If or Switch Case block must run
at the same rate as the driving block.

Switch Control Flow

The following diagram represents switch control flow.

Construct a switch control flow statement as follows:

1 Provide a data input to the argument input of the Switch Case block.

The input to the Switch Case block is the argument to the switch control flow
statement. This value determines the appropriate case to execute. Noninteger inputs
to this port are truncated.

2 Add cases to the Switch Case block based on the numeric value of the argument
input.

Using the parameters dialog box of the Switch Case block, add cases to the Switch
Case block. Cases can be single or multivalued. You can also add an optional default
case, which is true if no other cases are true. Once added, these cases appear as
output ports on the Switch Case block.

3 Connect each Switch Case block case output port to an Action subsystem.

Each case output of the Switch Case block is connected to a subsystem to be
executed if the port's case is true. You create these subsystems by placing an Action
Port block in a subsystem. This creates an atomic subsystem with a port named
Action, which you then connect to a condition on the Switch Case block. Once

4 Creating a Model

4-62

connected, the subsystem takes on the identity of the condition and behaves like an
enabled subsystem. Place all the block programming executed for that case in this
subsystem.

For more detailed information, see documentation for the Switch Case and Action
Port blocks.

Note After the subsystem for a particular case executes, an implied break executes,
which exits the switch control flow statement altogether. Simulink switch control
flow statement implementations do not exhibit the “fall through” behavior of C switch
statements.

While and For Loops

Use the following blocks to perform while and for loops.

C Statement Equivalent Blocks

do-while While Iterator Subsystem

for For Iterator Subsystem

while While Iterator Subsystem

While Loops

The following diagram illustrates a while loop.

 Use Control Flow Logic

4-63

In this example, Simulink repeatedly executes the contents of the While subsystem
at each time step until a condition specified by the While Iterator block is satisfied. In
particular, for each iteration of the loop specified by the While Iterator block, Simulink
invokes the update and output methods of all the blocks in the While subsystem in the
same order that the methods would be invoked if they were in a noniterated atomic
subsystem.

Note: Simulation time does not advance during execution of a While subsystem's
iterations. Nevertheless, blocks in a While subsystem treat each iteration as a time
step. As a result, in a While subsystem, the output of a block with states (that is, a
block whose output depends on its previous input), reflects the value of its input at the
previous iteration of the while loop. The output does not reflect that block’s input at the
previous simulation time step. For example, a Unit Delay block in a While subsystem
outputs the value of its input at the previous iteration of the while loop, not the value at
the previous simulation time step.

Construct a while loop as follows:

1 Place a While Iterator block in a subsystem.

The host subsystem label changes to while {...}, to indicate that it is modeling
a while loop. These subsystems behave like triggered subsystems. This subsystem
is host to the block programming that you want to iterate with the While Iterator
block.

2 Provide a data input for the initial condition data input port of the While Iterator
block.

The While Iterator block requires an initial condition data input (labeled IC) for
its first iteration. This must originate outside the While subsystem. If this value is
nonzero, the first iteration takes place.

3 Provide data input for the conditions port of the While Iterator block.

Conditions for the remaining iterations are passed to the data input port labeled
cond. Input for this port must originate inside the While subsystem.

4 (Optional) Set the While Iterator block to output its iterator value through its
properties dialog.

4 Creating a Model

4-64

The iterator value is 1 for the first iteration and is incremented by 1 for each
succeeding iteration.

5 (Optional) Change the iteration of the While Iterator block to do-while through its
properties dialog.

This changes the label of the host subsystem to do {...} while. With a do-
while iteration, the While Iteration block no longer has an initial condition (IC)
port, because all blocks in the subsystem are executed once before the condition port
(labeled cond) is checked.

6 Create a block diagram in the subsystem that defines the subsystem's outputs.

Note: The diagram must not contain blocks with continuous states (for example,
blocks from the Continuous block library). The sample times of all the blocks must be
either inherited (-1) or constant (inf).

For more information, see the While Iterator block.

Modeling For Loops

The following diagram represents a for loop:

In this example, Simulink executes the contents of the For subsystem multiples times at
each time step. The input to the For Iterator block specifies the number of iterations . For
each iteration of the for loop, Simulink invokes the update and output methods of all the

 Use Control Flow Logic

4-65

blocks in the For subsystem in the same order that it invokes the methods if they are in a
noniterated atomic subsystem.

Note: Simulation time does not advance during execution of a For subsystem’s iterations.
Nevertheless, blocks in a For subsystem treat each iteration as a time step. As a result,
in a For subsystem, the output of a block with states (that is, a block whose output
depends on its previous input) reflects the value of its input at the previous iteration of
the for loop. The output does not reflect that block’s input at the previous simulation
time step. For example, a Unit Delay block in a For subsystem outputs the value of its
input at the previous iteration of the for loop, not the value at the previous simulation
time step.

Construct a for loop as follows:

1 Drag a For Iterator Subsystem block from the Library Browser or Library window
into your model.

2 (Optional) Set the For Iterator block to take external or internal input for the
number of iterations it executes.

Through the properties dialog of the For Iterator block you can set it to take input
for the number of iterations through the port labeled N. This input must come from
outside the For Iterator Subsystem.

You can also set the number of iterations directly in the properties dialog.
3 (Optional) Set the For Iterator block to output its iterator value for use in the block

programming of the For Iterator Subsystem.

The iterator value is 1 for the first iteration and is incremented by 1 for each
succeeding iteration.

4 Create a block diagram in the subsystem that defines the subsystem's outputs.

Note: The diagram must not contain blocks with continuous states (for example,
blocks from the Continuous block library). The sample times of all the blocks must be
either inherited (-1) or constant (inf).

The For Iterator block works well with the Assignment block to reassign values in a
vector or matrix. The following example shows the use of a For Iterator block. Note the
matrix dimensions in the data being passed.

4 Creating a Model

4-66

The above example outputs the sine value of an input 2-by-5 matrix (2 rows, 5 columns)
using a For subsystem containing an Assignment block. The process is as follows.

1 A 2-by-5 matrix is input to the Selector block and the Assignment block.
2 The Selector block strips off a 2-by-1 matrix from the input matrix at the column

value indicated by the current iteration value of the For Iterator block.
3 The sine of the 2-by-1 matrix is taken.
4 The sine value 2-by-1 matrix is passed to an Assignment block.
5 The Assignment block, which takes the original 2-by-5 matrix as one of its inputs,

assigns the 2-by-1 matrix back into the original matrix at the column location
indicated by the iteration value.

The rows specified for reassignment in the property dialog for the Assignment block
in the above example are [1,2]. Because there are only two rows in the original
matrix, you could also have specified -1 for the rows, (that is, all rows).

 Use Control Flow Logic

4-67

Note The Trigonometric Function block is already capable of taking the sine
of a matrix. The above example uses the Trigonometric Function block only as
an example of changing each element of a matrix with the collaboration of an
Assignment block and a For Iterator block.

4 Creating a Model

4-68

Callbacks for Customized Model Behavior

In this section...

“Model, Block, and Port Callbacks” on page 4-68
“What You Can Do with Callbacks” on page 4-68
“Avoid run Commands in Callback Code” on page 4-69
“See Also” on page 4-69

Model, Block, and Port Callbacks

Callbacks are a series of user-defined commands that execute in response to a specific
modeling action, such as opening a model or stopping a simulation. Callbacks define
MATLAB expressions that execute when the block diagram or a block is acted upon in a
particular way.

Simulink provides model, block, and port callback parameters that identify specific kinds
of model actions. You provide the code for a callback parameter. Simulink executes the
callback code when the associated modeling action occurs.

For example, the code that you specify for the PreLoadFcn model callback parameter
executes before the model loads. You can provide code for PreLoadFcn that loads the
variables that model uses into the MATLAB workspace.

What You Can Do with Callbacks

Callbacks are a powerful way to customize your Simulink model. A callback executes
when you perform actions on your model, such as double-clicking on a block or starting a
simulation. You can use callbacks to execute MATLAB code. You can use model, block, or
port callbacks to perform common tasks, such as:

• “Load Variables When Opening a Model” on page 1-8
• “Modify Behavior for Opening a Block” on page 31-9
• “Execute MATLAB Code Before Starting Simulation” on page 23-9

 Callbacks for Customized Model Behavior

4-69

Avoid run Commands in Callback Code

Do not call the run command from within model or block callback code. Doing so can
result in unexpected behavior (such as errors or incorrect results) if you load, compile, or
simulate a Simulink model.

See Also

For information about how to define specific kinds of callbacks, see:

• “Model Callbacks” on page 4-70
• “Block Callbacks” on page 4-75
• “Port Callbacks” on page 4-82

For information about viewing the order in which callbacks in a model execute, see
“Callback Tracing” on page 4-83.

For information about model callbacks in fast restart mode, see “Model Methods and
Callbacks in Fast Restart” on page 66-11.

4 Creating a Model

4-70

Model Callbacks

In this section...

“Create Model Callbacks” on page 4-70
“View Model Callbacks” on page 4-71
“Model Callback Parameters” on page 4-72

Create Model Callbacks

You can create model callbacks interactively or programmatically.

To create a model callback interactively:

1 In the Simulink Editor, select File > Model Properties > Model Properties.
2 In the Model Properties dialog box, select the Callbacks tab.
3 In the left pane, select the callback parameter.
4 In the right pane, enter the code to be invoked for the selected callback parameter.

To create a model callback programmatically, use the set_param command to assign
MATLAB code to a callback parameter. For example, the following command evaluates
the variable testvar when you double-click the Test block in mymodel:

set_param('mymodel/Test', 'OpenFcn', 'testvar')

The execution of callbacks for model referencing reflects the order in which the top model
and the model it references execute their callbacks. For example, suppose:

• Model A references model B.
• Model A has a OpenFcn callback that creates variables in the MATLAB workspace.
• Model B has a CloseFcn callback that clears the MATLAB workspace.

Simulating model A triggers rebuilding the referenced model B.

When Simulink rebuilds model B, it opens and closes model B and invokes the model B
CloseFcn callback. CloseFcn clears the MATLAB workspace, including the variables
created by the model A OpenFcn callback.

 Model Callbacks

4-71

Instead of using a CloseFcn callback for model B, you could use a StopFcn callback in
model A to clear from the MATLAB workspace the variables used by the model.

View Model Callbacks

1 In the Simulink Editor, select File > Model Properties > Model Properties.
2 In the Model Properties dialog box, select the Callbacks tab.

A list of callbacks that the model defines appear in the left pane of the dialog box,
highlighted with an asterisk.

3 To view the code for a callback that has an asterisk, click the callback.

The MATLAB code appears in the edit box on the right pane of the dialog box. In
this example, StopFcn* is one of the defined callbacks for this model. Clicking
StopFcn* displays the user-defined code for that callback.

4 Creating a Model

4-72

Model Callback Parameters

Model Loading and Closing Callback Parameters

Model Callback Parameter When Executed

PreLoadFcn Before the model is loaded.

Defining a callback code for this parameter is useful for
loading variables that the model uses.

If you want to call your model from a MATLAB file without
opening your model, use the load_system function so that
the PreLoadFcn executes.

For examples, see:

• “Load Variables When Opening a Model” on page 1-8
• In the Introduction to Managing Data with Model

Reference example, click the question mark block at the
top, and then select Detailed Workflow for Managing
Data with Model Reference.

• “Model Reference Simulation Targets” on page 8-44

Limitations include:

• For the PreLoadFcn callback, the get_param command
does not return the model parameter values because the
model is not yet loaded. Instead, get_param returns:

• The default value for a standard model parameter such
as solver

• An error message for a model parameter added with
add_param

• Programmatic access to Scopes is not supported.
PostLoadFcn After the model is loaded.

Defining callback code for this parameter may be useful for
generating an interface requiring a loaded model.

Limitations include:

 Model Callbacks

4-73

Model Callback Parameter When Executed

• If you make structural changes with PostLoadFcn, the
function does not set the model Dirty flag to indicate
unsaved changes. When you close the model, Simulink
does not prompt you to save.

• Programmatic access to Scopes is not supported.
CloseFcn Before the block diagram is closed.

Any ModelCloseFcn and DeleteFcn callbacks set on blocks
in the model are called prior to the model CloseFcn callback.
The DestroyFcn callback of any blocks in the model is called
after the model CloseFcn callback.

Model Saving Callback Parameters

Model Callback Parameter When Executed

PreSaveFcn Before the model is saved.
PostSaveFcn After the model is saved.

Note: If you make structural changes with PostSaveFcn, the
function does not set the model Dirty flag to indicate unsaved
changes. When you close the model, Simulink does not prompt
you to save.

Model Simulation Callback Parameters

Model Callback Parameter When Executed

InitFcn Called during update phase before block parameters are
evaluated. This is called during model update and simulation.

For examples, see:

• “Create Programmatic Hyperlinks” on page 22-52
• “Track Object Using MATLAB Code” on page 37-161

Note: During model compilation, Simulink evaluates variant
objects before calling the model InitFcn callback. Do not

4 Creating a Model

4-74

Model Callback Parameter When Executed

modify the condition of the variant object in the InitFcn
callback. For more information, see “Define, Configure, and
Activate Variants” on page 10-17.

StartFcn Called before the simulation phase. This is not called during
model update.

For an example, see “Execute MATLAB Code Before Starting
Simulation” on page 23-9.

PauseFcn After the simulation pauses.
ContinueFcn Before the simulation continues.
StopFcn After the simulation stops.

Output is written to workspace variables and files before the
StopFcn is executed.

 Block Callbacks

4-75

Block Callbacks

In this section...

“Create Block Callbacks” on page 4-75
“Block Callback Parameters” on page 4-75

Create Block Callbacks

You can create block callbacks interactively or programmatically.

To create block callbacks interactively:

1 Right-click a block, and in the context menu, select Properties.
2 In the Block Properties dialog box, select the Callback tab.
3 Create the callback code.

To create a block callback programmatically, use the set_param command to assign
MATLAB code to the block callback parameter.

For more information, see “Block Callback Parameters” on page 4-75.

Block Callback Parameters

If a block callback executes before or after a modeling action takes place, that callback
occurs immediately before or after the action.

Block Opening Callback Parameters

Block Callback Parameter When Executed

OpenFcn When the block is opened.

Generally, use this parameter with Subsystem blocks.

The callback executes when you double-click the block or
when you call an open_system command with the block
as an argument. The OpenFcn parameter overrides the
normal behavior associated with opening a block, which is
to display the block's dialog box or to open the subsystem.

4 Creating a Model

4-76

Block Callback Parameter When Executed

Examples of tasks that you can use OpenFcn for include
defining variables for a block, making a call to MATLAB to
produce a plot of simulated data, or generating a graphical
user interface.

For examples of using OpenFcn with model referencing, see:

• In the Introduction to Managing Data with Model
Reference example, click the question mark block at
the top and then select Detailed Workflow for
Managing Data with Model Reference.

• “Model Reference Simulation Targets” on page 8-44
LoadFcn After the block diagram is loaded.

For Subsystem blocks, the LoadFcn callback is performed
for any blocks in the subsystem (including other Subsystem
blocks) that have a LoadFcn callback defined.

Block Editing Callback Parameters

Block Callback Parameter When Executed

MoveFcn When the block is moved or resized.
NameChangeFcn After a block name or path changes.

When a Subsystem block path changes, after calling its own
NameChangeFcn callback, the Subsystem block calls this
callback for all blocks that it contains.

PreCopyFcn Before a block is copied. The PreCopyFcn is also executed if
an add_block command is used to copy the block.

If you copy a Subsystem block that contains a block for which
the PreCopyFcn callback is defined, that callback executes
also.

The block CopyFcn callback is called after all PreCopyFcn
callbacks are executed, unless PreCopyFcn invokes the
error command, either explicitly or via a command used in
any PreCopyFcn.

 Block Callbacks

4-77

Block Callback Parameter When Executed

CopyFcn After a block is copied. The callback is also executed if an
add_block command is used to copy the block.

If you copy a Subsystem block that contains a block for
which the CopyFcn parameter is defined, the callback is also
executed.

ClipboardFcn When the block is copied or cut to the system clipboard.
PreDeleteFcn Before a block is graphically deleted (for example, when you

graphically delete the block or invoke delete_block on the
block).

The PreDeleteFcn is not called when the model containing
the block is closed. The block's DeleteFcn is called after
the PreDeleteFcn, unless the PreDeleteFcn invokes the
error command, either explicitly or via a command used in
the PreDeleteFcn.

DeleteFcn After a block is graphically deleted (for example, when you
graphically delete the block, invoke delete_block on the
block, or close the model containing the block).

When the DeleteFcn is called, the block handle is still
valid and can be accessed using get_param. If the block is
graphically deleted by invoking delete_block or by closing
the model, after deletion the block is destroyed from memory
and the block's DestroyFcn is called.

For Subsystem blocks, the DeleteFcn callback is performed
for any blocks in the subsystem (including other Subsystem
blocks) that have a DeleteFcn callback defined.

4 Creating a Model

4-78

Block Callback Parameter When Executed

DestroyFcn When the block has been destroyed from memory (for
example, when you invoke delete_block on either the
block or a subsystem containing the block or close the model
containing the block).

If the block was not previously graphically deleted, the
blockDeleteFcn callback is called prior to the DestroyFcn.
When the DestroyFcn is called, the block handle is no longer
valid.

UndoDeleteFcn When a block deletion is undone.

Block Compilation and Simulation Callback Parameters

Block Callback Parameter When Executed

InitFcn Before the block diagram is compiled and before block
parameters are evaluated.

StartFcn After the block diagram is compiled and before the simulation
starts.

In the case of an S-Function block, StartFcn executes
immediately before the first execution of the block’s
mdlProcessParameters function. For more information, see
“S-Function Callback Methods”.

ContinueFcn Before the simulation continues.
PauseFcn After the simulation pauses.
StopFcn At any termination of the simulation.

In the case of an S-Function block, StopFcn executes after
the block's mdlTerminate function executes. For more
information, see “S-Function Callback Methods”.

Block Saving and Closing Callback Parameters

Block Callback Parameter When Executed

PreSaveFcn Before the block diagram is saved.

 Block Callbacks

4-79

Block Callback Parameter When Executed

For Subsystem blocks, the PreSaveFcn callback is performed
for any blocks in the subsystem (including other Subsystem
blocks) that have a PreSaveFcn callback defined.

PostSaveFcn After the block diagram is saved.

For Subsystem blocks, the PostSaveFcn callback is
performed for any blocks in the subsystem (including other
Subsystem blocks) that have a PostSaveFcn callback
defined.

CloseFcn When the block is closed using the close_system command.

The CloseFcn is not called when you interactively close
the block parameters dialog box, when you interactively
close the subsystem or model containing the block, or when
you close the subsystem or model containing a block using
close_system.

For example, to close all open MATLAB windows, use a
command such as:

set_param('my_model','CloseFcn','close all')

ModelCloseFcn Before the block diagram is closed.

When the model is closed, the block's ModelCloseFcn is
called prior to its DeleteFcn.

For Subsystem blocks, the ModelCloseFcn callback is
performed for any blocks in the subsystem (including other
Subsystem blocks) that have a ModelCloseFcn callback
defined.

Subsystem Block Callback Parameters

You can use the other block callback parameters with Subsystem blocks, but the callback
parameters in this table are specific to Subsystem blocks.

Note: A callback for a masked subsystem cannot directly reference the parameters
of the masked subsystem (see “Block Masks”). Simulink evaluates block callbacks in

4 Creating a Model

4-80

the MATLAB base workspace, whereas the mask parameters reside in the masked
subsystem's private workspace. A block callback, however, can use get_param to obtain
the value of a mask parameter. For example, here gain is the name of a mask parameter
of the current block:

get_param(gcb, 'gain')

Block Callback Parameter When Executed

DeleteChildFcn After a block or line is deleted in a subsystem.

If the block has a DeleteFcn or DestroyFcn callback, those
callbacks execute prior to the DeleteChildFcn callback.

ErrorFcn When an error has occurred in a subsystem.

Use the following form for the callback code for the ErrorFcn
parameter:

newException = errorHandler(subsys, ...

errorType, originalException)

where

• errorHandler is the name of the function.
• subsys is a handle to the subsystem in which the error

occurred.
• errorType is a Simulink string indicating the type of

error that occurred.
• originalException is an MSLException (see “Error

Handling in Simulink Using MSLException” on page
23-25).

• newException is an MSLException specifying the error
message to be displayed to the user.

If you provide the original exception, then you do not need to
specify the subsystem and the error type.

The following command sets the ErrorFcn of the subsystem
subsys to call the errorHandler callback:

 Block Callbacks

4-81

Block Callback Parameter When Executed
set_param(subsys,'ErrorFcn','errorHandler')

In such calls to set_param, do not include the input
arguments of the callback code. Simulink displays the error
message returned by the callback.

ParentCloseFcn Before closing a subsystem containing the block or when the
block is made part of a new subsystem using either:

• The new_system command
• In the Simulink Editor, the Diagram > Subsystem &

Model Reference > Create Subsystem from Selection
option

When you close the model, Simulink does not call the
ParentCloseFcn callbacks of blocks at the root model level.

4 Creating a Model

4-82

Port Callbacks

Block input and output ports have a single callback parameter, ConnectionCallback.
This parameter allows you to set callbacks on ports that are triggered every time the
connectivity of these ports changes. Examples of connectivity changes include adding a
connection from the port to a block, deleting a block connected to the port, and deleting,
disconnecting, or connecting branches or lines to the port.

Use get_param to get the port handle of a port and set_param to set the callback on the
port. The callback code must have one input argument that represents the port handle.
The input argument is not included in the call to set_param.

For example, suppose the currently selected block has a single input port. The following
code sets foo as the connection callback on the input port:

phs = get_param(gcb, 'PortHandles');

set_param(phs.Inport, 'ConnectionCallback', 'foo');

where, foo is defined as:

function foo(portHandle)

 Callback Tracing

4-83

Callback Tracing

Use callback tracing to determine the callbacks that Simulink invokes and the order that
it invokes them when you open, edit, or simulate a model.

To enable callback tracing, do one of the following:

• In the Simulink Preferences dialog box, select the Callback tracing preference.
• Execute set_param(0, 'CallbackTracing', 'on').

The CallbackTracing parameter causes the callbacks to appear in the MATLAB
Command Window as they are invoked. This option applies to all Simulink models,
not just models that are open when you enable the preference.

4 Creating a Model

4-84

Model Workspaces

In this section...

“Model Workspace Differences from MATLAB Workspace” on page 4-84
“Troubleshooting Memory Issues” on page 4-85
“Manipulate Model Workspace Programmatically” on page 4-85

Model Workspace Differences from MATLAB Workspace

Each model is provided with its own workspace for storing variable values.

The model workspace is similar to the base MATLAB workspace except that:

• Variables in a model workspace are visible only in the scope of the model.

If both the MATLAB workspace and a model workspace define a variable of the same
name, and the variable does not appear in any intervening masked subsystem or
model workspaces, the Simulink software uses the value of the variable in the model
workspace. A model's workspace effectively provides it with its own name space,
allowing you to create variables for the model without risk of conflict with other
models.

• When the model is loaded, the workspace is initialized from a data source.

The data source can be a Model file, a MAT-file, a MATLAB file, or MATLAB code
stored in the model file. For more information, see “Data source” on page 4-88.

• You can interactively reload and save MAT-file, MATLAB file, and MATLAB code
data sources.

• To store a data object in a model workspace, set the storage class of the object to
Auto. Data objects are objects of these classes:

• Simulink.Parameter and subclasses
• Simulink.Signal and subclasses

If you specify a storage class other than Auto, you must store data objects in the base
workspace or a data dictionary to ensure the objects are unique within the global
Simulink context and accessible to all models.

• In general, parameter variables in a model workspace are not tunable in the code
generated from a model.

 Model Workspaces

4-85

However, you can tune model workspace variables declared as model arguments for
referenced models. For more information, see “Model Arguments” on page 8-60.

Note: When resolving references to variables used in a referenced model, the variables
of the referenced model are resolved as if the parent model did not exist. For example,
suppose a referenced model references a variable that is defined in both the parent
model's workspace and in the MATLAB workspace but not in the referenced model's
workspace. In this case, the MATLAB workspace is used.

Troubleshooting Memory Issues

When you use a workspace variable as a block parameter, Simulink creates a copy of
the variable during the compilation phase of the simulation and stores the variable in
memory. This can cause your system to run out of memory during simulation, or in the
process of generating code. Your system might run out of memory if you have:

• Large models with many parameters
• Models with parameters that have a large number of elements

This issue does not affect the amount of memory that is used to represent parameters in
generated code.

Manipulate Model Workspace Programmatically

An object of the Simulink.ModelWorkspace class describes a model workspace.
Simulink creates an instance of this class for each model that you open during a
Simulink session. The methods associated with this class can be used to accomplish a
variety of tasks related to the model workspace, including:

• Listing the variables in the model workspace
• Assigning values to variables
• Evaluating expressions
• Clearing the model workspace
• Reloading the model workspace from the data source
• Saving the model workspace to a specified MAT-file or MATLAB file

4 Creating a Model

4-86

• Saving the workspace to the MAT-file or MATLAB file that the workspace designates
as its data source

See Also
Simulink.ModelWorkspace

Related Examples
• “Specify Source for Data in Model Workspace” on page 4-87
• “Change Model Workspace Data” on page 4-92

 Specify Source for Data in Model Workspace

4-87

Specify Source for Data in Model Workspace

When you use a model workspace to contain the variables that a model uses, you can
choose to store the variables in one of these sources:

• The model file, which can store static variable definitions.
• A separate MAT-file or MATLAB file. You can reload the variables from the external

file into the model workspace at any time.
• Your own custom MATLAB code that creates variables. You can save the code as part

of the model file, and reload the code at any time.

To specify a data source for a model workspace, in the Model Explorer, use the Model
Workspace dialog box. To display the dialog box for a model workspace:

1 Open the Model Explorer by selecting View > Model Explorer.
2 In the Model Hierarchy pane, right-click the model workspace.

3 Select the Properties menu item, which opens the Model Workspace dialog box.

To use MATLAB commands to change data in a model workspace, see “Use MATLAB
Commands to Change Workspace Data” on page 4-94.

4 Creating a Model

4-88

Data source

The Data source field in the Model Workspace dialog box includes the following data
source options for a workspace:

• Model File

Specifies that the data source is the model itself.
• MAT-File

Specifies that the data source is a MAT file. Selecting this option causes additional
controls to appear (see “MAT-File and MATLAB File Source Controls” on page
4-88).

• MATLAB File

Specifies that the data source is a MATLAB file. Selecting this option causes
additional controls to appear (see “MAT-File and MATLAB File Source Controls” on
page 4-88).

• MATLAB Code

Specifies that the data source is MATLAB code stored in the model file. Selecting this
option causes additional controls to appear (see “MATLAB Code Source Controls” on
page 4-89).

MAT-File and MATLAB File Source Controls

Selecting MAT-File or MATLAB File as the Data source for a workspace causes the
Model Workspace dialog box to display additional controls.

 Specify Source for Data in Model Workspace

4-89

File name

Specifies the file name or path name of the MAT-file or MATLAB file that is the data
source for the selected workspace. If you specify a file name, the name must reside on the
MATLAB path.

Reinitialize From Source

Clears the workspace and reloads the data from the MAT-file or MATLAB file specified
by the File name field.

Save To Source

Saves the workspace in the MAT-file or MATLAB file specified by the File name field.

MATLAB Code Source Controls

Selecting MATLAB Code as the Data source for a workspace causes the Model
Workspace dialog box to display additional controls.

4 Creating a Model

4-90

MATLAB Code

Specifies MATLAB code that initializes the selected workspace. To change the
initialization code, edit this field, then select the Reinitialize from source button on
the dialog box to clear the workspace and execute the modified code.

Reinitialize from Source

Clears the workspace and executes the contents of the MATLAB Code field.

 Specify Source for Data in Model Workspace

4-91

Model Arguments (For Referencing This Model)

Specifies arguments that can be passed to instances of a model that another model
references. For more information, see “Model Arguments” on page 8-60.

Related Examples
• “Model Workspaces” on page 4-84
• “Change Model Workspace Data” on page 4-92

4 Creating a Model

4-92

Change Model Workspace Data

When you use a model workspace to contain the variables that a model uses, you choose
a source to store the variables, such as the model file or an external MAT-file. To modify
the variables at the source, you use a different procedure depending on the type of source
that you selected.

Change Workspace Data Whose Source Is the Model File

If the data source of a model workspace is the model file, you can use Model Explorer or
MATLAB commands to modify the stored variables (see “Use MATLAB Commands to
Change Workspace Data” on page 4-94).

For example, to create a variable in a model workspace:

1 Open the Model Explorer by selecting View > Model Explorer or by pressing Ctrl
+H.

2 In the Model Explorer Model Hierarchy pane, expand the node for your model, and
select the model workspace.

3 Select Add > MATLAB Variable.

You can similarly use the Add menu or toolbar to add a Simulink.Parameter
object to a model workspace.

 Change Model Workspace Data

4-93

To change the value of a model workspace variable:

1 Open the Model Explorer by selecting View > Model Explorer.
2 In the Model Explorer Model Hierarchy pane, select the model workspace.
3 In the Contents pane, select the variable.
4 In the Contents pane or in Dialog pane, edit the value displayed.

To delete a model workspace variable:

1 Open the Model Explorer by selecting View > Model Explorer.
2 In the Model Explorer Model Hierarchy pane, select the model workspace.
3 In Contents pane, select the variable.
4 Select Edit > Delete.

Change Workspace Data Whose Source Is a MAT-File or MATLAB File

You can use Model Explorer or MATLAB commands to modify workspace data whose
source is a MAT-file or MATLAB file.

To make the changes permanent, in the Model Workspace dialog box, use the Save To
Source button to save the changes to the MAT-file or MATLAB file.

1 Open the Model Explorer by selecting View > Model Explorer.
2 In the Model Explorer Model Hierarchy pane, right-click the workspace.
3 Select the Properties menu item.
4 In the Model Workspace dialog box, use the Save To Source button to save the

changes to the MAT-file or MATLAB file.

To discard changes to the workspace, in the Model Workspace dialog box, use the
Reinitialize From Source button.

Changing Workspace Data Whose Source Is MATLAB Code

The safest way to change data whose source is MATLAB code is to edit and reload
the source. Edit the MATLAB code and then in the Model Workspace dialog box, use
Reinitialize From Source button to clear the workspace and re-execute the code.

4 Creating a Model

4-94

To save and reload alternative versions of the workspace that result from editing the
MATLAB code source or the workspace variables themselves, see “Export Workspace
Variables” on page 11-57 and “Importing Workspace Variables” on page 11-59.

Use MATLAB Commands to Change Workspace Data

To use MATLAB commands to change data in a model workspace, first get the workspace
for the currently selected model:

hws = get_param(bdroot, 'modelworkspace');

This command returns a handle to a Simulink.ModelWorkspace object whose
properties specify the source of the data used to initialize the model workspace. Edit the
properties to change the data source.

Use the workspace methods to:

• List, set, and clear variables
• Evaluate expressions in the workspace
• Save and reload the workspace

For example, the following MATLAB code creates variables specifying model parameters
in the model workspace, saves the parameters, modifies one of them, and then reloads
the workspace to restore it to its previous state.

hws = get_param(bdroot, 'modelworkspace');

hws.DataSource = 'MAT-File';

hws.FileName = 'params';

hws.assignin('pitch', -10);

hws.assignin('roll', 30);

hws.assignin('yaw', -2);

hws.saveToSource;

hws.assignin('roll', 35);

hws.reload;

Related Examples
• “Model Workspaces” on page 4-84
• “Specify Source for Data in Model Workspace” on page 4-87

 Symbol Resolution

4-95

Symbol Resolution
In this section...

“Symbols” on page 4-95
“Symbol Resolution Process” on page 4-95
“Numeric Values with Symbols” on page 4-96
“Other Values with Symbols” on page 4-97
“Limit Signal Resolution” on page 4-97
“Explicit and Implicit Symbol Resolution” on page 4-98

Symbols

When you create a Simulink model, you can use symbols to provide values and
definitions for many types of entities in the model. Model entities that you can define
with symbols include block parameters, configuration set parameters, data types, signals,
signal properties, and bus architecture.

A symbol that provides a value or definition must be a legal MATLAB identifier. Such an
identifier starts with an alphabetic character, followed by alphanumeric or underscore
characters up to the length given by the function namelengthmax. You can use the
function isvarname to determine whether a symbol is a legal MATLAB identifier.

A symbol provides a value or definition in a Simulink model by corresponding to some
item that:

• Exists in an accessible workspace
• Has a name that matches the symbol
• Provides the required information

Symbol Resolution Process

The process of finding an item that corresponds to a symbol is called symbol resolution
or resolving the symbol. The matching item can provide the needed information directly,
or it can itself be a symbol. A symbol must resolve to some other item that provides the
information.

When the Simulink software compiles a model, it tries to resolve every symbol in the
model, except symbols in MATLAB code that runs in a callback or as part of mask

4 Creating a Model

4-96

initialization. Depending on the particular case, the item to which a symbol resolves can
be a variable, object, or function.

Simulink attempts to resolve a symbol by searching through the accessible workspaces in
hierarchical order for a MATLAB variable or Simulink object whose name is the same as
the symbol.

The search path is identical for every symbol. The search begins with the block that
uses the symbol, or is the source of a signal that is named by the symbol, and proceeds
upward. Except when simulation occurs via the sim command, the search order is:

1 Any mask workspaces, in order from the block upwards (see “How Mask Parameters
Work” on page 34-4)

2 The model workspace of the model that contains the block (see “Model Workspaces”
on page 4-84)

3 The MATLAB base workspace (see “What Is the MATLAB Workspace?”)

If Simulink finds a matching item in the course of this search, the search terminates
successfully at that point, and the symbol resolves to the matching item. The result is
the same as if the value of that item had appeared literally instead of the symbol that
resolved to the item. An object defined at a lower level shadows any object defined at a
higher level.

If no matching item exists on the search path, Simulink attempts to evaluate the symbol
as a function. If the function is defined and returns an appropriate value, the symbol
resolves to whatever the function returned. Otherwise, the symbol remains unresolved,
and an error occurs. Evaluation as a function occurs as the final step whenever a
hierarchical search terminates without having found a matching workspace variable.

If the model that contains the symbol is a referenced model, and the search reaches
the model workspace but does not succeed there, the search jumps directly to the base
workspace without trying to resolve the symbol in the workspace of any parent model.
Thus a given symbol resolves to the same item, irrespective of whether the model that
contains the symbol is a referenced model. For information about model referencing, see
“Model Reference”.

Numeric Values with Symbols

You can specify any block parameter that requires a numeric value by providing a literal
value, a symbol, or an expression, which can contain symbols and literal values. Each
symbol is resolved separately, as if none of the others existed. Different symbols in an

 Symbol Resolution

4-97

expression can thus resolve to items on different workspaces, and to different types of
item.

When a single symbol appears and resolves successfully, its value provides the value of
the parameter. When an expression appears, and all symbols resolve successfully, the
value of the expression provides the value of the parameter. If any symbol cannot be
resolved, or resolves to a value of inappropriate type, an error occurs.

For example, suppose that the Gain parameter of a Gain block is given as cos(a*(b
+2)). The symbol cos will resolve to the MATLAB cosine function, and a and b must
resolve to numeric values, which can be obtained from the same or different types of
items in the same or different workspaces. If the symbols resolve to numeric values, the
value returned by the cosine function becomes the value of the Gain parameter.

Other Values with Symbols

Most symbols and expressions that use them provide numeric values, but the same
techniques that provide numeric values can provide any type of value that is appropriate
for its context.

Another common use of symbols is to name objects that provide definitions of some kind.
For example, a signal name can resolve to a signal object (Simulink.Signal) that
defines the properties of the signal, and a Bus Creator block Data type parameter can
name a bus object (Simulink.Bus) that defines the properties of the bus. You can use
symbols for many purposes, including:

• Define data types
• Specify input data sources
• Specify logged data destinations

For hierarchical symbol resolution, all of these different uses of symbols, whether singly
or in expressions, are the same. Each symbol is resolved, if possible, independently of any
others, and the result becomes available where the symbol appeared. The only difference
between one symbol and another is the specific item to which the symbol resolves and
the use made of that item. The only requirement is that every symbol must resolve to
something that can legally appear at the location of the symbol.

Limit Signal Resolution

Hierarchical symbol resolution traverses the complete search path by default. You can
truncate the search path by using the Permit Hierarchical Resolution option of any

4 Creating a Model

4-98

subsystem. This option controls what happens if the search reaches that subsystem
without resolving to a workspace variable. The Permit Hierarchical Resolution
values are:

• All

Continue searching up the workspace hierarchy trying to resolve the symbol. This is
the default value.

• None

Do not continue searching up the hierarchy.
• ExplicitOnly

Continue searching up the hierarchy only if the symbol specifies a block parameter
value, data store memory (where no block exists), or a signal or state that explicitly
requires resolution. Do not continue searching for an implicit resolution. See “Explicit
and Implicit Symbol Resolution” on page 4-98 for more information.

If the search does not find a match in the workspace, and terminates because the value
is ExplicitOnly or None, Simulink evaluates the symbol as a function. The search
succeeds or fails depending on the result of the evaluation, as previously described.

Explicit and Implicit Symbol Resolution

Models and some types of model entities have associated parameters that can affect
symbol resolution. For example, suppose that a model includes a signal named
Amplitude, and that a Simulink.Signal object named Amplitude exists in an
accessible workspace. If the Amplitude signal's Signal name must resolve to
Simulink signal object option is checked, the signal will resolve to the object. See
“Signal Properties Controls” for more information.

If the option is not checked, the signal may or may not resolve to the object, depending
on the value of Configuration Parameters > Data Validity > Signal resolution.
This parameter can suppress resolution to the object even though the object exists, or
it can specify that resolution occurs on the basis of the name match alone. For more
information, see “ Diagnostics Pane: Data Validity” > “Signal resolution”.

Resolution that occurs because an option such as Signal name must resolve to
Simulink signal object requires it is called explicit symbol resolution. Resolution
that occurs on the basis of name match alone, without an explicit specification, is called
implicit symbol resolution.

 Symbol Resolution

4-99

Tip Implicit symbol resolution can be useful for fast prototyping. However, when you are
done prototyping, consider using explicit symbol resolution, because implicit resolution
slows performance, complicates model validation, and can have nondeterministic effects.

4 Creating a Model

4-100

Manage Model Versions

In this section...

“How Simulink Helps You Manage Model Versions” on page 4-100
“Model File Change Notification” on page 4-101
“Specify the Current User” on page 4-102
“Manage Model Properties” on page 4-103
“Log Comments History” on page 4-111
“Version Information Properties” on page 4-113

How Simulink Helps You Manage Model Versions

The Simulink software has these features to help you to manage multiple versions of a
model:

• Use Simulink Projects to manage your project files, connect to source control, review
modified files and compare revisions. See “Project Management ”.

• Model File Change Notification helps you manage work with source control operations
and multiple users. See “Model File Change Notification” on page 4-101.

• As you edit a model, the Simulink software generates version information about the
model, including a version number, who created and last updated the model, and
an optional comments history log. The Simulink software automatically saves these
version properties with the model.

• Use the Model Properties dialog box to view and edit some of the version
information stored in the model and specify history logging.

• The Model Info block lets you display version information as an annotation block
in a model diagram.

• You can access Simulink version parameters from the MATLAB command line or a
MATLAB script.

• See Simulink.MDLInfo class to extract information from a model file without loading
the block diagram into memory. You can use MDLInfo to query model version and
Simulink version, find the names of referenced models without loading the model into
memory, and attach arbitrary metadata to your model file.

 Manage Model Versions

4-101

Model File Change Notification

You can use the Simulink Preferences window to specify whether to notify if the model
has changed on disk when updating, simulating, editing, or saving the model. This can
occur, for example, with source control operations and multiple users.

Note: To programmatically check whether the model has changed on disk since it was
loaded, use the function slIsFileChangedOnDisk.

To access the Simulink Preferences window, use one of these approaches:

• In the Simulink Editor, select File > Simulink Preferences.
• From the MATLAB Toolstrip, in the Home tab, in the Environment section, select

Preferences > Simulink. Click the Launch Simulink Preferences button .

The Model File Change Notification options are in the right pane. You can use the three
independent options as follows:

• If you select the Updating or simulating the model check box, you can choose what
form of notification you want from the Action list:

• Warning — in the MATLAB command window.
• Error — in the MATLAB command window if simulating from the command line,

or if simulating from a menu item, in the Simulation Diagnostics window.
• Reload model (if unmodified) — if the model is modified, you see the

prompt dialog. If unmodified, the model is reloaded.

4 Creating a Model

4-102

• Show prompt dialog — in the dialog, you can choose to close and reload, or
ignore the changes.

• If you select the First editing the model check box, and the file has changed on
disk, and the block diagram is unmodified in Simulink:

• Any command-line operation that causes the block diagram to be modified (e.g., a
call to set_param) will result in a warning:

Warning: Block diagram 'mymodel' is being edited but file has

changed on disk since it was loaded. You should close and

reload the block diagram.

• Any graphical operation that modifies the block diagram (e.g., adding a block)
causes a warning dialog to appear.

• If you select the Saving the model check box, and the file has changed on disk:

• The save_system function displays an error, unless the
OverwriteIfChangedOnDisk option is used.

• Saving the model by using the menu (File > Save) or a keyboard shortcut causes
a dialog to be shown. In the dialog, you can choose to overwrite, save with a new
name, or cancel the operation.

For more options to help you work with source control and multiple users, see “Project
Management ”.

Specify the Current User

When you create or update a model, your name is logged in the model for version control
purposes. The Simulink software assumes that your name is specified by at least one
of the following environment variables: USER, USERNAME, LOGIN, or LOGNAME. If your
system does not define any of these variables, the Simulink software does not update the
user name in the model.

UNIX® systems define the USER environment variable and set its value to the name you
use to log on to your system. Thus, if you are using a UNIX system, you do not have to do
anything to enable the Simulink software to identify you as the current user.

Windows systems, on the other hand, might define some or none of the “user name”
environment variables that the Simulink software expects, depending on the version
of Windows installed on your system and whether it is connected to a network. Use the

 Manage Model Versions

4-103

MATLAB command getenv to determine which of the environment variables is defined.
For example, enter

getenv('user')

at the MATLAB command line to determine whether the USER environment variable
exists on your Windows system. If not, you must set it yourself.

On Windows, set the USER environment variable (if it is not already defined).

Manage Model Properties

You can use the Model Properties dialog box to view and edit model information
(including some version parameters), callback functions, history, and the model
description. To open the dialog box,

• In a model, select File > Model Properties.
• In a library, select File > Library Properties.

Library Properties includes an additional tab, Forwarding Table, for specifying the
mapping from old library blocks to new library blocks. For information on using the
Forwarding Table, see “Make Backward-Compatible Changes to Libraries” on page
36-21.

Model Properties and Library Properties both include the tabs Main Model Information,
Callbacks, History and Description. The controls in the shared tabs are described next on
this page.

4 Creating a Model

4-104

The dialog box includes the following panes.

Viewing Model Information

The Main pane summarizes information about the current version of this model, such
as whether the model is modified, the Model Version, and Last Saved date. You can edit
some of this information in the History tab, see “Viewing and Editing Model Information
and History” on page 4-106.

 Manage Model Versions

4-105

Specifying Callbacks

Use the Callbacks pane to specify functions to be invoked at specific points in the
simulation of the model.

In the left pane, select the callback. In the right pane, enter the name of the function you
want to be invoked for the selected callback. See “Create Model Callbacks” on page 4-70
for information on the callback functions listed on this pane.

4 Creating a Model

4-106

Viewing and Editing Model Information and History

Use the History pane to view and edit model information, and to enable, view, and edit
this model's change history in the lower Model history field. To use the history controls
see “Log Comments History” on page 4-111.

Viewing Model Information

When the Read Only check box is selected, you can view but not edit the following
grayed out fields.

• Created by

Name of the person who created this model. The Simulink software sets this property
to the value of the USER environment variable when you create the model.

• Created on

 Manage Model Versions

4-107

Date and time this model was created.
• Last saved by

Name of the person who last saved this model. The Simulink software sets the value
of this parameter to the value of the USER environment variable when you save a
model.

• Last saved on

Date that this model was last saved. The Simulink software sets the value of this
parameter to the system date and time whenever you save a model.

• Model version

Version number for this model.

Editing Model Information

Clear the Read Only check box to edit model information. When the check box is
deselected, the dialog box shows the format strings or values for the following fields. You
can edit all but the Created on field, as described.

4 Creating a Model

4-108

• Created by

Name of the person who created this model. The Simulink software sets this property
to the value of the USER environment variable when you create the model. Edit this
field to change the value.

• Created on

Date and time this model was created. Do not edit this field.
• Last saved by

Enter a format string describing the format used to display the Last saved by
value in the History pane and the ModifiedBy entry in the history log and Model
Info blocks. The value of this field can be any string. The string can include the tag
%<Auto>. Simulink replaces occurrences of this tag with the current value of the
USER environment variable.

• Last saved on

 Manage Model Versions

4-109

Enter a format string describing the format used to display the Last saved on date
in the History pane and the ModifiedOn entry in the history log and the in Model
Info blocks. The value of this field can be any string. The string can contain the tag
%<Auto>. The Simulink software replaces occurrences of this tag with the current
date and time.

• Model version

Enter a format string describing the format used to display the model version
number in the Model Properties pane and in Model Info blocks. The value of this
parameter can be any text string. The text string can include occurrences of the tag
%<AutoIncrement:#> where # is an integer. Simulink replaces the tag with an
integer when displaying the model's version number. For example, it displays the tag

1.%<AutoIncrement:2>

as

1.2

Simulink increments # by 1 when saving the model. For example, when you save the
model,

1.%<AutoIncrement:2>

becomes

1.%<AutoIncrement:3>

and the model version number is reported as 1.3.

Viewing and Editing the Model Description

Use the Description pane to enter a description of the model. You can view the model
description by typing help followed by the model name at the MATLAB prompt. The
contents of the Model description field appear in the Command Window.

4 Creating a Model

4-110

Define Location of Design Data

Use the Data pane specify the location of the design data that your model uses. You can
define design data either in the base workspace or in a data dictionary. See “Migrate
Single Model to Use Dictionary” on page 59-17.

 Manage Model Versions

4-111

Log Comments History

You can create and store a record of changes to a model in the model itself. The Simulink
software compiles the history automatically from comments that you or other users enter
when they save changes to a model. For more flexibility adding labels and comments to
models and submissions, see instead “Project Management ”.

Logging Changes

To start a change history,

1 Select File > Model Properties.
2 In the Model Properties dialog box, select the History tab.
3 In the Prompt to update model history list, select When saving model and

click OK.

4 Creating a Model

4-112

The next time you save the model, the Add Comment to Model History dialog box
prompts you to enter a comment.

For example you could describe changes that you have made to the model since the last
time you saved it. To add an item to the model's change history, enter the item in the
Comment edit field and click Save. The information is stored in the model's change
history log.

If you do not want to enter an item for this session, clear the Add comment to model
history check box.

To discontinue change logging, either:

• In the Add Comment to Model History dialog box, clear the check box Always
prompt to update model history when saving this model.

• In the Model Properties dialog box History pane, select Never from the Prompt to
update model history list.

 Manage Model Versions

4-113

Viewing and Editing the Model History Log

In the Model Properties dialog box you can view and edit the model history on the
History tab.

The model history text field displays the history for the model in a scrollable text field. To
change the model history, edit the contents of this field.

Version Information Properties

Some version information is stored as model parameters in a model. You can access
this information from the MATLAB command line or from a MATLAB script, using the
Simulink get_param command.

The following table describes the model parameters used by Simulink to store version
information.

Property Description

Created Date created.
Creator Name of the person who created this model.
Description User-entered description of this model. Enter or

edit a description on the Description tab of the
Model Properties dialog box. You can view the
model description by typing

help 'mymodelname'

at the MATLAB command line.
LastModifiedBy Name of the user who last saved the model.
LastModifiedDate Date when the model was last saved.
ModifiedBy Current value of the user name of the person

who last modified this model. When you save,
this information is saved with the file as
LastModifiedBy.

ModifiedByFormat Format of the ModifiedBy parameter. Value
can be any string. The string can include the tag
%<Auto>. The Simulink software replaces the tag
with the current value of the USER environment
variable.

4 Creating a Model

4-114

Property Description

ModifiedDateFormat Format string used to generate the value of the
LastModifiedDate parameter. Value can be any
string. The string can include the tag %<Auto>.
Simulink replaces the tag with the current date
and time when saving the model.

ModifiedComment Comment entered by user who last updated this
model.

ModifiedHistory History of changes to this model.
ModelVersion Version number.
ModelVersionFormat Format of model version number. Can be

any string. The string can contain the tag
%<AutoIncrement:#> where # is an integer.
Simulink replaces the tag with # when displaying
the version number. It increments # when saving
the model.

LibraryVersion is a block parameter for a linked block. LibraryVersion is the
ModelVersion of the library at the time the link was created.

For source control version information, see instead “Project Management ”.

 Model Discretizer

4-115

Model Discretizer

In this section...

“What Is the Model Discretizer?” on page 4-115
“Requirements” on page 4-115
“Discretize a Model with the Model Discretizer” on page 4-116
“View the Discretized Model” on page 4-124
“Discretize Blocks from the Simulink Model” on page 4-127
“Discretize a Model with the sldiscmdl Function” on page 4-137

What Is the Model Discretizer?

Model Discretizer selectively replaces continuous Simulink blocks with discrete
equivalents. Discretization is a critical step in digital controller design and for hardware
in-the-loop simulations.

You can use the Model Discretizer to:

• Identify a model's continuous blocks
• Change a block's parameters from continuous to discrete
• Apply discretization settings to all continuous blocks in the model or selected blocks
• Create configurable subsystems that contain multiple discretization candidates along

with the original continuous block(s)
• Switch among the different discretization candidates and evaluate the resulting

model simulations

Requirements

To use Model Discretizer

• You must have a Control System Toolbox™ license, Version 5.2 or later.
• Make sure your model does not contain any obsolete blocks and is upgraded to the

current Simulink version. For more information, see “Model Upgrades”
• Make sure your model does not contain any masked subsystems. For more

information, see “Block Masks”.

4 Creating a Model

4-116

Discretize a Model with the Model Discretizer

To discretize a model:

• Start the Model Discretizer
• Specify the Transform Method
• Specify the Sample Time
• Specify the Discretization Method
• Discretize the Blocks

The f14 model shows the steps in discretizing a model.

 Model Discretizer

4-117

Start Model Discretizer

To open the tool, in the Simulink Editor, select Analysis > Control Design > Model
Discretizer.

4 Creating a Model

4-118

The Simulink Model Discretizer opens.

Alternatively, you can open Model Discretizer from the MATLAB Command Window
using the slmdldiscui function.

The following command opens the Simulink Model Discretizer window with the f14
model:

slmdldiscui('f14')

To open a new model or library from Model Discretizer, select File > Load model.

Specify the Transform Method

The transform method specifies the type of algorithms used in the discretization. For
more information on the different transform methods, see the Control System Toolbox
documentation.

The Transform method drop-down list contains the following options:

• zero-order hold

 Model Discretizer

4-119

Zero-order hold on the inputs.
• first-order hold

Linear interpolation of inputs.
• tustin

Bilinear (Tustin) approximation.
• tustin with prewarping

Tustin approximation with frequency prewarping.
• matched pole-zero

Matched pole-zero method (for SISO systems only).

Specify the Sample Time

Enter the sample time in the Sample time field.

You can specify an offset time by entering a two-element vector for discrete blocks or
configurable subsystems. The first element is the sample time and the second element is
the offset time. For example, an entry of [1.0 0.1] would specify a 1.0 second sample time
with a 0.1 second offset. If no offset is specified, the default is zero.

You can enter workspace variables when discretizing blocks in the s-domain. See
“Discrete blocks (Enter parameters in s-domain)” on page 4-120.

Specify the Discretization Method

Specify the discretization method in the Replace current selection with field. The
options are

• “Discrete blocks (Enter parameters in s-domain)” on page 4-120

Creates a discrete block whose parameters are retained from the corresponding
continuous block.

• “Discrete blocks (Enter parameters in z-domain)” on page 4-121

Creates a discrete block whose parameters are “hard-coded“ values placed directly
into the block's dialog.

4 Creating a Model

4-120

• “Configurable subsystem (Enter parameters in s-domain)” on page 4-122

Create multiple discretization candidates using s-domain values for the current
selection. A configurable subsystem can consist of one or more blocks.

• “Configurable subsystem (Enter parameters in z-domain)” on page 4-122

Create multiple discretization candidates in z-domain for the current selection. A
configurable subsystem can consist of one or more blocks.

Discrete blocks (Enter parameters in s-domain)

Creates a discrete block whose parameters are retained from the corresponding
continuous block. The sample time and the discretization parameters are also on the
block's parameter dialog box.

The block is implemented as a masked discrete block that uses c2d to transform the
continuous parameters to discrete parameters in the mask initialization code.

These blocks have the unique capability of reverting to continuous behavior if the sample
time is changed to zero. Entering the sample time as a workspace variable ('Ts', for
example) allows for easy changeover from continuous to discrete and back again. See
“Specify the Sample Time” on page 4-119.

Note If you generated code from a model, parameters are not tunable when Default
parameter behavior is set to Inlined in the model's Configuration Parameters dialog
box.

The following figure shows a continuous Transfer Function block next to a Transfer
Function block that has been discretized in the s-domain. The Block Parameters dialog
box for each block appears below the block.

 Model Discretizer

4-121

Discrete blocks (Enter parameters in z-domain)

Creates a discrete block whose parameters are “hard-coded” values placed directly into
the block's dialog box. Model Discretizer uses the c2d function to obtain the discretized
parameters, if needed.

For more help on the c2d function, type the following in the Command Window:

help c2d

The following figure shows a continuous Transfer Function block next to a Transfer
Function block that has been discretized in the z-domain. The Block Parameters dialog
box for each block appears below the block.

4 Creating a Model

4-122

Note If you want to recover exactly the original continuous parameter values after the
Model Discretization session, you should enter parameters in the s-domain.

Configurable subsystem (Enter parameters in s-domain)

Create multiple discretization candidates using s-domain values for the current selection.
A configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active when this
option is selected. This option allows you to either create a new configurable subsystem
or overwrite an existing one.

Note The current folder must be writable in order to save the library or libraries for the
configurable subsystem option.

Configurable subsystem (Enter parameters in z-domain)

Create multiple discretization candidates in z-domain for the current selection. A
configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active when this
option is selected. This option allows you to either create a new configurable subsystem
or overwrite an existing one.

 Model Discretizer

4-123

Note The current folder must be writable in order to save the library or libraries for the
configurable subsystem option.

Configurable subsystems are stored in a library containing the discretization candidates
and the original continuous block. The library will be named <model name>_disc_lib
and it will be stored in the current . For example a library containing a configurable
subsystem created from the f14 model will be named f14_disc_lib.

If multiple libraries are created from the same model, then the filenames will increment
accordingly. For example, the second configurable subsystem library created from the
f14 model will be named f14_disc_lib2.

You can open a configurable subsystem library by right-clicking on the subsystem in the
model and selecting Library Link > Go to library block from the pop-up menu.

Discretize the Blocks

To discretize blocks that are linked to a library, you must either discretize the blocks in
the library itself or disable the library links in the model window.

You can open the library from Model Discretizer by selecting Load model from the File
menu.

You can disable the library links by right-clicking on the block and selecting Library
Link > Disable Link from the pop-up menu.

There are two methods for discretizing blocks.

Select Blocks and Discretize

1 Select a block or blocks in the Model Discretizer tree view pane.

To choose multiple blocks, press and hold the Ctrl button on the keyboard while
selecting the blocks.

Note You must select blocks from the Model Discretizer tree view. Clicking blocks in
the editor does not select them for discretization.

2 Select Discretize current block from the Discretize menu if a single block is
selected or select Discretize selected blocks from the Discretize menu if multiple
blocks are selected.

4 Creating a Model

4-124

You can also discretize the current block by clicking the Discretize button, shown
below.

Store the Discretization Settings and Apply Them to Selected Blocks in the Model

1 Enter the discretization settings for the current block.
2 Click Store Settings.

This adds the current block with its discretization settings to the group of preset
blocks.

3 Repeat steps 1 and 2, as necessary.
4 Select Discretize preset blocks from the Discretize menu.

Deleting a Discretization Candidate from a Configurable Subsystem

You can delete a discretization candidate from a configurable subsystem by selecting it
in the Location for block in configurable subsystem field and clicking the Delete
button, shown below.

Undoing a Discretization

To undo a discretization, click the Undo discretization button, shown below.

Alternatively, you can select Undo discretization from the Discretize menu.

This operation undoes discretizations in the current selection and its children. For
example, performing the undo operation on a subsystem will remove discretization from
all blocks in all levels of the subsystem's hierarchy.

View the Discretized Model

Model Discretizer displays the model in a hierarchical tree view.

 Model Discretizer

4-125

Viewing Discretized Blocks

The block's icon in the tree view becomes highlighted with a “z” when the block has been
discretized.

The following figure shows that the Aircraft Dynamics Model subsystem has been
discretized into a configurable subsystem with three discretization candidates.

The other blocks in this f14 model have not been discretized.

4 Creating a Model

4-126

The following figure shows the Aircraft Dynamics Model subsystem of the f14 example
model after discretization into a configurable subsystem containing the original
continuous model and three discretization candidates.

The following figure shows the library containing the Aircraft Dynamics Model
configurable subsystem with the original continuous model and three discretization
candidates.

 Model Discretizer

4-127

Refreshing Model Discretizer View of the Model

To refresh Model Discretizer's tree view of the model when the model has been changed,
click the Refresh button, shown below.

Alternatively, you can select Refresh from the View menu.

Discretize Blocks from the Simulink Model

You can replace continuous blocks in a Simulink software model with the equivalent
blocks discretized in the s-domain using the Discretizing library.

The procedure below shows how to replace a continuous Transfer Fcn block in the
Aircraft Dynamics Model subsystem of the f14 model with a discretized Transfer Fcn
block from the Discretizing Library. The block is discretized in the s-domain with a zero-
order hold transform method and a two second sample time.

1 Open the f14 model.
2 Open the Aircraft Dynamics Model subsystem in the f14 model.

4 Creating a Model

4-128

3 Open the Discretizing library window.

Enter discretizing at the MATLAB command prompt.

The Library: discretizing window opens.

 Model Discretizer

4-129

This library contains s-domain discretized blocks.
4 Add the Discretized Transfer Fcn (with initial states) block to the f14/Aircraft

Dynamics Model window.

a Click the Discretized Transfer Fcn block in the Library: discretizing window.
b Drag it into the f14/Aircraft Dynamics Model window.

4 Creating a Model

4-130

5 Open the parameter dialog box for the Transfer Fcn.1 block.

Double-click the Transfer Fcn.1 block in the f14/Aircraft Dynamics Model
window.

The Block Parameters: Transfer Fcn.1 dialog box opens.

 Model Discretizer

4-131

6 Open the parameter dialog box for the Discretized Transfer Fcn block.

Double-click the Discretized Transfer Fcn block in the f14/Aircraft Dynamics
Model window.

The Block Parameters: Discretized Transfer Fcn dialog box opens.

4 Creating a Model

4-132

Copy the parameter information from the Transfer Fcn.1 block's dialog box to the
Discretized Transfer Fcn block's dialog box.

 Model Discretizer

4-133

7 Enter 2 in the Sample time field.
8 Select zoh from the Method drop-down list.

The parameter dialog box for the Discretized Transfer Fcn now looks like this.

4 Creating a Model

4-134

9 Click OK.

The f14/Aircraft Dynamics Model window now looks like this.

 Model Discretizer

4-135

10 Delete the original Transfer Fcn.1 block.

a Click the Transfer Fcn.1 block.
b Press the Delete key.

The f14/Aircraft Dynamics Model window now looks like this.

4 Creating a Model

4-136

11 Add the Discretized Transfer Fcn block to the model.

a Click the Discretized Transfer Fcn block.
b Drag the Discretized Transfer Fcn block into position to complete the model.

The f14/Aircraft Dynamics Model window now looks like this.

 Model Discretizer

4-137

Discretize a Model with the sldiscmdl Function

Use the sldiscmdl function to discretize Simulink software models from the MATLAB
Command Window. You can specify the transform method, the sample time, and the
discretization method with the sldiscmdl function.

4 Creating a Model

4-138

For example, the following command discretizes the f14 model in the s-domain with a 1-
second sample time using a zero-order hold transform method:

sldiscmdl('f14',1.0,'zoh')

5

Model Advisor

• “Consulting the Model Advisor” on page 5-2
• “Selecting Model Checks” on page 5-10
• “Model Advisor Limitations” on page 5-12
• “Select Checks and Run Model Advisor” on page 5-13
• “Save Model Analysis Time” on page 5-16
• “Run Model Checks in Background” on page 5-19
• “Run Model Checks Programmatically” on page 5-21
• “Address Model Check Results” on page 5-22
• “Save and View Model Advisor Reports” on page 5-27

5 Model Advisor

5-2

Consulting the Model Advisor

In this section...

“Model Advisor Overview” on page 5-2
“Start the Model Advisor” on page 5-3
“Model Advisor Window” on page 5-4
“Model Advisor Dashboard” on page 5-7
“More Information About Checking Your Model” on page 5-8

Model Advisor Overview

The Model Advisor checks a model or subsystem for conditions and configuration settings
that you select, including conditions that cause inaccurate or inefficient simulation
of the system that the model represents. If you have a Simulink Coder or Simulink
Verification and Validation license, the Model Advisor can check for model settings that
cause generation of inefficient code or code unsuitable for safety-critical applications. If
you have a Simulink Design Verifier™ license, the Model Advisor can check for design
errors. If an error is reported, you can view a test case that reproduces the error.

The Model Advisor produces a report that lists the suboptimal conditions or settings that
it finds, proposing better model configuration settings where appropriate.

Software is inherently complex and may not be completely free of errors. Model Advisor
checks might contain bugs. MathWorks® reports known bugs brought to its attention
on its Bug Report system at http://www.mathworks.com/support/bugreports/. The
bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

While applying Model Advisor checks to your model will increase the likelihood that your
model does not violate certain modeling standards or guidelines, their application cannot
guarantee that the system being developed will be safe or error-free. It is ultimately
your responsibility to verify, using multiple methods, that the system being developed
provides its intended functionality and does not include any unintended functionality.

http://www.mathworks.com/support/bugreports/

 Consulting the Model Advisor

5-3

Start the Model Advisor

There are two Model Advisor UIs that you can use to run checks on your model: the
Model Advisor window and the Model Advisor dashboard.

Action Use Set Preferences

Save analysis
time by
consistently
running the same
set of checks on
your model.

Model Advisor
dashboard. The
Model Advisor
dashboard does not
reload checks for an
analysis.

1 From the Model Editor, select Analysis >
Model Advisor > Preferences.

2 In the Model Advisor Preferences window,
for the Default Mode, select Model
Advisor Dashboard.

Select and view
checks to run on
your model.

Model Advisor
window.

1 From the Model Editor, select Analysis >
Model Advisor > Preferences.

2 In the Model Advisor Preferences window,
for the Default Mode, select Model
Advisor.

Before starting the Model Advisor, make sure that your current folder is writable. If the
folder is not writable, when you start the Model Advisor, you see an error message.

The Model Advisor uses the Simulink project (slprj) folder to store reports and other
information. If this folder does not exist in the current folder, the Model Advisor creates
it.

Note: Model Advisor does not analyze blocks that you comment out.

To start the Model Advisor, use one of the following methods.

Open the Model
Advisor window
or Model Advisor
dashboard

For Action

From the Model
Editor

Model or
subsystem

1 Select Analysis > Model Advisor >
Model Advisor or Model Advisor
Dashboard.

5 Model Advisor

5-4

Open the Model
Advisor window
or Model Advisor
dashboard

For Action

Alternatively, from the Model Editor

toolbar drop-down list, select
Model Advisor or Model Advisor
Dashboard.

2 In the System Selector window, select the
model or subsystem that you want.

3 Click OK.

From the Model
Explorer

Model In the Contents pane, select Advice for
model. model is the name of the model that
you want to check. (For more information,
see “Model Explorer Overview” on page
11-2.)

From the context
menu

Subsystem Right-click the subsystem that you want to
check and select Model Advisor.

Programmatically Model or
subsystem

At the command prompt, enter
modeladvisor(model). model is a handle
or name of the model or subsystem that you
want to check. For more information, see
Simulink.ModelAdvisor.

Model Advisor Window

If you want to view and select checks to run on your model, use the Model Advisor
window.

If you want to save analysis time, consistently run the same set of checks on your model
by using the Model Advisor dashboard. To switch to the dashboard, click the Switch to

Model Advisor Dashboard toggle ().

When you start the Model Advisor, the Model Advisor window displays two panes.
The left pane lists the folders in the Model Advisor. Expanding the folders displays

 Consulting the Model Advisor

5-5

the available checks. The right pane provides instructions on how to view, enable, and
disable checks. It also provides a legend describing the displayed symbols.

When you open the Model Advisor for a model that you have previously checked, the
Model Advisor initially displays the check results generated the last time that you
checked the model. If you recheck the model, you see the new results in the Model
Advisor window.

Setting Model Advisor Window Preferences

The following table summarizes actions you can take to customize the Model Advisor
window. On the toolbar, select Settings > Preferences to open the Model Advisor
Preferences dialog box.

To On Model Advisor Preferences, select

Display the check available
for each product.

Show By Product Folder

5 Model Advisor

5-6

To On Model Advisor Preferences, select

Display checks related to
specific tasks.

Show By Task Folder

Display the check Title,
TitleId, and location of the
MATLAB source code for
the check.

Show Source Tab. The Source tab displays check source
information.

Display checks that are
excluded from the Model
Advisor analysis.

Show Exclusion tab. The Exclusions tab displays checks
that are excluded from the Model Advisor analysis.

Selecting and Running Checks

The following table summarizes actions you can take to select and run checks

To Action

Display checks related to
specific tasks.

Select By Task.

Display the check available
for each product.

Select By Product.

Find checks and folders. Enter text in the Find: field and click the Find Next

button (). The Model Advisor searches in check names,
folder names, and analysis descriptions.

Reset the status of the
checks to not run.

Right-click Model Advisor in the left pane and select
Reset from the context menu.

Select some or all of the
checks.

Select the check and folder check boxes.

Run the selected checks. On the toolbar of the Model Advisor window, click Run

selected checks ().

Accessing Other Advisors

You can use the Model Advisor window to access other Advisors.

 Consulting the Model Advisor

5-7

To Select

Configure your model
to meet code generation
objectives.

Code Generation Advisor. See “Application Objectives
Using Code Generation Advisor”.

Upgrade and improve
models with the current
release.

Upgrade Advisor. See “Consult the Upgrade Advisor” on
page 6-2.

Improve the simulation
performance of your model.

Performance Advisor. See “How Performance Advisor
Improves Simulation Performance” on page 28-2.

Viewing Results

After running checks, the Model Advisor displays the results in the right pane. The
Model Advisor generates an HTML report of the check results. For more information, see
“Address Model Check Results” on page 5-22.

To Action

View the report in a
separate browser window. Click Open Report () or the Report link at the folder

level.
Highlight results for
individual checks.

Enable Model Advisor highlighting. In the Model Advisor
window, on the toolbar, do one of the following:

• Select Highlighting > Enable Highlighting.
•

Click the Enable highlighting toggle ().
Highlight model blocks
that are excluded from
individual Model Advisor
checks.

On the toolbar of the Model Advisor window, select
Highlighting > Highlight exclusions. If you have a
Simulink Verification and Validation license, you can
create or modify exclusions to the Model Advisor checks.

Model Advisor Dashboard

If you want to save analysis time, consistently run the same set of checks on your model
by using the Model Advisor dashboard.

5 Model Advisor

5-8

To Action

Select and view checks. Use the Model Advisor window. Click the Switch to

standard view toggle ().
Run checks.

Click Run checks ().
View the report in a
separate browser window.

Click Open Report.

View highlighted results.
Click the Enable highlighting toggle ().

More Information About Checking Your Model

The following table includes links to additional information about using the Model
Advisor to run checks on your model.

Action See

Select and run checks to
run on your model.

• “Select Checks and Run Model Advisor” on page 5-13
• “Selecting Model Checks” on page 5-10

Run model checks
available with Simulink.

“Simulink Checks”

If you have a Simulink
Coder license, use the
Model Advisor in code
generation applications.

• “Advice About Optimizing Models for Code Generation”
• “Simulink Coder Checks”

If you have a Simulink
Verification and Validation
license, create custom
checks for your model.

“Create Model Advisor Checks”

If you have a Simulink
Verification and Validation

“Model Guidelines Compliance”

 Consulting the Model Advisor

5-9

Action See

license, check for model
settings that cause
generation of inefficient
code or code unsuitable for
safety-critical applications.
If you have a Simulink
Design Verifier license,
check for design errors.

“Design Error Detection”

5 Model Advisor

5-10

Selecting Model Checks

To determine which model checks to run on your model, you can:

• In the Model Advisor window, select By Task to display checks related to specific
tasks. For example, to run checks to determine if your model is configured for
simulation accuracy, select checks in the Simulation Accuracy folder.

• In the Model Advisor window, right-click the check and select What’s This? to open a
help browser with check-specific documentation.

The check documentation provides:

• Detailed check descriptions.
• The conditions that result in a check warning or failure, with recommendations for

updating your model to pass the check.
• Software capabilities and limitations when using the check.

If you have a license for Simulink Verification and Validation, you can create custom
checks to run on your model.

Check Support for Libraries

You can use Model Advisor checks to check library models. When you use the Model
Advisor to check a library model, the Model Advisor window indicates (~) checks that do
not check libraries. To determine if you can run the check on library models, you can also
refer to the check documentation, “Capabilities and Limitations”. You cannot use checks
that require model compilation. If you have a license for Simulink Verification and
Validation, you can use an API to create custom checks which support library models.

Checks Triggering an Update Diagram

Model Advisor checks that trigger an Update Diagram are marked with ^. An Update
Diagram triggers a model compilation. For simulation or code generation, individual
checks can sometimes require model compilation.

Related Examples
• “Select Checks and Run Model Advisor” on page 5-13

 Selecting Model Checks

5-11

More About
• “Consulting the Model Advisor” on page 5-2

5 Model Advisor

5-12

Model Advisor Limitations

When you use the Model Advisor to check systems, the following limitations apply:

• If you rename a system, you must restart the Model Advisor to check that system.
• In systems that contain a variant subsystem, the Model Advisor checks only the

active subsystem.
• Checks do not search in Model blocks or Subsystem blocks with the block parameter

Read/Write set to NoReadorWrite. However, on a check-by-check basis, Model
Advisor checks do search in library blocks and masked subsystems.

For limitations that apply to specific checks, see the “Capabilities and Limitations”
section in the check documentation. For example, for capabilities that apply to the
Identify unconnected lines, input ports, and output ports check, see “Capabilities
and Limitations”.

 Select Checks and Run Model Advisor

5-13

Select Checks and Run Model Advisor

The Model Advisor checks a model or subsystem for conditions and configuration settings
that you select, including conditions that cause inaccurate or inefficient simulation
of the system that the model represents. If you have a Simulink Coder or Simulink
Verification and Validation license, the Model Advisor can check for model settings that
cause generation of inefficient code or code unsuitable for safety-critical applications.
If you have a Simulink Design Verifier license, the Model Advisor can check for design
errors. If it reports an error, you can view a test case that reproduces the error.

Select Checks and Run Model Advisor

1 Open your model. For example, open the Model Advisor example model
sldemo_mdladv.

2 Start the Model Advisor. In your model, select Analysis > Model Advisor > Model
Advisor.

3 In the System Selector dialog box, select the model or system that you want to
review, for example, sldemo_mdladv. Click OK.

4 In the left pane of the Model Advisor, expand the By Product and By Task folders
to display the subfolders. The By Task folders displays checks related to specific
tasks. The By Product folders display checks available with specific products.
Select Settings > Preferences to control the folders that display.

5 In the left pane, select the checks to run on your model. For example, select the
checks in the By Product > Simulink folder.

5 Model Advisor

5-14

6 To display an HTML report of check results, in the right pane of the Model Advisor,
select Show report after run.

7 Click Run Selected Checks. After the Model Advisor runs the checks, the results
appear in a browser if you selected the option to show the report.

8 In the Model Advisor, expand the folder that contains the checks, for example the
Simulink folder. Select a check to see a detailed view of the results in the right pane.
For example, select Identify unconnected lines, input ports, and output ports.
Use this view to examine and exercise a check individually.

9
In the Model Advisor , click the Enable highlighting button . You can highlight
the results of checks that display the icon. In the model, the blocks causing the

 Select Checks and Run Model Advisor

5-15

warning appear highlighted. The Model Advisor Highlighting dialog box also opens,
and you can click the link to view the results in a browser.

After reviewing the check results in the Model Advisor window, you can choose to fix
warnings or failures.

Related Examples
• “Address Model Check Results” on page 5-22

More About
• “Consulting the Model Advisor” on page 5-2
• “Selecting Model Checks” on page 5-10

5 Model Advisor

5-16

Save Model Analysis Time

If you want to save model analysis time, consistently run the same set of checks on your
model by using the Model Advisor dashboard.

To run checks on your model using the Model Advisor dashboard:

1 Open your model. For example, open the Model Advisor model, sldemo_mdladv.
2 Start the Model Advisor dashboard.

a From the Simulink Editor, select Analysis > Model Advisor > Model Advisor
Dashboard .

Alternatively, from the Simulink Editor toolbar drop-down list, select
Model Advisor Dashboard.

b In the System Selector window, select the model or system that you want to
review. For example, sldemo_mdladv. Click OK.

The Model Advisor dashboard opens.
3 Optionally, to select or view checks to run on your model, click the Switch to

standard view toggle (). The Model Advisor window opens.

a For example, in the Model Advisor window, open the By Product folder and
select checks:

Identify unconnected lines, input ports, and output ports
Check root model Inport block specifications

If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

b Return to the Model Advisor dashboard by clicking the Switch to Model

Advisor Dashboard toggle ().
4

On the Model Advisor dashboard, click Run checks ().
5

Click the Enable Highlighting toggle () to view highlighted results.

 Save Model Analysis Time

5-17

• The model window opens. The blocks causing the Identify unconnected lines,
input ports, and output ports check warning are highlighted in yellow.

• The Model Advisor Highlighting information window opens with a link to
the Model Advisor window. In the Model Advisor window, you can find more
information about the check results and how to fix the warning condition.

6 After reviewing the check results, you can choose to fix warnings or failures. For
example, to fix the Identify unconnected lines, input ports, and output ports
check warning:

a Connect model blocks Gain2 and Out4.
b

On the Model Advisor dashboard, click Run checks () to rerun the checks.

The Identify unconnected lines, input ports, and output ports check passes.

Related Examples
• “Address Model Check Results” on page 5-22
• “Select Checks and Run Model Advisor” on page 5-13

More About
• “Consulting the Model Advisor” on page 5-2

5 Model Advisor

5-18

• “Selecting Model Checks” on page 5-10

 Run Model Checks in Background

5-19

Run Model Checks in Background

If you have a Parallel Computing Toolbox™ license, you can run the Model Advisor in the
background, allowing you to continue working on your model during analysis. When you
start a Model Advisor analysis run in the background, Model Advisor takes a snapshot
of your model. The analysis does not reflect changes that you make to your model while
Model Advisor is running in the background.

1 Open your model.
2 Start the Model Advisor.

a From the Simulink Editor, select Analysis > Model Advisor > Model
Advisor.

b In the System Selector window, select the model or system that you want to
review.

3
In the Model Advisor window, click the Run checks in background toggle ().

4 In the left pane of the Model Advisor window, select the checks that you want to run.
5

In the Model Advisor window, select Run selected checks ().

Alternatively, you can use the Model Advisor dashboard to run the checks. In
the Model Advisor window, switch to the Model Advisor dashboard by clicking

the Switch to Model Advisor Dashboard toggle (). On the Model Advisor

dashboard, click Run selected checks ().

The Model Advisor starts an analysis on a parallel processor.
6 To stop running checks in the background, in the Model Advisor window, click Stop

background run (). In the lower-left pane, you see a status of the analysis.

The Explore Result option is not available for checks that are run in the background.

Related Examples
• “Address Model Check Results” on page 5-22
• “Select Checks and Run Model Advisor” on page 5-13

5 Model Advisor

5-20

More About
• “Consulting the Model Advisor” on page 5-2
• “Selecting Model Checks” on page 5-10

 Run Model Checks Programmatically

5-21

Run Model Checks Programmatically

If you have a license for Simulink Verification and Validation, you can create MATLAB
scripts and functions that run the Model Advisor programmatically. For example, you
can create a function to check whether your model passes a specified set of the Model
Advisor checks every time that you open the model and start a simulation. If you have
Simulink Coder, the function can generate code from the model.

See Also
ModelAdvisor.run

5 Model Advisor

5-22

Address Model Check Results

Highlight Model Check Results

You can use color highlighting on the model diagram to indicate the analysis results for
individual Model Advisor checks. Blocks that pass a check, fail a check, or cause a check
warning are highlighted in color in the model window. Model Advisor highlighting is
available for:

• Simulink blocks
• Stateflow charts

After you run a Model Advisor analysis, checks with highlighted results are indicated
with an icon in the Model Advisor window.

To use Model Advisor color highlighting:

1 Run Model Advisor checks on your model.
2 Enable Model Advisor highlighting by doing one of the following:

• On the toolbar of the Model Advisor window, select Highlighting > Enable
Highlighting.

• On the toolbar of the Model Advisor window, click the Enable highlighting

().
• On the toolbar of the Model Advisor Dashboard, click the Enable Highlighting

().
3 Optionally, to view model blocks that are excluded from the Model Advisor checks,

select Highlighting > Highlight Exclusions on the Model Advisor window toolbar.
If you have a Simulink Verification and Validation license, you can create or modify
exclusions to the Model Advisor checks.

4 In the left pane of the Model Advisor window, select a check with highlighted results.
Checks with highlighted results are indicated with the icon. Highlighting is not
available for some checks.

The model window and a Model Advisor Highlighting information window open.
The Model Advisor Highlighting information window provides a link to the Model
Advisor window, where you can review the check results.

 Address Model Check Results

5-23

Highlighting colors in the model window

Yellow with
orange border

Blocks that cause the check failure or warning.

White with
orange border

Subsystem with blocks that cause the check warning
or failure.

White with gray
border

Blocks or subsystems without highlighting.

Gray with black
border

Blocks that are excluded from the check.

White with black
border

Subsystems that are excluded from the check.

5 After reviewing the check results in the model window and the Model Advisor
window, you can choose to fix warnings or failures.

6 To view highlighted results for another check, in the left pane of the Model Advisor
window, select a check with an icon.

If a check warns or fails, and the model window highlights blocks in gray, closely
examine the results in the Model Advisor window. A Model Advisor check can fail or
warn due to your parameter or diagnostic settings.

Fix a Model Check Warning or Failure

Checks fail when a model or referenced model has a suboptimal condition. A warning
result is informational. You can fix the reported issue, or move on to the next task. For
more information on why a specific check does not pass, see the check documentation.

5 Model Advisor

5-24

Manually Fix Warnings or Failures

Checks have an Analysis Result box that describes the recommended actions to manually
fix warnings or failures.

To manually fix warnings or failures within a task:

1 Optionally, save a model and data restore point so that you can undo your changes.
2 In the Analysis Result box, review the recommended actions. Use the information to

make changes to your model.
3 Rerun the check to verify that it passes.

When you fix a warning or failure, rerun all checks to update the results of all
checks. If you do not rerun all checks, the Model Advisor can report an invalid check
result.

Automatically Fix Warnings or Failures

Some checks have an Action box that you can use to automatically fix failures. The action
box applies all of the recommended actions listed in the Analysis Result box.

To automatically fix all warnings or failures within a check:

1 Optionally, save a model and data restore point by clicking the Modify All button.
2 In the Action box, click Modify All.

The Action Result box displays a table of changes.
3 Rerun the check to verify that it passes.

When you fix a warning or failure, rerun all checks to update the results of all
checks. If you do not rerun all checks, the Model Advisor can report an invalid check
result.

Batch-Fix Warnings or Failures

Some checks have an Explore Result button that starts the Model Advisor Result
Explorer. With the Model Advisor Result Explorer, you can quickly locate, view, and
change elements of a model.

The Model Advisor Result Explorer helps you to modify only the items that the Model
Advisor is checking.

 Address Model Check Results

5-25

If a check does not pass, and you want to explore the results and make batch changes:

1 Optionally, save a model and data restore point so that you can undo your changes.
2 In the Analysis box, click Explore Result.
3 In the Model Advisor Result Explorer, you can modify block parameters.
4 In the Model Advisor window, rerun the check to verify that it passes.

When you fix a warning or failure, rerun all checks to update the results of all
checks. If you do not rerun all checks, the Model Advisor can report an invalid check
result.

Revert Changes

The Model Advisor provides a model and a data restore point capability for reverting
changes that you made in response to recommendations from the Model Advisor. You can
also restore the default configuration of the Model Advisor. A restore point is a snapshot
in time of the model, base workspace, and Model Advisor. The Model Advisor maintains
restore points for the model or subsystem through multiple sessions of MATLAB.

Note: A restore point saves only the current working model, base workspace variables,
and Model Advisor tree. It does not save other items, such as libraries and referenced
models.

Restore Default Configuration

In the Model Advisor window, select Settings > Restore Default Configuration.

Save a Restore Point

You can save a restore point and give it a name and description. Or, the Model Advisor
can name the restore point.

To save a restore point:

1 In the Model Advisor window, select File > Save Restore Point As.
2 In the Name field, enter a name for the restore point.
3 In the Description field, you can optionally add a description to help you identify

the restore point.

5 Model Advisor

5-26

4 Click Save.

The Model Advisor saves a restore point of the current model, base workspace, and
Model Advisor status.

To quickly save a restore point, in the Model Advisor window, select File > Save
Restore Point. The Model Advisor saves a restore point with the name autosaven. n is
the sequential number of the restore point. If you use this method, you cannot change the
name of, or add a description to, the restore point.

Load a Restore Point

1 Optionally, save a model and data restore point so that you can undo your changes.
2 Select File > Load Restore Point.
3 In the Load Model and Data Restore Point dialog box, select the restore point that

you want.
4 Click Load.

The Model Advisor issues a warning that the restoration removes changes that you
made after saving the restore point.

5 Click Load to load the restore point that you selected.

The Model Advisor reverts the model, base workspace, and Model Advisor status.

Related Examples
• “Select Checks and Run Model Advisor” on page 5-13

More About
• “Consulting the Model Advisor” on page 5-2
• “Selecting Model Checks” on page 5-10

 Save and View Model Advisor Reports

5-27

Save and View Model Advisor Reports

When the Model Advisor runs checks, it generates an HTML report of check results. By
default, the HTML report is in the working folder: slprj/modeladvisor/model_name.

If you have a Simulink Verification and Validation license, you can generate reports in
Adobe® PDF and Microsoft Word .docx formats.

Save Model Advisor Reports

You can save a Model Advisor report to a new location.

1 In the Model Advisor window, navigate to the folder with the checks that you ran.
2 Select the folder. The right pane of the Model Advisor window displays information

about that folder. The pane includes a Report box.
3 In the Report box, click Generate Report.
4 In the Generate Model Advisor Report dialog box, enter the path to the folder where

you want to generate the report. Provide a file name.
5 Click OK. The Model Advisor saves the report in HTML format to the location that

you specified.

If you rerun the Model Advisor, the report is updated in the working folder, not in the
location where you archived the original report.

The full path to the report is in the title bar of the report window.

View Model Advisor Reports

Access a report by selecting a folder and clicking the link in the Report box. Or, before
a Model Advisor analysis, in the right pane of the Model Advisor window, select Show
report after run.

Tip Use the Model Advisor window to interactively fix warnings and failures. Model
Advisor reports are best for viewing a summary of checks.

As you run checks, the Model Advisor updates the reports with the latest information for
each check in the folder. When you run the checks at different times, an informational

5 Model Advisor

5-28

message appears in the report. Time stamps indicate when checks have been run. The
time of the current run appears at the top right of the report. Checks that occurred
during previous runs have a time stamp following the check name.

To Action

Display results for checks
that pass, warn, or fail.

Use the Filter checks check boxes. For example, to display
results for only checks that warn, in the left pane of the
report, select the Warning check box. Clear the Passed,
Failed, and Not Run check boxes.

Display results for checks
with keywords or phrases
in the check title.

Use the Keywords field. Results for checks without
the keyword in the check title are not displayed in the
report. For example, to display results for only checks with
“setting” in the check title, in the Keywords field, enter
“setting”.

Quickly navigate to
sections of the report.

Select the links in the table-of-contents navigation pane.

Expand and collapse
content in the check
results.

Click Show/Hide check details.

Scroll to the top of the
report.

Click Scroll to top.

Minimize folder results in
the report.

Click the minus sign next to the folder name.

Printed versions of the report do not contain:

• Filtering checks, Navigation, or View panes.
• Content hidden due to filtering or keyword searching.

Some checks have input parameters specified in the right pane of the Model Advisor. For
example, Check Merge block usage has an input parameter for Maximum analysis
time (seconds). When you run checks with input parameters, the Model Advisor
displays the values of the input parameters in the HTML report. For more information,
see the EmitInputParametersToReport property of the Simulink.ModelAdvisor
class.

See Also
Simulink.ModelAdvisor

 Save and View Model Advisor Reports

5-29

Related Examples
• “Address Model Check Results” on page 5-22
• “Generate Model Advisor Reports in Adobe PDF and Microsoft Word Formats”
• “Select Checks and Run Model Advisor” on page 5-13

More About
• “Consulting the Model Advisor” on page 5-2

6

Upgrade Advisor

6 Upgrade Advisor

6-2

Consult the Upgrade Advisor

Use the Upgrade Advisor to help you upgrade and improve models with the current
release. The Upgrade Advisor can identify cases where you can benefit by changing your
model to use new features and settings in Simulink. The Advisor provides advice for
transitioning to new technologies, and upgrading a model hierarchy.

The Upgrade Advisor can also help identify cases when a model will not work because
changes and improvements in Simulink require changes to a model.

The Upgrade Advisor offers options to perform recommended actions automatically or
instructions for manual fixes.

You can open the Upgrade Advisor in the following ways:

• From the Model Editor, select Analysis > Model Advisor > Upgrade Advisor
• From the MATLAB command line, use the upgradeadvisor function:

upgradeadvisor modelname

• Alternatively, from the Model Advisor, click Upgrade Advisor. This action closes the
Model Advisor and opens the Upgrade Advisor.

In the Upgrade Advisor, you create reports and run checks in the same way as when
using the Model Advisor.

• Select the top Upgrade Advisor node in the left pane to run all selected checks and
create a report.

• Select each individual check to open a detailed view of the results in the right pane.
View the analysis results for recommended actions to manually fix warnings or
failures. In some cases, the Upgrade Advisor provides mechanisms for automatically
fixing warnings and failures.

Caution When you fix a warning or failure, rerun all checks to update the results of all
checks. If you do not rerun all checks, the Upgrade Advisor might report an invalid check
result.

You must run upgrade checks in this order: first the checks that do not require compile
time information and do not trigger an Update Diagram, then the compile checks. To
guide you through upgrade checks to run both non-compile and compile checks, run the

 Consult the Upgrade Advisor

6-3

check Analyze model hierarchy and continue upgrade sequence. See “Analyze
model hierarchy and continue upgrade sequence”.

If you have a license for Simulink Verification and Validation, you can run the Upgrade
Advisor programmatically using ModelAdvisor.run. See “Automate Model Advisor
Check Execution”.

For more information on individual checks, see

• “Model Upgrades” for upgrade checks only
• “Simulink Checks” for all upgrade and advisor checks

.

7

Working with Sample Times

• “What Is Sample Time?” on page 7-2
• “Specify Sample Time” on page 7-3
• “View Sample Time Information” on page 7-9
• “Print Sample Time Information” on page 7-13
• “Types of Sample Time” on page 7-14
• “Blocks for Which Sample Time Is Not Recommended” on page 7-18
• “Block Compiled Sample Time” on page 7-20
• “Sample Times in Subsystems” on page 7-23
• “Sample Times in Systems” on page 7-25
• “Resolve Rate Transitions” on page 7-31
• “How Propagation Affects Inherited Sample Times” on page 7-35
• “Backpropagation in Sample Times” on page 7-37

7 Working with Sample Times

7-2

What Is Sample Time?

The sample time of a block is a parameter that indicates when, during simulation, the
block produces outputs and if appropriate, updates its internal state. The internal state
includes but is not limited to continuous and discrete states that are logged.

Note: Do not confuse the Simulink usage of the term sample time with the engineering
sense of the term. In engineering, sample time refers to the rate at which a discrete
system samples its inputs. Simulink allows you to model single-rate and multirate
discrete systems and hybrid continuous-discrete systems through the appropriate setting
of block sample times that control the rate of block execution (calculations).

For many engineering applications, you need to control the rate of block execution.
In general, Simulink provides this capability by allowing you to specify an explicit
SampleTime parameter in the block dialog or at the command line. Blocks that do not
have a SampleTime parameter have an implicit sample time. You cannot specify implicit
sample times. Simulink determines them based upon the context of the block in the
system. The Integrator block is an example of a block that has an implicit sample
time. Simulink automatically sets its sample time to 0.

Sample times can be port based or block based. For block-based sample times, all of the
inputs and outputs of the block run at the same rate. For port-based sample times, the
input and output ports can run at different rates. To learn more about rates of execution,
see “Types of Sample Time” on page 7-14.

 Specify Sample Time

7-3

Specify Sample Time

In this section...

“Designate Sample Times” on page 7-3
“Specify Block-Based Sample Times Interactively” on page 7-5
“Specify Port-Based Sample Times Interactively” on page 7-6
“Specify Block-Based Sample Times Programmatically” on page 7-7
“Specify Port-Based Sample Times Programmatically” on page 7-7
“Access Sample Time Information Programmatically” on page 7-8
“Specify Sample Times for a Custom Block” on page 7-8
“Determining Sample Time Units” on page 7-8
“Change the Sample Time After Simulation Start Time” on page 7-8

Designate Sample Times

Simulink allows you to specify a block sample time directly as a numerical value or
symbolically by defining a sample time vector. In the case of a discrete sample time, the
vector is [Ts, To] where Ts is the sampling period and To is the initial time offset. For
example, consider a discrete model that produces its outputs every two seconds. If your
base time unit is seconds, you can directly set the discrete sample time by specifying the
numerical value of 2 as the SampleTime parameter. Because the offset value is zero,
you do not need to specify it; however, you can enter [2,0] in the Sample time field.

For nondiscrete blocks, the components of the vector are symbolic values that represent
one of the types in “Types of Sample Time” on page 7-14. The following table
summarizes these types and the corresponding sample time values. The table also
defines the explicit nature of each sample time type and designates the associated color
and annotation. Because an inherited sample time is explicit, you can specify it as [-1,
0] or as -1. Whereas, a triggered sample time is implicit; only Simulink can assign the
sample time of [-1, -1]. (For more information about colors and annotations, see “View
Sample Time Information” on page 7-9.)

Designations of Sample Time Information

Sample Time Type Sample Time Color Annotation Explicit

Discrete [Ts, To] In descending
order of speed:

D1, D2, D3, D4, D5,
D6, D7,... Di

Yes

7 Working with Sample Times

7-4

Sample Time Type Sample Time Color Annotation Explicit

red, green, blue,
light blue, dark
green, orange

Continuous [0, 0] black Cont Yes
Fixed in minor step [0, 1] gray FiM Yes
Inherited [–1, 0] N/A N/A Yes
Constant [Inf, 0] magenta Inf Yes
Variable [–2,Tvo] brown V1, V2,... Vi No
Hybrid N/A yellow N/A No
Triggered Source:

D1, Source:
D2, ...Source: Di

cyan T1, T2,... Ti No

Asynchronous [–1, –n] purple A1, A2,... Ai No

The color that is assigned to each block depends on its sample time relative to other
sample times in the model. This means that the same sample time may be assigned
different colors in a parent model and in models that it references. (See “Model
Reference”.)

For example, suppose that a model defines three sample times: 1, 2, and 3. Further,
suppose that it references a model that defines two sample times: 2 and 3. In this case,
blocks operating at the 2 sample rate appear as green in the parent model and as red in
the referenced model.

It is important to note that Mux and Demux blocks are simply grouping operators;
signals passing through them retain their timing information. For this reason, the lines
emanating from a Demux block can have different colors if they are driven by sources
having different sample times. In this case, the Mux and Demux blocks are color coded as
hybrids (yellow) to indicate that they handle signals with multiple rates.

Similarly, Subsystem blocks that contain blocks with differing sample times are also
colored as hybrids, because there is no single rate associated with them. If all the blocks
within a subsystem run at a single rate, the Subsystem block is colored according to that
rate.

You can use the explicit sample time values in this table to specify sample times
interactively or programmatically for either block-based or port-based sample times.

 Specify Sample Time

7-5

The following model, ex_specify_sample_time, serves as a reference for this section.

ex_specify_sample_time

In this example, set the sample time of the input sine wave signal to 0.1. The goal is to
achieve an output sample time of 0.2. The Rate Transition block serves as a zero-order
hold. The resulting block diagram after setting the sample times and simulating the
model is shown in the following figure. (The colors and annotations indicate that this is a
discrete model.)

Sample Time 0.1 Sample Time 0.2

ex_specify_sample_time after Setting Sample Times

Specify Block-Based Sample Times Interactively

To set the sample time of a block interactively:

1 In the Simulink model window, double-click the block. The block parameter dialog
box opens.

2 Enter the sample time in the Sample time field.
3 Click OK.

7 Working with Sample Times

7-6

Following is a figure of a parameters dialog box for the Sine Wave block after entering
0.1 in the Sample time field.

Enter the sample time
value in this field

Specify Port-Based Sample Times Interactively

The Rate Transition block has port-based sample times. You can set the output port
sample time interactively by completing the following steps:

1 Double-click the Rate Transition block. The parameters dialog box opens.
2 Leave the drop-down menu choice of the Output port sample time options as

Specify.
3 Replace the -1 in the Output port sample time field with 0.2.

 Specify Sample Time

7-7

Enter sample time
in Output port
sample time field

4 Click OK.

For more information about the sample time options in the Rate Transition parameters
dialog box, see the Rate Transition reference page.

Specify Block-Based Sample Times Programmatically

To set a block sample time programmatically, set its SampleTime parameter to the
desired sample time using the set_param command. For example, to set the sample
time of the Gain block in the “Specify_Sample_Time” model to inherited (-1), enter the
following command:

set_param('Specify_Sample_Time/Gain','SampleTime','[-1, 0]')

As with interactive specification, you can enter just the first vector component if the
second component is zero.

set_param('Specify_Sample_Time/Gain','SampleTime','-1')

Specify Port-Based Sample Times Programmatically

To set the output port sample time of the Rate Transition block to 0.2, use the
set_param command with the parameter OutPortSampleTime:

set_param('Specify_Sample_Time/Rate Transition',...

7 Working with Sample Times

7-8

'OutPortSampleTime', '0.2')

Access Sample Time Information Programmatically

To access all sample times associated with a model, use the API
Simulink.BlockDiagram.getSampleTimes.

To access the sample time of a single block, use the API
Simulink.Block.getSampleTimes.

Specify Sample Times for a Custom Block

You can design custom blocks so that the input and output ports operate at different
sample time rates. For information on specifying block-based and port-based sample
times for S-functions, see “Sample Times” in Writing S-Functions of the Simulink
documentation.

Determining Sample Time Units

Since the execution of a Simulink model is not dependent on a specific set of units, you
must determine the appropriate base time unit for your application and set the sample
time values accordingly. For example, if your base time unit is second, then you would
represent a sample time of 0.5 second by setting the sample time to 0.5.

Change the Sample Time After Simulation Start Time

To change a sample time after simulation begins, you must stop the simulation, reset the
SampleTime parameter, and then restart execution.

 View Sample Time Information

7-9

View Sample Time Information

In this section...

“View Sample Time Display” on page 7-9
“Sample Time Legend” on page 7-10

View Sample Time Display

Simulink models can display color coding and annotations that represent specific sample
times. As shown in the table Designations of Sample Time Information, each sample time
type has one or more colors associated with it. You can display the blocks and signal lines
in color, the annotations in black, or both the colors and the annotations. To choose one of
these options:

1 In the Simulink model window, select Display > Sample Time.
2 Select Colors, Annotations, or All.

Selecting All results in the display of both the colors and the annotations. Regardless
of your choice, Simulink performs an Update Diagram automatically. To turn off the
colors and annotations:

1 Select Display > Sample Time.
2 Select Off.

Simulink performs another Update Diagram automatically.

7 Working with Sample Times

7-10

Your Sample Time Display choices directly control the information that the Sample Time
Legend displays.

Note: The discrete sample times in the table Designations of Sample Time Information
represent a special case. Five colors indicate the fastest through the fifth fastest discrete
rate. A sixth color, orange, represents all rates that are slower than the fifth discrete
rate. You can distinguish between these slower rates by looking at the annotations on
their respective signal lines.

Sample Time Legend

You can view the Sample Time Legend for an individual model or for multiple models.
Additionally, you can prevent the legend from automatically opening when you select
options on the Sample Time menu.

Viewing the Legend

To assist you with interpreting your block diagram, a Sample Time Legend is available
that contains the sample time color, annotation, description, and value for each sample
time in the model. You can use one of three methods to view the legend, but upon first
opening the model, you must first perform an Update Diagram.

1 In the Simulink model window, select Simulation > Update Diagram.
2 Select Display > Sample Time > Sample Time Legend or press Ctrl +J.

 View Sample Time Information

7-11

In addition, whenever you select Colors, Annotations, or All from the Sample Time
menu, Simulink updates the model diagram and opens the legend by default. The legend
contents reflect your Sample Time Display choices. By default or if you have selected
Off, the legend contains a description of the sample time and the sample time value.
If you turn colors on, the legend displays the appropriate color beside each description.
Similarly, if you turn annotations on, the annotations appear in the legend.

The legend does not provide a discrete rate for all types of sample times. For
asynchronous and variable sample times, the legend displays a link to the block that
controls the sample time in place of the sample time value. Clicking one of these links
highlights the corresponding block in the block diagram. For variable sample times,
the legend uses >> to indicate that the controller block of the sample time is in a model
reference hierarchy. Click >> to drill down to that block, for example:

The rate listed under hybrid and asynchronous hybrid models is “Not Applicable”
because these blocks do not have a single representative sample time.

7 Working with Sample Times

7-12

Note: The Sample Time Legend displays all of the sample times in the model, including
those that are not associated with any block. For example, if the fixed step size is 0.1 and
all of the blocks have a sample time of 0.2, then both rates (i.e., 0.1 and 0.2) appear in the
legend.

For subsequent viewings of the legend, repeat the Update Diagram to access the latest
known information.

Turning the Legend Off

If you do not want to view the legend upon selecting Sample Time Display:

1 In the Simulink model window, select File > Simulink Preferences.
2 Scroll to the bottom of the main Preferences pane.
3 Clear Open the sample time legend whenever the sample time display is

changed.

Viewing Multiple Legends

If you have more than one model open and you view the Sample Time Legend for each
one, a single legend window appears with multiple tabs. Each tab contains the name of
the model and the respective legend information. The following figure shows the tabbed
legends for the f14 and vdp models.

 Print Sample Time Information

7-13

Print Sample Time Information

You can print the sample time information in the Sample Time Legend by using either of
these methods:

• In the Sample Time Legend window, click Print.
• Print the legend from the Print Model dialog box:

1 In the model window, select File > Print.
2 Under Options, select the check box beside Print Sample Time Legend.
3 Click OK.

7 Working with Sample Times

7-14

Types of Sample Time

In this section...

“Discrete Sample Time” on page 7-14
“Continuous Sample Time” on page 7-15
“Fixed-in-Minor-Step” on page 7-15
“Inherited Sample Time” on page 7-15
“Constant Sample Time” on page 7-16
“Variable Sample Time” on page 7-16
“Triggered Sample Time” on page 7-17
“Asynchronous Sample Time” on page 7-17

Discrete Sample Time

Given a block with a discrete sample time, Simulink executes the block output or update
method at times

t nT T
n s o

= +

where the sample time period T
s is always greater than zero and less than the

simulation time, T
sim . The number of periods (n) is an integer that must satisfy:

0 £ £n
T

T

sim

s

As simulation progresses, Simulink computes block outputs only once at each of these
fixed time intervals of t

n . These simulation times, at which Simulink executes the output
method of a block for a given sample time, are referred to as sample time hits. Discrete
sample times are the only type for which sample time hits are known a priori.

If you need to delay the initial sample hit time, you can define an offset, T
o .

The Unit Delay block is an example of a block with a discrete sample time.

 Types of Sample Time

7-15

Continuous Sample Time

Unlike the discrete sample time, continuous sample hit times are divided into major time
steps and minor time steps, where the minor steps represent subdivisions of the major
steps (see “Minor Time Steps” on page 3-22). The ODE solver you choose integrates all
continuous states from the simulation start time to a given major or minor time step. The
solver determines the times of the minor steps and uses the results at the minor time
steps to improve the accuracy of the results at the major time steps. However, you see the
block output only at the major time steps.

To specify that a block, such as the Derivative block, is continuous, enter [0, 0] or 0 in
the Sample time field of the block dialog.

Fixed-in-Minor-Step

If the sample time of a block is set to [0, 1], the block becomes fixed-in-minor-step. For
this setting, Simulink does not execute the block at the minor time steps; updates occur
only at the major time steps. This process eliminates unnecessary computations of blocks
whose output cannot change between major steps.

While you can explicitly set a block to be fixed-in-minor-step, more typically Simulink
sets this condition as either an inherited sample time or as an alteration to a user
specification of 0 (continuous). This setting is equivalent to, and therefore converted to,
the fastest discrete rate when you use a fixed-step solver.

Inherited Sample Time

If a block sample time is set to [–1, 0] or –1, the sample time is inherited and Simulink
determines the best sample time for the block based on the block context within the
model. Simulink performs this task during the compilation stage; the original inherited
setting never appears in a compiled model. Therefore, you never see inherited ([–1, 0]) in
the Sample Time Legend. (See “View Sample Time Information” on page 7-9.)

There are some blocks in which the sample time is inherited (-1) by default. For
these blocks, the parameter is not visible on the block dialog box unless it is set to
a noninherited value. Examples of these blocks include the Gain and Rounding
Function blocks. As a good modeling practice, do not change the Sample time
parameter for these blocks. For more information, see “Blocks for Which Sample Time Is
Not Recommended” on page 7-18.

7 Working with Sample Times

7-16

All inherited blocks are subject to the process of sample time propagation, as discussed in
“How Propagation Affects Inherited Sample Times” on page 7-35

Constant Sample Time

In Simulink, a constant is a symbolic name or expression whose value you can change
only outside the algorithm or through supervisory control. Blocks, like the constant
block, whose outputs do not change during normal execution of the model, are always
considered to be constant.

Simulink assigns constant sample time to these blocks. They run their block output
method:

• At the start of a simulation.
• In response to runtime changes in the environment, such as tuning a parameter.

For constant sample time, the block sample time assignment is [inf,0] or [inf].

For a block to allow constant sample time, these conditions hold:

• The block has no continuous or discrete states.
• The block does not drive an output port of a conditionally executed subsystem (see

“Create an Enabled Subsystem” on page 9-21).

S-Function Blocks

The Simulink block library includes several blocks, such as the MATLAB S-Function
block, the Level-2 MATLAB S-Function block, and the C S-Function block, whose ports
can produce outputs at different sample rates. It is possible for some of the ports of these
blocks to have a constant sample time.

Variable Sample Time

Blocks that use a variable sample time have an implicit SampleTime parameter that the
block specifies; the block tells Simulink when to run it. The compiled sample time is [–2,
Tvo] where Tvo is a unique variable offset.

The Pulse Generator block is an example of a block that has a variable sample time.
Since Simulink supports variable sample times for variable-step solvers only, the Pulse
Generator block specifies a discrete sample time if you use a fixed-step solver.

 Types of Sample Time

7-17

To learn how to write your own block that uses a variable sample time, see “C MEX S-
Function Examples”.

Triggered Sample Time

If a block is inside of a triggered-type (e.g., function-call, enabled and triggered, or
iterator) subsystem, the block may be constant or have a triggered sample time. You
cannot specify the triggered sample time type explicitly. However, to achieve a triggered
type during compilation, you must set the block sample time to inherited (–1). Simulink
then determines the specific times at which the block computes its output during
simulation. One exception is if the subsystem is an asynchronous function call, as
discussed in the following section.

Asynchronous Sample Time

An asynchronous sample time is similar to a triggered sample time. In both cases, it
is necessary to specify an inherited sample time because the Simulink engine does
not regularly execute the block. Instead, a run-time condition determines when the
block executes. For the case of an asynchronous sample time, an S-function makes an
asynchronous function call.

The differences between these sample time types are:

• Only a function-call subsystem can have an asynchronous sample time. (See “Create a
Function-Call Subsystem” on page 9-50.)

• The source of the function-call signal is an S-function having the option
SS_OPTION_ASYNCHRONOUS.

• The asynchronous sample time can also occur when a virtual block is connected to an
asynchronous S-function or an asynchronous function-call subsystem.

• The asynchronous sample time is important to certain code-generation applications.
(See “Asynchronous Events” in the Simulink Coder User's Guide.)

• The sample time is [,]- -1 n .

For an explanation of how to use blocks to model and generate code for asynchronous
event handling, see “Rate Transitions and Asynchronous Blocks” in the Simulink Coder
User's Guide.

7 Working with Sample Times

7-18

Blocks for Which Sample Time Is Not Recommended

In this section...

“Best Practice to Model Sample Times” on page 7-18
“Appropriate Blocks for the Sample Time Parameter” on page 7-19
“Specify Sample Time in Blocks Where Hidden” on page 7-19

Some blocks do not enable you to set the Sample Time parameter by default. However,
you can see and set the Sample Time parameter for these blocks in an existing model
if the sample time is set to a value other than the default of -1 (inherited sample time).
The Sample Time parameter is not available on certain blocks because specifying a
sample time that is not -1 on blocks such as the Gain, Sum, and n-D Lookup Table
causes sample rate transition to be implicitly mixed with block algorithms. This mixing
can often lead to ambiguity and confusion in Simulink models.

In most modeling applications, you specify rates for a model on the boundary of your
system instead of on a block within the subsystem. You specify the system rate from
incoming signals or the rate of sampling the output. You can also decide rates for events
you are modeling that enter the subsystem as trigger, function-call, or enable/disable
signals. Some global variables (such as Data Store Memory blocks) might need additional
sample time specification. If you want to change rate within a system, use a Rate
Transition block, which is designed specifically to model rate transitions.

In a future release, you might not be able see or set this parameter on blocks where it is
not appropriate.

Best Practice to Model Sample Times

Use these approaches instead of setting the Sample Time parameter in the blocks
where it is not appropriate:

• Adjust your model by specifying Sample Time only in the blocks listed in
“Appropriate Blocks for the Sample Time Parameter” on page 7-19, and set
Sample Time to -1 for all other blocks. To change the sample time for multiple
blocks simultaneously, use Model Explorer. For more information, see “Editing Object
Properties” on page 11-24.

• Use the Rate Transition block to model rate transitions in your model.

 Blocks for Which Sample Time Is Not Recommended

7-19

• Use the Signal Specification block to specify sample time in models that don’t
have source blocks, such as algebraic loops.

• Specify the simulation rate independently from the block sample times, using the
Model Parameter dialog box.

Once you have completed these changes, verify whether your model gives the same
outputs as before.

Appropriate Blocks for the Sample Time Parameter

Specify sample time on the boundary of a model or subsystem, or in blocks designed to
model rate transitions. Examples include:

• Blocks in the Sources library
• Blocks in the Sinks library
• Trigger ports (if Trigger type is set to function-call) and Enable ports
• Data Store Read and Data Store Write blocks, as the Data Store Memory block they

link to might be outside the boundary of the subsystem
• Rate Transition block
• Signal Specification block
• Blocks in the Discrete library
• Message Receive block
• Function Caller block

Specify Sample Time in Blocks Where Hidden

You can specify sample time in the blocks that do not display the parameter on the block
dialog box. If you specify value other than -1 in these blocks, no error occurs when you
simulate the model. However, a message appears on the block dialog box advising to
set this parameter to -1 (inherited sample time). If you promote the sample time block
parameter to a mask, this parameter is always visible on the mask dialog box.

To change the sample time in this case, use the set_param command. For example,
select a block in the Simulink Editor and, at the command prompt, enter:

set_param(gcb,'SampleTime','2');

7 Working with Sample Times

7-20

Block Compiled Sample Time

During the compilation phase of a simulation, Simulink determines the sample time
of a block from the SampleTime parameter (if the block has an explicit sample time),
the block type (if it has an implicit sample time), or by the model content. This compiled
sample time determines the sample rate of a block during simulation. You can determine
the compiled sample time of any block in a model by first updating the model and then
getting the block CompiledSampleTime parameter, using the get_param command.

For example, consider the model ex_compiled_sample_new.

Use get_param to obtain the block CompiledSampleTime parameter for each of the
blocks in this example.

get_param('model_name/block_name','CompiledSampleTime');

For the Sine Wave3 block,

get_param('ex_compiled_sample_new/Sine Wave3','CompiledSampleTime');

displays

0.5000 0

The atomic subsystem contains sine wave blocks with sample times of 3 and 4.

 Block Compiled Sample Time

7-21

When calculating the block CompiledSampleTime for this subsystem, Simulink returns
a cell array of the sample times present in the subsystem.

3 0

4 0

The greatest common divisor (GCD) of the two rates is 1. However, this is not necessarily
one of the rates in the model.

The Rate Transition block in this model serves as a Zero-Order Hold. Since the Sample
Time Multiple parameter is set to 3, the input to the rate transition block has a
sample rate of 0.5 while the output has a rate of 1.5.

rt=get_param('ex_compiled_sample_new/Rate Transition','CompiledSampleTime');

rt{:}

0.5000 0

1.5000 0

The Sample Time Legend shows all of the sample rates present in the model.

7 Working with Sample Times

7-22

Related Examples
• “Sample Times in Subsystems” on page 7-23
• “View Sample Time Information” on page 7-9

 Sample Times in Subsystems

7-23

Sample Times in Subsystems

Subsystems fall into two categories: triggered and non-triggered. For triggered
subsystems, in general, the subsystem gets its sample time from the triggering signal.
One exception occurs when you use a Trigger block to create a triggered subsystem.
If you set the block Trigger type to function-call and the Sample time type to
periodic, the SampleTime parameter becomes active. In this case, you specify the
sample time of the Trigger block, which in turn, establishes the sample time of the
subsystem.

There are four non-triggered subsystems:

• Virtual
• Enabled
• Atomic
• Action

Simulink calculates the sample times of virtual and enabled subsystems based on the
respective sample times of their contents.

The atomic subsystem is a special case in that the subsystem block has a
SystemSampleTime parameter. Moreover, for a sample time other than the default
value of –1, the blocks inside the atomic subsystem can have only a value of Inf, –1, or
the identical (discrete) value of the subsystem SampleTime parameter. If the atomic
subsystem is left as inherited, Simulink calculates the block sample time in the same
manner as the virtual and enabled subsystems. However, the main purpose of the
subsystem SampleTime parameter is to allow for the simultaneous specification of a
large number of blocks, within an atomic subsystem, that are all set to inherited. To
obtain the sample time set on an atomic subsystem, use this command at the command
prompt:

get_param(AtomicSubsystemBlock, ‘SystemSampleTime’);

Finally, the sample time of the action subsystem is set by the If block or the Switch Case
block.

For non-triggered subsystems where blocks have different sample rates, Simulink
returns the Compiled Sample Time for the subsystem as a cell array of all the sample
rates present in the subsystem. To see this, use the get_param command at MATLAB
prompt.

7 Working with Sample Times

7-24

get_param(subsystemBlock,'CompiledSampleTime')

More About
• “Block Compiled Sample Time” on page 7-20
• “Sample Times in Systems” on page 7-25

 Sample Times in Systems

7-25

Sample Times in Systems

In this section...

“Purely Discrete Systems” on page 7-25
“Hybrid Systems” on page 7-27

Purely Discrete Systems

A purely discrete system is composed solely of discrete blocks and can be modeled using
either a fixed-step or a variable-step solver. Simulating a discrete system requires that
the simulator take a simulation step at every sample time hit. For a multirate discrete
system—a system whose blocks Simulink samples at different rates—the steps must
occur at integer multiples of each of the system sample times. Otherwise, the simulator
might miss key transitions in the states of the system. The step size that the Simulink
software chooses depends on the type of solver you use to simulate the multirate system
and on the fundamental sample time.

The fundamental sample time of a multirate discrete system is the largest double that is
an integer divisor of the actual sample times of the system. For example, suppose that a
system has sample times of 0.25 and 0.50 seconds. The fundamental sample time in this
case is 0.25 seconds. Suppose, instead, the sample times are 0.50 and 0.75 seconds. The
fundamental sample time is again 0.25 seconds.

The importance of the fundamental sample time directly relates to whether you direct
the Simulink software to use a fixed-step or a variable-step discrete solver to solve your
multirate discrete system. A fixed-step solver sets the simulation step size equal to the
fundamental sample time of the discrete system. In contrast, a variable-step solver varies
the step size to equal the distance between actual sample time hits.

The following diagram illustrates the difference between a fixed-step and a variable-step
solver.

7 Working with Sample Times

7-26

In the diagram, the arrows indicate simulation steps and circles represent sample time
hits. As the diagram illustrates, a variable-step solver requires fewer simulation steps to
simulate a system, if the fundamental sample time is less than any of the actual sample
times of the system being simulated. On the other hand, a fixed-step solver requires less
memory to implement and is faster if one of the system sample times is fundamental.
This can be an advantage in applications that entail generating code from a Simulink
model (using Simulink Coder). In either case, the discrete solver provided by Simulink is
optimized for discrete systems; however, you can simulate a purely discrete system with
any one of the solvers and obtain equivalent results.

Consider the following example of a simple multirate system. For this example, the DTF1
Discrete Transfer Fcn block's Sample time is set to [1 0.1], which gives it an offset of
0.1. The Sample time of the DTF2 Discrete Transfer Fcn block is set to 0.7, with no
offset. The solver is set to a variable-step discrete solver.

Running the simulation and plotting the outputs using the stairs function

simOut = sim('ex_dtf','StopTime', '3');

t = simOut.find('tout')

 Sample Times in Systems

7-27

y = simOut.find('yout')

stairs(t,y, '-*')

produces the following plot.

(For information on the sim command. see “Run Simulation Using the sim Command” on
page 23-3.)

As the figure demonstrates, because the DTF1 block has a 0.1 offset, the DTF1 block has
no output until t = 0.1. Similarly, the initial conditions of the transfer functions are
zero; therefore, the output of DTF1, y(1), is zero before this time.

Hybrid Systems

Hybrid systems contain both discrete and continuous blocks and thus have both discrete
and continuous states. However, Simulink solvers treat any system that has both

7 Working with Sample Times

7-28

continuous and discrete sample times as a hybrid system. For information on modeling
hybrid systems, see “Modeling Hybrid Systems” on page 3-7.

In block diagrams, the term hybrid applies to both hybrid systems (mixed continuous-
discrete systems) and systems with multiple sample times (multirate systems). Such
systems turn yellow in color when you perform an Update Diagram with Sample
Time Display Colors turned 'on'. As an example, consider the following model that
contains an atomic subsystem, “Discrete Cruise Controller”, and a virtual subsystem,
“Car Dynamics”. (See ex_execution_order.)

Car Model

With the Sample Time option set to All, an Update Diagram turns the virtual
subsystem yellow, indicating that it is a hybrid subsystem. In this case, the subsystem is
a true hybrid system since it has both continuous and discrete sample times. As shown
below, the discrete input signal, D1, combines with the continuous velocity signal, v, to
produce a continuous input to the integrator.

Car Model after an Update Diagram

 Sample Times in Systems

7-29

Car Dynamics Subsystem after an Update Diagram

Now consider a multirate subsystem that contains three Sine Wave source blocks, each of
which has a unique sample time — 0.2, 0.3, and 0.4, respectively.

Multirate Subsystem after an Update Diagram

7 Working with Sample Times

7-30

An Update Diagram turns the subsystem yellow because the subsystem contains
more than one sample time. As shown in the block diagram, the Sine Wave blocks have
discrete sample times D1, D2, and D3 and the output signal is fixed in minor step.

In assessing a system for multiple sample times, Simulink does not consider either
constant [inf, 0] or asynchronous [–1, –n] sample times. Thus a subsystem consisting of
one block that outputs constant value and one block with a discrete sample time will not
be designated as hybrid.

The hybrid annotation and coloring are very useful for evaluating whether or not the
subsystems in your model have inherited the correct or expected sample times.

 Resolve Rate Transitions

7-31

Resolve Rate Transitions

In general, a rate transition exists between two blocks if their sample times differ, that
is, if either of their sample-time vector components are different. The exceptions are:

• Blocks that output constant value never have a rate transition with any other rate.
• A continuous sample time (black) and the fastest discrete rate (red) never has a rate

transition if you use a fixed-step solver.
• A variable sample time and fixed in minor step do not have a rate transition.

You can resolve rate transitions manually by inserting rate transition blocks and by
using two diagnostic tools. For the single-tasking execution mode, the Single task rate
transition diagnostic allows you to set the level of Simulink rate transition messages.
The Multitask rate transition diagnostic serves the same function for multitasking
execution mode. These execution modes directly relate to the type of solver in use:
Variable-step solvers are always single-tasking; fixed-step solvers may be explicitly set as
single-tasking or multitasking.

Automatic Rate Transition

Simulink can detect mismatched rate transitions in a multitasking model during
an update diagram and automatically insert Rate Transition blocks to handle
them. To enable this, in the Solver pane of model configuration parameters, select
Automatically handle rate transition for data transfer. The default setting for this
option is off. When you select this option:

• Simulink handles transitions between periodic sample times and asynchronous tasks.
• Simulink inserts hidden Rate Transition blocks in the block diagram.
• Automatically inserted Rate Transition blocks operate in protected mode for periodic

tasks and asynchronous tasks. You cannot alter this behavior. For periodic tasks,
automatically inserted Rate Transition blocks operate with the level of determinism
specified by the Deterministic data transfer parameter in the Solver pane.
The default setting is Whenever possible, which enables determinism for data
transfers between periodic sample-times that are related by an integer multiple. For
more information, see “Deterministic data transfer”. To use other modes, you must
insert Rate Transition blocks and set their modes manually.

7 Working with Sample Times

7-32

Visualize Inserted Rate Transition Blocks

When you select the Automatically handle rate transition for data transfer option,
Simulink inserts Rate Transition blocks in the paths that have mismatched transition
rates. These blocks are hidden by default. To visualize the inserted blocks, update the
diagram. Badge labels appear in the model and indicate where Simulink inserted Rate
Transition blocks during the compilation phase. For example, in this model, three Rate
Transition blocks were inserted between the two Sine Wave blocks and the Multiplexer
and Integrator when the model compiled. The ZOH and DbBuf badge labels indicate
these blocks.

You can show or hide badge labels using the Display > Signals and Ports > Hidden
Rate Transition Block Indicators setting.

To configure the hidden Rate Transition blocks, right click on a badge label and click on
Insert rate transition block to make the block visible.

 Resolve Rate Transitions

7-33

When you make hidden Rate Transition blocks visible:

• You can see the type of Rate Transition block inserted as well as the location in the
model.

• You can set the Initial Conditions of these blocks.
• You can change block parameters for rate transfer.

Validate the changes to your model by updating your diagram.

Displaying inserted Rate Transition blocks is not compatible with:

7 Working with Sample Times

7-34

• Concurrent execution environment
• Export-function models

To learn more about the types of Rate Transition blocks, see Rate Transition.

Note: Suppose you automatically insert rate transition blocks and there is a virtual block
specifying sample time upstream of the block you insert. You cannot click the badge of
the inserted block to configure the block and make it visible because the sample time
on the virtual block causes a rate transition as well. In this case, manually insert a
rate transition block before the virtual block. To learn more about virtual blocks, see
“Nonvirtual and Virtual Blocks” on page 31-2.

Related Examples
• “Handle Rate Transitions”

More About
• “Time-Based Scheduling and Code Generation”

 How Propagation Affects Inherited Sample Times

7-35

How Propagation Affects Inherited Sample Times

During a model update, for example at the beginning of a simulation, Simulink uses a
process called sample time propagation to determine the sample times of blocks that
inherit their sample times. The figure below illustrates a Discrete Filter block with a
sample time period Ts driving a Gain block.

Because the output of the Gain block is the input multiplied by a constant, its output
changes at the same rate as the filter. In other words, the Gain block has an effective
sample rate equal to the sample rate of the filter. The establishment of such effective
rates is the fundamental mechanism behind sample time propagation in Simulink.

Process for Sample Time Propagation

Simulink uses the following basic process to assign sample times to blocks that inherit
their sample times:

1 Propagate known sample time information forward.
2 Propagate known sample time information backward.
3 Apply a set of heuristics to determine additional sample times.
4 Repeat until all sample times are known.

Simulink Rules for Assigning Sample Times

A block having a block-based sample time inherits a sample time based on the sample
times of the blocks connected to its inputs, and in accordance with the following rules:

Rule Action

All of the inputs have the same sample
time and the block can accept that sample
time

Simulink assigns the sample time to the
block

7 Working with Sample Times

7-36

Rule Action

The inputs have different discrete sample
times and all of the input sample times
are integer multiples of the fastest input
sample time

Simulink assigns the sample time of
the fastest input to the block . (This
assignment assumes that the block can
accept the fastest sample time.)

The inputs have different discrete sample
times, some of the input sample times are
not integer multiples of the fastest sample
time, and the model uses a variable-step
solver

Simulink assigns a fixed-in-minor-step
sample time to the block.

The inputs have different discrete sample
times, some of the input sample times
are not integer multiples of the fastest
sample time, the model uses a fixed-step
solver, and Simulink can compute the
greatest common integer divisor (GCD) of
the sample times coming into the block

Simulink assigns the GCD sample time to
the block. Otherwise, Simulink assigns the
fixed step size of the model to the block.

The sample times of some of the inputs are
unknown, or if the block cannot accept the
sample time

Simulink determines a sample time for the
block based on a set of heuristics.

See Also
“Blocks for Which Sample Time Is Not Recommended” on page 7-18

More About
• “Backpropagation in Sample Times” on page 7-37

 Backpropagation in Sample Times

7-37

Backpropagation in Sample Times

When you update or simulate a model that specifies the sample time of a source
block as inherited (–1), the sample time of the source block may be backpropagated;
Simulink may set the sample time of the source block to be identical to the sample time
specified by or inherited by the block connected to the source block. For example, in the
model below, the Simulink software recognizes that the Sine Wave block is driving a
Discrete-Time Integrator block whose sample time is 1; so it assigns the Sine Wave
block a sample time of 1.

You can verify this sample time setting by selecting Sample Time > Colors from the
Simulink Display menu and noting that both blocks are red. Because the Discrete-Time
Integrator block looks at its input only during its sample hit times, this change does not
affect the results of the simulation, but does improve the simulation performance.

Now replacing the Discrete-Time Integrator block with a continuous Integrator block, as
shown in the model below, causes the Sine Wave and Gain blocks to change to continuous
blocks. You can test this change by selecting Simulation > Update Diagram to update
the colors; both blocks now appear black.

Note: Backpropagation makes the sample times of model sources dependent on block
connectivity. If you change the connectivity of a model whose sources inherit sample
times, you can inadvertently change the source sample times. For this reason, when you
update or simulate a model, by default, Simulink displays warnings at the command line
if the model contains sources that inherit their sample times.

8

Referencing a Model

• “Overview of Model Referencing” on page 8-2
• “Create a Model Reference” on page 8-8
• “Subsystem to Model Reference Conversion” on page 8-11
• “Convert a Subsystem to a Referenced Model” on page 8-16
• “Sample Time Consistency” on page 8-24
• “Inherit Sample Times” on page 8-25
• “Referenced Model Simulation Modes” on page 8-29
• “View a Model Reference Hierarchy” on page 8-42
• “Model Reference Simulation Targets” on page 8-44
• “Simulink Model Referencing Requirements” on page 8-53
• “Parameterize Model References” on page 8-59
• “Conditional Referenced Models” on page 8-64
• “Protected Model” on page 8-71
• “Use Protected Model in Simulation” on page 8-73
• “Refresh Model Blocks” on page 8-75
• “S-Functions with Model Referencing” on page 8-76
• “Buses in Referenced Models” on page 8-79
• “Signal Logging in Referenced Models” on page 8-80
• “Model Referencing Limitations” on page 8-81

8 Referencing a Model

8-2

Overview of Model Referencing

In this section...

“About Model Referencing” on page 8-2
“Referenced Model Advantages” on page 8-5
“Masking Model Blocks” on page 8-6
“Models That Use Model Referencing” on page 8-6
“Model Referencing Resources” on page 8-7

About Model Referencing

You can include one model in another by using Model blocks. Each instance of a Model
block represents a reference to another model, called a referenced model. For simulation
and code generation, the referenced model effectively replaces the Model block that
references it. The model that contains a referenced model is its parent model. A collection
of parent and referenced models constitute a model reference hierarchy. A parent model
and all models subordinate to it comprise a branch of the reference hierarchy.

The interface of a referenced model consists of its:

• Input and output ports (and control ports, in the case of a conditional referenced
model)

• Parameter arguments

A Model block displays inputs and outputs corresponding to the root-level inputs and
outputs of the model it references. These ports enable you to incorporate the referenced
model into the block diagram of the parent model. The interface of the referenced model,
not the context from which the model is referenced, defines the attributes of blocks in
the referenced model. For example, attributes such as dimensions and data types do not
propagate across Model block boundaries. Use the root Inport of the referenced model to
set the interface attributes.

For example, the sldemo_mdlref_basic model includes Model blocks that reference
three instances of the same referenced model, sldemo_mdlref_counter.

 Overview of Model Referencing

8-3

Use the ports on a Model block to connect the referenced model to other elements of
the parent model. Connecting a signal to a Model block port has the same effect as
connecting the signal to the corresponding port in the referenced model. For example, the
Model block CounterA has three inputs: two Constant blocks and a Pulse Generator block
with a sample time of .1. The Model block CounterB also has three inputs: the same two
Constant blocks, and a Pulse Generator block with a sample time of .5. Each Model block
has an output to a separate Scope block.

The referenced model includes Inport and Outport blocks (and possibly Trigger or Enable
blocks) to connect to the parent model. The sldemo_mdlref_counter model has three
Inport blocks (upper, input, and lower) and one Outport block (output).

8 Referencing a Model

8-4

A referenced model can itself contain Model blocks and thus reference lower-level models,
to any depth. The top model is the topmost model in a hierarchy of referenced models.
Where only one level of model reference exists, the parent model and top model are the
same. To prevent cyclic inheritance, a Model block cannot refer directly or indirectly to
a model that is superior to it in the model reference hierarchy. This figure shows cyclic
inheritance.

 Overview of Model Referencing

8-5

Top model
A

Model A
B

Model B

Referenced
models

A parent model can contain multiple Model blocks that reference the same referenced
model as long as the referenced model does not define global data. The referenced model
can also appear in other parent models at any level. You can parameterize a referenced
model to provide tunability for all instances of the model. Also, you can parameterize a
referenced model to let different Model blocks specify different values for variables that
define the behavior of the referenced model. See “Parameterize Model References” on
page 8-59 for details.

Simulink can execute a referenced model either interpretively (in Normal mode) or by
compiling the referenced model to code and executing the code (in Accelerator mode). For
details, see “Referenced Model Simulation Modes” on page 8-29.

If a referenced model does not depend on data that is available only from a higher-
level model, you can use a referenced model as a standalone model. An appropriately
configured model can function as both a standalone model and a referenced model,
without changing the model or any entities derived from it.

Referenced Model Advantages

Like subsystems, referenced models allow you to organize large models hierarchically.
Model blocks can represent major subsystems. Like libraries, referenced models allow
you to use the same capability repeatedly without having to redefine it. Referenced
models provide several advantages that are unavailable with subsystems and/or library
blocks. Several of these advantages result from Simulink compiling a referenced model
independent of the context of the referenced model.

• Modular development

You can develop a referenced model independently from the models that use it.

8 Referencing a Model

8-6

• Model Protection

You can obscure the contents of a referenced model, allowing you to distribute it
without revealing the intellectual property that it embodies.

• Inclusion by reference

You can reference a model multiple times without having to make redundant copies,
and multiple models can reference the same model.

• Incremental loading

Simulink loads a referenced model at the point it needs to use uses the model, which
speeds up model loading.

• Accelerated simulation

Simulink can convert a referenced model to code and simulate the model by running
the code, which is faster than interactive simulation.

• Incremental code generation

Accelerated simulation requires code generation only if the model has changed since
the code was previously generated.

• Independent configuration sets

The configuration set used by a referenced model can differ from the configuration set
of its parent or other referenced models.

For additional information about how model referencing compares to other Simulink
componentization techniques, see “Componentization Guidelines” on page 14-28. For
a video summarizing advantages of model referencing, see Modular Design Using Model
Referencing

Masking Model Blocks

You can use the masking facility to create custom dialog boxes and icons for Model
blocks. Masked dialog boxes can make it easier to specify additional parameters for
Model blocks. For information about block masks, see “Block Masks”.

Models That Use Model Referencing

Simulink includes several models that illustrate model referencing.

http://www.mathworks.com/videos/modular-design-using-model-referencing-68919.html
http://www.mathworks.com/videos/modular-design-using-model-referencing-68919.html

 Overview of Model Referencing

8-7

The Introduction to Managing Data with Model Reference example
introduces the basic concepts and workflow related to managing data with model
referencing. To explore these topics in more detail, select the Detailed Workflow for
Managing Data with Model Reference example.

In addition, the sldemo_absbrake model represents a wheel speed calculation as a
Model block within the context of an anti-lock braking system (ABS).

Model Referencing Resources

The following are the most commonly needed resources for working with model
referencing:

• The Model block, which represents a model that another model references. See the
Model block parameters in the “Ports & Subsystems Library Block Parameters”
section of the “Block-Specific Parameters” table for information about accessing a
Model block programmatically.

• The Configuration Parameters > Diagnostics > Model Referencing pane,
which controls the diagnosis of problems encountered in model referencing. See
“Diagnostics Pane: Model Referencing” for details.

• The Configuration Parameters > Model Referencing pane, which provides
options that control model referencing and list files on which referenced models
depend. See “Model Referencing Pane” for details.

8 Referencing a Model

8-8

Create a Model Reference

A model becomes a referenced model when a Model block in some other model references
it. Any model can function as a referenced model, and such use does not preclude using it
as a separate model also.

For a video introducing how to create model references, see Getting Started with Model
Referencing.

To create a reference to a model (referenced model) in another model (parent model):

1 If the folder containing the referenced model you want to reference is not on the
MATLAB path, add the folder to the MATLAB path.

2 In the referenced model:

• Set Configuration Parameters > Model Referencing > Total number of
instances allowed per top model to:

• One, if the hierarchy uses the model at most once
• Multiple, to use the model more than once per top model. To reduce

overhead, specify Multiple only when necessary.
• Zero, which precludes referencing the model

3 Create an instance of the Model block in the parent model by dragging a Model
block instance from the Ports & Subsystems library to the parent model. The new
block is initially unresolved (specifies no referenced model) and has the following
appearance:

http://www.mathworks.com/videos/getting-started-with-model-referencing-68918.html
http://www.mathworks.com/videos/getting-started-with-model-referencing-68918.html

 Create a Model Reference

8-9

4 Open the new Model block's parameter dialog box by double-clicking the Model block.
See “Navigating a Model Block” for more about accessing Model block parameters.

8 Referencing a Model

8-10

5 Enter the name of the referenced model in the Model name field. This name
must contain fewer than 60 characters. (See “Name Length Requirement” on page
8-53.)

• For information about Model Arguments and Model argument values, see
“Model Arguments” on page 8-60.

• For information about the Simulation mode, see “Referenced Model Simulation
Modes” on page 8-29.

6 Click OK or Apply.

If the referenced model contains any root-level inputs or outputs, Simulink displays
corresponding input and output ports on the Model block instance that you have created.
Use these ports to connect the referenced model to other ports in the parent model.

A signal that connects to a Model block is functionally the same signal outside and inside
the block. Therefore that signal is subject to the restriction that a given signal can have
at most one associated signal object. See Simulink.Signal for more information.
For information about connecting a bus signal to a referenced model, see “Bus Usage
Requirements” on page 8-57.

 Subsystem to Model Reference Conversion

8-11

Subsystem to Model Reference Conversion

In this section...

“When to Convert to Model Referencing” on page 8-11
“Subsystems That You Can Convert” on page 8-11
“Conversion Process” on page 8-12
“Conversion Checking” on page 8-13
“Conversion Results” on page 8-14
“Conversion Report” on page 8-15

When to Convert to Model Referencing

Before you convert a subsystem to model referencing, consider whether model referencing
is the approach to use to meet your modeling requirements

Model referencing offers several benefits for modeling large, complex systems and for
team-based development. However, subsystems or libraries are better suited for some
modeling goals than model referencing. Many large models involve using a combination
of subsystems and referenced models. For information to help you to decide whether to
convert a subsystem to a referenced model, see “Componentization Guidelines” on page
14-28.

Subsystems That You Can Convert

The types of subsystems that you can convert to a referenced model are:

• Atomic
• Triggered
• Enabled
• Triggered and enabled
• Function-call
• Export-function (functions exported from Simulink models that are invoked by

controlling logic from outside the referenced model)

8 Referencing a Model

8-12

To convert a masked subsystem, use the
Simulink.SubSystem.convertToModelReference function.

Note: To create a referenced model that accepts asynchronous function calls, see
“Asynchronous Support Limitations”.

Conversion Process

The general process for converting a subsystem to a referenced model involves the
following tasks. For details, see “Convert a Subsystem to a Referenced Model” on page
8-16.

1 Determine whether converting the subsystem to a referenced model meets your
modeling requirements.

2 Optionally, prepare the model before converting the subsystem.
3 Run the Model Reference Conversion Advisor to create a referenced model. Address

any issues that the advisor reports and continue the conversion until the advisor
reports no issues.

 Subsystem to Model Reference Conversion

8-13

4 Optionally, have the advisor compare the results of simulating the model before and
after the conversion.

5 After you complete the conversion, update the model as necessary.

Command-Line Interface

As an alternative to using the Model Reference Conversion Advisor, you can use the
Simulink.SubSystem.convertToModelReference function to convert a subsystem to
a referenced model.

Conversion Checking

The Model Reference Conversion Advisor includes a set of conversion checks and
parameters for configuring the advisor.

8 Referencing a Model

8-14

The advisor runs through the series of checks that help you to prepare the subsystem
for successful conversion. If an advisor check reports an issue, before continuing the
conversion process, either:

• Allow the advisor to fix the issue.
• Change the model based on the modifications the advisor suggests.

You can have the advisor fix all conversion issues that it can fix. In the Check
Conversion Input Parameters check, select Fix errors automatically (if possible).
This option can make the conversion process faster, but you do not control the fixes that
the advisor makes.

Conversion Results

After the advisor runs all of the checks successfully, it:

• Creates a referenced model from the subsystem
• Creates the bus objects, signal objects, and tunable parameters that the referenced

model requires
• Adds a Model block (by default)
• Creates a conversion summary report
• Optionally, checks the consistency of simulation results before and after conversion (if

you enable that option)

The advisor copies the following elements from the original model to the new referenced
model.

• Configuration set — If the referencing model uses:

• A configuration set that is not a referenced configuration set, the advisor copies
the entire configuration set to the referenced model.

• A referenced configuration set, then both the referencing and referenced models
use the same referenced configuration set.

• Variables — The advisor copies into the model workspace of the referenced model
only the model workspace variables that the subsystem used in the original model.

If the model that contains the subsystem uses a data dictionary, then the referenced
model uses the same data dictionary.

 Subsystem to Model Reference Conversion

8-15

• Requirements links — Requirements links created with the Simulink Verification
and Validation software (for example, requirements links to blocks and signals) are
copied. The advisor transfers the requirements links from the subsystem to the new
Model block.

The conversion summary report describes the elements that it copies.

Conversion Report

The advisor creates an HTML report in the slprj folder that it uses while performing
the conversion. The report summarizes the results of the conversion process, including
the results of the fixes that the advisor performed.

Related Examples
• “Convert a Subsystem to a Referenced Model” on page 8-16

More About
• “Componentization Guidelines” on page 14-28
• Atomic Subsystems
• “Create a Triggered Subsystem” on page 9-38
• “Create an Enabled Subsystem” on page 9-21
• “Create a Triggered and Enabled Subsystem” on page 9-45
• “Create a Function-Call Subsystem” on page 9-50
• “Export-Function Models” on page 9-4

8 Referencing a Model

8-16

Convert a Subsystem to a Referenced Model

In this section...

“Determine Whether to Convert the Subsystem” on page 8-16
“Update the Model Before Converting the Subsystem” on page 8-16
“Run the Model Reference Conversion Advisor” on page 8-20
“Compare Simulation Results Before and After Conversion” on page 8-20
“Revert the Conversion Results” on page 8-22
“Integrate the Referenced Model into the Parent Model” on page 8-23

Determine Whether to Convert the Subsystem

Before you convert a subsystem to model referencing, consider whether model referencing
is the approach to use to meet your modeling requirements

Model referencing offers several benefits for modeling large, complex systems and for
team-based development. However, subsystems or libraries are better suited for some
modeling goals than model referencing. Many large models involve using a combination
of subsystems and referenced models. For information to help you to decide whether to
convert a subsystem to a referenced model, see “Componentization Guidelines” on page
14-28.

Confirm that the subsystem you want to convert is a type of subsystem that you can
convert. See “Subsystems That You Can Convert” on page 8-11.

Update the Model Before Converting the Subsystem

Tip Before you run the advisor, make sure that the model containing the subsystem that
you want to convert compiles successfully.

The advisor fixes or guides you through fixing issues. However, if you are converting a
large, complex subsystem, consider taking steps before you convert the model. Preparing
the model and subsystem can eliminate or reduce the number of issues the advisor
identifies. It can be more efficient to address issues in the model editing environment
than to switch repeatedly between the advisor and the Simulink Editor.

 Convert a Subsystem to a Referenced Model

8-17

Note: You can use Model Reference Conversion Advisor Fix option to have the advisor fix
some conversion issues.

1 Set the Configuration Parameters > Diagnostics > Data Validity > Signal
resolution parameter to Explicit only.

You can a Model Reference Conversion Advisor Fix option to address this issue
automatically.

2 Configure these subsystem interfaces to the model.

Subsystem Interface What to Look For Model Modification

Goto or From blocks Crossing of subsystem boundaries Use an Inport block to replace From
blocks that have a corresponding
GoTo block that crosses the subsystem
boundary.

Use an Outport block to replace each
GoTo block that has corresponding
From blocks that cross the subsystem
boundary.

Connect the Inport and Outport blocks to
the corresponding subsystem ports.

Data stores Data Store Memory blocks
accessed by Data Store Read or
Data Store Write blocks from
outside of the subsystem

Replace the Data Store Memory block
with a global data store. Define a global
data store using a Simulink.Signal
object. For details, see “Data Stores with
Signal Objects” on page 58-14.

You can use the Model Reference
Conversion Advisor Fix option to address
this issue.

Tunable parameters Global tunable parameters in
the dialog box opened using the
Configuration Parameters
> Optimization > Signals
and Parameters > Configure
button

Use tunablevars2parameterobjects
to create a Simulink.Parameter object
for each tunable parameter.

The Simulink.Parameter objects must
have a storage class other than Auto.

8 Referencing a Model

8-18

Subsystem Interface What to Look For Model Modification

For more information, see “Parameterize
Model References” on page 8-59 and
“Tunable Parameters” on page 3-8.

You can use the Model Reference
Conversion Advisor Fix option to address
this issue.

3 Configure the subsystem and its contents.

Subsystem
Configuration

What to Look For Model Modification

Inactive
subsystem
variants

Variant Subsystem blocks. Make the subsystem variant that
you want to convert active. The
advisor does not convert inactive
subsystem variants.

To have the new Model block
behave similar to the subsystem
variant, convert each variant
subsystem separately and then
use a Model Variants block.
For more information, see “Set Up
Model Variants” on page 10-25.

Function-call signals that
cross virtual subsystem
boundaries.

Move the Function-Call Generator
block into the subsystem that you
want to convert.

Note: If you convert an export-
function subsystem, then you do
not need to move the Function-Call
Generator block.

Function-call outputs. Change the function-call outputs to
data triggers.

Function calls

Wide function-call ports. Eliminate wide signals for
function-call subsystems.

 Convert a Subsystem to a Referenced Model

8-19

Subsystem
Configuration

What to Look For Model Modification

Sample times Sample time of an Inport
block that does not match
the sample time of the block
driving the Inport.

Insert Rate Transition blocks
where appropriate.

Inport blocks Merged Inport blocks. Configure the model to avoid
merged Inport blocks. See the
Merge block documentation.

Constant blocks Constant blocks that input
to subsystems.

Consider moving the Constant
blocks into the subsystem.

Bus signals that enter and
exit a subsystem.

Match signal names and bus
element names for blocks inside of
the subsystem.

Consider using the Configuration
Parameters > Diagnostics >
Connectivity > Signal label
mismatch diagnostic.

Duplicate signal names in
buses.

Make signal names of the bus
elements unique.

Buses

Signal names that are not
valid MATLAB identifiers.
A valid identifier is a
character string that meets
these conditions:

• The string contains
letters, digits, or
underscores.

• The first character is a
letter.

• The length of the string
is less than or equal to
the value returned by
the namelengthmax
function.

Change any invalid signal names
to be valid MATLAB identifiers.

8 Referencing a Model

8-20

Run the Model Reference Conversion Advisor

Note: As an alternative to running the Model Reference Conversion Advisor, you can use
the Simulink.SubSystem.convertToModelReference function.

Before you run the advisor, make sure that the model containing the subsystem that you
want to convert compiles successfully.

1 Open the model and locate the subsystem to convert.
2 Start the Model Reference Conversion Advisor. In the Simulink Editor, right-click

the subsystem that you want to convert. Select Subsystem & Model Reference >
Convert Subsystem to > Referenced Model.

3 In the Model Reference Conversion Advisor dialog box, review the default settings
under Input Parameters. Modify the parameters for running the advisor as needed
and click Apply.

Tip The advisor provides context-sensitive help for checks. In the advisor, right-
click the check (such as Check conversion input parameters) and select What’s
This?.

Note: The advisor can compare simulation results for the top model for the
referenced model to the results for the baseline model containing the subsystem.
Select Check simulation results after conversion. For details, see “Compare
Simulation Results Before and After Conversion” on page 8-20.

4 Click Convert.
5 Address any issues that the advisor reports. For some issues, the advisor provides a

Fix button to address an issue.
6 After you address the each issue, click Continue until all of the checks pass.

Compare Simulation Results Before and After Conversion

The advisor can compare simulation results before and after the conversion.

Before you convert the subsystem:

 Convert a Subsystem to a Referenced Model

8-21

• In the Model Reference Conversion Advisor, under Input Parameters, select
Replace subsystem with a Model block and Check simulation results after
conversion.

• Set these options:

• Stop time
• Absolute tolerance
• Relative tolerance

• Enable signal logging for the subsystem output signals of interest.
• Set the Model block simulation mode option in the advisor to the same simulation

mode as the original model.

After you convert the model, select View comparison results. The results display in
the Simulation Data Inspector. A green check mark indicates that the simulation results
are the same for the baseline model and the model with the referenced model.

8 Referencing a Model

8-22

For more information about the Simulation Data Inspector, see “Visualize and Evaluate
Results”.

Revert the Conversion Results

If you are not satisfied with the conversion results, you can restore the model to its initial
state. Use one of these approaches:

• At any point during the conversion, select File > Load Restore Point.
• After you successfully run the Complete conversion check, select Click here to

restore the original model.

 Convert a Subsystem to a Referenced Model

8-23

Integrate the Referenced Model into the Parent Model

After you complete the conversion, update the model as necessary to meet your modeling
requirements.

Add a Model Block, If Necessary

If, before the conversion, you cleared the Replace subsystem with a Model block
option, then you need to manually add a Model block to the parent model.

1 Delete the Subsystem block.
2 Copy the new Model block into the model, where the subsystem was.

Inspect Root Inport Blocks in the Referenced Model

If you want to simulate the model with external data, check that the root Inport blocks in
the new referenced model have the appropriate Interpolate data parameter setting. For
details, see the documentation for the Interpolate data parameter of the Inport block.

Convert Each Variant Subsystem

If you convert an active variant subsystem, convert each of the variant subsystems to
referenced model. Converting each variant subsystem to a referenced model produces
similar results to using the Variant Subsystem block.

Related Examples
• “Create a Model Reference” on page 8-8

More About
• “Subsystem to Model Reference Conversion” on page 8-11
• “Componentization Guidelines” on page 14-28
• “Overview of Model Referencing” on page 8-2
• “Model Referencing Limitations” on page 8-81

8 Referencing a Model

8-24

Sample Time Consistency

Use consistent sample time rates to promote the reliable use of a model referenced by
another model. Make the rates of root Inport and Outport blocks in a referenced model
consistent with the rates of blocks reading from and writing to those blocks. Simulink
generates an error when there are sample time mismatches between:

• The sample times of root Inport blocks and the sample times of blocks to which the
Inport block inputs.

• The sample times of root Outport blocks and the sample times of blocks that input to
the Outport block.

Troubleshooting

To address an error that flags a sample time inconsistency in a referenced model, you can
use one of these approaches.

Root Inport or Output Block Sample Time is
Different From

Possible Solution

All of the blocks to which it connects, and
those blocks all have the same sample time
as each other

Set the sample time of the Inport or
Outport block to match the sample time of
the block to which it connects.

One or more blocks and the same as one or
more blocks

For blocks that do not match the Inport
or Outport block, insert Rate Transition
blocks on the signal that connects to the
Inport or Outport block.

 Inherit Sample Times

8-25

Inherit Sample Times

In this section...

“How Sample-Time Inheritance Works for Model Blocks” on page 8-25
“Conditions for Inheriting Sample Times” on page 8-25
“Determining Sample Time of a Referenced Model” on page 8-26
“Blocks That Depend on Absolute Time” on page 8-26
“Blocks Whose Outputs Depend on Inherited Sample Time” on page 8-27

How Sample-Time Inheritance Works for Model Blocks

The sample times of a Model block are the sample times of the model that it references.
If the referenced model must run at specific rates, the model specifies the required rates.
Otherwise, the referenced model inherits its sample time from the parent model.

Placing a Model block in a triggered, function call, or iterator subsystem relies on the
ability to inherit sample times. Additionally, allowing a Model block to inherit sample
time maximizes its reuse potential. For example, a model can fix the data types and
dimensions of all its input and output signals. You could reuse the model with different
sample times (for example, discrete at 0.1 or discrete at 0.2, triggered).

Conditions for Inheriting Sample Times

A referenced model inherits its sample time if the model:

• Does not have any continuous states
• Specifies a fixed-step solver and the Fixed-step size is auto
• Contains no blocks that specify sample times (other than inherited or constant)
• Does not contain any S-functions that use their specific sample time internally
• Has only one sample time (not counting constant and triggered sample time) after

sample time propagation
• Does not contain any blocks, including Stateflow charts, that use absolute time, as

listed in “Blocks That Depend on Absolute Time” on page 8-26
• Does not contain any blocks whose outputs depend on inherited sample time, as listed

in “Blocks Whose Outputs Depend on Inherited Sample Time” on page 8-27.

8 Referencing a Model

8-26

You can use a referenced model that inherits its sample time anywhere in a parent
model. By contrast, you cannot use a referenced model that has intrinsic sample times in
a triggered, function call, or iterator subsystem. To avoid rate transition errors, ensure
that blocks connected to a referenced model with intrinsic samples times operate at the
same rates as the referenced model.

For more information, see “Blocks Whose Outputs Depend on Inherited Sample Time” on
page 8-27.

Determining Sample Time of a Referenced Model

To determine whether a referenced model can inherit its sample time, set the Periodic
sample time constraint on the Solver configuration parameters dialog pane to Ensure
sample time independent. If the model is unable to inherit sample times, this setting
causes Simulink to display an error message when building the model. See “Periodic
sample time constraint” for more about this option.

To determine the intrinsic sample time of a referenced model, or the fastest intrinsic
sample time for multirate referenced models:

1 Update the model that references the model
2 Select a Model block within the parent model
3 Enter the following at the MATLAB command line:

get_param(gcb, 'CompiledSampleTime')

Blocks That Depend on Absolute Time

The following Simulink blocks depend on absolute time, and therefore preclude a
referenced model from inheriting sample time:

• Backlash (only when the model uses a variable-step solver and the block uses a
continuous sample time)

• Chirp Signal

• Clock

• Derivative

• Digital Clock

• Discrete-Time Integrator (only when used in triggered subsystems)

 Inherit Sample Times

8-27

• From File

• From Workspace

• Pulse Generator

• Ramp

• Rate Limiter

• Repeating Sequence

• Signal Generator

• Sine Wave (only when the Sine type parameter is Time-based)
• Stateflow (when the chart uses absolute-time temporal logic, or the reserved word t

to reference time)
• Step

• To File

• To Workspace (only when logging to Timeseries or Structure With Time
format)

• Transport Delay

• Variable Time Delay

• Variable Transport Delay

Some blocks other than Simulink blocks depend on absolute time. See the documentation
for the blocksets that you use.

Blocks Whose Outputs Depend on Inherited Sample Time

Using a block whose output depends on an inherited sample time in a referenced model
can cause simulation to produce unexpected or erroneous results. When building a
referenced model that does not need a specified rate, Simulink checks for blocks whose
outputs are functions of the inherited sample time. This checking includes examining
S-Function blocks. If Simulink finds any such blocks, it specifies a default sample time.
Simulink displays an error if you have set the Configuration Parameters > Solver
> Periodic sample time constraint to Ensure sample time independent. See
“Periodic sample time constraint” for more about this option.

The outputs of the following built-in blocks depend on inherited sample time. The
outputs of these blocks preclude a referenced model from inheriting its sample time from
the parent model:

8 Referencing a Model

8-28

• Discrete-Time Integrator

• From Workspace (if it has input data that contains time)
• Probe (if probing sample time)
• Rate Limiter

• Sine Wave

Simulink assumes that the output of an S-function does not depend on inherited sample
time unless the S-function explicitly declares the contrary. See “Sample Times” for
information on how to create S-functions that declare whether their output depends on
their inherited sample time.

In referenced models that inherit their sample time, avoid S-functions in referenced
models that fail to declare whether output depends on inherited sample time. Excluding
those kinds of S-functions helps to avoid simulation errors. By default, Simulink warns
you if your model contains such blocks when you update or simulate the model. See
“Unspecified inheritability of sample time” for details.

 Referenced Model Simulation Modes

8-29

Referenced Model Simulation Modes

In this section...

“Simulation Modes for Referenced Models” on page 8-29
“Specify the Simulation Mode” on page 8-31
“Mixing Simulation Modes” on page 8-31
“Using Normal Mode for Multiple Instances of Referenced Models” on page 8-32
“Accelerating a Freestanding or Top Model” on page 8-40

Simulation Modes for Referenced Models

Simulink executes the top model in a model reference hierarchy just as it would if no
referenced models existed. All Simulink simulation modes are available to the top model.
Simulink can execute a referenced model in any of four modes: Normal, Accelerator,
Software-in-the-loop (SIL), or Processor-in-the-loop (PIL).

Normal Mode

Simulink executes a Normal mode referenced model interpretively. Normal mode,
compared to other simulation modes:

• Requires no delay for code generation or compilation
• Works with more Simulink and Stateflow tools, supporting tools such as:

• Scopes, port value display, and other output viewing tools
• Model coverage analysis
• Stateflow debugging and animation

• Provides more accurate linearization analysis
• Supports more S-functions than Accelerator mode does

Normal mode executes slower than Accelerator mode does.

Simulation results for a given model are nearly the same in either Normal or Accelerator
mode. Trivial differences can occur due to differences in the optimizations and libraries
that you use.

You can use Normal mode with multiple instances of a referenced model. For details, see
“Using Normal Mode for Multiple Instances of Referenced Models” on page 8-32.

8 Referencing a Model

8-30

Accelerator Mode

Simulink executes an Accelerator mode referenced model by creating a MEX-file (or
simulation target) for the referenced model, then running the MEX-file. See “Model
Reference Simulation Targets” on page 8-44 for more information. Accelerator mode:

• Takes time for code generation and code compilation
• Does not fully support some Simulink tools, such as Model Coverage and the Simulink

Debugger.
• Executes faster than Normal mode
• Scopes work with Accelerator mode referenced models, but require using the Signal

& Scope Manager and adding test points to signals. Adding or removing a test point
necessitates rebuilding the SIM target for a model, which can be time-consuming.

Simulation results for a given model are nearly identical in either Normal or Accelerator
mode. Trivial differences can occur due to differences in the optimizations and libraries
that you use.

Software-in-the-Loop (SIL) Mode

Simulink executes a SIL-mode referenced model by generating production code using the
model reference target for the referenced model. This code is compiled for, and executed
on, the host platform.

With SIL mode, you can:

• Verify generated source code without modifying the original model
• Reuse test harnesses for the original model with the generated source code

SIL mode provides a convenient alternative to PIL simulation when the target hardware
is not available.

This option requires Embedded Coder® software.

For more information, see “SIL and PIL Limitations” and “Numerical Equivalence
Testing” in the Embedded Coder documentation.

Processor-in-the-Loop (PIL) Mode

Simulink executes a PIL-mode referenced model by generating production code using
the model reference target for the referenced model. This code is cross-compiled for, and
executed on, a target processor or an equivalent instruction set simulator.

 Referenced Model Simulation Modes

8-31

With PIL mode, you can:

• Verify deployment object code on target processors without modifying the original
model

• Reuse test harnesses for the original model with the generated source code

This option requires Embedded Coder software.

For more information, see “SIL and PIL Limitations” and “Numerical Equivalence
Testing” in the Embedded Coder documentation.

Specify the Simulation Mode

The Model block for each instance of a referenced model controls its simulation mode. To
set or change the simulation mode for a referenced model:

1 Access the block parameter dialog box for the Model block. (See “Navigating a Model
Block”.)

2 Set the Simulation mode parameter.
3 Click OK or Apply.

Mixing Simulation Modes

The following table summarizes the relationship between the simulation mode of the
parent model and its referenced models.

Parent Model Simulation Mode Referenced model Simulation Modes

Normal • Referenced models can use Normal, Accelerator, SIL,
or PIL mode.

• A referenced model can execute in Normal mode only
if every model that is superior to it in the hierarchy
also executes in Normal mode. A Normal mode
path then extends from the top model through the
model reference hierarchy down to the Normal mode
referenced model.

Accelerator • All subordinate models must also execute in
Accelerator mode.

• When a Normal mode model is subordinate to
an Accelerator mode model, Simulink posts a

8 Referencing a Model

8-32

Parent Model Simulation Mode Referenced model Simulation Modes

warning and temporarily overrides the Normal mode
specification.

• When a SIL-mode or PIL-mode model is subordinate
to an Accelerator mode model, an error occurs.

SIL • All subordinate models also execute in SIL mode,
provided their simulation modes are Normal,
Accelerator, or SIL. Otherwise, an error occurs.
See “Simulation Mode Override Behavior in Model
Reference Hierarchy”.

• The SIL mode Model block uses the model reference
targets of the blocks beneath.

• Multiple Model blocks, starting at the top of a
model reference hierarchy, can execute at a time in
SIL mode. However, during code coverage or code
execution profile, only one Model block can execute at
a time in SIL mode.

PIL • All subordinate models also execute in PIL mode,
provided their simulation modes are Normal,
Accelerator, or PIL. Otherwise, an error occurs.
See “Simulation Mode Override Behavior in Model
Reference Hierarchy”.

• The PIL mode Model block uses the model reference
targets of the blocks beneath.

• Only one Model block, starting at the top of a model
reference hierarchy, can execute at a time in PIL
mode.

For more information about SIL and PIL modes, see in the Embedded Coder
documentation:

• “Code Interfaces for SIL and PIL”
• “SIL and PIL Limitations”

Using Normal Mode for Multiple Instances of Referenced Models

You can simulate a model that has multiple references in Normal mode.

 Referenced Model Simulation Modes

8-33

Normal Mode Visibility

All instances of a Normal mode referenced model are part of the simulation. However,
Simulink displays only one instance in a model window; that instance is determined by
the Normal Mode Visibility setting. Normal mode visibility includes the display of Scope
blocks and data port values.

If you do not set Normal Mode Visibility, Simulink picks one instance of each Normal
mode model to display.

After a simulation, if you try to open a referenced model from a Model block that has
Normal Mode Visibility set to off, Simulink displays a warning.

For a description of how to set up your model to control which instance of a referenced
model in Normal mode has visibility and to ensure proper simulation of the model, see
“Specify the Instance That Has Normal Mode Visibility” on page 8-36.

Note: If you change the Normal Mode Visibility setting for a referenced model, you must
simulate the top model in the model reference hierarchy to make use of the new setting.

Examples of a Model with Multiple Referenced Instances in Normal Mode

sldemo_mdlref_basic

The sldemo_mdlref_basic model has three Model blocks (CounterA, CounterB, and
CounterC) that each reference the sldemo_mdlref_counter model.

If you update the diagram, the sldemo_mdlref_basic displays different icons for each
of the three Model blocks that reference sldemo_mdlref_counter.

8 Referencing a Model

8-34

Model Block Icon Corners Simulation Mode and Normal Mode Visibility
Setting

CounterA White Normal mode, with Normal Mode Visibility
enabled

CounterB Gray corners Normal mode, with Normal Mode Visibility
disabled

CounterC Black corner Accelerator mode (Normal Mode Visibility is
not applicable)

If you do the following steps, then the ScopeA block appears as shown below:

1 Simulate sldemo_mdlref_basic.
2 Open the sldemo_mdlref_counter model.
3 Open the ScopeA block.

 Referenced Model Simulation Modes

8-35

That ScopeA block reflects the results of simulating the CounterA Model block, which
has Normal Mode Visibility enabled.

If you try to open mdlref_counter model from the CounterB Model block (for example,
by double-clicking the Model block), ScopeA in mdlref_counter still shows the results of
the CounterA Model block, because that is the Model block with Normal Mode Visibility
set to on.

sldemo_mdlref_depgraph

The sldemo_mdlref_depgraph model shows the use of the Model Dependency Viewer
for a model that has multiple Normal mode instances of a referenced model. The model
shows what you need to do to set up a model with multiple referenced instances in
Normal mode.

Set Up a Model with Multiple Instances of a Referenced Model in Normal Mode

This section describes how to set up a model to support the use of multiple instances of
Normal mode referenced models.

1 Set the Configuration Parameters > Model Referencing > Total number of
instances allowed per top model parameter to Multiple.

If you cannot use the Multiple setting for your model, because of the requirements
described in the “Total number of instances allowed per top model” parameter

8 Referencing a Model

8-36

documentation, then you can have only one instance of that referenced model be in
Normal mode.

2 For each instance of the referenced model that you want to be in Normal mode, in
the block parameters dialog box for the Model block, set the Simulation Mode
parameter to Normal. Ensure that all the ancestors in the hierarchy for that Model
block are in Normal mode.

The corners of icons for Model blocks that are in Normal mode can be white (empty),
or gray after you update the diagram or simulate the model.

3 (If necessary) Modify S-functions used by the model so that they work with multiple
instances of referenced models in Normal mode. For details, see “Supporting the Use
of Multiple Instances of Referenced Models That Are in Normal Mode”.

By default, Simulink assigns Normal mode visibility to one of the instances. After you
have performed the steps in this section, you can specify a non-default instance to have
Normal mode visibility. For details, see “Specify the Instance That Has Normal Mode
Visibility” on page 8-36.

Specify the Instance That Has Normal Mode Visibility

This section describes how to specify Normal Mode Visibility for an instance other than
the one that an instance that Simulink selects automatically.

You need to:

1 (Optionally) “Determine Which Instance Has Normal Mode Visibility” on page
8-36.

2 “Set Normal Mode Visibility” on page 8-37.
3 Simulate the top model to apply the new Normal Mode Visibility settings.

Determine Which Instance Has Normal Mode Visibility

If you do not already know which instance currently has Normal mode visibility, you can
determine that by using one of these approaches:

• If you update the diagram and have made no other changes to the model, then you
can navigate through the model hierarchy to examine the Model blocks that reference
the model that you are interested in. The Model block that has white corners has
Normal Mode Visibility enabled.

• When you are editing a model or during compilation, use the
ModelReferenceNormalModeVisibilityBlockPath parameter.

 Referenced Model Simulation Modes

8-37

If you use this parameter while editing a model, you must update the diagram before
you use this parameter.

The result is a Simulink.BlockPath object that is the block path for the Model
block that references the model that has Normal Mode Visibility enabled. For
example:

get_param('sldemo_mdlref_basic',...

 'ModelReferenceNormalModeVisibilityBlockPath')

ans =

 Simulink.BlockPath

 Package: Simulink

 Block Path:

 'sldemo_mdlref_basic/CounterA'

• For a top model that is being simulated or that is in a compiled state, you can use the
CompiledModelBlockInstancesBlockPath parameter. For example:

a = get_param('sldemo_mdlref_depgraph',...

 'CompiledModelBlockInstancesBlockPath')

a =

 sldemo_mdlref_F2C: [1x1 Simulink.BlockPath]

 sldemo_mdlref_heater: [1x1 Simulink.BlockPath]

sldemo_mdlref_outdoor_temp: [1x1 Simulink.BlockPath]

Set Normal Mode Visibility

To enable Normal Mode Visibility for a different instance of the referenced model than
the instance that currently has Normal Mode Visibility, use one of these approaches:

• Navigate to the top model and select the Diagram > Subsystem & Model
Reference > Model Block Normal Mode Visibility menu item.

The Model Block Normal Mode Visibility dialog box appears. That dialog box includes
instructions in the right pane. For additional details about the dialog box, see “Model
Block Normal Mode Visibility Dialog Box” on page 8-38.

• From the MATLAB command line, set the
ModelReferenceNormalModeVisibility parameter.

8 Referencing a Model

8-38

For input, you can specify:

• An array of Simulink.BlockPath objects. For example:

bp1 = Simulink.BlockPath({'mVisibility_top/Model', ...

'mVisibility_mid_A/Model'});

bp2 = Simulink.BlockPath({'mVisibility_top/Model1', ...

'mVisibility_mid_B/Model1'});

 bps = [bp1, bp2];

 set_param(topMdl, 'ModelBlockNormalModeVisibility', bps);

• A cell array of cell arrays of strings, with the strings being paths to individual
blocks and models. The following example has the same effect as the preceding
example (which shows how to specify an array of Simulink.BlockPath objects):

p1 = {'mVisibility_top/Model', 'mVisibility_mid_A/Model'};

p2 = {'mVisibility_top/Model1', 'mVisibility_mid_B/Model1'};

set_param(topMdl, 'ModelBlockNormalModeVisibility', {p1, p2});

• An empty array, to specify the use of the Simulink default selection of the instance
that has Normal mode visibility. For example:

set_param(topMdl, 'ModelBlockNormalModeVisibility', []);

Using an empty array is equivalent to clearing all the check boxes in the Model
Block Normal Mode Visibility dialog box.

Note: You cannot change Normal Mode Visibility during a simulation.

Model Block Normal Mode Visibility Dialog Box

If you have a model that has multiple instances of a referenced model in Normal mode,
you can use the Block Model Normal Mode Visibility dialog box to set Normal Mode
Visibility for a specific instance. For a description of Normal mode visibility, see “Normal
Mode Visibility” on page 8-33.

Alternatively, you can set the ModelReferenceNormalModeVisibility parameter.
For information about how to specify an instance of a referenced model that is in Normal
mode that is different than the instance automatically selected by Simulink, see “Specify
the Instance That Has Normal Mode Visibility” on page 8-36.

 Referenced Model Simulation Modes

8-39

Open the Model Block Normal Mode Visibility Dialog Box

To open the Model Block Normal Mode Visibility dialog box, navigate to the top model
and select Diagram > Subsystem & Model Reference > Model Block Normal
Mode Visibility.

The dialog box for the sldemo_mdlref_basic model, with the hierarchy pane
expanded, looks like this:

The model hierarchy pane shows a partial model hierarchy for the model from which you
opened the dialog box. The hierarchy stops at the first Model block that is not in Normal
mode. The model hierarchy pane does not display Model blocks that reference protected
models.

Select a Model for Normal Mode Visibility

The dialog box shows the complete model block hierarchy for the top model. The Normal
mode instances of referenced models have check boxes. Select the check box for the
instance of each model that you want to have Normal mode visibility.

8 Referencing a Model

8-40

When you select a model, Simulink:

• Selects all ancestors of that model
• Deselects all other instances of that model

When a model is deselected, Simulink deselects all children of that model.

Opening a Model from the Model Block Normal Mode Visibility Dialog Box

You can open a model from the Model Block Normal Mode Visibility dialog box by right-
clicking the model in the model hierarchy pane and clicking Open.

Refreshing the Model Reference Hierarchy

To ensure the model hierarchy pane of the Model Block Normal Mode Visibility dialog
box reflects the current model hierarchy, click Refresh.

Accelerating a Freestanding or Top Model

You can use Simulink Accelerator mode or Rapid Accelerator mode to achieve faster
execution of any Simulink model, including a top model in a model reference hierarchy.
For details about Accelerator mode, see the “Acceleration” documentation. For
information about Rapid Accelerator mode, see “Rapid Simulations”.

 Referenced Model Simulation Modes

8-41

When you execute a top model in Simulink Accelerator mode or Rapid Accelerator
mode, all referenced models execute in Accelerator mode. For any referenced model that
specifies Normal mode, Simulink displays a warning message.

Be careful not confuse Accelerator mode execution of a referenced model with:

• Accelerator mode execution of a freestanding or top model, as described in
“Acceleration”

• Rapid Accelerator mode execution of a freestanding or top model, as described in
“Rapid Simulations”

While the different types of acceleration share many capabilities and techniques, they
have different implementations, requirements, and limitations.

8 Referencing a Model

8-42

View a Model Reference Hierarchy

Simulink provides tools and functions that you can use to examine a model reference
hierarchy:

• Content preview displays a representation of the contents of a referenced model,
without opening the Model block. Content preview helps the user of a model
understand at a glance the kind of processing performed by the referenced model.
For details, see “Enable for Model Blocks” on page 1-44 in “Preview Content of
Hierarchical Items.”

• Model Dependency Viewer — Shows the structure the hierarchy lets you open
constituent models. The Referenced Model Instances view displays Model blocks
differently to indicate Normal, Accelerator, and PIL modes. See “Model Dependency
Viewer” on page 11-76 for more information.

• view_mdlrefs function — Invokes the Model Dependency Viewer to display a
graph of model reference dependencies.

• find_mdlrefs function — Finds all models directly or indirectly referenced by a
given model.

Display Version Numbers

To display the version numbers of the models referenced by a model, for the parent
model, choose Display > Blocks > Block Version for Referenced Models. Simulink
displays the version numbers in the icons of the corresponding Model block instances.

The version number displayed on a Model block icon refers to the version of the model
used to either:

 View a Model Reference Hierarchy

8-43

• Create the block
• Refresh the block most recently changed

See “Manage Model Versions” on page 4-100 and “Refresh Model Blocks” on page 8-75
for more information.

8 Referencing a Model

8-44

Model Reference Simulation Targets

In this section...

“Simulation Targets” on page 8-44
“Build Simulation Targets” on page 8-45
“Simulation Target Output File Control” on page 8-46
“Reduce Update Time for Referenced Models” on page 8-48

Simulation Targets

A simulation target, or SIM target, is a MEX-file that implements a referenced model
that executes in Accelerator mode. Simulink invokes the simulation target as needed
during simulation to compute the behavior and outputs of the referenced model.
Simulink uses the same simulation target for all Accelerator mode instances of a given
referenced model anywhere in a reference hierarchy.

If you have a Simulink Coder license, be careful not to confuse the simulation target of a
referenced model with any of these other types of target:

• Hardware target — A platform for which Simulink Coder generates code
• System target — A file that tells Simulink Coder how to generate code for particular

purpose
• Rapid Simulation target (RSim) — A system target file supplied with Simulink Coder
• Model reference target — A library module that contains Simulink Coder code for a

referenced model

Simulink creates a simulation target only for a referenced model that has one or more
Accelerator mode instances in a reference hierarchy. A referenced model that executes
only in Normal mode always executes interpretively and does not use a simulation
target. When one or more instance of a referenced model executes in Normal mode, and
one or more instance executes in Accelerator mode:

• Simulink creates a simulation target for the Accelerator mode instances.
• The Normal mode instances do not use that simulation target.

Because Accelerator mode requires code generation, it imposes some requirements and
limitations that do not apply to Normal mode. Aside from these constraints, you can

 Model Reference Simulation Targets

8-45

generally ignore simulation targets and their details when you execute a referenced
model in Accelerator mode. See “Limitations on Accelerator Mode Referenced Models” on
page 8-84 for details.

Build Simulation Targets

Simulink by default generates the needed target from the referenced model:

• If a simulation target does not exist at the beginning of a simulation
• When you perform an update diagram for a parent model

If the simulation target already exists, then by default Simulink checks whether the
referenced model has structural changes since the target was last generated. If so,
Simulink regenerates the target to reflect changes in the model. For details about
how Simulink detects whether to rebuild a model reference target, see the “Rebuild”
parameter documentation.

You can change this default behavior to modify the rebuild criteria or specify that
Simulink always or never rebuilds targets. See “Rebuild” for details.

To generate simulation targets interactively for Accelerator mode referenced models, do
one of these steps:

• Update the diagram on a model that directly or indirectly references the model that is
in Accelerator mode

• Execute the slbuild command with appropriate arguments at the MATLAB
command line

While generating a simulation target, Simulink displays status messages at the
MATLAB command line to enable you to monitor the target generation process. Target
generation entails generating and compiling code and linking the compiled target code
with compiled code from standard code libraries to create an executable file.

Reduce Change Checking Time

You can reduce the time that Simulink spends checking whether any or all simulation
targets require rebuilding by setting configuration parameter values as follows:

• In all referenced models throughout the hierarchy, set Configuration Parameters >
Diagnostics > Data Validity > Signal resolution to Explicit only. (See “Signal
resolution”.)

8 Referencing a Model

8-46

• To minimize change detection time, consider setting Configuration Parameters
> Model Referencing > Rebuild options to If any changes in known
dependencies detected on the top model. See “Rebuild”.

These parameter values exist in the configuration set of a referenced model, not in the
individual Model block, so setting either value for any instance of a referenced model sets
it for all instances of that model.

Simulation Target Output File Control

Simulink creates simulation targets in the slprj subfolder of the working folder. If
slprj does not exist, Simulink creates it.

Note: Simulink Coder code generation also uses the slprj folder. Subdirectories in
slprj provide separate places for simulation code, Simulink Coder code, and other files.
For details, see “Control the Location for Generated Files”.

By default, the files generated by Simulink diagram updates and model builds are placed
in a build folder, the root of which is the current working folder (pwd). However, in some
situations, you might want the generated files to go to a root folder outside the current
working folder. For example:

• You need to keep generated files separate from the models and other source materials
used to generate them.

• You want to reuse or share previously-built simulation targets without having to set
the current working folder back to a previous working folder.

You might also want to separate generated simulation artifacts from generated
production code.

To allow you to control the output locations for the files generated by diagram updates
and model builds, the software allows you to separately specify the simulation cache
folder build folder. The simulation cache folder is the root folder in which to place
artifacts used for simulation.

To specify the simulation cache folder, use one of these approaches:

• Use the CacheFolder MATLAB session parameter.

 Model Reference Simulation Targets

8-47

• Open the Simulink Preferences dialog box (File > Simulink Preferences) and
specify a location on your file system for the Simulation cache folder, which, if
specified, provides the initial defaults for the MATLAB session parameters.

Control Output Location for Model Build Artifacts Used for Simulation

The Simulink preference Simulation cache folder provides control over the output
location for files generated by Simulink diagram updates. The preference appears in the
Simulink Preferences Window, Main Pane, in the File generation control group. To
specify the root folder location for files generated by Simulink diagram updates, set the
preference value by entering or browsing to a folder path, for example:

The folder path that you specify provides the initial default for the MATLAB session
parameter CacheFolder. When you initiate a Simulink diagram update, any files
generated are placed in a build folder at the root location specified by CacheFolder (if
any), rather than in the current working folder (pwd).

For example, using a 32-bit Windows host platform, if you set the Simulation cache
folder to 'C:\Work\mymodelsimcache' and then simulate the model rtwdemo_capi,
files are generated into the specified folder as follows:

As an alternative to using the Simulink preferences to set Simulation cache folder,
you also can get and set the preference value from the command line using get_param
and set_param. For example,
>> get_param(0, 'CacheFolder')

ans =

8 Referencing a Model

8-48

 ''

>> set_param(0, 'CacheFolder', fullfile('C:','Work','mymodelsimcache'))

>> get_param(0, 'CacheFolder')

ans =

C:\Work\mymodelsimcache

Also, you can choose to override the Simulation cache folder preference value for the
current MATLAB session.

Override Build Folder Settings for the Current MATLAB Session

The Simulink preferences Simulation cache folder and Code generation folder
provide the initial defaults for the MATLAB session parameters CacheFolder and
CodeGenFolder, which determine where files generated by Simulink diagram updates
and model builds are placed. However, you can override these build folder settings
during the current MATLAB session, using the Simulink.fileGenControl function.
This function allows you to directly manipulate the MATLAB session parameters, for
example, overriding or restoring the initial default values. The values you set using
Simulink.fileGenControl expire at the end of the current MATLAB session. For
more information and detailed examples, see the Simulink.fileGenControl function
reference page.

Reduce Update Time for Referenced Models

• “Parallel Building for Large Model Reference Hierarchies” on page 8-48
• “Parallel Building Configuration Requirements” on page 8-49
• “Update Models in a Parallel Computing Environment” on page 8-49
• “Locate Parallel Build Logs” on page 8-51

Parallel Building for Large Model Reference Hierarchies

In a parallel computing environment, you can increase the speed of diagram updates for
models containing large model reference hierarchies by building referenced models that
are configured in Accelerator mode in parallel whenever conditions allow. For example,
if you have Parallel Computing Toolbox software, updating of each referenced model
can be distributed across the cores of a multicore host computer. If you additionally
have MATLAB Distributed Computing Server™ software, updating of each referenced
model can be distributed across remote workers in your MATLAB Distributed Computing
Server configuration.

 Model Reference Simulation Targets

8-49

The performance gain realized by using parallel builds for updating referenced models
depends on several factors, including how many models can be built in parallel for
a given model referencing hierarchy, the size of the referenced models, and parallel
computing resources such as number of local and/or remote workers available and the
hardware attributes of the local and remote machines (amount of RAM, number of cores,
and so on).

For configuration requirements that might apply to your parallel computing
environment, see “Parallel Building Configuration Requirements” on page 8-49.

For a description of the general workflow for building referenced models in parallel
whenever conditions allow, see “Update Models in a Parallel Computing Environment”
on page 8-49.

Parallel Building Configuration Requirements

The following requirements apply to using parallel builds for updating model reference
hierarchies:

• For local pools, the host machine should have an appropriate amount of RAM
available for supporting the number of local workers (MATLAB sessions) that you
plan to use. For example, using parpool(4) to create a parallel pool with four
workers results in five MATLAB sessions on your machine, each using approximately
120 MB of memory at startup.

• Remote MATLAB Distributed Computing Server workers participating in a parallel
build must use a common platform and compiler.

• A consistent MATLAB environment must be set up in each MATLAB worker session
as in the MATLAB client session — for example, shared base workspace variables,
MATLAB path settings, and so forth. One approach is to use the PreLoadFcn
callback of the top model. If you configure your model to load the top model with each
MATLAB worker session, its preload function can be used for any MATLAB worker
session setup.

Update Models in a Parallel Computing Environment

To take advantage of parallel building for a model reference hierarchy:

1 Set up a pool of local and/or remote MATLAB workers in your parallel computing
environment.

a Make sure that Parallel Computing Toolbox software is licensed and installed.

8 Referencing a Model

8-50

b To use remote workers, make sure that MATLAB Distributed Computing Server
software is licensed and installed.

c Issue MATLAB commands to set up the worker pool, for example, parpool(4).
2 From the top model of the model reference hierarchy, open the Configuration

Parameters dialog box. Go to the Model Referencing pane and select the Enable
parallel model reference builds option. This selection enables the parameter
MATLAB worker initialization for builds.

For MATLAB worker initialization for builds, select one of the following values:

• None if the software should perform no special worker initialization. Specify this
value if the child models in the model reference hierarchy do not rely on anything
in the base workspace beyond what they explicitly set up (for example, with a
model load function).

• Copy base workspace if the software should attempt to copy the base
workspace to each worker. Specify this value if you use a setup script to prepare
the base workspace for multiple models to use.

• Load top model if the software should load the top model on each worker.
Specify this value if the top model in the model reference hierarchy handles all of
the base workspace setup (for example, with a model load function).

Note: You only need to set Enable parallel model reference builds for the top
model of the model reference hierarchy to which it applies.

3 Optionally, turn on verbose messages for simulation builds. If you select verbose
builds, the build messages report the progress of each parallel build with the name of
the model.

To turn on verbose messages for simulation target builds, go to the Optimization
pane of the Configuration Parameters dialog box and select Verbose accelerator
builds.

 Model Reference Simulation Targets

8-51

The Verbose accelerator builds option controls the verbosity of build messages
both in the MATLAB Command Window and in parallel build log files.

4 Optionally, inspect the model reference hierarchy to determine, based on model
dependencies, which models will be built in parallel. For example, you can use the
Model Dependency Viewer from the Simulink Analysis > Model Dependencies
menu.

5 Update your model. Messages in the MATLAB command window record when each
parallel or serial build starts and finishes.

If you need more information about a parallel build, for example, if a build fails, see
“Locate Parallel Build Logs” on page 8-51.

Locate Parallel Build Logs

When you update a model for which referenced models are built in parallel, if verbose
builds are turned on, messages in the MATLAB Command Window record when each
parallel or serial build starts and finishes. For example,
Initializing parallel workers for parallel model reference build.

Parallel worker initialization complete.

Starting parallel model reference SIM build for 'bot_model001'

Starting parallel model reference SIM build for 'bot_model002'

Starting parallel model reference SIM build for 'bot_model003'

Starting parallel model reference SIM build for 'bot_model004'

Finished parallel model reference SIM build for 'bot_model001'

Finished parallel model reference SIM build for 'bot_model002'

Finished parallel model reference SIM build for 'bot_model003'

Finished parallel model reference SIM build for 'bot_model004'

To obtain more detailed information about a parallel build, you can examine the parallel
build log. For each referenced model built in parallel, the build process generates a file
named model_buildlog.txt, where model is the name of the referenced model. This
file contains the full build log for that model.

If a parallel build completes, you can find the build log file in the build subfolder
corresponding to the referenced model. For example, for a build of referenced model
bot_model004, look for the build log file bot_model004_buildlog.txt in the
referenced model subfolder build_folder/slprj/sim/bot_model004.

If a parallel builds fails, you might see output similar to the following:
Initializing parallel workers for parallel model reference build.

Parallel worker initialization complete.

Starting parallel model reference SIM build for 'bot_model002'

Starting parallel model reference SIM build for 'bot_model003'

8 Referencing a Model

8-52

Finished parallel model reference SIM build for 'bot_model002'

Finished parallel model reference SIM build for 'bot_model003'

Starting parallel model reference SIM build for 'bot_model001'

Starting parallel model reference SIM build for 'bot_model004'

Finished parallel model reference SIM build for 'bot_model004'

The following error occurred during the parallel model reference SIM build for

'bot_model001':

Error(s) encountered while building model "bot_model001"

Cleaning up parallel workers.

If a parallel build fails, you can find the build log file in a referenced model subfolder
under the build subfolder /par_mdl_ref/model. For example, for a failed parallel
build of model bot_model001, look for the build log file bot_model001_buildlog.txt
in the subfolder build_folder/par_mdl_ref/bot_model001/slprj/sim/
bot_model001.

 Simulink Model Referencing Requirements

8-53

Simulink Model Referencing Requirements

In this section...

“About Model Referencing Requirements” on page 8-53
“Name Length Requirement” on page 8-53
“Configuration Parameter Requirements” on page 8-53
“Model Structure Requirements” on page 8-57

About Model Referencing Requirements

A model reference hierarchy must satisfy various Simulink requirements, as described in
this section. Some limitations also apply, as described in “Model Referencing Limitations”
on page 8-81.

Name Length Requirement

The name of a referenced model must contain fewer than 60 characters, exclusive of the
.slx or .mdl suffix. An error occurs if the name of a referenced model is too long.

Configuration Parameter Requirements

A referenced model uses a configuration set in the same way that any other model does,
as described in “Manage a Configuration Set” on page 12-11. By default, every model
in a hierarchy has its own configuration set. Each model uses its configuration set the
same way that it would if the model executed independently.

Because each model can have its own configuration set, configuration parameter
values can be different in different models. Furthermore, some parameter values
are intrinsically incompatible with model referencing. The Simulink response to an
inconsistent or unusable configuration parameter depends on the parameter:

• Where an inconsistency has no significance, or a trivial resolution exists that carries
no risk, Simulink ignores or resolves the inconsistency without posting a warning.

• Where a nontrivial and possibly acceptable solution exists, Simulink resolves the
conflict silently, resolves it with a warning, or generates an error. See “Diagnostic
Configuration Parameter Changes” on page 8-85for details.

8 Referencing a Model

8-54

• Where no acceptable resolution is possible, Simulink generates an error. Change some
or all parameter values to eliminate the problem.

Manually eliminating all configuration parameter incompatibilities can be tedious when:

• A model reference hierarchy contains many referenced models that have incompatible
parameter values

• A changed parameter value must propagate to many referenced models

You can control or eliminate such overhead by using configuration references to assign
an externally stored configuration set to multiple models. See “Manage a Configuration
Reference” on page 12-17 for details.

Note: Configuration parameters on the Code Generation pane of the Configuration
Parameters dialog box do not affect simulation in either Normal or Accelerated mode.
Code Generation parameters affect only code generation by Simulink Coder itself.
Accelerated mode simulation requires code generation to create a simulation target.
Simulink uses default values for all Code Generation parameters when generating the
target, and restores the original parameter values after code generation is complete.

The tables in the following sections list Configuration parameter options that can cause
problems if set:

• In certain ways, as indicated in the table
• Differently in a referenced model than in a parent model

Where possible, Simulink resolves violations of these requirements automatically, but
most cases require changes to the parameters in some or all models.

Configuration Parameters Changed During Accelerated Simulation and Code Generation

During model referencing simulation in Accelerator and Rapid Accelerator mode,
Simulink temporarily sets several Configuration Parameters > Diagnostics > Data
Validity parameter settings to None, if they are set to Warning or Error. You can
use the Model Advisor to check for parameters that change. For details, see “Certain
Diagnostic Configuration Parameters Ignored for Models Referenced in Accelerator
Mode” on page 8-87.

If the Configuration Parameters > Code Generation > Symbols parameters hold
identifier information about the name of a referenced model and do not use a$R token,

 Simulink Model Referencing Requirements

8-55

code generation prepends the $R token to the name of the model. You can use the Model
Advisor to check for changed model names. See “Configuration Parameters Changed
During Code Generation” on page 8-88.

Configuration Requirements for All Referenced Model Simulation

Dialog Box Pane Option Requirement

Start time The start time of the top
model and all referenced
models must be the same,
but need not be zero.

Stop time Simulink uses Stop time of
the top model for simulation,
overriding any differing
Stop time in a referenced
model.

Solver

Type
Solver

The Type and Solver of the
top model apply throughout
the hierarchy. See “Solver
Requirements” on page
8-56.

Data Import/Export Initial state Can be on for the top model,
but must be off for a
referenced model.

Default parameter
behavior

If the parent model has this
set to Inlined, then the
referenced model cannot
have this set to Tunable.

Optimization

Application lifespan
(days)

Must be the same for top and
referenced models.

Model Referencing Total number of
instances allowed per
top model

Must not be Zero in a
referenced model. Specifying
One rather than Multiple
is preferable or required
in some cases. See “Model
Instance Requirements” on
page 8-56.

8 Referencing a Model

8-56

Dialog Box Pane Option Requirement

Hardware
Implementation

All Values must be the same for
top and referenced models.

Solver Requirements

Model referencing works with both fixed-step and variable-step solvers. All models in
a model reference hierarchy use the same solver, which is always the solver specified
by the top model. An error occurs if the solver type specified by the top model is
incompatible with the solver type specified by any referenced model.

Top Model Solver Type referenced model Solver Type Compatibility

Fixed Step Fixed Step Allowed
Variable Step Variable Step Allowed
Variable Step Fixed-step Allowed unless the

referenced model is multi-
rate and specifies both a
discrete sample time and a
continuous sample time

Fixed Step Variable Step Error

If an incompatibility exists between the top model solver and any referenced model
solver, one or both models must change to use compatible solvers. For information about
solvers, see “Solvers” on page 3-21 and “Solvers” on page 22-7.

Model Instance Requirements

A referenced model must specify that it is available to be referenced, and whether it
can be referenced at most once or can have multiple instances. The Configuration
Parameters > Model Referencing > Total number of instances allowed per top
model parameter provides this specification. See “Total number of instances allowed per
top model” for more information. The possible values for this parameter are:

• Zero — A model cannot reference this model. An error occurs if a reference to the
model occurs in another model.

• One — A model reference hierarchy can reference the model at most once. An
error occurs if more than one instance of the model exists. This value is sometimes
preferable or required.

 Simulink Model Referencing Requirements

8-57

• Multiple — A model hierarchy can reference the model more than once, if it contains
no constructs that preclude multiple reference. An error occurs if the model cannot be
multiply referenced, even if only one reference exists.

Setting Total number of instances allowed per top model to Multiple for a model
that is referenced only once can reduce execution efficiency slightly. However, this
setting does not affect data values that result from simulation or from executing code
Simulink Coder generates. Specifying Multiple when only one model instance exists
avoids having to change or rebuild the model when reusing the model:

• In the same hierarchy
• Multiple times in a different hierarchy

Some model properties and constructs require setting Total number of instances
allowed per top model to One. For details, see “General Reusability Limitations” on
page 8-82 and “Accelerator Mode Reusability Limitations” on page 8-85.

Model Structure Requirements

The following requirements relate to the structure of a model reference hierarchy.

Signal Propagation Requirements

The signal name must explicitly appear on any signal line connected to an Outport block
of a referenced model. A signal connected to an unlabeled line of an Outport block of a
referenced model cannot propagate out of the Model block to the parent model.

Bus Usage Requirements

A bus that propagates between a parent model and a referenced model must be
nonvirtual. Use the same bus object to specify the properties of the bus in both the parent
and the referenced model. Define the bus object in the MATLAB workspace. For details,
see “Bus Data Crossing Model Reference Boundaries” on page 61-110.

Sample Time Requirements

The first nonvirtual block connected to a root-level Inport or Outport block of a
referenced model must have the same sample time as the port to which it connects. Use
Rate Transition blocks to match input and output sample times, as illustrated in the
following diagram.

8 Referencing a Model

8-58

 Parameterize Model References

8-59

Parameterize Model References

In this section...

“Introduction” on page 8-59
“Global Parameters” on page 8-59
“Model Arguments” on page 8-60

Introduction

A parameterized referenced model obtains values that affect the behavior of the
referenced model from some source outside the model. Changing the values changes the
behavior of the model, without recompiling the model.

Simulink provides two techniques that you can use to parameterize referenced models:

• Global parameters
• Model arguments

Global parameters work the same way with referenced models that they do with any
other model construct. Each global parameter has the same value in every instance of
a referenced model that uses it. Model arguments allow you to provide different values
to each instance of a referenced model. Each instance can then behave differently from
the others. The effect is analogous to calling a function more than once with different
arguments in each call.

You can use a structure parameter to group variables for parameterizing model
references. For details, see “Organize Related Parameters in Structures and Arrays of
Structures” on page 32-20.

Global Parameters

A global parameter is a numeric MATLAB variable or a Simulink.Parameter object.
The parameter exists in the MATLAB base workspace or in a Simulink data dictionary.

Using a global parameter in a referenced model allows you to control the behavior of
the referenced model by setting the parameter value. All instances of the model use the
same value. You can change the value during simulation or between one simulation and

8 Referencing a Model

8-60

the next. The change does not require rebuilding the model in which the change occurs,
or any models that it references. See “Tunable Block Parameters” on page 32-18 for
details.

If you have a Simulink Coder license, a MATLAB variable or Simulink.Parameter
object that you can tune during simulation can appear in the generated code as an
inlined, nontunable numeric value. To create global tunable parameters in the generated
model reference code, see “Tunable Parameters in the Generated Code for Referenced
Models”.

Model Arguments

Model arguments let you parameterize references to the same model so that each
instance of the model behaves differently. Without model arguments, a variable in a
referenced model has the same value in every instance of the model. Declaring a variable
to be a model argument allows each instance of the model to use a different value for that
variable.

To create model arguments for a referenced model:

1 Create MATLAB variables in the model workspace.
2 Add the variables to a list of model arguments associated with the model.
3 Specify values for those variables separately in each Model block that references the

model.

The values that you specify in the Model block replace the values of the MATLAB
variables for that instance of the model.

A referenced model that uses model arguments can also appear as a top model or a
standalone model. No Model block exists to provide model argument values. That model
uses the values of the MATLAB variables as defined in the model workspace. You can
use the same model, without changing it, as a top model, a standalone model, and a
parameterized referenced model.

The sldemo_mdlref_datamngt model demonstrates techniques for using model
arguments. The model passes model argument values to referenced models through
masked Model blocks. Masking can be convenient but is independent of the definition
and use of model arguments themselves. See “Block Masks” for information about
masking.

 Parameterize Model References

8-61

The rest of this section describes techniques for declaring and using model arguments to
parameterize a referenced model independently of any Model block masking. The steps
are:

• Create MATLAB variables in the model workspace.
• Register the variables as model arguments.
• Assign values to those arguments in Model blocks.

Create MATLAB Variables in the Model Workspace

1 Open the sldemo_mrv_nonlinear_controller model.
2 Open the Model Explorer. In the Simulink Editor, select View > Model Explorer >

Model Explorer.
3 In the Model Explorer Model Hierarchy pane, select the Model Workspace node

for the model.

4 From Model Explorer Add menu, select MATLAB Variable twice.

Select another node and then reselect Model Workspace node. Two new MATLAB
variables appear in the Contents pane with a default name and value.

5 In the Contents pane change the name of the two variables. Change var to
int_value and var1 to incr.

Register Variables as Model Arguments

1 In the Model Explorer Model Hierarchy pane, select the workspace of the model.

The Dialog pane displays the Model Workspace dialog box.
2 In the Model arguments field, enter the names of the MATLAB variables to use as

model arguments (init_value and incr), using a comma-separated list.

8 Referencing a Model

8-62

3 Click Apply to confirm the entered names.

Assign Model Argument Values

If a model declares model arguments, assign values to those arguments in each
Model block that references the model. Failing to assign a value to a model argument
causes an error. The value of the model argument does not default to the value of the
corresponding MATLAB variable. That value is available only to a standalone or top
model. This example assigns values to the arguments of the model referenced by the
sldemo_mdlref_variants model.

1 Open the sldemo_mdlref_variants model.
2 Select the Model and open its block parameters dialog box.

The Model arguments field displays the same MATLAB variables, in the same
order, that appear in the Model arguments field of the Model Workspace dialog
box. The Model block field Model arguments is not editable. It indicates the model
arguments that you need to assign values to, and the order of the arguments.

 Parameterize Model References

8-63

3 In the Model argument values field, enter a comma-delimited list of values for the
model arguments that appear in the Model arguments field. Simulink assigns the
values to arguments in positional order, so they must appear in the same order as
the corresponding arguments.

You can enter literal values, variable names, MATLAB expressions, or
Simulink.Parameter objects. Any symbols used resolve to values as described in
“Symbol Resolution Process” on page 4-95. All values must be numeric (including
objects with numeric values).

Note: Do not use a model argument in an expression that is nontunable because of
the issues documented in “Tunable Expression Limitations”.

The value for each argument must have the same dimensions and complexity as
the MATLAB variable that defines the model argument in the model workspace.
The data types need not match. If necessary, the Simulink software casts a model
argument value to the data type of the corresponding variable.

4 Click OK or Apply to confirm the values for the Model block.

When the model executes in the context of that Model block, the Model arguments have
the values specified in the Model argument values field of the Model block.

Related Examples
• “Tunable Parameters in the Generated Code for Referenced Models”

8 Referencing a Model

8-64

Conditional Referenced Models

In this section...

“Kinds of Conditional Referenced Models” on page 8-64
“Working with Conditional Referenced Models” on page 8-65
“Create Conditional Models” on page 8-65
“Reference Conditional Models” on page 8-67
“Simulate Conditional Models” on page 8-68
“Generate Code for Conditional Models” on page 8-69
“Requirements for Conditional Models” on page 8-69

Kinds of Conditional Referenced Models

You can set up referenced models so that they execute conditionally, similar to
conditional subsystems. For information about conditional subsystems, see “Conditional
Subsystems” on page 9-2.

You can use the following kinds of conditionally executed referenced models:

• Enabled
• Triggered
• Enabled and triggered
• Function-call

Enabled Models

Use an Enable block to insert an enable port in a model. Add an enable port to a model
if you want a referenced model to execute at each simulation step for which the control
signal has a positive value.

To see an example of an enabled subsystem, see enablesub. A corresponding enabled
referenced model would use the same blocks as are in the enabled subsystem.

Triggered Models

Use a Trigger block to insert a trigger port in a model. Add a trigger port to a model if
you want to use an external signal to trigger the execution of that model. You can add a
trigger port to a root-level model or to a subsystem.

 Conditional Referenced Models

8-65

This section focuses on models that contain a trigger port with an edge-based trigger type
(rising, falling, or either).

To view a model that illustrates how you can use trigger ports in referenced models, see
the Introduction to Managing Data with Model Reference example. In that example, see
the “Top Model: Scheduling Calls to the Referenced Model” section.

Triggered and Enabled Models

A triggered and enabled model executes once at the time step for which a trigger event
occurs, if the enable control signal has a positive value at that step.

Function-Call Models

Simulink allows certain blocks to control execution of a referenced model during a
time step, using a function-call signal. Examples of such blocks are a Function-Call
Generator or an appropriately configured custom S-function. See “Create a Function-
Call Subsystem” on page 9-50 for more information. A referenced model that you can
invoke in this way is a function-call model.

For an example of a function-call model, see the sldemo_mdlref_fcncall model.

Working with Conditional Referenced Models

Use a similar approach for each kind of conditionally executed referenced model for these
tasks:

• “Create Conditional Models” on page 8-65
• “Reference Conditional Models” on page 8-67
• “Simulate Conditional Models” on page 8-68
• “Generate Code for Conditional Models” on page 8-69

Each kind of conditionally executed model has some model creating requirements. For
details, see “Requirements for Conditional Models” on page 8-69.

Create Conditional Models

To create a conditional model:

8 Referencing a Model

8-66

1 At the root level of the referenced model, insert one of the following blocks:

Kind of Model Blocks to Insert

Enabled Enable

Triggered Trigger

Triggered and Enabled Trigger and Enable
Function-Call Trigger

For an enabled model, go to Step 3.
2 For the Trigger block, set the Trigger type parameter, based on the kind of model:

Kind of Model Trigger Type Parameter Setting

Triggered

Triggered and enabled

One of the following:

• rising

• falling

• either

Function-Call function-call

3 Create and connect other blocks to implement the model.

Enabled model example:

Triggered model example:

 Conditional Referenced Models

8-67

Function-call model example:

4 Ensure that the model satisfies the requirements for a conditional model. See the
appropriate section:

• “Enabled Model Requirements” on page 8-69
• “Triggered Model Requirements” on page 8-70
• “Function-Call Model Requirements” on page 8-70

Reference Conditional Models

To create a reference to a conditional model:

8 Referencing a Model

8-68

1 Add a Model block to the model that you want to reference the triggered model. See
“Create a Model Reference” on page 8-8 for details.

The top of the Model block displays an icon that corresponds to the kind of port used
in the referenced model. For example, for a triggered model, the top of the Model
block displays the following icon.

For enabled, triggered, and triggered and enabled models, go to Step 3.
2 For a function-call model, connect a Stateflow chart, Function-Call Generator block,

or other function-call-generating block to the function-call port of the Model block.
The signal connected to the port must be scalar.

3 Create and connect other blocks to implement the parent model.
4 Ensure that the referencing model satisfies the conditions for model referencing. See

“Simulink Model Referencing Requirements” on page 8-53 and “Model Referencing
Limitations” on page 8-81 for details.

Simulate Conditional Models

You can run a standalone simulation of a referenced model. A standalone simulation is
useful for unit testing, because it provides consistent data across simulations in terms of
data type, dimension, and sample time. Use Normal, Accelerator, or Rapid Accelerator
mode to simulate a conditional model.

A function-call model can simulate independently without external input. The model
simulates as if the function-call block were driven by a function call at the fastest rate
for the system. You can also configure the model to calculate output at specific times
using a variable-step solver (see “Samples to Export for Variable-Step Solvers” on page
57-33).

Triggered, enabled, and triggered and enabled models require an external input to drive
the Trigger or Enable blocks. In the Signal Attributes pane of the Trigger or Enable
block dialog box, specify values for the signal data type, dimension, and sample time.

 Conditional Referenced Models

8-69

To run a standalone simulation, specify the inputs using the Configuration
Parameters > Data Import/Export > Input parameter. For details about how to
specify the input, see “Techniques for Importing Signal Data” on page 57-75. The
following conditions apply when you use the “Input” parameter for trigger and enable
block inputs:

• Use the last data input for the trigger or enable input. For a triggered and enabled
model, use the last data input for the trigger input.

• If you do not provide any input values, the simulation uses zero as the default values.

You can log data to determine which signal caused the model to run. For the Trigger or
Enable block, in the Main pane of the Block Parameters dialog box, select Show output
port.

Generate Code for Conditional Models

You can build model reference Simulink Coder and SIM targets for referenced models
that contain a trigger or enable port. You cannot generate standalone Simulink Coder
or PIL code. For information about code generation for referenced models, see “Reusable
Code and Referenced Models” and “Generate Code for Referenced Models”.

Requirements for Conditional Models

Conditional models must meet the requirements for:

• Conditional subsystems (see “Conditional Subsystems”)
• Referenced models (see “Simulink Model Referencing Requirements” on page 8-53)

In addition, conditional models must meet the requirements described below.

Enabled Model Requirements

• Multi-rate enabled models cannot use multi-tasking solvers. You must use single-
tasking.

• For models with enable ports at the root, if the model uses a fixed-step solver, the
fixed-step size of the model must not exceed the rate for any block in the model.

• The signal attributes of the enable port in the referenced model must be consistent
with the input that the Model block provides to that enable port.

8 Referencing a Model

8-70

Triggered Model Requirements

The signal attributes of the trigger port in the referenced model must be consistent with
the input that the Model block provides to that trigger port.

Function-Call Model Requirements

• A function-call model cannot have an outport driven only by Ground blocks, including
hidden Ground blocks inserted by Simulink. To meet this requirement, do the
following:

1 Insert a Signal Conversion block into the signal connected to the outport.
2 Enable the Exclude this block from 'Block reduction' optimization option

of the inserted block.
• The referencing model must trigger the function-call model at the rate specified by the

Configuration Parameters > Solver 'Fixed-step size' option if the function-
call model meets both these conditions:

• It specifies a fixed-step solver
• It contains one or more blocks that use absolute or elapsed time

Otherwise, the referencing model can trigger the function-call model at any rate.
• A function-call model must not have direct internal connections between its root-level

input and output ports. Simulink does not honor the None and Warning settings for
the Invalid root Inport/Outport block connection diagnostic for a referenced
function-call model. It reports all invalid root port connections as errors.

• If the Sample time type is periodic, the sample-time period must not contain an
offset.

• The signal connected to a function-call port of a Model block must be scalar.

 Protected Model

8-71

Protected Model

A protected model provides the ability to deliver a model without revealing the
intellectual property of the model. A protected model is a referenced model that hides
all block and line information. It does not use encryption technology unless you use
the optional password protection available for read-only view, simulation, and code
generation. If you choose password protection for one of these options, the software
protects the supporting files using AES–256 encryption. Creating a protected model
requires a Simulink Coder license. A third party that receives a protected model must
match the platform and the version of Simulink for which the protected model was
generated.

Simulating a protected model requires that the protected model:

• Be available somewhere on the MATLAB path.
• Be referenced by a Model block in a model that executes in Normal, Accelerator, or

Rapid Accelerator mode.
• Receives from the Model block the values needed by any defined model arguments.
• Connects via the Model block to input and output signals that match the input and

output signals of the protected model.

To locate protected models in your model:

• The MATLAB Folder Browser shows a small image of a lock on the node for the
protected model file.

• A Model block that references a protected model shows a small image of a shield in
the lower left corner of the Model block.

Note: Protected models do not appear in the model hierarchy in the Model Explorer.

If you use a protected model for operations like viewing a Web view, simulation, or code
generation, then the licenses used in the protected model will be checked out before
those operations begin. The creator of the protected model can view the licenses of a
protected model that will be checked out by looking at the protected model report. To
open the report, right-click the protected-model badge icon and select Display Report.
In the Summary of the report, the Licenses table lists the licenses required to use the
protected model.

8 Referencing a Model

8-72

For more information, see “Use Protected Model in Simulation” on page 8-73. For
more information about creating protected referenced models, see “Protect a Referenced
Model”.

 Use Protected Model in Simulation

8-73

Use Protected Model in Simulation

When you receive a protected model, it might be included in a protected model package.
The package could include additional files, such as a harness model and a MAT-file. A
protected model file has an .slxp extension. A typical workflow for using a protected
model in a simulation is:

1 If necessary, unpack the files according to any accompanying directions.
2 If there is a MAT-file containing workspace definitions, load that MAT-file.
3 If there is a harness model, copy the Model block referencing the protected model

into your model.
4 If the protected model is password protected, then right-click the protected-model

badge icon and select Authorize. Enter the required passwords, and then click OK.
5 If a protected model report was generated when the protected model was created,

right-click the protected-model badge icon and select Display Report to open it. In
the Summary of the report, check that your Simulink version and platform match
the software and platform used to create the protected model.

6 Connect signals to the Model block that match its input and output port
requirements.

7 Provide any needed model argument values. See “Assign Model Argument Values”
on page 8-62.

There are also other ways to include the protected model into your model:

• Use your own Model block rather than the Model block in the harness model.

Note: When you change a Model block to reference a protected model, the
Simulation mode of the block is set to Accelerator. You cannot change this mode.
Furthermore, you cannot use the protected reference model block in External mode.

• Start with the harness model, add more constructs to it, and use it in your model.
• Use the protected model as a variant in a Model Variant block, as described in “Set

Up Model Variants” on page 10-25.
• Apply a mask to the Model block that references the protected model. See “Block

Masks”.
• Configure a callback function, such as LoadFcn, to load the MAT-file automatically.

See “Callbacks for Customized Model Behavior” on page 4-68.

8 Referencing a Model

8-74

Now you can simulate the model that includes the protected model. Because the
protected model is set to Accelerator mode, the simulation produces the same outputs
that it did when used in Accelerator mode in the source model.

Protected Model Web View

The Web view is a read-only reference of the protected model. If the Web view
functionality is enabled during creation, you can see this read-only view of a protected
model. It is platform independent so you can view it on platforms other than the platform
for which you created the protected model. To open the Web view of a protected model,
use one of the following methods:

• Right-click the protected-model badge icon and select Show Web view.
• Use the Simulink.ProtectedModel.open function. For example, to display the

Web view for protected model sldemo_mdlref_counter, you can call:

Simulink.ProtectedModel.open(‘sldemo_mdlref_counter’, ‘webview’);

• Double-click the .slxp protected model file in the Current Folder browser.
• In the Block Parameter dialog box for the protected model, click Open Model.

Hover over a block in the model Web view to show the parameter values.

If the Web view is password protected, then right-click the protected-model badge icon
and select Authorize. In the Model view box, enter the password, and then click OK.

 Refresh Model Blocks

8-75

Refresh Model Blocks

Refreshing a Model block updates its internal representation to reflect changes in the
interface of the model that it references.

Examples of when to refresh a Model block include:

• Refresh a Model block that references model that has gained or lost a port.
• Refresh all the Model blocks that reference a model whose interface has changed.

You do not need to refresh a Model block if the changes to the interface of the referenced
model do not affect how the referenced model interfaces to its parent.

To update a specific Model block, from the context menu of the Model block, select
Subsystem & Model Reference > Refresh Selected Model Block.

To refresh all Model blocks in a model (as well as linked blocks in a library or model), in
the Simulink Editor select Diagram > Refresh Blocks. You can also refresh a model by
starting a simulation or generating code.

You can use Simulink diagnostics to detect changes in the interfaces of referenced models
that could require refreshing the Model blocks that reference them. The diagnostics
include:

• Model block version mismatch
• Port and parameter mismatch

8 Referencing a Model

8-76

S-Functions with Model Referencing

In this section...

“S-Function Support for Model Referencing” on page 8-76
“Sample Times” on page 8-76
“S-Functions with Accelerator Mode Referenced Models” on page 8-77
“Using C S-Functions in Normal Mode Referenced Models” on page 8-77
“Protected Models” on page 8-78
“Simulink Coder Considerations” on page 8-78

S-Function Support for Model Referencing

Each kind of S-function provides its own level of support for model referencing.

Type of S-Function Support for Model Referencing

Level-1 MATLAB S-function Not supported
Level-2 MATLAB S-function • Supports Normal and Accelerator mode

• Accelerator mode requires a TLC file
Handwritten C MEX S-
function

• Supports Normal and Accelerator mode
• May be inlined with TLC file

S-Function Builder Supports Normal and Accelerator mode
Legacy Code Tool Supports Normal and Accelerator mode

Sample Times

Simulink software assumes that the output of an S-function does not depend on an
inherited sample time unless the S-function explicitly declares a dependence on an
inherited sample time.

You can control inheriting sample time by using
ssSetModelReferenceSampleTimeInheritanceRule in different ways, depending
on whether an S-function permits or precludes inheritance. For details, see “Inherited
Sample Time for Referenced Models”.

 S-Functions with Model Referencing

8-77

S-Functions with Accelerator Mode Referenced Models

For a referenced model that executes in Accelerator mode, set the Configuration
Parameters > Model Referencing > Total number of instances allowed per top
model to One if the model contains an S-function that is either:

• Inlined, but has not set the SS_OPTION_WORKS_WITH_CODE_REUSE flag
• Not inlined

Inlined S-Functions with Accelerator Mode Referenced Models

For Accelerator mode referenced models, if the referenced model contains an S-function
that should be inlined using a Target Language Compiler file, the S-function must
use the ssSetOptions macro to set the SS_OPTION_USE_TLC_WITH_ACCELERATOR
option in its mdlInitializeSizes method. The simulation target does not inline the S-
function unless the S-function sets this option.

A referenced model cannot use noninlined S-functions in the following cases:

• The model uses a variable-step solver.
• Simulink Coder generated the S-function.
• The S-function supports use of fixed-point numbers as inputs, outputs, or parameters.
• The model is referenced more than once in the model reference hierarchy. To work

around this limitation, use Normal mode.
• The S-function uses string parameters.

Using C S-Functions in Normal Mode Referenced Models

Under certain conditions, when a C S-function appears in a referenced model that
executes in Normal mode, successful execution is impossible. For details, see “S-
Functions in Normal Mode Referenced Models”.

Use the ssSetModelReferenceNormalModeSupport SimStruct function to specify
whether an S-function can be used in a Normal mode referenced model.

You may need to modify S-functions that are used by a model so that the S-functions
work with multiple instances of referenced models in Normal mode. The S-functions
must indicate explicitly that they support multiple exec instances. For details, see
“Supporting the Use of Multiple Instances of Referenced Models That Are in Normal
Mode”.

8 Referencing a Model

8-78

Protected Models

A protected model cannot use noninlined S-functions directly or indirectly.

Simulink Coder Considerations

A referenced model in Accelerator mode cannot use S-functions generated by the
Simulink Coder software.

Noninlined S-functions in referenced models are supported when generating Simulink
Coder code.

The Simulink Coder S-function target does not support model referencing.

For general information about using Simulink Coder and model referencing, see
“Referenced Models”.

 Buses in Referenced Models

8-79

Buses in Referenced Models

To have bus data cross model reference boundaries, use a nonvirtual bus. Use a bus
object (Simulink.Bus) to define the bus.

For an example of a model referencing model that uses buses, see sldemo_mdref_bus.
For more information, see “Bus Data Crossing Model Reference Boundaries” on page
61-110.

8 Referencing a Model

8-80

Signal Logging in Referenced Models

In a referenced model, you can log any signal configured for signal logging. Use the
Signal Logging Selector to select a subset or all of the signals configured for signal
logging for a model reference hierarchy. For details, see “Models with Model Referencing:
Overriding Signal Logging Settings” on page 57-62.

For additional information, see “Export Signal Data Using Signal Logging” on page
57-36.

 Model Referencing Limitations

8-81

Model Referencing Limitations
In this section...

“Introduction” on page 8-81
“Limitations on All Model Referencing” on page 8-81
“Limitations on Normal Mode Referenced Models” on page 8-84
“Limitations on Accelerator Mode Referenced Models” on page 8-84
“Limitations on Rapid Accelerator Mode Referenced Models” on page 8-87
“Certain Diagnostic Configuration Parameters Ignored for Models Referenced in
Accelerator Mode” on page 8-87
“Limitations on SIL and PIL Mode Referenced Models” on page 8-88
“Configuration Parameters Changed During Code Generation” on page 8-88

Introduction

The following limitations apply to model referencing. In addition, a model reference
hierarchy must satisfy all the requirements listed in “Simulink Model Referencing
Requirements” on page 8-53.

Limitations on All Model Referencing

Index Base Limitations

In two cases, Simulink does not propagate 0-based or 1-based indexing information to
referenced-model root-level ports connected to blocks that:

• Accept indexes (such as the Assignment block)
• Produce indexes (such as the For Iterator block)

An example of a block that accepts indexes is the Assignment block. An example of a
block that produces indexes is the For Iterator block.

The two cases result in a lack of propagation that can cause Simulink to fail to detect
incompatible index connections. These two cases are:

• If a root-level input port of the referenced model connects to index inputs in the model
that have different 0-based or 1-based indexing settings, Simulink does not set the 0-
based or 1-based indexing property of the root-level Inport block.

8 Referencing a Model

8-82

• If a root-level output port of the referenced model connects to index outputs in the
model that have different 0-based or 1-based indexing settings, Simulink does not set
the 0-based or 1-based indexing property of the root-level Outport block.

General Reusability Limitations

If a referenced model has any of the following characteristics, the model must specify
Configuration Parameters > Model Referencing > Total number of instances
allowed per top model as One. No other instances of the model can exist in the
hierarchy. An error occurs if you do not set the parameter correctly, or if more than one
instance of the model exists in the hierarchy. The model characteristics that require that
the Total number of instances allowed per top model setting be One are:

• The model contains any To File blocks
• The model references another model which is set to single instance
• The model contains a state or signal with non-auto storage class
• The model uses any of the following Stateflow constructs:

• Stateflow graphical functions
• Machine-parented data

Block Mask Limitations

• Mask callbacks cannot add Model blocks. Also, mask callbacks cannot change the
Model block name or simulation mode. These invalid callbacks generate an error.

• If a mask specifies the name of the model that a Model block references, the mask
must provide the name of the referenced model directly. You cannot use a workspace
variable to provide the name.

• The mask workspace of a Model block is not available to the model that the Mask
block references. Any variable that the referenced model uses must resolve to either of
these workspaces:

• A workspace that the referenced model defines
• The MATLAB base workspace

For information about creating and using block masks, see “Block Masks”.

Simulink Tool Limitations

Working with the Simulink Debugger in a parent model, you can set breakpoints at
Model block boundaries. Setting those breakpoints allows you to look at the input and

 Model Referencing Limitations

8-83

output values of the Model block. However, you cannot set a breakpoint inside the model
that the Model block references. See “Simulink Debugger” for more information.

Stateflow Limitations

You cannot reference a model multiple times in the same model reference hierarchy if
that model that contains a Stateflow chart that:

• Contains exported graphical functions
• Is part of a Stateflow model that contains machine-parented data

Subsystem Limitations

• You cannot place a Model block in an iterator subsystem, if the Model block references
a model that contains Assignment blocks that are not in an iterator subsystem.

• In a configurable subsystem with a Model block, during model update, do not change
the subsystem that the configurable subsystem selects.

S-Function Target Limitation

The Simulink Coder S-function target does not support model referencing.

Other Limitations

• Referenced models can only use asynchronous rates if the model meets both of these
conditions:

• An external source drives the asynchronous rate through a root-level Inport block.
• The root-level Inport block outputs a function-call signal. See Asynchronous

Task Specification.
• A referenced model can input or output only those user-defined data types that are

fixed-point or that Simulink.DataType or Simulink.Bus objects define.
• To initialize the states of a model that references other models with states, specify the

initial states in structure or structure with time format. For more information, see
“State Information for Referenced Models” on page 57-148.

• A referenced model cannot directly access the signals in a multirate bus. To
overcoming this limitation, see “Connect Multi-Rate Buses to Referenced Models” on
page 61-110.

• A continuous sample time cannot be propagated to a Model block that is sample-time
independent.

8 Referencing a Model

8-84

• Goto and From blocks cannot cross model reference boundaries.
• You cannot print a referenced model from a top model.
• To use a masked subsystem in a referenced model that uses model arguments,

do not create in the mask workspace a variable that derives its value from a
mask parameter. Instead, use blocks under the masked subsystem to perform the
calculations for the mask workspace variable.

Limitations on Normal Mode Referenced Models

Normal Mode Visibility for Multiple Instances of a Referenced Model

You can simulate a model that has multiple instances of a referenced model that are in
Normal mode. All of the instances of the referenced model are part of the simulation.
However, Simulink displays only one of the instances in a model window. The Normal
Mode Visibility setting determines which instance Simulink displays. Normal Mode
Visibility includes the display of Scope blocks and data port values.

To set up your model to control which instance of a referenced model in Normal mode
has visibility and to ensure proper simulation of the model, see “Set Up a Model with
Multiple Instances of a Referenced Model in Normal Mode” on page 8-35.

Simulink Profiler

In Normal mode, enabling the Simulink Profiler on a parent model does not enable
profiling for referenced models. You must enable profiling separately for each referenced
model. See “How Profiler Captures Performance Data” on page 27-5.

Limitations on Accelerator Mode Referenced Models

Subsystem Limitations

If you generate code for an atomic subsystem as a reusable function, when you use
Accelerator mode, the inputs or outputs that connect the subsystem to a referenced
model can affect code reuse. See “Reusable Code and Referenced Models” for details.

Simulink Tool Limitations

Simulink tools that require access to the internal data or the configuration of a model
have no effect on referenced models executing in Accelerator mode. Specifications made
and actions taken by such tools are ignored and effectively do not exist. Examples of tools
that require access to model internal data or configuration include:

 Model Referencing Limitations

8-85

• Model Coverage
• Simulink Report Generator
• Simulink Debugger
• Simulink Profiler

Runtime Checks

Some blocks include runtime checks that are disabled when you include the block in a
referenced model in Accelerator mode. Examples of these blocks include Assignment,
Selector, and MATLAB Function blocks).

Diagnostic Configuration Parameter Changes

For models referenced in Accelerator mode, Simulink ignores certain runtime diagnostics
that you set to a value other than none or Disable all. For details, see “Certain
Diagnostic Configuration Parameters Ignored for Models Referenced in Accelerator
Mode” on page 8-87.

Data Logging Limitations

The following logging methods have no effect when specified in referenced models
executing in Accelerator mode:

• To Workspace blocks (for formats other than Timeseries)
• Scope blocks
• All types of runtime display, such as Port Values Display

During simulation, the result is the same as if the constructs did not exist.

Accelerator Mode Reusability Limitations

You must set Configuration Parameters > Model Referencing > Total number
of instances allowed per top model to One for a referenced model that executes in
Accelerator mode and has any of the following characteristics:

• A subsystem that is marked as function
• An S-function that is:

• Inlined but has not set the option SS_OPTION_WORKS_WITH_CODE_REUSE
• Not inlined

8 Referencing a Model

8-86

• A function-call subsystem that:

• Has been forced by Simulink to be a function
• Is called by a wide signal

An error occurs in either of these cases:

• You do not set the parameter correctly.
• Another instances of the model exists in the hierarchy, in either Normal mode or

Accelerator mode

Customization Limitations

• For restrictions that apply to grouped custom storage classes in referenced models in
Accelerator mode, see “Custom Storage Class Limitations”.

• Simulation target code generation for referenced models in Accelerator mode does not
support data type replacement.

S-Function Limitations

• If a referenced model in Accelerator mode contains an S-function that should
be inlined using a Target Language Compiler file, the S-function must use the
ssSetOptions macro to set the SS_OPTION_USE_TLC_WITH_ACCELERATOR option
in its mdlInitializeSizes method. The simulation target does not inline the S-
function unless the S-function sets this option.

• You cannot use the Simulink Coder S-function target in a referenced model in
Accelerator mode.

• A referenced model in Accelerator mode cannot use noninlined S-functions in the
following cases:

• The model uses a variable-step solver.
• Simulink Coder generated the S-function.
• The S-function supports use of fixed-point numbers as inputs, outputs, or

parameters.
• The S-function uses string parameters.
• The model is referenced more than once in the model reference hierarchy. To work

around this limitation:

1 Make copies of the referenced model.

 Model Referencing Limitations

8-87

2 Assign different names to the copies.
3 Reference a different copy at each location that needs the model.

Stateflow Limitation

A Stateflow chart in a referenced model that executes in Accelerator mode cannot call
MATLAB functions.

MATLAB Function Block Limitation

A MATLAB Function block in a referenced model that executes in Accelerator mode
cannot call MATLAB functions.

Other Limitations

• When you create a model, you cannot use that model as an Accelerator mode
referenced model until you have saved the model to disk. You can work around this
limitation by setting the model to Normal mode. See “Specify the Simulation Mode” on
page 8-31.

• When the sim command executes a referenced model in Accelerator mode, the source
workspace is always the MATLAB base workspace.

• Accelerator mode does not support the External mode option. If you enable the
External mode option, Accelerator mode ignores it.

• In Accelerator mode, discrete states of model references are not exposed to
linearization. These discrete states are not perturbed during linearization and
therefore, they are not truly free in the trimming process.

• The outputs of random blocks are not kept constant during trimming. This can affect
the optimization process.

Limitations on Rapid Accelerator Mode Referenced Models

Simulink does not update a Model block with a sim viewing device.

Certain Diagnostic Configuration Parameters Ignored for Models
Referenced in Accelerator Mode

For models referenced in Accelerator mode, Simulink ignores the values of these
Configuration Parameters > Diagnostics > Data Validity parameter settings if you
set them to a value other than None:

8 Referencing a Model

8-88

• Array bounds exceeded (ArrayBoundsChecking)
• Inf or NaN block output (SignalInfNanChecking)
• Simulation range checking (SignalRangeChecking)
• Division by singular matrix (CheckMatrixSingularityMsg)
• Wrap on overflow (IntegerOverflowMsg)

Also, for models referenced in Accelerator mode, Simulink ignores these Configuration
Parameters > Diagnostics > Data Validity > Data Store Memory Block
parameters if you set them to a value other than Disable all. For details, see “Data
Store Diagnostics” on page 58-43.

• Detect read before write (ReadBeforeWriteMsg)
• Detect write after read (WriteAfterReadMsg)
• Detect write after write (WriteAfterWriteMsg)

You can use the Model Advisor to identify models referenced in Accelerator mode for
which Simulink ignores the configuration parameters listed above.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

To see the results of running the identified diagnostics with settings to produce warnings
or errors, simulate the model in Normal mode. Inspect the diagnostic warnings and then
simulate in Accelerator mode.

Limitations on SIL and PIL Mode Referenced Models

See:

• “Simulation Mode Override Behavior in Model Reference Hierarchy”
• “SIL and PIL Limitations”

Configuration Parameters Changed During Code Generation

For referenced models, if these Configuration Parameters > Code Generation >
Symbols parameters have settings that do not contain a $R token (which represents the

 Model Referencing Limitations

8-89

name of the reference model), code generation prepends the $R token to the identifier
format:

• Global variables (CustomSymbolStrGlobalVar)
• Global types (CustomSymbolStrType)
• Subsystem methods (CustomSymbolStrFcn)
• Constant macros (CustomSymbolStrMacro)

You can use the Model Advisor to identify models in a model referencing hierarchy for
which code generation changes configuration parameter settings.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check code generation identifier formats used for model reference

check.

If a script that operates on generated code uses identifier formats that code generation
changes, then update the script to use the updated identifier format (which includes an
appended $R token).

For more information about identifiers, in the Embedded Coder documentation, see
“Identifier Format Control”.

9

Create Conditional Subsystems

• “Conditional Subsystems” on page 9-2
• “Export-Function Models” on page 9-4
• “Create an Enabled Subsystem” on page 9-21
• “Conditionally Reset Block States in a Subsystem” on page 9-31
• “Create a Triggered Subsystem” on page 9-38
• “Create an Action Subsystem” on page 9-42
• “Create a Triggered and Enabled Subsystem” on page 9-45
• “Create a Function-Call Subsystem” on page 9-50
• “Conditional Execution Behavior” on page 9-52
• “Conditional Subsystem Output Initialization” on page 9-58
• “Specify or Inherit Conditional Subsystem Initial Values” on page 9-62
• “Set Initialization Mode to Simplified or Classic” on page 9-65
• “Convert from Classic to Simplified Initialization Mode” on page 9-66
• “Address Classic Mode Issues by Using Simplified Mode” on page 9-67
• “Simulink Functions and Function Callers” on page 9-80
• “Diagnostics Using a Client-Server Architecture” on page 9-101

9 Create Conditional Subsystems

9-2

Conditional Subsystems

A subsystem is a set of blocks that have been replaced by a single block called a
Subsystem block. This chapter describes a special kind of subsystem for which execution
can be externally controlled. For information that applies to all subsystems, see “Create a
Subsystem” on page 4-41.

A conditional subsystem, also known as a conditionally executed subsystem, is a
subsystem whose execution depends on the value of an input signal. The signal that
controls whether a subsystem executes is called the control signal. The signal enters a
subsystem block at the control input.

Conditional subsystems can be very useful when you are building complex models that
contain components whose execution depends on other components. Simulink supports
the following types of conditional subsystems:

• An enabled subsystem executes while the control signal is positive. It starts execution
at the time step where the control signal crosses zero (from the negative to the
positive direction) and continues execution as long as the control signal remains
positive. For a more detailed discussion, see “Create an Enabled Subsystem” on page
9-21.

• A triggered subsystem executes once each time a trigger event occurs. A trigger event
can occur on the rising or falling edge of a trigger signal, which can be continuous or
discrete. For more information about triggered subsystems, see “Create a Triggered
Subsystem” on page 9-38.

• A triggered and enabled subsystem executes once at the time step for which a trigger
event occurs if the enable control signal has a positive value at that step. See “Create
a Triggered and Enabled Subsystem” on page 9-45 for more information.

• A control flow subsystem executes one or more times at the current time step when
enabled by a control flow block. A control flow block implements control logic similar
to that expressed by control flow statements of programming languages (e.g., if-
then, while-do, switch, and for). See “Use Control Flow Logic” on page 4-59 for
more information.

Note The Simulink software imposes restrictions on connecting blocks with a
constant sample time to the output port of a conditional subsystem. See “Use Blocks
with Constant Sample Times in Enabled Subsystems” on page 9-27 for more
information.

 Conditional Subsystems

9-3

For examples of conditional subsystems, see:

• Simulink Subsystem Semantics
• Triggered Subsystems
• Enabled Subsystems
• Advanced Enabled Subsystems

9 Create Conditional Subsystems

9-4

Export-Function Models

In this section...

“About Export-Function Models” on page 9-4
“Requirements for Export-Function Models” on page 9-5
“Sample Time for Function-Call Subsystems in Export-Function Models” on page
9-6
“Execution Order for Function-Call Root-level Inport Blocks” on page 9-8
“Workflows for Export-Function Models” on page 9-13
“Nested Export-Function Models” on page 9-18
“Comparison between Export-Function Models and Models with Asynchronous
Function-Call Inputs” on page 9-19

About Export-Function Models

Simulink provides the capability to export functions from Simulink models that are
invoked by controlling logic that is outside the model. Such models are called export-
function models, and their functional blocks are made up exclusively of function-call
subsystems, function-call model blocks or other export-function models. These blocks are
invoked using function-call triggers passed via root-level Inport blocks. Execute these
functions by providing model inputs through root-level Inport blocks or by referencing
this model in a top model to invoke the function-calls. The execution of these functions
is subject to the guidelines described in “Requirements for Export-Function Models” on
page 9-5.

The figure shows an export-function model and the resulting generated functions.

 Export-Function Models

9-5

Requirements for Export-Function Models

To set up a model to export functions, first meet these requirements. These requirements
ensure that the executable components of the model are made up only of function-call
blocks.

• The model solver must be a fixed-step discrete solver.
• Configure each root-level Inport block triggering a function-call subsystem to output

a function-call trigger. These Inport blocks cannot be connected to an Asynchronous
Task Specification block.

• Export-function models generate functions to be integrated with an external
environment. Simulink does not generate a step function or a terminate function, and
all blocks in these models must be executed in a function-call context. Thus, the model
must contain only the following blocks at root level:

• Function-call blocks, such as function-call subsystem, S-functions, and Simulink
Function blocks. Function-call Model blocks can be placed at the root-level only
if their model parameter Configuration Parameters > Solver > Tasking and
sample time options > Periodic sample time constraint is set to Ensure
sample time independent.

• Inport and Outport blocks
• Blocks with a sample time of Inf

9 Create Conditional Subsystems

9-6

• Merge and Data Store Memory blocks
• Virtual connection blocks (Function-Call Split, Mux, Demux, Bus Creator, Bus

Selector, Signal Specification, and any Virtual Subsystem that contains any of the
blocks listed.)

• Blocks inside function-call subsystems must support code generation. These blocks
can use absolute or elapsed time if they are inside a periodic function-call subsystem
with a discrete sample time specified on the corresponding function-call root-level
Inport block.

• Data signals connected to root-level Inport and root-level Outport blocks cannot be a
virtual bus.

• Data logging and signal-viewer blocks, such as the Scope block, are not allowed at the
root level and within the function-call blocks.

Sample Time for Function-Call Subsystems in Export-Function Models

There are two blocks for each function-call subsystem in export-function models where
you need to specify the sample time. These blocks are the function-call root-level Inport
block and the Trigger block inside the function-call subsystem. The table shows how to
specify these sample times.

 Function-call root-
level Inport block with
inherited sample time
(-1) specified

Function-call root-level
Inport block with discrete
sample time specified

Trigger block of
function-call subsystem
has sample time type set
to Periodic

Configuration not allowed. Set sample time of Trigger
block to inherited (-1) or the
sample time of the function-
call root-level Inport block.
The subsystem executes at
the specified rate. Periodic
function-call run-time checks
apply if the export-function
model is used as a referenced
model in normal simulation
mode.

These subsystems can
contain blocks that use

 Export-Function Models

9-7

elapsed time (e.g., Discrete-
Time Integrator) and blocks
that use absolute time (e.g.,
Digital Clock).

You cannot set the
model configuration
parameter Fixed-step size
(fundamental sample
time) to auto.

Trigger block of
function-call subsystem
has sample time type set
to Triggered

No sample time
specification.

No sample time specification.
The subsystem executes at
the specified rate.

You cannot set the
model configuration
parameter Fixed-step size
(fundamental sample
time) to auto.

Sample Time in Top Model Function-Call Initiators

The blocks that output function-call signals to the function-call root-level Inport blocks
of the export-function models are called function-call initiators. When a top model
references an export-function model, the blocks that supply the function-call inputs to the
referenced model are the function-call initiators in the top model.

Top model function-call initiators that drive function-call blocks in the referenced export-
function model can have different sample times. You can also mux function-call initiator
blocks with different sample times before feeding them to the referenced export-function
model. When the Configuration Parameters > Solver > Tasking mode for periodic
sample times is set to Single Tasking, function-call initiator blocks with smaller
sample times execute first.

The sample time of function-call initiators must be an integer multiple of the sample
time of the corresponding data inputs to the export-function model. The initiators must
invoke a function-call subsystem in an export-function model at simulation times that
are integer multiples of the sample time of the function-call root-level Inport block of the
subsystem.

9 Create Conditional Subsystems

9-8

When you mux function-call initiator blocks in the top-level model, the function-call
blocks they invoke do not receive the name of the initiator.

Execution Order for Function-Call Root-level Inport Blocks

You can display the sorted execution order to interpret simulation results. This display
has no impact on generated code. To display the sorted execution order, select Display
> Blocks > Sorted Execution Order. In the following example, notice the sorted order
for both the function-call triggers. Based on sorted order display labels, fcIn1 (F0)
executes before fcIn2 (F1) when both have a sample hit at the same time step.

The referenced export-function model in the top model shows the local execution order of
the Inport and Outport blocks in the model.

 Export-Function Models

9-9

Simulink compares Inport block properties to determine their relative execution order.
Simulink checks the block properties in this order:

1 Priority (lower priority executes first)
2 Sample time (smaller sample time executes first)
3 Port number (smaller port number executes first)

When two blocks have different values for the Priority parameter, the block with the
lower priority executes first. If the Priority parameter is equal, the block with the faster
rate executes first. If Priority and sample time are the same for both of the blocks,
the block with the lower port number executes first. This example shows how relative
execution order is calculated.

Determine Relative Execution Order

Suppose that an export function model has five function-call root-level Inport blocks, A
to E, with block properties as shown in the table. To determine their relative execution
order, Simulink compares their sample times (if distinct and noninherited), Priority
parameter, and port number, in order.

function-call
root-level
Inport

A B C D E

Priority 10 30 40 40 30

9 Create Conditional Subsystems

9-10

function-call
root-level
Inport

A B C D E

Sample Time –1 0.2 0.1 0.1 –1
Port Number 5 4 3 2 1

Block A has the lowest priority of all five blocks. A executes first.

Using the same logic, B and E execute after A but before C and D. Since B and E have
the same priority, Simulink compares their sample time to determine execution order. E
has a sample time of -1 (inherited), which is smaller than 0.2, the sample time of B. E
executes before B.

C and D have the same priority and the same distinct, noninherited sample times. The
port number for D (2) is smaller than C (3), D executes before C.

The relative execution order of these Inport blocks, then, is A, E, B, D, and C.

Scheduling Restrictions for Referenced Export-Function Models

If a top model references an export-function model, there are restrictions on function-call
subsystems within the export-function model. These restrictions ensure consistency with
standalone simulation results.

• In the top model, the same function-call initiator must output function-calls
originating with the same sample time. You cannot use two function-call initiators
with the same sample time. You cannot disable this restriction.

• The function-call inputs from the top model must follow the execution order of the
function-call Inport blocks in the referenced export-function model. You can disable
this restriction.

• The sample time of the function-call root-level Inport block must be inherited (-1) or
match the sample time of the function-call initiator block that drives it. If you disable
this restriction, the sample time of the function-call root-level Inport block must be
inherited (-1) or an integer multiple of the sample time of the function-call initiator
block.

To disable the restrictions, clear the check box Model Configuration Parameters >
Model Referencing > Enable strict scheduling checks for referenced export-
function models.

 Export-Function Models

9-11

An error appears if the top model calls the referenced model functions out of order at any
time step. For information on sorted execution order, see “Control and Display the Sorted
Order” on page 31-29.

Data Transfer Between Function-Call Subsystems

You must know the timing of the data being transferred between function-call
subsystems to understand and interpret simulation results.

To display which subsystem executes first during simulation, the signal lines are
annotated with different symbols at the input ports of the subsystems:

• ZOH indicates that all source function-call subsystems execute before the function-
call block reading this signal.

• 1/z indicated that all source function-call subsystems execute after the function-call
block reading this signal.

• Mixed indicates that some source function-call subsystems execute before and some
function-call subsystems execute after the function-call block reading this signal.

In the block diagram, notice the sorted execution order for each block. We can see
that for the input port In1 of subsystems FCSS3 (F1), the source subsystem FCSS1
(F0) executes before FCSS3 (F1). Hence, an annotation of ZOH is added next to In1.
Similarly, FCSS2 (F2) executes after FCSS3 (F1). Hence, Simulink adds an annotation
of 1/z next to In3 of subsystem FCSS3 (F1). Port In2 inputs signals from both FCSS1
(F0) and FCSS2 (F2). Hence, it has an annotation Mixed next to it.

9 Create Conditional Subsystems

9-12

You can latch Inport blocks in function-call subsystems to ensure data integrity. If your
function-call subsystems have Inport blocks that are latched, then the root-level data
Inport block of the export-function model is latched only if all the data Inport blocks it
is feeding to are latched. For more information, see “Latch input for feedback signals of
function-call subsystem outputs”.

When referencing an export function model or a model with asynchronous function-call
inputs, the data input to the referenced model is latched if all function-call block inputs it
feeds inside the referenced model are latched.

Note: Data transfer signals are unprotected in the generated code by default. You must
prevent data corruption in these signals due to pre-emption in the target environment or
implementing protection using custom storage classes.

 Export-Function Models

9-13

Workflows for Export-Function Models

The most common workflow is to test function-call behavior through simulation and
generate the functions using standalone code generation.

Standalone Simulation

When function-call sequencing is simple enough to be specified as a model input,
standalone simulation is the preferred workflow. For a standalone simulation, create
data sets for the function-call and data root-level Inport blocks. For more information on
function-call inputs, see “Specifying Function-Call Inputs” on page 9-13.

You can also specify the execution order for function-call subsystems. For more
information, see “Execution Order for Function-Call Root-level Inport Blocks” on page
9-8.

Specifying Function-Call Inputs

You can create data sets for the function-call and data root-level Inport blocks in
Simulation > Model Configuration Parameters > Data Import/Export > Input.

For function-call inputs, specify a time-vector indicating when events occur.

• The time vector data type must be double and monotonically increasing.
• All time data must be integer multiples of the model sample time.
• To specify multiple function-calls at a given time step, repeat the time value

accordingly. For example, to specify three events at t = 1 and two events at t = 9, list 1
three times and 9 twice in your time vector, t = [1 1 1 9 9]'.

The normal data input can use any other supported format as described in “Enable Data
Import” on page 57-88.

Consider the following export-function model with one function-call input port fcIn1 and
one data input In2.

9 Create Conditional Subsystems

9-14

In the Configuration Parameters > Data Import/Export pane, set the Input
parameter to t, tu.

t is a column vector containing the times of events for the Inport block. tu is a table of
input values versus time for the In2 block.

The table describes how to specify the vector t.

 Root-level Inport block with
inherited sample time (-1)
specified

Root-level Inport block with
discrete sample time specified

Function-call subsystem
trigger port sample time
type is Periodic

Not applicable Use an empty matrix([]).
The function-call subsystem
executes at every sample
time hit of the root-level
Inport block invoking it.

Function-call subsystem
trigger port sample time
type is Triggered

Use a nondecreasing column
vector. Each element in
the column vector must be
an integral multiple of the
fundamental sample time
of the model. The function-
call subsystem executes at
the times specified by the
column vector.

Use a nondecreasing column
vector. Each element in
the column vector must
be an integral multiple of
discrete sample time of
the function-call root-level
Inport block. The function-
call subsystem executes at

 Export-Function Models

9-15

 Root-level Inport block with
inherited sample time (-1)
specified

Root-level Inport block with
discrete sample time specified

If you specify an empty
matrix ([]), the function-
call subsystem does not
execute.

the times specified by the
column vector.

Alternatively, specify an
empty matrix ([]), and the
function-call subsystem
executes at every sample
time hit.

Top-Model Simulation Using Model Reference

The more common simulation workflow of export-function models is by referencing
export-function models. When function-call sequencing is too complicated to specify
with data sets in a standalone simulation, create a harness top model to mimic target
environment behavior. Use this top model to give inputs to the export-function model.
There are two forms to mimic behavior of the scheduling environment:

• Common function-call initiator, in which you fully control the scheduling process. Use
Stateflow or S-functions to create arbitrary call sequences.

9 Create Conditional Subsystems

9-16

Note: Simulink does not simulate pre-empting function-calls.

• Multiple function-call initiators with distinct sample times: Use Simulink scheduling
for simulation, which is useful when the rate monotonic scheduling behavior in
Simulink is similar to the target OS behavior.

 Export-Function Models

9-17

Note: When using export-function models in top-model simulations, do not change the
enable/disable status of the model during the simulation. Enable it at the start of the
simulation and use function-calls to call it.

Standalone Code Generation

For standalone code generation, specify an ERT code-generation target, such as
ert.tlc, and select Code > C/C++ Code > Build Model to generate code. In the
generated code, each function-call root Inport generates a void-void function. The
function name for each function-call root Inport block is the name of the output function-
call signal of the block. If there is no signal name, then the function name is derived from
the name of the root Inport block. Building the model generates a model initialization
function but does not generate a model step function or an enable/disable function.

To customize the model initialize function name for the referenced export-function model,
open the top model and complete these steps:

• Select Model Configuration Parameters > Code Generation > Interface.
• Click Configure Model Functions.

9 Create Conditional Subsystems

9-18

• In the Model Interface dialog box, set Function specification to Model specific
C prototypes and click Validate.

• Type the function name in the Initialize function name text box and click Apply.
• Generate code again to see the new function name.

Nested Export-Function Models

Nested export-function models provide an additional layer of organization for your model.
The schematic below explains how the user may export functions at the vehicle level or
the individual feature level.

Note: An export-function model cannot contain a model with asynchronous function-call
inputs, but can contain function-call subsystems and function-call models. A model with
asynchronous function-call inputs can contain an export-function model, function-call
subsystem or a function-call model.

 Export-Function Models

9-19

Comparison between Export-Function Models and Models with
Asynchronous Function-Call Inputs

A similar feature to export-function models is available since R2011a for models with
asynchronous function-call inputs. These models are used primarily in the Simulink
environment, where generated functions are called by the Simulink scheduler. Since the
generated asynchronous function-call entry-points will be called by Simulink scheduler,
the model can only be used as a referenced model for code generation. In contrast, the
workflow for export-function models involves code generation of functions in standalone
models.

 Export-Function Models Models with Asynchronous Function-
Call Inputs

Definition These models have function-call
root-level Inport blocks that are
not connected to an Asynchronous
Task Specification block. These
Inport blocks trigger function-call
subsystems or referenced models
with function-call trigger inputs.

These models have function-call
root-level Inport blocks connected
to Asynchronous Task Specification
blocks. These Inport blocks trigger
function-call subsystems or
referenced models with function-call
trigger inputs.

Root-level
blocks

Only blocks executing in a function-
call context are allowed at the root
level.

Blocks executing in a non-function-
call context are also allowed.

Data
transfer

Use data transfer indicators to
interpret simulation results. Data
transfer in export-function models
is not protected by default in
generated code. For more details,
see “Data Transfer Between
Function-Call Subsystems” on page
9-11.

Use Rate Transition blocks to protect
data transferred between function-
call subsystems running at different
rates. For more information, see Rate
Transition.

Simulation
support

These models support standalone
simulation and top-model
simulation in all simulation modes.

These models support top-model
simulation in all modes and
standalone simulation in Normal,
Accelerator, and Rapid Accelerator
modes.

9 Create Conditional Subsystems

9-20

 Export-Function Models Models with Asynchronous Function-
Call Inputs

Code
generation
support

Top-model and standalone code
generation is supported.

Top-model code generation is
supported. Standalone code
generation is not supported.

 Create an Enabled Subsystem

9-21

Create an Enabled Subsystem

In this section...

“What Are Enabled Subsystems?” on page 9-21
“Create an Enabled Subsystem” on page 9-22
“Blocks an Enabled Subsystem Can Contain” on page 9-24
“Use Blocks with Constant Sample Times in Enabled Subsystems” on page 9-27

What Are Enabled Subsystems?

Enabled subsystems are subsystems that execute at each simulation step for which the
control signal has a positive value.

An enabled subsystem has a single control input, which can be a scalar or a vector.

• If the input is a scalar, the subsystem executes if the input value is greater than zero.
• If the input is a vector, the subsystem executes if any one of the vector elements is

greater than zero.

For example, if the control input signal is a sine wave, the subsystem is alternately
enabled and disabled. This behavior is shown in the following figure, where an up arrow
signifies enable and a down arrow disable.

The Simulink software uses the zero-crossing slope method to determine whether an
enable event is to occur. If the signal crosses zero and its slope is positive, then the
subsystem becomes enabled. If the slope is negative at the zero crossing, then the

9 Create Conditional Subsystems

9-22

subsystem becomes disabled. Note that a subsystem is only enabled or disabled at major
time steps. Therefore, if zero-crossing detection is turned off and the signal crosses zero
during a minor time step, then the subsystem will not become enabled (or disabled) until
the next major time step.

Create an Enabled Subsystem

You create an enabled subsystem by copying an Enable block from the Ports &
Subsystems library into a Subsystem block. An enable symbol and an enable control
input port is added to the Subsystem block.

To set the initial conditions for an Outport block in an enabled subsystem, see “Specify or
Inherit Conditional Subsystem Initial Values” on page 9-62.

Set States When the Subsystem Becomes Enabled

When an enabled subsystem executes, you can choose whether to hold the subsystem
states at their previous values or reset them to their initial conditions.

To do this, open the Block Parameters: Enable dialog box and select one of the choices
for the States when enabling parameter:

• Choose held to cause the states to maintain their most recent values.
• Choose reset to cause the states to revert to their initial conditions. However,

enabled subsystems reset their states on enabling only if they are disabled for at least
one time step. To reset the states of your subsystem without disabling its execution,
use resettable subsystems. For more information, see “Comparison of Resettable
Subsystems and Enabled Subsystems” on page 9-34.

In simplified initialization mode, the subsystem elapsed time is always reset during
the first execution after becoming enabled, whether or not the subsystem is configured
to reset on enable. For more information on simplified initialization mode, see
“Underspecified initialization detection”.

 Create an Enabled Subsystem

9-23

Note: For nested subsystems whose Enable blocks have different parameter settings,
the settings on the child subsystem’s dialog box override those inherited from the parent
subsystem.

Output the Enable Control Signal

An option on the Enable block dialog box lets you output the enable control signal. To
output the control signal, select the Show output port check box.

9 Create Conditional Subsystems

9-24

This feature allows you to pass the control signal down into the enabled subsystem,
which can be useful where logic within the enabled subsystem is dependent on the value
or values contained in the control signal.

Blocks an Enabled Subsystem Can Contain

An enabled subsystem can contain any block, whether continuous or discrete. Discrete
blocks in an enabled subsystem execute only when the subsystem executes, and only
when their sample times are synchronized with the simulation sample time. Enabled
subsystems and the model use a common clock.

Note Enabled subsystems can contain Goto blocks. However, only state ports can connect
to Goto blocks in an enabled subsystem. In the sldemo_clutch model, see the Locked
subsystem for an example of how to use Goto blocks in an enabled subsystem.

For example, this system contains four discrete blocks and a control signal. The discrete
blocks are:

• Block A, which has a sample time of 0.25 second
• Block B, which has a sample time of 0.5 second
• Block C, within the enabled subsystem, which has a sample time of 0.125 second
• Block D, also within the enabled subsystem, which has a sample time of 0.25 second

The enable control signal is generated by a Pulse Generator block, labeled Signal E,
which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875 second.

 Create an Enabled Subsystem

9-25

9 Create Conditional Subsystems

9-26

The chart below indicates when the discrete blocks execute.

Blocks A and B execute independently of the enable control signal because they are not
part of the enabled subsystem. When the enable control signal becomes positive, blocks C

 Create an Enabled Subsystem

9-27

and D execute at their assigned sample rates until the enable control signal becomes zero
again. Note that block C does not execute at 0.875 second when the enable control signal
changes to zero.

Use Blocks with Constant Sample Times in Enabled Subsystems

Certain restrictions apply when you connect blocks with constant sample times (see
“Constant Sample Time” on page 7-16) to the output port of a conditional subsystem.

• An error appears when you connect a Model or S-Function block with constant sample
time to the output port of a conditional subsystem.

• The sample time of any built-in block with a constant sample time is converted to a
different sample time, such as the fastest discrete rate in the conditional subsystem.

To avoid the error or conversion, either manually change the sample time of the block to
a non-constant sample time or use a Signal Conversion block. The example below shows
how to use the Signal Conversion block to avoid these errors.

Consider the following model ex_enabled_subsys_2.mdl.

9 Create Conditional Subsystems

9-28

The two Constant blocks in this model have constant sample times. When you simulate
the model, the Simulink software converts the sample time of the Constant block inside
the enabled subsystem to the rate of the Pulse Generator. If you simulate the model with
sample time colors displayed (see “View Sample Time Information” on page 7-9), the
Pulse Generator and Enabled Subsystem blocks are colored red. However, the Constant
and Outport blocks outside of the enabled subsystem are colored magenta, indicating
that these blocks still have a constant sample time.

Suppose the model above is referenced from a Model block inside an enabled subsystem,
as shown below. (See “Model Reference”.)

 Create an Enabled Subsystem

9-29

An error appears when you try to simulate the top model, indicating that the second
output of the Model block may not be wired directly to the enabled subsystem output port
because it has a constant sample time. (See “Model Reference”.)

To avoid this error, insert a Signal Conversion block between the second output of the
Model block and the Outport block of the enabled subsystem.

9 Create Conditional Subsystems

9-30

This model simulates with no errors. With sample time colors displayed, the Model and
Enabled Subsystem blocks are colored yellow, indicating that these are hybrid systems.
In this case, the systems are hybrid because they contain multiple sample times.

 Conditionally Reset Block States in a Subsystem

9-31

Conditionally Reset Block States in a Subsystem

In this section...

“Behavior of Resettable Subsystems” on page 9-31
“Comparison of Resettable Subsystems and Enabled Subsystems” on page 9-34

Behavior of Resettable Subsystems

Use resettable subsystems when you want to conditionally reset the states of all blocks
within a subsystem. A resettable subsystem executes at every time step but conditionally
resets the states of blocks within it when a trigger event occurs at the reset port.
This behavior is similar to the reset behavior of blocks with reset ports, except that a
resettable subsystem resets the states of all blocks inside it.

Using resettable subsystems over other methods of resetting states of your block or
subsystem has these advantages:

• When you want to reset the states of multiple blocks in a subsystem, displaying and
connecting the reset port of each block is cumbersome and makes the block diagram
hard to read. Instead, place all of the blocks in a resettable subsystem and configure
the Reset block in the subsystem.

• Some blocks, such as the Discrete State-Space block, have states but do not
have reset ports. You cannot reset these blocks individually, and you must reset
the subsystem they are inside. In such cases, it is useful to place these blocks in a
resettable subsystem.

• You can also reset blocks in enabled subsystems by setting the States when
enabling parameter on the enable port to reset. However, for this behavior, you
must disable the subsystem and then reenable it at a later time step. To reset your
block states at the same time step, use resettable subsystems. For more information,
see “Comparison of Resettable Subsystems and Enabled Subsystems” on page
9-34.

All blocks in a resettable subsystem must have the same sample time, and they execute
at every sample time hit of the subsystem. Resettable subsystems and the model use a
common clock.

This model shows that the behavior of block reset ports and resettable subsystems is the
same. A resettable subsystem enables you to reset the states of all blocks inside it.

9 Create Conditional Subsystems

9-32

The resettable subsystem contains an integrator block that is configured similar to the
root-level Integrator block, but the block does not have a reset port. The subsystem resets
the states of the integrator block inside it in the same manner as the reset port of the
integrator block. You can see this by running the model and viewing the output in the
scope.

 Conditionally Reset Block States in a Subsystem

9-33

9 Create Conditional Subsystems

9-34

Comparison of Resettable Subsystems and Enabled Subsystems

You can use enabled subsystems to reset the states of your blocks if you set the States
when enabling parameter on the enable port to reset. However, you must disable
the subsystem for at least one time step and then reenable it for the states to reset.
In contrast, resettable subsystems always execute and reset the states of their blocks
instantaneously.

This model shows the difference in the execution behavior of these subsystems. It
contains an enabled subsystem and a resettable subsystem whose control ports are fed
by a pulse generator. The resettable subsystem is set to reset on the rising edge of the
control signal, and the enabled subsystem has the States when enabling parameter set
to reset in the enable port.

The subsystems contain identical Discrete-Time Integrator blocks, whose input is the
Constant block at the root level of the model. The figure shows the contents of the
resettable subsystem.

 Conditionally Reset Block States in a Subsystem

9-35

The figure shows the simulation output.

9 Create Conditional Subsystems

9-36

 Conditionally Reset Block States in a Subsystem

9-37

When the control signal is 0, the enabled subsystem is disabled and the integrator does
not change its output while the resettable subsystem is executing. The rising edge of the
control signal triggers the reset port of the resettable subsystem and enables the enabled
subsystem. Both subsystems reset their states at this time step.

Notice that the enabled subsystem is disabled for at least one time step before its states
can are reset. The resettable subsystem does not have this limitation.

9 Create Conditional Subsystems

9-38

Create a Triggered Subsystem

In this section...

“What Are Triggered Subsystems?” on page 9-38
“Using Model Referencing Instead of a Triggered Subsystem” on page 9-40
“Creating a Triggered Subsystem” on page 9-40
“Blocks That a Triggered Subsystem Can Contain” on page 9-41

What Are Triggered Subsystems?

Triggered subsystems are subsystems that execute each time a trigger event occurs.

A triggered subsystem has a single control input, called the trigger input, that
determines whether the subsystem executes. You can choose from three types of trigger
events to force a triggered subsystem to begin execution:

• rising triggers execution of the subsystem when the control signal rises from a
negative or zero value to a positive value (or zero if the initial value is negative).

• falling triggers execution of the subsystem when the control signal falls from a
positive or a zero value to a negative value (or zero if the initial value is positive).

• either triggers execution of the subsystem when the signal is either rising or falling.

Note For discrete systems: If after rising, a signal remains at zero for more than
one time step, then and only then, does the subsequent rising of the signal constitute
a trigger event. Similarly, a falling trigger event occurs only if there are at least two
time steps between two occurrences of the signal falling. This trigger event scheme
eliminates false triggers caused by control signal sampling.

For example, in the following timing diagram for a discrete system, a rising trigger (R)
does not occur at time step 3 because the signal remains at zero for only one time step
prior to the rise.

 Create a Triggered Subsystem

9-39

A simple example of a triggered subsystem is illustrated.

9 Create Conditional Subsystems

9-40

In this example, the subsystem is triggered on the rising edge of the square wave trigger
control signal.

Using Model Referencing Instead of a Triggered Subsystem

You can use triggered ports in referenced models. Add a trigger port to a referenced
model to create a simpler, cleaner model than when you include either:

• A triggered subsystem in a referenced model
• A Model block in a triggered subsystem

For information about using trigger ports in referenced models, see “Conditional
Referenced Models” on page 8-64.

To convert a subsystem to use model referencing, see “Convert a Subsystem to a
Referenced Model” on page 8-16.

Creating a Triggered Subsystem

You create a triggered subsystem by copying the Trigger block from the Ports &
Subsystems library into a subsystem. The Simulink software adds a trigger symbol and a
trigger control input port to the Subsystem block.

 Create a Triggered Subsystem

9-41

To select the trigger type, open the Trigger block dialog box and select one of the choices
for the Trigger type parameter.

Different symbols appear on the Trigger and Subsystem blocks to indicate rising and
falling triggers (or either). This figure shows the trigger symbols on Subsystem blocks.

Outputs and States Between Trigger Events

Unlike enabled subsystems, triggered subsystems always hold their outputs at the last
value between triggering events. Also, triggered subsystems cannot reset their states
when triggered; the states of any discrete block is held between trigger events.

Outputting the Trigger Control Signal

An option on the Trigger block dialog box lets you output the trigger control signal. To
output the control signal, select the Show output port check box.

In the Output data type field, specify the data type of the output signal as auto, int8,
or double. The auto option causes the data type of the output signal to be the data type
(either int8 or double) of the port to which the signal connects.

Blocks That a Triggered Subsystem Can Contain

All blocks in a triggered subsystem must have either inherited (-1) or constant (inf)
sample time. This is to indicate that the blocks in the triggered subsystem run only when
the triggered subsystem itself runs, for example, when it is triggered. This requirement
means that a triggered subsystem cannot contain continuous blocks, such as the
Integrator block.

9 Create Conditional Subsystems

9-42

Create an Action Subsystem

In this section...

“What Are Action Subsystems?” on page 9-42
“Set States when an Action Subsystem Executes” on page 9-43

What Are Action Subsystems?

Action subsystems are subsystems that execute in response to a conditional output from
an If block or a Switch Case block. In essence, they are subsystems with an Action
port, which allow for block execution based on conditional inputs from an If block or
Switch Case block.

Simulink has two types of action subsystems, based on the type of block they receive
conditional input from.

If Action Subsystem

The If Action Subsystem is preconfigured to serve as a starting point for creating a
subsystem whose execution is triggered by an If block. To implement an if-else condition,
connect If action subsystem blocks to the outputs of anIf block.

 Create an Action Subsystem

9-43

Switch Case Action Subsystem

The Switch Case Action Subsystem is preconfigured to serve as a starting point
for creating a subsystem whose execution is triggered by a Switch Case block. To
implement a switch condition, connect Switch Case Action Subsystem blocks to the
outputs of a Switch Case block.

Set States when an Action Subsystem Executes

When an action subsystem is triggered to execute, you can choose whether to hold the
subsystem states at their previous values or reset them to their initial conditions.

1 Open the Action Port block inside the action subsystem.
2 Select one of the following for the States when execution is resumed parameter:

• held if you want the states to maintain their most recent values
• reset if you want the states to revert to their initial conditions

9 Create Conditional Subsystems

9-44

Note: For nested subsystems whose Action Port blocks have different parameter settings,
the settings on the child subsystem’s dialog box override those inherited from the parent
subsystem.

For more information, see Action Port, If, and Switch Case.

 Create a Triggered and Enabled Subsystem

9-45

Create a Triggered and Enabled Subsystem

In this section...

“What Are Triggered and Enabled Subsystems?” on page 9-45
“Creating a Triggered and Enabled Subsystem” on page 9-46
“A Sample Triggered and Enabled Subsystem” on page 9-46
“Creating Alternately Executing Subsystems” on page 9-47

What Are Triggered and Enabled Subsystems?

A third kind of conditional subsystem combines two types of conditional execution.
The behavior of this type of subsystem, called a triggered and enabled subsystem, is a
combination of the enabled subsystem and the triggered subsystem, as shown by this
flow diagram.

A triggered and enabled subsystem contains both an enable input port and a trigger
input port. When the trigger event occurs, the enable input port is checked to evaluate
the enable control signal. If its value is greater than zero, the subsystem is executed. If
both inputs are vectors, the subsystem executes if at least one element of each vector is
nonzero.

9 Create Conditional Subsystems

9-46

The subsystem executes once at the time step at which the trigger event occurs.

Creating a Triggered and Enabled Subsystem

You create a triggered and enabled subsystem by dragging both the Enable and Trigger
blocks from the Ports & Subsystems library into an existing subsystem. The Simulink
software adds enable and trigger symbols and enable and trigger control inputs to the
Subsystem block.

You can set output values when a triggered and enabled subsystem is disabled as you
would for an enabled subsystem. For more information, see “Setting Output Values
When the Conditional Subsystem Is Disabled” on page 9-64. Also, you can specify
what the values of the states are when the subsystem is reenabled. See “Set States When
the Subsystem Becomes Enabled” on page 9-22.

Set the parameters for the Enable and Trigger blocks separately. The procedures are the
same as those described for the individual blocks.

A Sample Triggered and Enabled Subsystem

A simple example of a triggered and enabled subsystem is illustrated in the following
model.

 Create a Triggered and Enabled Subsystem

9-47

Creating Alternately Executing Subsystems

You can use conditional subsystems in combination with Merge blocks to create sets of
subsystems that execute alternately, depending on the current state of the model.

9 Create Conditional Subsystems

9-48

The following figure shows a model that uses two enabled blocks and a Merge block to
model a full-wave rectifier – a device that converts AC current to pulsating DC current.

 Create a Triggered and Enabled Subsystem

9-49

The block labeled pos is enabled when the AC waveform is positive; it passes the
waveform unchanged to its output. The block labeled neg is enabled when the waveform
is negative; it inverts the waveform. The Merge block passes the output of the currently
enabled block to the Mux block, which passes the output, along with the original
waveform, to the Scope block.

The Scope creates the following display.

9 Create Conditional Subsystems

9-50

Create a Function-Call Subsystem

What is a Function-Call Subsystem?

A function-call subsystem is a subsystem that another block can invoke directly during a
simulation. It is analogous to a function in a procedural programming language. Invoking
a function-call subsystem is equivalent to invoking the output methods (See “Block
Methods” on page 3-15) of the blocks that the subsystem contains in sorted order (See
“How Simulink Determines the Sorted Order” on page 31-40). The block that invokes
a function-call subsystem is called the function-call initiator. Stateflow, Function-Call
Generator, and S-function blocks can all serve as function-call initiators.

Creating Function-Call Subsystems

To create a function-call subsystem, drag a Function-Call Subsystem block from the
Ports & Subsystems library into your model and connect a function-call initiator to the
function-call port displayed on top of the subsystem. You can also create a function-call
subsystem from scratch. First create a Subsystem block in your model and then create
a Trigger block in the subsystem. Next, on the Trigger block parameters pane, set the
Trigger type to function-call.

Sample Time Propagation in Function-Call Subsystems

You can configure a function-call subsystem to be triggered (the default) or periodic
by setting the Sample time type of its Trigger port to be triggered or periodic,
respectively. A function-call initiator can invoke a triggered function-call subsystem zero,
one, or multiple times per time step. The sample times of all the blocks in a triggered
function-call subsystem must be set to inherited (-1).

A function-call initiator can invoke a periodic function-call subsystem only once per
time step and must invoke the subsystem periodically. If the initiator invokes a periodic
function-call subsystem aperiodically, the simulation is halted and an error message is
displayed. The blocks in a periodic function-call subsystem can specify a noninherited
sample time or inherited (-1) sample time. All blocks that specify a noninherited sample
time must specify the same sample time. For example, if one block specifies 0.1 as the
sample time, all other blocks must specify a sample time of 0.1 or -1. If a function-call
initiator invokes a periodic function-call subsystem at a rate that differs from the sample
time specified by the blocks in the subsystem, the simulation halts and an error message
appears.

 Create a Function-Call Subsystem

9-51

Note: During range checking, the design minimum and maximum are back-propagated
to the actual source port of the function-call subsystem, even when the function-call
subsystem is not enabled.

To prevent this back propagation, add a Signal Conversion block and a Signal
Specification block after the source port, set the Output of the Signal Conversion
block to Signal copy, and specify the design minimum and maximum on the Signal
Specification block instead of specifying them on the source port.

For more information, see in “Writing S-Functions” in the online documentation.

9 Create Conditional Subsystems

9-52

Conditional Execution Behavior

In this section...

“What Is Conditional Execution Behavior?” on page 9-52
“Propagating Execution Contexts” on page 9-54
“Behavior of Switch Blocks” on page 9-55
“Displaying Execution Contexts” on page 9-55
“Disabling Conditional Execution Behavior” on page 9-56
“Displaying Execution Context Bars” on page 9-57

What Is Conditional Execution Behavior?

To speed up the simulation of a model, by default the Simulink software avoids
unnecessary execution of blocks connected to Switch, Multiport Switch, and of
conditionally executed blocks. This behavior is conditional execution (CE) behavior. You
can disable this behavior for all Switch and Multiport Switch blocks in a model, or for
specific conditional subsystems. See “Disabling Conditional Execution Behavior” on page
9-56.

The following model illustrates conditional execution behavior.

 Conditional Execution Behavior

9-53

The Scope block shows the simulation result:

This model:

• Has the Display > Signals & Ports > Execution Context Indicator menu option
enabled.

• The Pulse Generator block has the following parameter settings:

• Pulse type — Sample based
• Period — 100
• Pulse width — 50
• Phase delay — 50
• Sample Time — 0.01

• The Gain block’s sorted order (1:2) is second (2) in the enabled subsystem’s execution
context (1).

9 Create Conditional Subsystems

9-54

• The Enabled Subsystem block has the Propagate execution context across
subsystem boundary parameter enabled.

• In the enabled subsystem, the Out1 block has the following parameter settings:

• Initial output — []
• Output when disabled — held

The outputs of the Constant block and Gain blocks are computed only while the enabled
subsystem is enabled (for example, at time steps 0.5 to 1.0 and 1.0 to 1.5). This behavior
is necessary because the output of the Constant block is required and the input of the
Gain block changes only while the enabled subsystem is enabled. When CE behavior
is off, the outputs of the Constant and Gain blocks are computed at every time step,
regardless of whether the outputs are needed or change.

In this example, the enabled subsystem is regarded as defining an execution context
for the Constant and Gain blocks. Although the blocks reside graphically in the root
system of the model, the Simulink software invokes the block methods during simulation
as if the blocks reside in the enabled subsystem. This is indicated in the sorted order
labels displayed on the diagram for the Constant and Gain blocks. The notations list the
subsystem's (id = 1) as the execution context for the blocks even though the blocks exist
graphically at the root level (id = 0) of the model. The Gain block’s sorted order (1:2) is
second (2) in the enabled subsystem’s execution context (1).

Propagating Execution Contexts

In general, the Simulink software defines an execution context as a set of blocks to
be executed as a unit. At model compilation time, the Simulink software associates
an execution context with the model's root system and with each of its nonvirtual
subsystems. Initially, the execution context of the root system and each nonvirtual
subsystem is simply the blocks that it contains.

When compiling, each block in the model is examined to determine whether it meets the
following conditions:

• The block output is required only by a conditional subsystem or the block input
changes only as a result of the execution of a conditionally executed subsystem.

• The execution context of the subsystem can propagate across the subsystem
boundaries.

• The output of the block is not a test point (see “Test Points” on page 60-57).

 Conditional Execution Behavior

9-55

• The block is allowed to inherit its conditional execution context.

The Simulink software does not allow some built-in blocks, such as the
Delay block, ever to inherit their execution context. Also, S-Function
blocks can inherit their execution context only if they specify the
SS_OPTION_CAN_BE_CALLED_CONDITIONALLY option.

• The block is not a multirate block.
• The block sample time is set to inherited (-1).

If a block meets these conditions and execution context propagation is enabled for the
associated conditional subsystem (see “Disabling Conditional Execution Behavior” on
page 9-56), the Simulink software moves the block into the execution context of the
subsystem. This ensures that the block methods execute during the simulation loop only
when the corresponding conditional subsystem executes.

Note: Execution contexts are not propagated to blocks having a constant sample time.

Behavior of Switch Blocks

This behavior treats the input branches of a Switch or Multiport Switch block as
invisible, conditional subsystems, each of which has its own execution context. This CE
is enabled only when the control input of the switch selects the corresponding data input.
As a result, switch branches execute only when selected by switch control inputs.

Displaying Execution Contexts

To determine the execution context to which a block belongs, in the Simulink Editor,
select Display > Blocks > Sorted Execution Order. The sorted order index for each
block in the model is displayed in the upper-right corner of the block. The index has the
format s:b, where s specifies the subsystem to whose execution context the block belongs
and b is an index that indicates the block sorted order in the execution context of the
subsystem. For example, 0:0 indicates that the block is the first block in the execution
context of the root subsystem.

If a bus is connected to a block input, the block sorted order is displayed as s:B. For
example, 0:B indicates that the block belongs to the execution context of the root system
and has a bus connected to its input.

9 Create Conditional Subsystems

9-56

The sorted order index of conditional subsystems is expanded to include the system ID of
the subsystem itself in curly brackets as illustrated in the following figure.

In this example, the sorted order index of the enabled subsystem is 0:1{1}. The 0
indicates that the enabled subsystem resides in the root system of the model. The first
1 indicates that the enabled subsystem is the second block on the sorted list of the root
system (zero-based indexing). The 1 in curly brackets indicates that the system index
of the enabled subsystem itself is 1. Thus any block whose system index is 1 belongs to
the execution context of the enabled subsystem and hence executes when it does. For
example, the fact that the Constant block has an index of 1:0 indicates that it is the
first block on the sorted list of the enabled subsystem, even though it resides in the root
system.

Disabling Conditional Execution Behavior

To disable conditional execution behavior for all Switch and Multiport Switch blocks
in a model, turn off the Conditional input branch execution optimization on the
Optimization pane of the Configuration Parameters dialog box (see “Optimization Pane:
General”). To disable conditional execution behavior for a specific conditional subsystem,
clear the Propagate execution context across subsystem boundary check box on
the subsystem parameter dialog box.

Even if this option is enabled, the execution context of the subsystem cannot propagate
across its boundaries under the following circumstances:

• The subsystem is a triggered subsystem with a latched input port.
• The subsystem has one or more output ports that specify an initial condition other

than []. In this case, a block connected to the subsystem output cannot inherit the
execution context of the subsystem.

• You are linearizing the root-level block diagram using linearize or linmod in the
MATLAB Command Window or the Time Based Linearization block.

 Conditional Execution Behavior

9-57

Displaying Execution Context Bars

Simulink can optionally display bars next to the ports of subsystems across which
execution contexts cannot propagate. To display the bars, select Display > Signals &
Ports > Execution Context Indicator.

For example, it displays bars on subsystems from which no block can inherit its execution
context. In the following figure, the context bars appear next to the In1 and Out1 ports
of the Enabled Subsystem block.

9 Create Conditional Subsystems

9-58

Conditional Subsystem Output Initialization

In this section...

“Why Initialize Conditional Subsystem Output with Explicit Values?” on page 9-58
“Initialization Mode” on page 9-58
“When to Use Simplified Initialization” on page 9-59
“Simplified Mode Behavior and Requirements” on page 9-60
“When to Use Classic Initialization” on page 9-61

Why Initialize Conditional Subsystem Output with Explicit Values?

By default, Simulink uses values from the inputs to a conditional subsystem during
simulation. Alternatively, you can explicitly set the initial values, which can be useful
for:

• Specifying initial behaviors that meet your modeling goals, such as testing a model
• Setting initial values that reduce simulation time by reaching steady state faster
• Making the model behavior easier to understand without having to trace input signals

to determine the initial values

For details, see “Specify or Inherit Conditional Subsystem Initial Values” on page
9-62.

Initialization Mode

Initialization mode controls how Simulink handles the initialization values for
conditionally executed subsystems.

The initialization mode also specifies how Simulink handles the initial values for Merge
blocks, subsystem elapsed time, and Discrete-Time Integrator blocks. Usually the
main impact of the initialization mode for Merge blocks and Discrete-Time Integrator
blocks is in the context of those blocks being used with a conditional subsystem.

The default initialization mode is Simplified. Classic mode was the only way that
Simulink handled initial conditions prior to R2008b. Simplified mode uses enhanced
processing, which can improve consistency of simulation results compared to Classic

 Conditional Subsystem Output Initialization

9-59

mode. For examples of some of the issues that simplified mode addresses, see “Address
Classic Mode Issues by Using Simplified Mode” on page 9-67.

Note: When saving a new model configuration set as a Simulink.ConfigSet object,
the parameter Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection is set to Classic.

To help you choose which initialization mode to use, see:

• “When to Use Simplified Initialization” on page 9-59
• “Simplified Mode Behavior and Requirements” on page 9-60
• “When to Use Classic Initialization” on page 9-61

For details about setting initialization mode, see “Set Initialization Mode to Simplified or
Classic” on page 9-65.

When to Use Simplified Initialization

In general, using simplified initialization mode helps you to:

• Attain the same simulation results with the same inputs when using the same blocks
in a different model.

• Avoid unexpected changes to simulation results as you modify a model.

Use simplified initialization mode for models that contain one or more of the following
blocks:

• Conditional subsystem
• Merge block
• Discrete-Time Integrator block

Use simplified mode if your model uses features that require simplified initialization
mode, such as:

• Specify a structure to initialize a bus.
• Branch merged signals inside a conditional subsystem.

Determine whether using simplified mode meets your modeling requirements. For
details, see “Simplified Mode Behavior and Requirements” on page 9-60.

9 Create Conditional Subsystems

9-60

Simplified Mode Behavior and Requirements

Simplified mode affects the output of the conditional subsystem and the behavior of some
blocks. Also, simplified mode has some model configuration requirements.

Output

• The output signal of a conditional subsystem is stored in separate memory that is not
shared by with any other Outport block. The initialization behavior of the memory is
fully specified at the start of simulation.

• Conditional subsystem output ports can either explicitly specify an initial condition
value or inherit that value from the block within the subsystem that is connected to
the Outport block input port.

• Simplified mode always uses the initial value as both the initial and reset value for
output for a Discrete-Time Integrator block.

Outport Blocks

Simplified mode has the following behavior with Outport blocks:

• If the Source of initial output value parameter is set to Input signal, in
simplified mode Simulink assumes the Initial output value is derived from the input
signal. This can result in initialization behavior that is different from classic mode.
However, the initialization behavior in simplified mode is generally more robust.

• The Outport block can inherit the initial output value from a limited number of
blocks. If it inherits from outside this limited list of blocks, then the Outport block
uses the default initial value of the output data type. For details, see “Specify or
Inherit Conditional Subsystem Initial Values” on page 9-62.

You cannot use a Simulink.Signal object to specify the Initial output value.

Merge Blocks

• If a root Merge block has an empty matrix ([]) for it initial output value, Simulink
uses the default ground value of the output data type. A root Merge block is any
Merge block with an output port that does not connect to another Merge block.

• You cannot use single-input Merge blocks.

Discrete-Time Integrator Blocks

Discrete-Time Integrator block behaves differently in simplified mode than it does in
classic mode. The changes for simplified mode promote more robust and consistent model

 Conditional Subsystem Output Initialization

9-61

behavior. For details, see “Behavior in Simplified Initialization Mode” in the Discrete-
Time Integrator block reference documentation.

Library Blocks

Simulink creates a library assuming that classic mode is in effect. If you use a library
block that is affected by simplified mode in a model that uses simplified mode, then use
the Model Advisor to identify changes you need to make so that the library block works
with simplified mode.

When to Use Classic Initialization

Simplified initialization mode offers many benefits, compared to classic mode. Classic
mode was the default initialization mode for Simulink models created in R2013b or
before. You can continue to use classic mode on those models if:

• The model does not include any modeling elements affected by simplified mode.
• The behavior and requirements of simplified mode do not meet your modeling goals.

See “Simplified Mode Behavior and Requirements” on page 9-60.
• The work involved in converting to simplified mode is greater than the benefits of

simplified mode. See “Convert from Classic to Simplified Initialization Mode” on page
9-66.

9 Create Conditional Subsystems

9-62

Specify or Inherit Conditional Subsystem Initial Values

In this section...

“Inherit Initial Values from the Input Signal” on page 9-62
“Explicitly Specify an Initial Value” on page 9-63
“Setting Output Values When the Conditional Subsystem Is Disabled” on page 9-64

To initialize the input values of a conditional subsystem, initialize its Outport block,
using one of these approaches:

• Explicitly specify the initial values by listing them in the Block Parameters dialog box
of the Outport block.

• Inherit the initial values from the input signals.

Note: If the conditional subsystem is driving a Merge block in the same model, you do not
need to specify an initial condition for the subsystem’s Outport block.

Inherit Initial Values from the Input Signal

Valid sources for the Outport block to inherit its initial output value from are:

• Output port of another conditionally executed subsystem
• Merge block
• Function-Call model reference block
• Constant block (simplified initialization mode only)
• IC block (simplified initialization mode only)
• Stateflow chart

How you configure the Outport block for inheriting initial values depends on whether
the model uses simplified or classic initialization mode. For details about initialization
modes, see “Set Initialization Mode to Simplified or Classic” on page 9-65.

1 Set the Source of initial output value parameter to Dialog.
2 In the Initial output parameter, enter an empty matrix ([]).

 Specify or Inherit Conditional Subsystem Initial Values

9-63

3 Set the Output when disabled parameter to held.

Alternatively, if you use simplified initialization mode, you can inherit initial values by
setting the Source of initial output value to Input signal.

When you update the block diagram in simplified mode, an annotation next to the
Outport block appears, as shown in the figure below. If an initial condition source is not a
valid source for inheriting an initial value or if you choose not to inherit the initial value,
no annotation appears and the Outport block uses the default initial value of the output
data type. For more information, see “Initialize Signals and Discrete States” on page
60-48.

Explicitly Specify an Initial Value

1 Set the Source of initial output value parameter to Dialog.
2 In the Initial output parameter, enter the initial value. Valid values include an

empty matrix ([]) but not Inf or NaN.

When you select Dialog, you can also specify whether to hold or reset the output when
the conditional subsystem is disabled. For more information, see “Setting Output Values
When the Conditional Subsystem Is Disabled” on page 9-64.

9 Create Conditional Subsystems

9-64

Note: To explicitly specify an initial value in simplified initialization mode, do not specify
an empty matrix ([]) or a Simulink.Signal object.

Setting Output Values When the Conditional Subsystem Is Disabled

Although a conditional subsystem does not execute while it is disabled, the output signal
is still available to other blocks. While a conditional subsystem is disabled and you
have specified not to inherit initial conditions from an input signal, you can hold the
subsystem outputs at their previous values or reset them to their initial conditions.

Open the block dialog box for each Outport block. For the Output when disabled
parameter:

• Select held to maintain the most recent value.
• Select reset to revert to the initial condition. Set the Initial output to the initial

value of the output.

Note: If you are connecting the output of a conditionally executed subsystem to a Merge
block, set Output when disabled to held to ensure consistent simulation results.

If you are using simplified initialization mode, you must select held when connecting
a conditionally executed subsystem to a Merge block. For more information, see
“Underspecified initialization detection”.

Note: If an Outport in an enabled subsystem resets its output on disabling at a different
rate from the rate of execution of subsystem contents, both the disabled and execution
outputs write to the subsystem output. Hence, the subsystem might output unexpected
results.

 Set Initialization Mode to Simplified or Classic

9-65

Set Initialization Mode to Simplified or Classic

1 Determine which initialization mode to use.

In most situations, using simplified mode offers many benefits. To determine which
mode to use, see:

• “When to Use Simplified Initialization” on page 9-59
• “Simplified Mode Behavior and Requirements” on page 9-60
• “When to Use Classic Initialization” on page 9-61

2 Set the initialization mode using the Configuration Parameters > Diagnostics
> Data Validity > Underspecified initialization detection parameter. Set the
parameter to either Classic (default) or Simplified.

3 If you use simplified mode, you might need to modify your model to change the
initialization mode for an existing model that is in classic mode to use simplified
mode. For details, see “Convert from Classic to Simplified Initialization Mode” on
page 9-66.

9 Create Conditional Subsystems

9-66

Convert from Classic to Simplified Initialization Mode

If you switch the initialization mode from classic to simplified mode, you can encounter
several issues that you need to address, one-by-one. For most models, the following
approach helps you to address conversion issues more efficiently.

1 Save the existing model and simulation results for the model.

Because you might need to make several changes to your model during the
conversion process, it is helpful to have the original model for reference and for
comparing simulation results.

2 Set the Configuration Parameters > Diagnostics > Connectivity > Mux
blocks used to create bus signals diagnostic to error.

3 Simulate the model and address any warnings.
4 In the Model Advisor, in the Simulink checks section, run the checks in the folder

“Migrating to Simplified Initialization Mode Overview”.
5 Address the issues that Model Advisor identifies.
6 Simulate the model to make sure that there are no errors.
7 Rerun the Model Advisor checks in the folder “Migrating to Simplified Initialization

Mode Overview” check to confirm that the modified model addresses the issues
related to initialization.

For examples of models that have been converted from classic initialization mode to
simplified initialization mode, see “Address Classic Mode Issues by Using Simplified
Mode” on page 9-67.

 Address Classic Mode Issues by Using Simplified Mode

9-67

Address Classic Mode Issues by Using Simplified Mode

In this section...

“Classic Mode Issues” on page 9-67
“Identity Transformation Can Change Model Behavior” on page 9-68
“Discrete-Time Integrator or S-Function Block Can Produce Inconsistent Output” on
page 9-70
“Sorted Order Can Affect Merge Block Output” on page 9-72

Classic Mode Issues

Using classic initialization mode can result in one or more of the following issues. You
can address these issues by using simplified mode. The description of each issue includes
an example of the behavior in classic mode, the behavior when you use simplified mode,
and a summary of the changes you need to make to use simplified mode.

• “Identity Transformation Can Change Model Behavior” on page 9-68.

Conditional subsystems that include identical subsystems can display different initial
values before the first execution if both of these apply:

• The model uses classic initialization mode.
• One or more of the identical subsystems outputs to an identity transformation

block.
• “Discrete-Time Integrator or S-Function Block Can Produce Inconsistent Output” on

page 9-70

Conditional subsystems that use classic initialization mode and whose output
connects to a Discrete-Time Integrator block or S-Function block can produce
inconsistent output.

• “Sorted Order Can Affect Merge Block Output” on page 9-72

The sorted order of conditional subsystems that used classic mode initialization, when
connected to a Merge block, can affect the output of that Merge block. A change in
block execution order can produce unexpected results.

9 Create Conditional Subsystems

9-68

For additional information about the tasks involved to convert a model from classic to
simplified mode, see “Convert from Classic to Simplified Initialization Mode” on page
9-66.

Identity Transformation Can Change Model Behavior

Conditional subsystems that include identical subsystems can display different initial
values before the first execution if both of these apply:

• The model uses classic initialization mode.
• One or more of the identical subsystems outputs to an identity transformation block.

An identity transformation block is a block that does not change the value of its input
signal. Examples of identify transform blocks are a Signal Conversion block or a Gain
block with a value of 1.

In the ex_identity_transform_cl model, subsystems A and B are identical, but B outputs
to a Gain block, which in turn outputs to an Outport block.

 Address Classic Mode Issues by Using Simplified Mode

9-69

When you simulate the model, the initial value for A (the top signal in the Scope block) is
2, but the initial value of B is 0, even though the subsystems are identical.

If you update the model to use simplified initialization mode (see
ex_identity_transform_simpl), the model looks the same. The steps required to convert
ex_identity_transform_cl to ex_identity_transform_simpl are:

1 Set Configuration Parameters > Diagnostics > Connectivity > Mux blocks
used to create bus signals to error.

2 Set Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection to Simplified.

9 Create Conditional Subsystems

9-70

3 For the Outport blocks in subsystems A and B, set the Source of initial output
value parameter to Input signal.

You can also get the same behavior by setting the Source of initial output value
parameter to Dialog and the Initial output parameter to 3.

When you simulate the updated model, the connection of an identity transformation does
not change the result. The output is consistent in both cases.

Discrete-Time Integrator or S-Function Block Can Produce Inconsistent
Output

Conditional subsystems that use classic initialization mode and whose output connects to
a Discrete-Time Integrator block or S-Function block can produce inconsistent output.

In the ex_discrete_time_cl model, the enabled subsystem includes two Constant blocks
and outputs to a Discrete-Time Integrator block. The enabled subsystem outputs to two
Display blocks.

 Address Classic Mode Issues by Using Simplified Mode

9-71

When you simulate the model, the two display blocks show different values.

The Constant1 block, which is connected to the Discrete-Time Integrator block, executes,
even though the conditional subsystem is disabled. The top Display block shows a value

9 Create Conditional Subsystems

9-72

of 2, which is the value of the Constant1 block. The Constant2 block does not execute, so
the bottom Display block shows a value of 0.

If you update the model to use simplified initialization mode (see
ex_discrete_time_simpl), the model looks the same. The updated model corrects the
inconsistent output issue by using simplified mode. The steps required to convert
ex_discrete_time_cl to ex_discrete_time_simpl are:

1 Set Configuration Parameters > Diagnostics > Connectivity > Mux blocks
used to create bus signals to error.

2 Set Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection to Simplified.

3 For the Outport blocks Out1 and Out2, set the Source of initial output value
parameter to Input signal. This setting explicitly inherits the initial value, which
in this case is 2.

You can also get the same behavior by setting the Source of initial output value
parameter to Dialog and the Initial output parameter to 2.

When you simulate the updated model, the Display blocks show the same output. The
output value is 2 because both Outport blocks inherit their initial value.

Sorted Order Can Affect Merge Block Output

The sorted order of conditional subsystems that used classic mode initialization, when
connected to a Merge block, can affect the output of that Merge block. A change in block

 Address Classic Mode Issues by Using Simplified Mode

9-73

execution order can produce unexpected results. The behavior depends on how you set
the Output When Disabled parameter.

Example Using Default Setting for the Output When Disabled Parameter

The ex_basic_merge_sorted_order_1_cl model has two identical enabled subsystems
(Enable A and Enable B) that connect to a Merge block. When you simulate the model,
the red numbers show the sorted execution order of the blocks.

When you simulate the model, the Scope block looks like this:

9 Create Conditional Subsystems

9-74

The ex_basic_merge_sorted_order_2_cl model is the same as ex_merge_sorted_1_cl,
except that the block execution order is the reverse of the default execution order. To
change the execution order:

1 Open the Properties dialog box for the Enable A subsystem and set the Priority
parameter to 2.

2 Set the Priority of the Enable B subsystem to 1.

When you simulate the model using the different execution order, the Scope block looks
like this:

 Address Classic Mode Issues by Using Simplified Mode

9-75

The change in sorted order produces different results from identical conditional
subsystems.

To update the models to use simplified initialization mode (see
ex_basic_merge_sorted_order_1_simpl and ex_basic_merge_sorted_order_2_simpl):

1 Set Configuration Parameters > Diagnostics > Connectivity > Mux blocks
used to create bus signals to error.

2 Set Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection to Simplified.

The Initial Output parameter of the Merge block is an empty matrix, [], by default.
Hence, the initial output value is set to the default initial value for this data type, which
is 0. For information on default initial value, see “Initializing Signal Values” on page
60-16. When you simulate each simplified mode model, both models produce the same
results.

9 Create Conditional Subsystems

9-76

Example Using Output When Disabled Parameter Set to Reset

The ex_merge_sorted_1_cl model has two enabled subsystems (Enable A and Enable B)
that connect to a Merge block. When you simulate the model, the red numbers show the
sorted execution order of the blocks.

 Address Classic Mode Issues by Using Simplified Mode

9-77

When you simulate the model, the Scope block looks like this:

The ex_merge_sorted_2_cl model is the same as ex_merge_sorted_1_cl, except that
the block execution order is the reverse of the default execution order. To change the
execution order:

1 Open the Properties dialog box for the Enable A subsystem and set the Priority
parameter to 2.

2 Set the Priority of the Enable B subsystem to 1.

9 Create Conditional Subsystems

9-78

When you simulate the model using the different execution order, the Scope block looks
like this:

The change in sorted order produces different results from identical conditional
subsystems.

To update the models to use simplified initialization mode (see ex_merge_sorted_1_simpl
and ex_merge_sorted_2_simpl):

1 Set Configuration Parameters > Diagnostics > Connectivity > Mux blocks
used to create bus signals to error.

 Address Classic Mode Issues by Using Simplified Mode

9-79

2 Set Configuration Parameters > Diagnostics > Data Validity >
Underspecified initialization detection to Simplified.

3 For the Outport blocks in Enable A and Enable B, set the Output when disabled
parameter to held. Simplified mode does not support reset for outports of
conditional subsystems driving Merge blocks.

When you simulate each simplified mode model, both models produce the same results.

9 Create Conditional Subsystems

9-80

Simulink Functions and Function Callers

In this section...

“What Are Functions in Simulink?” on page 9-80
“What Are Function Callers in Simulink?” on page 9-81
“Reusable Logic with Functions” on page 9-81
“Shared Resources with Functions” on page 9-82
“Diagnostic Messaging with Functions” on page 9-83
“How a Function Caller Identifies a Function” on page 9-84
“Reasons to Use a Simulink Function Block” on page 9-84
“When Not to Use a Simulink Function Block” on page 9-85
“Calling a Function from Multiple Sites” on page 9-85
“Call Simulink Function from Function Caller Block” on page 9-88
“Call Simulink Function from MATLAB Function Block” on page 9-90
“Using Referenced Models with Simulink Functions and Function Callers” on page
9-92
“Simulink Functions in the Context of Reusable Functions” on page 9-99

What Are Functions in Simulink?

A function in Simulink is a computational unit that calculates a set of outputs
when provided with a set of inputs. The function header uses a notation similar to
programming languages such as MATLAB and C++. You can implement Simulink
functions in several ways:

• Simulink Function block — Function logic defined using Simulink blocks within a
Simulink Function block. See Simulink Function block reference.

• Stateflow graphical function — Exported from a Stateflow chart and defined by a
flow chart.

• Stateflow MATLAB function — Exported from a Stateflow chart and defined with
the MATLAB language.

 Simulink Functions and Function Callers

9-81

What Are Function Callers in Simulink?

A function caller invokes the execution of a Simulink function. You can call a function
from anywhere in a model or chart hierarchy.

• Function Caller block — In a Simulink model, calls a function defined in Simulink
or exported from Stateflow. See Function Caller block reference.

• Stateflow chart transition — In a Stateflow chart, calls functions defined in
Simulink or exported from Stateflow.

• MATLAB Function block — In a Simulink model, calls a function from a MATLAB
language script.

Reusable Logic with Functions

Use functions when you need reusable logic across a model hierarchy. Consider an
example where a Simulink Function with reusable logic is in a Stateflow chart.

You can move the reusable logic from inside the Stateflow chart to a Simulink Function
block. The logic is then reusable by function callers in Simulink subsystems (Subsystem
and Model blocks) and in Stateflow charts at any level in the model hierarchy.

9 Create Conditional Subsystems

9-82

The result is added flexibility for structuring your model for reuse.

Note: Input and output argument names (x2, y2) for calling a function from a Stateflow
chart do not have to match the argument names in the function prototype (u, y) of a
Simulink Function block.

Shared Resources with Functions

Use functions when you model a shared resource, such as a printer. The model
slexPrinterExample uses Simulink Function blocks as a common interface between
multiple computers and a single Stateflow chart that models a printer process.

 Simulink Functions and Function Callers

9-83

Diagnostic Messaging with Functions

Use functions when you define a diagnostic service where callers pass an error code. The
service tracks error codes for all errors that occur. One way to implement this service
is to use an indexed Data Store Memory block. A diagnostic monitoring system can
then periodically check for the occurrence of specific errors and modify system behavior
accordingly.

9 Create Conditional Subsystems

9-84

How a Function Caller Identifies a Function

The function interface uses MATLAB syntax to define the name of a function and
its input and output arguments. The model hierarchy can contain only one function
definition with the identified function name. Simulink verifies that:

• The arguments in the Function prototype parameter for a Function Caller block
matches the arguments specified in the function. For example, a function with two
input arguments and one output argument appears as:

y = MyFunction(u1, u2)

• The data type, dimension, and complexity of the arguments must agree. For a
Function Caller block, you can set the Input argument specifications and Output
argument specifications parameters, but usually you do not need to specify these
parameters manually. Simulink derives the specification from the function.

The only case where you must specify the argument parameters is when the Function
Caller block cannot find the function in the model or in any child model it references.
This situation can happen when the Functions Caller block and called function are in
separate models that referenced by a common parent model. See “Using Referenced
Models with Simulink Functions and Function Callers” on page 9-92.

Reasons to Use a Simulink Function Block

Function-Call Subsystem blocks with direct signal connections for triggering provide
better signal traceability than Simulink Function blocks, but Simulink Function blocks
have other advantages.

• Eliminate routing of signal lines. The Function Caller block allows you to execute
functions defined with a Simulink Function block without a connecting signal line. In
addition, functions and their callers can reside in different models or subsystems. This
approach eliminates signal routing problems through a hierarchal model structure
and allows greater reuse of model components.

• Use multiple callers to the same function. Multiple Function Caller blocks or
Stateflow charts can call the same function. If the function contains state (e.g., a Unit
Delay block), the state is shared between the different callers.

• Separate function interface from function definition. Functions separate their
interface (input and output arguments) from their implementation. Therefore, you
can define a function using a Simulink Function block, an exported graphical function

 Simulink Functions and Function Callers

9-85

from Stateflow, or an exported MATLAB function from Stateflow. The caller does not
need to know how or where the function was implemented.

When Not to Use a Simulink Function Block

Simulink Function blocks allow you to implement graphically functions graphically
hierarchy, but there are times when using a Simulink Function block is not the best
solution.

For example, when modeling a PID controller or a digital filter and you have to model the
equations defining the dynamic system. Use an S-Function, Subsystem, or Model block to
implement systems of equations, but do not use a Simulink Function block, because these
conditions can occur:

• Persistence of state between function calls. If a Simulink Function block
contains any blocks with state (for example, Unit Delay or Memory), then their state
values are persistent between calls to the function. If there are multiple calls to
that function, the state values are also persistent between the calls originating from
different callers. For more on this topic, see “Calling a Function from Multiple Sites”
on page 9-85.

• Inheriting continuous sample time. A Simulink Function block cannot inherit
a continuous sample time. Therefore, do not use this block in systems that use
continuous sample times to model continuous system equations.

Calling a Function from Multiple Sites

If you call a function from multiple sites, all call sites share the state of the function. For
example, suppose that you have a Stateflow chart with two calls and two Function Caller
blocks with calls to the same function.

9 Create Conditional Subsystems

9-86

A function defined with a Simulink Function block is a counter that increments by 1 each
time it is called with an input of 1.

The Unit Delay block has state. Therefore, the value stored in its state is persistent
between calls from the two Function caller blocks and the Stateflow chart. Conceptually,
you can think of this function being implemented in MATLAB as:

 Simulink Functions and Function Callers

9-87

function y = counter(u)

persistent state;

if isempty(state)

 state = 0;

end

y = state;

state = state + u;

Simulink initializes the state value of the Unit Delay block at the beginning of a
simulation. After that, each time the function is called, the state value is updated.

For this example, the output observed in Scope1 increments by 4 at each time step.
Scope2, Scope3, and Scope4 show a similar behavior. The only difference is a shift in the
observed signal due to the execution sequence of the function calls.

For multiple callers to share a function or call two different functions with a shared state,
each caller must have the same sample time. This condition ensures data integrity and
consistency in real-time code.

9 Create Conditional Subsystems

9-88

Call Simulink Function from Function Caller Block

This example shows how to connect a Function Caller block to a Simulink Function block.
The function multiplies a value from the caller by 2, and then sends the calculated value
back to the caller.

Set up Function Caller Block

Set up a Function Caller block to send data through an input argument to a Simulink
Function block. Receive data back from the function through an output argument.

1 Add a Function Caller block from the User-Defined Functions library into your
model.

2 In the Function Caller dialog box, in the Function prototype box, enter y =
timestwo(u). This function prototype creates an input port u and output port y on
the Function Caller block.

3 Add a Sine Wave block to the input and a Scope block to the output.

Set up Simulink Function Block

Set up a Simulink Function block to receive data through an input argument from a
Function Caller block. Multiply the input argument by 2, and then pass the calculated
value back through an output argument.

1 In the subsystem, add a Simulink Function block from the User-Defined Functions
library into your model.

2 Enter y = timestwo(u) as the function prototype. This function interface sets the
function name to timestwo, the input argument to u, and the output argument to y.

 Simulink Functions and Function Callers

9-89

3 To open the subsystem, double-click the block.
4 Add a Gain block and set the Gain parameter to 2.

Simulate the Model

After you create a function using a Simulink Function block and a call to that function
using a Function Caller block, you can simulate the model.

1 Return to the top level of the model.

2 Simulated the model.
3 To view the signal results, double-click the Scope block. The input sine wave with an

amplitude of 2 is doubled.

9 Create Conditional Subsystems

9-90

Call Simulink Function from MATLAB Function Block

A line of code in a MATLAB Function block can call a Simulink function (see “What
Are Functions in Simulink?” on page 9-80). In this example, a MATLAB Function
block sends data through an input argument, u1, to a Simulink Function block. The
function multiplies the data values by 2, and then sends the calculated values back to the
MATLAB Function block through the output argument, y1.

Set Up MATLAB Function Block

Set up a MATLAB Function block to send data through an input argument to a Simulink
Function block. Receive data back from the function through an output argument.

1 Add a MATLAB Function block to your model.

 Simulink Functions and Function Callers

9-91

2 Double-click the block, which opens the MATLAB editor. Enter the function call y1
= timestwo(u1).

Note: The argument names for the function you define in the MATLAB function
block do not have to match the argument names for the function that you define
in the Simulink Function block. For a Function Caller block that calls a Simulink
Function block, argument names must match.

3 Add a Constant block for an input signal and a Scope block to view the output signal.

Set up Simulink Function Block

Set up a Simulink Function block to receive data through an input argument from a
Function Caller block. Multiply the input argument by 2, and then pass the calculated
value back through an output argument.

1 In the subsystem, add a Simulink Function block from the User-Defined Functions
library into your model.

2 Enter y = timestwo(u) as the function prototype. This function interface sets the
function name to timestwo, the input argument to u, and the output argument to y.

9 Create Conditional Subsystems

9-92

3 To open the subsystem, double-click the block.
4 Add a Gain block and set the Gain parameter to 2.

Using Referenced Models with Simulink Functions and Function Callers

You can place Simulink Function and Function Caller blocks in a referenced model, but
doing so requires some special considerations:

• The referenced model must follow export-function model rules. See “Export-Function
Models” on page 9-4.

• In some cases, you need to explicitly define the argument data types for a Function
Caller block.

These examples show four relationships between Function Caller blocks, Simulink
Function blocks, and referenced models.

Include a Simulink Function Block in Referenced Model

In this example, the parent model contains a Function Caller block, and the referenced
model,Model_B,contains a Simulink Function block. The referenced model must follow
export-function model rules.

 Simulink Functions and Function Callers

9-93

Since the Function Caller block is a parent of the function, it can determine the
argument data types of the function. In the Function Caller block, you do not need to
define the Input argument specification and Output argument specification
parameters.

Model_B contains a Simulink Function block that defines a function for multiplying
the input by 2. Because this model contains only a Simulink Function block, it satisfies
export-function model rules. See “Export-Function Models” on page 9-4.

9 Create Conditional Subsystems

9-94

For Model_B, set the Configuration Parameters for the solver to satisfy export-function
model rules:

• Type: Fixed-step.
• Solver: discrete (no continuous states).

Function Caller Block in Referenced Model

In this example, the parent model contains a Simulink Function block, and a referenced
model, Model_A, contains a Function Caller block. The referenced model must follow
export-function model rules.

For the parent model, you can set the solver type to Variable-step or Fixed-step. If
you select Fixed-step, set the Fixed-step size to auto or specify a size, for example,
0.001.

For the Function-Call Generator block, you need to specify the Sample time parameter.
If you selected Fixed-step for the solver type, specify a value that is a multiple of the
fixed-step size, for example, 0.001. If you select Variable-step, you can specify any
value.

 Simulink Functions and Function Callers

9-95

Model_A contains a Function Caller block inside a Function-Call Subsystem block to
satisfy export-function model rules. Because it contains only a Function-Call System
block with In and Out port blocks, it satisfies export-function models rules. See “Export-
Function Models” on page 9-4.

9 Create Conditional Subsystems

9-96

For Model_A, set the configuration parameters for the solver to satisfy export-function
model rules:

• Type: Fixed-step.
• Solver: discrete (no continuous states).
• Fixed-step size: Enter auto or specify a size to match the Function-Call Generator

Sample time parameter, for example, 0.001.

Since the Function Caller block cannot find the function in Model_A or in a model it
references, you must specify the Function Caller block argument parameters:

• Input argument specification: Specify to match the Simulink Function block input
argument data types, for example, double(1.0).

Specify the argument specification for a Simulink Function block with the Data type
parameter in the Input Argument and Output Argument blocks.

• Output argument specification: Specify to match the Simulink Function block
output argument data types, for example, double(1.0).

 Simulink Functions and Function Callers

9-97

Function and Function Caller in Separate Models

In this example, the parent model contains two referenced models. Model_A is a
referenced model with a Function Caller block. Model_B is a referenced model with a
Simulink Function block. Since both models are referenced from the same parent model,
they both must follow export function rules.

For Model_A, specify parameters as you do for the referenced model in “Function Caller
Block in Referenced Model” on page 9-94. For Model_B, specify parameters as you do
for the referenced model in “Include a Simulink Function Block in Referenced Model” on
page 9-92.

Function and Function Caller in the Same Model

In this example, the parent model contains one referenced model. Model_C is a
referenced model with both a Function Caller block and a Simulink Function block. Even
though function and function caller are in the same referenced model, the referenced
model must follow export-function rules.

9 Create Conditional Subsystems

9-98

Specify parameters for Model_C as you do for the referenced Model_A in “Function
Caller Block in Referenced Model” on page 9-94.

 Simulink Functions and Function Callers

9-99

Simulink Functions in the Context of Reusable Functions

A deciding factor for using a Simulink Function block or a subsystem block has to do with
shared state between function calls. A Simulink Function block has shared state while a
subsystem block, even if specified as a reusable function, does not.

• When one Simulink Function block has multiple callers, code is always generated for
one function. If the Simulink Function block contains blocks with state (for example,
Delay or Memory), the state is persistent and shared between function callers. In this
case, the order of calls is an important consideration.

• When a Subsystem block has multiple instances and is configured as a reusable
function, code is usually generated for one function as an optimization. If the

9 Create Conditional Subsystems

9-100

subsystem block contains blocks with state, the subsystem is considered nonreusable
and code is generated for multiple instances as separate functions. State is not shared
between the instances.

 Diagnostics Using a Client-Server Architecture

9-101

Diagnostics Using a Client-Server Architecture

In this section...

“Client-Server Architecture” on page 9-101
“Modifier Pattern” on page 9-103
“Observer Pattern” on page 9-105

Client-Server Architecture

You can use Simulink Function blocks and Function Caller blocks to model client-server
architectures. Uses for this architecture include memory storage and diagnostics.

As an example, create a model of a simple distributed system consisting of multiple
control applications (clients), each of which can report diagnostics throughout execution.
Since client-server architectures are typically constructed in layers, add a service layer to
model the diagnostic interface.

9 Create Conditional Subsystems

9-102

The services (servers), modeled using Simulink Function blocks, are in a separate model.
Add the service model to your system model as a referenced model.

 Diagnostics Using a Client-Server Architecture

9-103

The control applications (clients) interact with the diagnostic interface using Function
Caller blocks.

Modifier Pattern

Application 1 reports a diagnostic condition by invoking the reportDiagnostic
interface within the service layer. The application calls this function while passing in a
diagnostic identifier.

9 Create Conditional Subsystems

9-104

The interval test determines when to create a diagnostic identifier.

The implementation of the function (Simulink Function 1) tracks the passed-in identifier
by transferring the value to a graphical output of the function. A graphical output is a
server-side signal that is not part of the server interface but facilitates communication
between service functions through function arguments. The value of graphical outputs
are held between function invocations.

 Diagnostics Using a Client-Server Architecture

9-105

The reportDiagnostic function is an example of a modifier pattern. This pattern helps
to communication of data from the caller to the function and later computations based on
that data.

Observer Pattern

Application 2 invokes the inspectDiagnostic interface within the service layer to
inspect whether diagnostics were reported.

The implementation of the function (Simulink Function) uses a graphical input (id)
to observe the last reported diagnostic and transfer this value as an output argument
(identifier) to the caller. A graphical input is a server-side signal that is not part of
the server interface.

9 Create Conditional Subsystems

9-106

The inspectDiagnostic function is an example of an observer pattern. This pattern
helps to communication of data from the function to the caller.

See Also
“Simulink Functions and Function Callers” on page 9-80 | Function Caller |
Simulink Function

10

Modeling Variant Systems

• “What Are Variants and When to Use Them” on page 10-2
• “Switch Between Variant Choices” on page 10-8
• “Workflow for Implementing Variants” on page 10-14
• “Create, Export, and Reuse Variant Controls” on page 10-15
• “Define, Configure, and Activate Variants” on page 10-17
• “Set Up Model Variants” on page 10-25
• “Convert Subsystem Blocks to Variant Subsystem Blocks” on page 10-31
• “Set and Open Active Variants” on page 10-32
• “Variant Management” on page 10-35
• “Add and Validate Variant Configurations” on page 10-37
• “Import Control Variables to Variant Configuration” on page 10-41
• “Define Constraints and Export Variant Configurations” on page 10-45

10 Modeling Variant Systems

10-2

What Are Variants and When to Use Them

In this section...

“What Are Variants?” on page 10-2
“Advantages of Using Variants” on page 10-3
“When to Use Variants” on page 10-4
“Options for Representing Variants in Simulink” on page 10-5
“Mapping Inports and Outports of Variant Choices” on page 10-6

What Are Variants?

In Simulink, you can create models that are based on a modular design platform that
comprises a fixed common structure with a finite set of variable components. The
variability helps you develop a single, fixed master design with variable components.
The approach helps you meet diverse customer requirements that are governed by
application, cost, or operational considerations.

Variants are the variable components of modular design platforms. They help you specify
multiple implementations of a model in a single, unified block diagram.

Consider the case where you want to simulate a model that represents an automobile
with several configurations. These configurations, although similar in several aspects,
can differ in properties such as fuel consumption, engine size, or emission standard.
Instead of designing multiple models that together represent all possible configurations,
you can use variants to model only the varying configurations. This approach keeps the
common components fixed.

This model contains two variant choices inside a single Variant Subsystem block.

 What Are Variants and When to Use Them

10-3

Advantages of Using Variants

Using variants in Model-Based Design provides several advantages.

• Variants help you develop modular design platforms that facilitate reuse and
customization. This approach improves workflow speed by reducing complexity.

• If a model component has several alternative configurations, you can efficiently
explore these varying alternatives without altering the fixed, unvarying components.

• You can use different variant configurations for simulation or code generation from
the same model

• You can simulate every design possibility in a combinatorial fashion for a given test
suite.

• If you are working with large-scale designs, you can distribute the process of testing
these designs on a cluster of multicore computers. Alternatively, you can map
different test suites to design alternatives for efficiently managing design-specific
tests.

10 Modeling Variant Systems

10-4

When to Use Variants

Variants help you specify multiple implementations of a model in a single, unified block
diagram. Here are three scenarios where you can use variants.

• Models that represent multiple simulation, code generation, or testing workflows.

• Models that contain multiple design choices at the component level.

 What Are Variants and When to Use Them

10-5

Subsystem blocks that represent variant choices can have inports and outports that
differ in number from the inports and outports in the parent Variant Subsystem
block. See “Mapping Inports and Outports of Variant Choices” on page 10-6

• Models that are mostly similar but have slight variations, such as in cases where you
want to separate a test model from a debugging model.

The test model on the left has a fixed design. On the right, the same test model
includes a variant that is introduced for debugging purposes.

Simulink selects the active variant during update diagram time and during code compile
time.

Options for Representing Variants in Simulink

You can represent one or more variants as variant choices inside one of the following
blocks.

10 Modeling Variant Systems

10-6

 Variant Subsystem block Model Variant block

Variant choice
representation

Subsystem or Model block Only Model block

Allows choice hierarchy Yes Yes
Mismatched number of
inports and outports among
variant choices

Simulink disables
inactive ports

Requires manual resolution
of disconnected signal lines

Option to specify default
variant

Yes No

Supports control ports No Yes
Can be saved as standalone
file

No Yes

You can create variants at several levels inside your model hierarchy.

Mapping Inports and Outports of Variant Choices

A Variant Subsystem is a container of variants choices that are represented as
Subsystem or Model blocks. The inputs that the Variant Subsystem block receives from
upstream models components map to the inports and outports of the variant choices.

Subsystem and Model blocks that represent variant choices can have inports and
outports that differ in number from the inports and outports in the parent Variant
Subsystem block. However, the following conditions must be satisfied.

• The names of the inports of a variant choice are a subset of the inport names used by
the parent variant subsystem.

• The names of the outports of a variant choice are a subset of the outport names used
by the parent variant subsystem.

During simulation, Simulink disables the inactive ports in a Variant Subsystem block. If
you are specifying variant choices in a Model Variant block, you have to manually resolve
any disconnected signal lines when you switch between choices.

Related Examples
• “Define, Configure, and Activate Variants” on page 10-17

 What Are Variants and When to Use Them

10-7

• “Add and Validate Variant Configurations” on page 10-37
• “Create, Export, and Reuse Variant Controls” on page 10-15
• “Set and Open Active Variants” on page 10-32

More About
• “Switch Between Variant Choices” on page 10-8
• “Workflow for Implementing Variants” on page 10-14

10 Modeling Variant Systems

10-8

Switch Between Variant Choices

In this section...

“Construct Conditions That Control Variant Selection” on page 10-8
“Operators and Operands in Variant Condition Expressions” on page 10-9
“Select Variant Control Specification” on page 10-10
“Convert Variant Control Variables into Simulink.Parameter Objects” on page 10-11
“Default Variant Specification” on page 10-13

Construct Conditions That Control Variant Selection

You can switch between variant choices by constructing conditional expressions called
variant controls for each variant choice represented in a Variant Subsystem or Model
Variant block. Variant controls determine which variant choice is active, and changing
the value of a variant control, switches the active variant choice.

For a given Variant Subsystem or Model Variant block, only one variant control can
evaluate to true at a time. When a variant control evaluates to true, Simulink activates
the variant choice that corresponds to that variant control.

A variant control is a Boolean expression that activates a specific variant choice when it
evaluates to true.

Note: You can specify variant controls in the MATLAB workspace or a data dictionary.

You can specify variant controls as Simulink.Variant objects or as expressions that
contain one or more of these operands and operators.

Operands

• Variable names that resolve to MATLAB variables orSimulink.Parameter objects
with integer or enumerated data type and scalar literal values

• Variable names that resolve to Simulink.Variant objects
• Scalar literal values that represent integer or enumerated values

 Switch Between Variant Choices

10-9

Operators

• Parentheses for grouping
• Arithmetic, relational, logical, or bit-wise operators

When you compile the model, Simulink determines that a variant is active if its variant
control evaluates to true.

Operators and Operands in Variant Condition Expressions

Simulink evaluates condition expressions within variant controls to determine the active
variant. You can include the following operands in a condition expression:

• Scalar variables
• Simulink.Parameter objects that are not structures and that have data types other

than Simulink.Bus objects
• Enumerated types
• Parentheses for grouping

Variant condition expressions can contain MATLAB operators, provided the expression
evaluates to a Boolean value. In these examples, A and B are expressions that evaluate to
an integer, and x is a constant integer literal.

MATLAB Expressions That Support Generation
of Preprocessor Conditionals

Equivalent Expression in C Preprocessor
Conditional

Arithmetic
• A + B

• +A

• A + B

• A

• A - B

• -A

• A - B

• -A

A * B A * B

idivide(A,B) A / B

If the value of the second operand (B) is 0,
the behavior is undefined.

rem(A,B) A % B

10 Modeling Variant Systems

10-10

MATLAB Expressions That Support Generation
of Preprocessor Conditionals

Equivalent Expression in C Preprocessor
Conditional

If the value of the second operand (B) is 0,
the behavior is undefined.

Relational
A == B A == B

A ~= B A != B

A < B A < B

A > B A > B

A <= B A <= B

A >= B A >= B

Logical
~A !A, where A is not an integer
A && B A && B

A || B A || B

Bit-wise (A and B cannot both be constant integer literals)
bitand(A,B) A & B

bitor(A,B) A | B

bitxor(A,B) A ^ B

bitcmp(A) ~A

bitshift(A,x) A << x

bitshift(A,-x) A >> x

Select Variant Control Specification

Specification Purpose Example

Scalar variable Rapid prototyping A == 1

Simulink.Parameter

object
Generate preprocessor
conditionals for code
generation

mode == 1, where mode is
a Simulink.Parameter
object

 Switch Between Variant Choices

10-11

Specification Purpose Example

Enumerated type Improved code readability
because condition values are
represented as meaningful
names instead of integers

LEVEL ==

Level.Advanced

You can convert MATLAB variables used in variant control
expressions into Simulink.Parameter object using the function
Simulink.VariantManager.findVariantControlVars.

Convert Variant Control Variables into Simulink.Parameter Objects

MATLAB variables allow you to rapidly prototype variant control expressions when you
are building your model. However, if you want to generate preprocessor conditionals for
code generation, convert these variables into Simulink.Parameter objects.

This example shows how to convert MATLAB control variables of double data type
into Simulink.Parameter objects and set the custom storage class for these objects to
ImportedDefine.

1 Specify the model in which you want to replace MATLAB variant control variables
into Simulink.Parameter objects.

model = 'sldemo_variant_subsystems';

open_system(model);

2 Get the variables that are referenced in variant control expressions.

vars = Simulink.VariantManager.findVariantControlVars(model)

vars =

4x1 struct array with fields:

 Name

 Value

 Exists

 Source

 SourceType

3 Create an external header file for specifying variant control values so that the
variable definitions are imported when the code runs.

headerFileName = [model '_importedDefines.h'];

10 Modeling Variant Systems

10-12

headerPreamble = strrep(upper(headerFileName),'.','_');

fid = fopen(headerFileName,'w+');

fidErr = (fid == -1);

if (fidErr)

 fprintf('There was an error creating header file %s: \n', headerFileName);

else

 fprintf('+++ Creating header file ''%s'' with variant control variable definitions.\n\n', headerFileName);

 fprintf(fid, '#ifndef %s\n', headerPreamble);

 fprintf(fid, '#define %s\n', headerPreamble);

end

4 Loop through all the MATLAB variables to convert them into
Simulink.Parameter objects.

count = 0;

for countVars = 1:length(vars)

 var = vars(countVars).Name;

 val = vars(countVars).Value;

 if isa(val, 'Simulink.Parameter')

 % Do nothing

 continue;

 end

 count = count+1;

 % Create and configure Simulink.Parameter objects corresponding to the

 % control variable names. Specify the custom storage class as

 % ImportedDefine so that the values are specified

 % by an external header file.

 newVal = Simulink.Parameter(val);

 newVal.DataType = 'int16';

 newVal.CoderInfo.StorageClass = 'Custom';

 newVal.CoderInfo.CustomStorageClass = 'ImportedDefine';

 assigninGlobalScope(model, var, newVal);

 if ~fidErr

 fprintf(fid, '#endif\n');

 fclose(fid);

 end

end

 Switch Between Variant Choices

10-13

Default Variant Specification

You can specify one variant choice as the default for the model. If Simulink finds that a
variant is not active when the model is compiled, it uses the default choice.

Related Examples
• “Define, Configure, and Activate Variants” on page 10-17
• “Add and Validate Variant Configurations” on page 10-37
• “Create, Export, and Reuse Variant Controls” on page 10-15
• “Set and Open Active Variants” on page 10-32

More About
• “Workflow for Implementing Variants” on page 10-14

10 Modeling Variant Systems

10-14

Workflow for Implementing Variants

1 Create subsystems or models that represent variant choices in your model.
2 Define variant control variables that determine the condition under which a variant

choice is active.
3 Set the default variant to use when the control condition does not activate a variant

choice.
4 Activate a variant by changing the control variables to match the active variant

condition.
5 Simulate the model using the active variant.
6 Modify the control variables to activate another variant, and simulate again.
7 If you have Embedded Coder, generate code for the active variant or for all variants.
8 For variants defined in the base workspace, export the control variables to a MAT-

file.

Related Examples
• “Define, Configure, and Activate Variants” on page 10-17
• “Add and Validate Variant Configurations” on page 10-37
• “Create, Export, and Reuse Variant Controls” on page 10-15
• “Generate Code for Variant Subsystems”
• “Export Workspace Variables” on page 11-57

 Create, Export, and Reuse Variant Controls

10-15

Create, Export, and Reuse Variant Controls

In this section...

“Create and Export Variant Controls” on page 10-15
“Reuse Variant Conditions” on page 10-15
“Enumerated Types as Variant Controls” on page 10-16

Create and Export Variant Controls

Create control variables, define variant conditions, and export control variables.

1 Create control variables in the base workspace or a data dictionary.

FUEL=2;

EMIS=1;

2 Use the control variables to define the control condition using a Simulink.Variant
object.

LinearContoller=Simulink.Variant('FUEL==2 && EMIS==1');

Note: Before each simulation, define Simulink.Variant objects representing the
variant conditions.

3 If you saved the variables in the base workspace, select the control variables to
export. Right-click and click Save As to specify the name of a MAT-file.

Reuse Variant Conditions

If you want to reuse common variant conditions across models, specify variant control
conditions using Simulink.Variant objects.

Reuse Simulink.Variant objects to dynamically change the model hierarchy to
reflect variant conditions by changing the values of the control variables that define the
condition expression.

The example models AutoMRVar and AutoSSVar show the use of Simulink.Variant
objects to define variant control conditions.

10 Modeling Variant Systems

10-16

Enumerated Types as Variant Controls

Use enumerated types to give meaningful names to integers used as variant control
values.

1 In the MATLAB Editor, define the classes that map enumerated values to
meaningful names.

classdef sldemo_mrv_CONTROLLER_TYPE < Simulink.IntEnumType

 enumeration

 NONLINEAR (1)

 SECOND_ORDER (2)

 end

end

classdef sldemo_mrv_BUILD_TYPE < Simulink.IntEnumType

 enumeration

 PROTOTYPE (1)

 PRODUCTION (2)

 end

end

2 Define Simulink.Variant objects for these classes in the base workspace.

VE_NONLINEAR_CONTROLLER = Simulink.Variant...

('E_CTRL==sldemo_mrv_CONTROLLER_TYPE.NONLINEAR')

VE_SECOND_ORDER_CONTROLLER =Simulink.Variant...

('E_CTRL==sldemo_mrv_CONTROLLER_TYPE.SECOND_ORDER')

VE_PROTOTYPE =Simulink.Variant...

('E_CURRENT_BUILD==sldemo_mrv_BUILD_TYPE.PROTOTYPE')

VE_PRODUCTION =Simulink.Variant...

('E_CURRENT_BUILD==sldemo_mrv_BUILD_TYPE.PRODUCTION')

Using enumerated types simplifies the generated code because it contains the names
of the values rather than integers.

Related Examples
• “Generate Preprocessor Conditionals for Variant Systems”
• “Add and Validate Variant Configurations” on page 10-37

More About
• “Select Variant Control Specification” on page 10-10

 Define, Configure, and Activate Variants

10-17

Define, Configure, and Activate Variants

In this section...

“Represent Variant Choices” on page 10-17
“Include Simulink Model as Variant Choice” on page 10-21
“Configure Variant Activation Conditions” on page 10-23

Represent Variant Choices

Variant choices are two or more configurations of a component in your model. This
example shows how to represent variant choices inside a Variant Subsystem block in
your model. For other ways to represent design variants, see “Options for Representing
Variants in Simulink” on page 10-5.

1 Add a Variant Subsystem block to your model and name it.

This block serves as the container for the variant choices.

2 Double-click the Variant Subsystem block to open it. Add the same number of inports
and outports to match the inputs into and outputs from this block.

10 Modeling Variant Systems

10-18

Note: You can add only Inport, Outport, Subsystem, and Model blocks inside a
Variant Subsystem block.

3 Right-click the Variant Subsystem block and select Block Parameters
(Subsystem).

4
In the block parameters dialog box, click the button for each subsystem variant
choice you want to add.

Simulink creates empty Subsystem blocks inside the Variant Subsystem block. The
new blocks have the same number of inports and outports as the containing Variant
Subsystem block. (If your variant choices have different numbers of inports and
outports, see “Mapping Inports and Outports of Variant Choices” on page 10-6.)

 Define, Configure, and Activate Variants

10-19

5 Open each Subsystem block and create the model that represents a variant choice.

10 Modeling Variant Systems

10-20

6 When you are prototyping variants, you can create empty Subsystem blocks with
no inputs or outputs inside the Variant Subsystem block. The empty subsystem
recreates the situation in which that subsystem is inactive without the need for
completely modeling the variant. For an empty variant choice, either specify a
variant activation condition or comment out the variant condition by placing a %
symbol before the condition.

If this variant choice is active during simulation, Simulink ignores the empty variant
choice.

 Define, Configure, and Activate Variants

10-21

Include Simulink Model as Variant Choice

You can include a Simulink model as a variant choice inside a Variant Subsystem block.

1 Create a model that you want to include as a variant choice. Make sure that it has
the same number of inports and outports as the containing Variant Subsystem block.

Note: If your model has different numbers of inports and outports, see “Mapping
Inports and Outports of Variant Choices” on page 10-6.

10 Modeling Variant Systems

10-22

2 In your model, right-click the Variant Subsystem block that is the container for
variant choices and select Block Parameters (Subsystem).

3
In the block parameters dialog box, click the button to add a model variant
choice.

Simulink creates an unresolved model reference block in the Variant Subsystem
block.

4 Double-click the unresolved model block to open the block parameters dialog. Enter
the names of the model you want to use as a model variant choice in the Model
name box and click OK.

 Define, Configure, and Activate Variants

10-23

Configure Variant Activation Conditions

You can specify the conditions for activating a variant choice using variant controls. You
can also specify one variant choice as the default.

1 At the MATLAB command prompt, specify the control variables that create an
activation condition when combined.

mode = 3;

version = 2;

2 Right-click the Variant Subsystem block that is the container for variant choices in
your model and select Block Parameters (Subsystem).

3 In the block parameters dialog box, in the Variant control column, select
(default) next to one of the choices.

10 Modeling Variant Systems

10-24

Simulink verifies that only one variant is active for simulation. When the control
condition does not activate a variant, Simulink uses the default variant for
simulation.

4 Enter the activation condition for each of the other choices. If you are using an
empty variant choice, you can either enter an activation condition or comment out an
existing activation condition by prefixing it with a % symbol.

5 Click Apply.

Related Examples
• “Add and Validate Variant Configurations” on page 10-37

More About
• “Switch Between Variant Choices” on page 10-8
• “Select Variant Control Specification” on page 10-10

 Set Up Model Variants

10-25

Set Up Model Variants

In this section...

“Configure the Model Variants Block” on page 10-26
“Disable and Enable Model Variants” on page 10-28
“Parameterize Model Variants” on page 10-29
“Additional Examples” on page 10-29

Open the example model AutoMRVar. You can also open the model from the MATLAB
prompt:

addpath([docroot '/toolbox/simulink/ug/examples/variants/mdlref/']);

open('AutoMRVar');

• The symbol appears in the lower-left corner of the block to indicate that it uses
variants.

• The name of the variant that was active the last time you saved the model appears on
the block.

• When you change the active variant, the variant block refreshes. The name changes
to reflect the current active variant.

• When you open the example model, the load function loads a MAT-file that populates
the base workspace with the variables and objects used by the model.

10 Modeling Variant Systems

10-26

The example shows the use of variants for the following cases:

• The automobile can use a diesel or a gasoline engine.
• Each engine must meet the European or American (USA) emission standard.

AutoMRVar implements the automobile application using the Model Variants block
named Engine. The Engine block specifies four referenced models. Each referenced
model represents one permutation of engine fuel and emission standards. The table
shows the variant choices.

Model Name Variant Control Condition (read only)

GasolUSA GU FUEL==1 && EMIS==1

GasolEuro GE FUEL==1 && EMIS==2

DieselUSA DU FUEL==2 && EMIS==1

DieselEuro DE FUEL==2 && EMIS==2

Note: You can use condition expressions directly in the Variant control field. You do
not need to create Simulink.Variant objects.

Configure the Model Variants Block

You can configure a Model block and specify your variant choices.

1 Create a model.
2 From the Ports & Subsystems library, add a Model block to the model.
3 Right-click the Model block and select Block Parameters (ModelReference) from

the context menu.

 Set Up Model Variants

10-27

4 Under Variant choices, specify the model choices in the Model name column. To
specify a protected model, use the extension .slxp or .mdlp. For more information,
see “Protected Model” on page 8-71.

Note: You cannot specify a model as the default variant if that model is a variant
choice in a Model block. Instead, you can add that model as a variant choice in a
Subsystem block, and then specify that model as the default variant.

5 For each model choice, specify the variant control in the Variant control column.
Use a Boolean condition expression or a Simulink.Variant object representing a
Boolean condition expression.

Populate the Variant control column for each choice. You cannot comment out (%)
variant control values for the Model block. However, for Variant Subsystem blocks,
you can comment out variant choices.

6 To edit the condition that determines the active variant choice, click the Create/

Edit selected variant button . In the dialog box, enter the condition and click
OK.

10 Modeling Variant Systems

10-28

7 If you want, specify the model arguments and the Simulation mode. All simulation
modes work with model variants. For more information, see “Parameterize Model
Variants” on page 10-29 and “Referenced Model Simulation Modes” on page 8-29.

8

If you want to add more variant choices, click the Add a new variant button
.

9 After you have specified all you referenced models and added all your variant
choices, click OK.

For next steps, see “Set and Open Active Variants” on page 10-32.

Disable and Enable Model Variants

You can disable model variants without losing your variant settings. After you enable
variants, they remain enabled until you explicitly disable them.

To disable variants from a Model block:

 Set Up Model Variants

10-29

1 Right-click the block and select Block Parameters (ModelReference) to open the
block parameters dialog box.

2 Click Disable Variants.

Disabling variants:

• Hides and ignores the content of the Variant choices section of the dialog box
• Retains the active variant as the model name
• Ignores subsequent changes to variant control variables and other models, other than

the current model

To enable variants later, click Enable Variants. The Model block selects an active
variant according to the current base workspace variables and conditions.

Parameterize Model Variants

You can apply a parameter to a variant control. Parameter values are the same as for a
referenced model. For more information, see “Parameterize Model References” on page
8-59.

1 In the block parameters dialog box, under Variant choices, select the row for the
variant control that you want to parameterize.

2 In the Model argument values (for this instance) text box, specify the
parameter.

3 Click Apply.

Additional Examples

For additional examples of model reference variants, in the Help browser, select
Simulink > Examples > Modeling Features > Model Reference > Model
Reference Variants.

The example sldemo_mdlref_variants shows a model variant.

Related Examples
• “Define, Configure, and Activate Variants” on page 10-17
• “Add and Validate Variant Configurations” on page 10-37

10 Modeling Variant Systems

10-30

• “Create, Export, and Reuse Variant Controls” on page 10-15
• “Set and Open Active Variants” on page 10-32

More About
• “Switch Between Variant Choices” on page 10-8
• “Workflow for Implementing Variants” on page 10-14

 Convert Subsystem Blocks to Variant Subsystem Blocks

10-31

Convert Subsystem Blocks to Variant Subsystem Blocks

You can convert a Subsystem block or Configurable Subsystems block to a Variant
Subsystem block.

Right-click the block to and select Subsystem & Model Reference > Convert
Subsystem to > Variant Subsystem.

During conversion, Simulink performs the following operations:

• Replaces the Subsystem block with a Variant Subsystem block, preserving ports and
connections.

• Adds the original subsystem as a variant choice in the Variant Subsystem block.
• Overrides the Variant Subsystem block to use the subsystem that was originally the

active choice.
• Preserves links to libraries. For linked subsystems, Simulink adds the linked

subsystem as a variant choice.

Simulink also preserves the subsystem block masks, and it copies the masks to the
variant choice.

See Also
Configurable Subsystem

10 Modeling Variant Systems

10-32

Set and Open Active Variants

In this section...

“Set Default Variant” on page 10-32
“Set and Open Active Variant” on page 10-32
“Ignore Variant Choices” on page 10-33
“Open Active Variant” on page 10-33

Set Default Variant

When the control variable values do not activate a variant, Simulink uses the default
variant for simulation.

You cannot specify a model as the default variant if that model is a variant choice in a
Model block. Instead, you can add that model as a variant choice in a Subsystem block,
and then specify that model as the default variant.

1 Right-click the Variant Subsystem block and select Block Parameters
(Subsystem).

2 In the dialog box, select a variant and change the Variant control property to
(default). Then click OK.

Set and Open Active Variant

1 Specify values for the control variables in the MATLAB workspace.

FUEL=2;

EMIS=1;

2 Create a Simulink.Variant object in the MATLAB workspace that uses the
control variables in an expression.

DU = Simulink.Variant('FUEL==2 && EMIS==2');

3 In your model, right-click the Variant Subsystem block and select Block
Parameters (Subsystem).

4 In the dialog box, select a variant to activate, change the Variant control property,
and then click OK. For example, change it to DU.

 Set and Open Active Variants

10-33

5 To override the active variant with another variant, right-click the active variant
block in the Simulink Editor, and select Variant > Override using. Then select
your variant choice.

Ignore Variant Choices

To ignore variant control names when selecting active variants, empty or comment out
variant control names. Comments start with %.

Open Active Variant

When you open a model, variant blocks display the name of the variant that was active
the last time that you saved your model. Use the Variant menu to open the active
variant. Right-click the block and select Variant > Open. Then select the active variant.

Use this command to find the current active variant block.

get_param(gcb,'ActiveVariant')

Use this command to find the path to the current active variant block.

10 Modeling Variant Systems

10-34

get_param(gcb,'ActiveVariantBlock')

Note: The ActiveVariantBlock parameter is supported only for the Variant
Subsystem block.

 Variant Management

10-35

Variant Management

In this section...

“Variant Manager” on page 10-35
“Considerations in Model Hierarchy Validation” on page 10-36

Variant Manager

Using the Variant Manager, you can define and manage variant configurations in the
following ways.

• Explore, visualize, and manipulate variant hierarchy.
• Define, validate, and visualize variant configurations.
• Define constraints models must satisfy.
• Specify the default variant.
• Associate variant configuration data object of type

Simulink.VariantConfigurationData with models.
• Define variant configurations, constraints, and export them as a variant configuration

data objects.
• Validate variant configurations without updating the model.

The Variant Manager enables you to specify the following information.

• Variant configuration data: The variant configuration object stores a collection of
variant configurations, constraints, and the default configuration.

• Configuration: The configuration defines a set of variant control variables and
values, referenced model configurations, and constraints that must be satisfied.
Constraints are expressions that evaluate to a Boolean value.

• Control Variables: Specify name-value pairs defined as structures having fields
Name and Value. Simulink verifies the values of the control variables when validating
the configuration. Variant control variables determine the active variant.

• Submodel Configurations: Specify variant configurations for models referenced by
model reference blocks.

10 Modeling Variant Systems

10-36

Considerations in Model Hierarchy Validation

• For a model or referenced model that has a variant configuration data object with a
default configuration defined, the control variables from the default configuration are
loaded to the base workspace and are used for validation.

• For referenced models, if the top model specifies the variant configuration, that
specific variant configuration is used to validate the referenced models.

• For a model containing referenced models, you can have multiple variant
configurations that use common set of control variables and referenced model
configurations. In such cases, all the variant configurations must have the same
values for control variables and referenced model configurations.

See Also
“Variant Manager Overview”

Related Examples
• “Add and Validate Variant Configurations” on page 10-37

 Add and Validate Variant Configurations

10-37

Add and Validate Variant Configurations

This example shows how to add a variant configuration to existing variant subsystems,
and then validate the new variant configuration.

1 Open the model slexVariantManagementExample, which contains the existing
variant configurations.

2 Select View > Variant Manager.

10 Modeling Variant Systems

10-38

3
In the Variant Manager, in the Configurations tab, click and enter
LinInterExp in the Name column.

4 In the Control Variables tab, define the following control variables for the new
configuration:

Name Value

Ctrl 1
PlantLocation 2
SimType 2

5 To validate the model using the LinInterExp variant configuration, select
LinInterExp from the Validate dropdown menu.

 Add and Validate Variant Configurations

10-39

Simulink validates the new configuration against the model and returns the
validation results.

6 You can set LinInterExp as the default variant configuration. In the
Configurations tab, select LinInterExp and click the Set/Clear default active

configuration button .
7 To export configuration data as an object, specify a name for the object in the Name

field and press Enter.

A variant configuration data object is created in the base workspace, and the model
is associated with it.

Related Examples
• “Import Control Variables to Variant Configuration” on page 10-41

10 Modeling Variant Systems

10-40

• “Define Constraints and Export Variant Configurations” on page 10-45

More About
• “Select Variant Control Specification” on page 10-10

 Import Control Variables to Variant Configuration

10-41

Import Control Variables to Variant Configuration

This example shows how to import control variables to a variant configuration and
associate a configuration with a referenced submodel.

1 Open slexVariantManagementExample, which contains the variant configurations.

2 Double-click the blue block at the top to associate variant configuration data with the
model.

3 Select View > Variant Manager.

10 Modeling Variant Systems

10-42

Variant configuration data vcd is associated with the model.
4 In the Variant Manager, in the Configurations tab, selectLinExterHighFid.
5 In the Control Variables tab, click the Import control variables from base

workspace button .

The variables are imported.

 Import Control Variables to Variant Configuration

10-43

6 Open the referenced model slexVariantManagementExternalPlantMdlRef to
associate a variant configuration.

7 Double-click the blue block at the top to associate variant configuration data with the
referenced model.

10 Modeling Variant Systems

10-44

8 In the Variant Manager, in the Submodel Configurations tab, select
slexVariantManagementExternalPlantMdlRef and set the LowFid
configuration.

9 To validate the model using the LinExterHighFid variant configuration, select
LinExterHighFid from the Validate dropdown menu.

Simulink validates the new configuration against the model and returns the
validation results.

 Define Constraints and Export Variant Configurations

10-45

Define Constraints and Export Variant Configurations

This example shows how to define constraints that must evaluate to true for a variant
configuration to become active.

1 Open slexVariantManagementExample.

2 Select View > Variant Manager.

10 Modeling Variant Systems

10-46

3
In the Variant Manager, in the Constraints tab, click .

4 Enter LinNotExtern as the Name and (Ctrl~=1) || (PlantLocation ~=1) as
the Condition for the constraint.

This constraint activates variants that do not use the Linear Controller and External
Plant Controller configurations.

5
To validate the constraint, click the Refresh and validate button .

 Define Constraints and Export Variant Configurations

10-47

Related Examples
• “Add and Validate Variant Configurations” on page 10-37
• “Import Control Variables to Variant Configuration” on page 10-41

More About
• “Create, Export, and Reuse Variant Controls” on page 10-15
• “Select Variant Control Specification” on page 10-10

11

Exploring, Searching, and Browsing
Models

• “Model Explorer Overview” on page 11-2
• “Model Explorer: Model Hierarchy Pane” on page 11-9
• “Model Explorer: Contents Pane” on page 11-19
• “Control Model Explorer Contents Using Views” on page 11-25
• “Organize Data Display in Model Explorer” on page 11-33
• “Filter Objects in the Model Explorer” on page 11-42
• “Workspace Variables in Model Explorer” on page 11-47
• “Search Using Model Explorer” on page 11-60
• “Model Explorer: Property Dialog Pane” on page 11-66
• “Locate Simulink Objects Using Find” on page 11-69
• “Locate Stateflow Objects Using Find” on page 11-71
• “Model Browser” on page 11-73
• “Model Dependency Viewer” on page 11-76
• “View Linked Requirements in Models and Blocks” on page 11-81
• “Trace Connections Using Interface Display” on page 11-89

11 Exploring, Searching, and Browsing Models

11-2

Model Explorer Overview

In this section...

“What You Can Do Using the Model Explorer” on page 11-2
“Opening the Model Explorer” on page 11-2
“Model Explorer Components” on page 11-3
“The Main Toolbar” on page 11-4
“Adding Objects” on page 11-4
“Customizing the Model Explorer Interface” on page 11-5
“Basic Steps for Using the Model Explorer” on page 11-6
“Focusing on Specific Elements of a Model or Chart” on page 11-7

What You Can Do Using the Model Explorer

Use the Model Explorer to view, modify, and add elements of Simulink models, Stateflow
charts, and workspace variables. The Model Explorer lets you focus on specific elements
(for example, blocks, signals, and properties) without navigating through the model or
chart.

Opening the Model Explorer

To open the Model Explorer, use one of these approaches:

s

• From the Simulink Editor View menu, select Model Explorer or select the Model

Explorer icon from the toolbar.
• In an open model in the Simulink Editor, right-click a block and from the context

menu, select Explore.
• In an open Stateflow chart, right-click in the drawing area and from the context

menu, select Explore.
• At the MATLAB command line, enter daexplr.

 Model Explorer Overview

11-3

Model Explorer Components

By default, the Model Explorer opens with three panes (Model Hierarchy, Contents,
and Dialog), a main toolbar, and a search bar.

Search bar Main toolbar

Model Hierarchy pane Contents pane Dialog pane

Component Purpose Documentation

Main toolbar Execute Model Explorer
commands

“The Main Toolbar” on page
11-4

11 Exploring, Searching, and Browsing Models

11-4

Component Purpose Documentation

Search bar Perform a search within the
context of the selected node in
Model Hierarchy pane.

“Search Using Model Explorer”
on page 11-60

Model Hierarchy
pane

Navigate and explore model,
chart, and workspace nodes

“Model Explorer: Model
Hierarchy Pane” on page
11-9

Contents pane Display and modify model or
chart objects

“Model Explorer: Contents Pane”
on page 11-19

Dialog pane View and change the details of
object properties

“Model Explorer: Property
Dialog Pane” on page 11-66

The Main Toolbar

The main toolbar at the top of the Model Explorer provides buttons you click to perform
Model Explorer operations. Most of the toolbar buttons perform actions that you can also
perform using Model Explorer menu items.

The toolbar buttons in the following table perform actions that you cannot perform using
Model Explorer menus:

Button Usage

Bring the MATLAB window to the front.

Display the Simulink Library Browser.

If you have Simulink Verification and Validation installed, you can use additional toolbar
buttons relating to requirements links.

Adding Objects

You can use the Model Explorer to add many kinds of objects to a model, chart, or
workspace. The types of objects that you can add depend on what node you select in the

 Model Explorer Overview

11-5

Model Hierarchy pane. Use toolbar buttons or the Add menu to add objects. The Add
menu lists the kinds of objects you can add.

Customizing the Model Explorer Interface

You can customize the Model Explorer interface in several ways. This section describes
how to show or hide the main toolbar and how to control the font size.

Other ways you can customize the Model Explorer interface include:

• “Marking Nonexistent Properties” on page 11-41
• “Show and Hide the Search Bar” on page 11-61
• “Showing and Hiding the Dialog Pane” on page 11-66

11 Exploring, Searching, and Browsing Models

11-6

Showing and Hiding the Main Toolbar

To show or hide the main toolbar, in the Model Explorer select View > Toolbars >
Main Toolbar.

Controlling the Font Size

You can change the font size in the Model Explorer panes:

• To increase the font size, press the Ctrl + Plus Sign (+).

Alternatively, from the Model Explorer View menu, select Increase Font Size.
• To decrease the font size, press the Ctrl + Minus Sign (-).

Alternatively, from the Model Explorer View menu, select Decrease Font Size.

Note The changes remain in effect for the Model Explorer and in the Simulink dialog
boxes across Simulink sessions.

Basic Steps for Using the Model Explorer

Use the Model Explorer to perform a wide range of activities relating to viewing and
changing model and chart elements. You can perform activities in any order, using panes
in the order you choose. Your actions in one pane often affect other panes.

For example, if you want to edit properties of objects in a model, you might use a general
workflow such as:

1 Open a model.
2 Open the Model Explorer.
3 Select the model in the Model Hierarchy pane, specifying whether the Model

Explorer displays only the current system or the whole system hierarchy of the
current system

4 Control what model information the Contents pane displays, and how it displays
that information, by using a combination of:

• The View > Column View option to control which property columns to display
• The View > Row Filter option to control which types of objects to display

 Model Explorer Overview

11-7

• Techniques to directly manipulate column headings
5 Identify model elements with specific values, using the search bar.
6 Edit the values for model elements, in either the Contents pane or the Dialog pane.

To edit workspace variables, you can use the Variable Editor.

Focusing on Specific Elements of a Model or Chart

As you explore a model or chart, you might want to narrow the contents that you see
in the Model Explorer to particular elements of a model or chart. You can use several
different techniques. The following table summarizes techniques for controlling what
content the Model Explorer displays and how the contents appear.

Technique When to Use Documentation

Show partial or whole model
hierarchy contents

To control how much of
a hierarchical model to
display

“Displaying Partial or Whole
Model Hierarchy Contents”
on page 11-12

Use the Row Filter option To focus on, or hide, a
specific kind of a model
object, such as signals

“Using the Row Filter
Option” on page 11-42

Search To find objects that might
not be currently displayed

“Search Using Model
Explorer” on page 11-60

Filter contents To focus on specific objects
in the Contents pane,
based on a search string

“Filtering Contents” on page
11-44

Once you have the general set of data that you are interested in, you can use the
following techniques to organize the display of contents.

Technique When to Use Documentation

Sort To quickly organize data for
a property in ascending or
descending order

“Sorting Column Contents”
on page 11-33

Group by property column To logically group data
based on values for a
property

“How to Group by a Property
Column” on page 11-35

11 Exploring, Searching, and Browsing Models

11-8

Technique When to Use Documentation

Use column views To display a named subset
of property columns to apply
to different kinds of nodes
in the Model Hierarchy
pane

“Control Model Explorer
Contents Using Views” on
page 11-25

Add, delete, or rearrange
property table columns

To customize property
columns

“Organize Data Display in
Model Explorer” on page
11-33

 Model Explorer: Model Hierarchy Pane

11-9

Model Explorer: Model Hierarchy Pane

In this section...

“What You Can Do with the Model Hierarchy Pane” on page 11-9
“Simulink Root” on page 11-10
“Base Workspace” on page 11-10
“Configuration Preferences” on page 11-11
“Model Nodes” on page 11-11
“Displaying Partial or Whole Model Hierarchy Contents” on page 11-12
“Displaying Linked Library Subsystems” on page 11-13
“Displaying Masked Subsystems” on page 11-13
“Linked Library and Masked Subsystems” on page 11-14
“Displaying Node Contents” on page 11-14
“Navigating to the Block Diagram” on page 11-14
“Working with Configuration Sets” on page 11-14
“Expanding Model References” on page 11-14
“Cutting, Copying, and Pasting Objects” on page 11-17

What You Can Do with the Model Hierarchy Pane

The Model Hierarchy pane displays a tree-structured view of the Simulink model and
Stateflow chart hierarchy. Use the Model Hierarchy pane to navigate to the part of the
model and chart hierarchy that you want to explore.

11 Exploring, Searching, and Browsing Models

11-10

Simulink Root

The first node in the hierarchy represents the Simulink root. Expand the root node to
display nodes representing the MATLAB workspace, Simulink models, and Stateflow
charts that are in the current session.

Base Workspace

This node represents the MATLAB workspace. The MATLAB workspace is the base
workspace for Simulink models and Stateflow charts. Variables defined in this workspace
are visible to all open models and charts.

For information about exporting and importing workspace variables, see “Export
Workspace Variables” on page 11-57 and “Importing Workspace Variables” on page
11-59.

 Model Explorer: Model Hierarchy Pane

11-11

Configuration Preferences

To display a Configuration Preferences node in the expanded Simulink Root node, enable
the View > Show Configuration Preferences option. Selecting this node displays
the preferred configuration for new models (see “Manage a Configuration Set” on page
12-11). You can change the preferred configuration by editing the displayed settings
and using the Model Configuration Preferences dialog box to save the settings (see
“Model Configuration Preferences” on page 12-27).

Model Nodes

Expanding a model or chart node in the Model Hierarchy pane displays nodes
representing the following elements, as applicable for the models and charts you have
open.

Node Description

Model workspace For information about how to use the Model Explorer to work
with model workspace variables, see the following sections:

• “Finding Variables That Are Used by a Model or Block” on
page 11-47

• “Finding Blocks That Use a Specific Variable” on page
11-50

• “Editing Workspace Variables” on page 11-53
• “Export Workspace Variables” on page 11-57
• “Importing Workspace Variables” on page 11-59
• “Model Workspaces” on page 4-84

Configuration sets For information about adding, deleting, saving, and moving
configuration sets, see “Manage a Configuration Set” on page
12-11.

Top-level subsystems Expand a node representing a subsystem to display underlying
subsystems, if any.

Model blocks Expand model blocks to show contents of referenced models (see
“Expanding Model References” on page 11-14).

Stateflow charts • Expand a node representing a Stateflow chart to display the
top-level states of the chart.

11 Exploring, Searching, and Browsing Models

11-12

Node Description

• Expand a node representing a state to display its substates.

Displaying Partial or Whole Model Hierarchy Contents

By default, the Model Explorer displays objects for the system that you select in the
Model Hierarchy pane. It does not display data for child systems. You can override
that default, so that the Model Explorer displays objects for the whole hierarchy of the
currently selected system. To toggle between displaying only the current system and
displaying the whole system hierarchy of the current system, use one of these techniques:

• Select View > Show Current System and Below.
•

Click the Show Current System and Below button () at the top of the
Contents pane.

When you select the Show Current System and Below option:

• The Model Hierarchy pane highlights in pale blue the current system and its child
systems.

• After the path in the Contents of field, the text (and below) appears.
• The appearance of the Show Current System and Below button at the top of the

Contents pane and in the View menu changes.
• The status bar indicates the scope of the displayed objects when you hover over the

Show Current System and Below button.

Loading very large models for the current system and below can be slow. To stop the
loading process at any time, either click the Show Current System and Below button
or click another node in the tree hierarchy.

 Model Explorer: Model Hierarchy Pane

11-13

If you show the current system and below, you might want to change the view to better
reflect the displayed system contents. For details about views, see “Control Model
Explorer Contents Using Views” on page 11-25.

The setting for the Show Current System and Below option is persistent across
Simulink sessions.

Displaying Linked Library Subsystems

By default, the Model Explorer does not display the contents of linked library subsystems
in the Model Hierarchy pane. To display the contents of linked library subsystems, use
one of these approaches:

• At the top of the Model Hierarchy pane, click the Show/Hide Library Links
button ().

• From the View menu, select Show Library Links.

Library-linked subsystems are visible in the Contents pane, regardless of how you
configure the Model Hierarchy pane.

Note: Search does not find elements in linked library or masked subsystems that are not
displayed in the Model Hierarchy pane.

Displaying Masked Subsystems

By default, the Model Explorer does not display the contents of masked subsystems in
the Model Hierarchy pane. To display the contents of masked subsystems, use one of
these approaches:

• At the top of the Model Hierarchy pane, click the Show/Hide Masked
Subsystems button () .

• From the View menu, select Show Masked Subsystems.

Masked subsystems are visible in the Contents pane, regardless of how you configure
the Model Hierarchy pane.

11 Exploring, Searching, and Browsing Models

11-14

Linked Library and Masked Subsystems

For subsystems that are both library-linked and masked, how you set the linked library
subsystems and masked subsystems options affects which subsystems appear in the
Model Hierarchy pane, as described in the following table.

Settings Subsystems Displayed in the Model Hierarchy
Pane

Show Library Links

Hide Masked Subsystems

Only library-linked, unmasked subsystems

Hide Library Links

Show Masked Subsystems

Only masked subsystems that are not
library-linked subsystems

Show Library Links

Show Masked Subsystems

All library-linked or masked subsystems

Displaying Node Contents

Select the object in the Model Hierarchy pane whose contents you want to display in
the Contents pane.

Navigating to the Block Diagram

To open a graphical object (for example, a model, subsystem, or chart) in an editor
window, right-click the object in the Model Hierarchy pane. From the context menu,
select Open.

Working with Configuration Sets

See “Manage a Configuration Set” on page 12-11 for information about using the
Model Hierarchy pane to perform tasks such as adding, deleting, saving, and moving
configuration sets.

Expanding Model References

To browse a model that includes Model blocks, you can expand the Model Hierarchy
pane nodes of the Model blocks. For example, the sldemo_mdlref_depgraph

 Model Explorer: Model Hierarchy Pane

11-15

model includes Model blocks that reference other models. If you open the
sldemo_mdlref_depgraph model and expand that model node in the Model
Hierarchy pane, you see that the model contains several Model blocks, including
heat2cost.

To browse a model referenced by a Model block:

1 Right-click the referenced model node in the Model Hierarchy pane.
2 From the context menu, choose Open Model.

• The referenced model opens.
• The Model Hierarchy pane indicates that you can expand the Model block node.
• The Model Hierarchy pane displays a separate expandable node for the

referenced model (read-only).
• The Contents pane displays objects corresponding to the Model block node (read-

only).

For example, if you right-click the heat2cost Model block node and select the Open
Model option, the Contents pane displays the objects corresponding to the heat2cost
Model block. You can expand the heat2cost node.

11 Exploring, Searching, and Browsing Models

11-16

You can browse the contents of the referenced model, but you cannot edit the model
objects that are underneath the Model block.

Editing the Referenced Model

To edit the referenced model, expand the referenced model node in the Model
Hierarchy pane. For example, expand the sldemo_mdlref_heat2cost node:

 Model Explorer: Model Hierarchy Pane

11-17

You can now edit the properties of object in the referenced model.

For information about referenced models, see “Model Reference”.

Cutting, Copying, and Pasting Objects

To cut, copy, and paste workspace objects from one workspace into another workspace:

1 In the Contents pane, right-click on the workspace object you want to cut or copy.
2 From the context menu, select Cut or Copy.

• You can also cut a workspace object by selecting in the Contents pane Edit >
Cut or by clicking the Cut button ().

• You can also copy a workspace object by selecting Edit > Copy or by clicking the
Copy button ().

3 If you want to paste the workspace object that you cut or copied, in the Model
Hierarchy pane, right-click the workspace into which you want to paste the object,
and select Paste.

11 Exploring, Searching, and Browsing Models

11-18

• You can also paste the object by selecting Edit > Paste or by clicking the Paste
button ().

You can also perform cut, copy, and paste operations by selecting an object and
performing drag and drop operations.

 Model Explorer: Contents Pane

11-19

Model Explorer: Contents Pane

In this section...

“Contents Pane Tabs” on page 11-19
“Data Displayed in the Contents Pane” on page 11-21
“Link to the Currently Selected Node” on page 11-22
“Horizontal Scrolling in the Object Property Table” on page 11-22
“Working with the Contents Pane” on page 11-23
“Editing Object Properties” on page 11-24

Contents Pane Tabs

The Contents pane displays one of two tables containing information about models and
charts, depending on the tab that you select:

• The Contents tab displays an object property table for the node that you select in the
Model Hierarchy pane.

• The Search Results tab displays the search results table (see “Search Using Model
Explorer” on page 11-60).

Optionally, you can also open a column view details section in the Contents pane. The
following graphic shows the Contents pane with the column view details section opened.

11 Exploring, Searching, and Browsing Models

11-20

Contents tab Search Results tab

To open the column view details section, click Show Details, at the top of the Contents
pane.

 Model Explorer: Contents Pane

11-21

Column

View

Details

section

Object

Property

Table

section

The Column view details section provides an interface for customizing the column view
(hidden by default).

The Object property table section displays a table of model and chart object data (open
by default).

Data Displayed in the Contents Pane

In the object property table section of the Contents tab and in the Search Results tab:

11 Exploring, Searching, and Browsing Models

11-22

• Table columns correspond to object properties (for example, Name and BlockType).
• Table rows correspond to objects (for example, blocks, and states).

The objects and properties displayed in the Contents pane depend on:

• The column view that you select in the Contents pane
• The node that you select in the Model Hierarchy pane
• The kind of object (for example, subsystem, chart, or configuration set) that you select

in the Model Hierarchy pane
• The View > Row Filter options that you select

For more information about controlling which objects and properties to display in the
Contents pane, see:

• “Control Model Explorer Contents Using Views” on page 11-25
• “Organize Data Display in Model Explorer” on page 11-33
• “Filter Objects in the Model Explorer” on page 11-42

Link to the Currently Selected Node

The Contents of link at the top left side of the Contents pane links to the currently
selected node in the Model Hierarchy pane. The model data displayed in the Contents
pane reflects the setting of the Current System and Below option. In the following
example, Contents of links to the vdp model, which is the currently selected node.

Horizontal Scrolling in the Object Property Table

The object property table displays the first two columns (the object icon and the Name
property) persistently. These columns remain visible, regardless of how far you scroll to
the right.

For example, the following image shows the initial display of the object property table for
the vdp model. The ParamDataTypeStr column is too far to the right to be displayed.

 Model Explorer: Contents Pane

11-23

The next image shows the results of scrolling to the right. The icon and Name columns
remain visible, but now you can see the ParamDataTypeStr column.

Working with the Contents Pane

The following table summarizes the key tasks to control what is displayed in the
Contents.

Task Documentation

Control which kinds of objects to display. “Using the Row Filter Option” on page
11-42

11 Exploring, Searching, and Browsing Models

11-24

Task Documentation

Search within the selected set of objects. “Search Using Model Explorer” on page
11-60

Specify a set of properties to display based
on the kind of node.

“Control Model Explorer Contents Using
Views” on page 11-25

Group data based on unique values in a
property column.

“Grouping by a Property” on page 11-34

Manage views (for example, save and
export a view).

“Managing Views” on page 11-29

Add, remove, or rearrange columns. “Organize Data Display in Model Explorer”
on page 11-33

Edit object property values. “Editing Object Properties” on page
11-24

Editing Object Properties

To open a properties dialog box for an object in the Model Hierarchy pane, right-click
the object, and from the context menu, select Properties. Alternatively, click an object
and from the Edit menu, select Properties.

You can change modifiable properties in the Contents pane (for example, a block name)
by editing the displayed value. To edit a value, first select the row that contains the
value, and then click the value. An edit control replaces the value (for example, an edit
field for text values or a list for a range of values). For workspace variables that are
arrays or structures, you can use the Variable Editor. Use the edit control to change the
value of the selected property.

To assign the same property value to multiple objects in the Contents pane, select the
objects and then change one of the selected objects to have the new property value. An
edit control replaces the value with <edit>, indicating that you are doing batch editing.
The Model Explorer assigns the new property value to the other selected objects, as well.

You can also change property values using the Dialog pane. See “Model Explorer:
Property Dialog Pane” on page 11-66.

 Control Model Explorer Contents Using Views

11-25

Control Model Explorer Contents Using Views

In this section...

“Using Views” on page 11-25
“Customizing Views” on page 11-28
“Managing Views” on page 11-29

Using Views

What Is a Column View?

A view in the Model Explorer is a named set of properties.

The Model Explorer uses views to specify sets of property columns to display in the
Contents pane.

For each kind of node in the Model Hierarchy pane, certain properties are most
relevant for the objects displayed in the Contents pane. For example, for a Simulink
model node, such as a model or subsystem, some properties that are useful to display
include:

• BlockType (block type)
• OutDataTypeStr (output data type)
• OutMin (minimum value for the block output)

Generally, a column view does not contain the total set of properties for all the objects in
a node. Specifying a subset of properties to display can streamline the task of exploring
and editing model and chart object properties and increase the density of the data
displayed in the Contents pane.

What You Can Capture in a View

You can use a view to capture the following characteristics of the model information to
show in the Model Explorer:

• Properties that you want to display in the Contents pane (see “Customizing Views”
on page 11-28)

• Layout of the Contents pane (for example, grouping by property, the order of
property columns, and sorting), as described in “Organize Data Display in Model
Explorer” on page 11-33.

11 Exploring, Searching, and Browsing Models

11-26

Use Standard Views or Customized Views

You can use views in the following ways:

• Use the standard views shipped with the Model Explorer
• Customize the standard views
• Create your own views

Automatically Applied Views

The first time you open the Model Explorer, the software automatically applies one of
the standard views to the node you select in the Model Hierarchy pane. The Model
Explorer applies a view based on the kind of node you select.

The Model Explorer assigns one of four categories of nodes in the Model Hierarchy
pane. The Model Explorer initially associates a default view with each node category. The
four node categories are:

Node Category Kinds of Hierarchy Nodes
Included

Initial Associated View

Simulink Models, subsystems, and
root level models

Block Data Types

Workspace Base and model workspace
objects

Data Objects

Stateflow Stateflow charts and states Stateflow

Other Objects that do not fit
into one of the first three
categories; for example,
configuration sets

Default

The Column View field at the top of the Contents pane displays the view that the
Model Explorer is currently using.
If you select a view

In the Contents pane, from the Column View list, you can select a different view.
If you select a different view, then the Model Explorer associates that view with the
category of the current node. For example, suppose the selected node in the Model
Hierarchy pane is a Simulink model, and the current view is Data Objects. If you
change the view to Signals, then when you select another Simulink model node, the

 Control Model Explorer Contents Using Views

11-27

Model Explorer uses the Signals view. See “Selecting a View Manually” on page
11-27.

Selecting a View Manually

By default, the Model Explorer automatically applies a view, based on the category of
node that you select and the last view used for that node. You can manually select a view
from the Column View list that better meets your current task.

You can shift from the default mode of having the Model Explorer automatically apply
views to a mode in which you must manually select a view to change views.

To enable the manual view selection mode:

1 Select View > Column View > Manage Views.

The View Manager dialog box opens.
2 In the View Manager dialog box, click the Options button and clear Change View

Automatically.

In the manual view selection mode, if you switch to a different kind of node in the
Model Hierarchy pane that has a different view associated with it, the Contents pane
displays a yellow informational bar suggesting a view to use.

Tip interface

The tip interface appears immediately above the object property table.

The tip does not appear if you use automatic view selection.

To hide the currently displayed tip, from the menu button on the right-hand side of the
tip bar, select Hide This Tip.

The tip interface displays a link for changing the current view to a suggested view. To
choose the suggested view displayed in the tip bar, click the link.

11 Exploring, Searching, and Browsing Models

11-28

Initially, the suggested view is the default view associated with a node. If you associate a
different view with a node category, then the tip suggests the most recently selected view
when you select similar nodes.

To change from manual specification of views to automatic specification, from the tip
interface, select the down arrow and then the Change View Automatically menu item.

Customizing Views

If a standard view does not meet your needs, you can either modify the view or create a
new view.

You can customize the object property table represented by the current view in several
ways, as described in these sections:

• “Adding Property Columns” on page 11-38
• “Hiding or Removing Property Columns” on page 11-39
• “Changing the Order of Property Columns” on page 11-37

How the Model Explorer Saves Your Customizations

As you modify the object property table, you change the current view definition.

The Model Explorer saves the following changes to the object property table as part of the
column view definition:

• Grouping by property
• Sorting in a column
• Changing the order of property columns
• Adding a property column
• Hiding and removing property columns

When you change from one view to another view, the Model Explorer saves any
customizations that you have made to the previous view.

For example, suppose you use the Block Data Types view and you remove the
LockScale property column. If you then switch to use the Data Objects view, and
later use the Block Data Types view again, the Block Data Types view no longer
includes the LockScale column that you deleted.

 Control Model Explorer Contents Using Views

11-29

At the end of a Simulink session, the Model Explorer saves the view customizations
that you made during that session. When you reopen the Model Explorer, Simulink uses
the customized view, reflecting any changes that you made to the view in the previous
session.

Managing Views

If a standard view does not meet your needs, you can either modify the view or create a
new view. See “Customizing Views” on page 11-28.

You can manage views (for example, create a new view or export a view) using the View
Manager dialog box.

Opening the View Manager Dialog Box

To open the View Manager dialog box, select the Manage Views option from either:

• The View > Column View menu
• The options listed when you click the Options button in the column view details

section

The View Manager dialog box displays a list of defined views and provides tools for you to
manage views.

11 Exploring, Searching, and Browsing Models

11-30

You can manage views in several ways, including:

• “Creating a New View” on page 11-30
• “Deleting Views” on page 11-31
• “Reordering Views” on page 11-31
• “Exporting Views” on page 11-31
• “Importing Views” on page 11-32
• “Resetting Views to Factory Settings” on page 11-32

Creating a New View

To create a new view that has a new name, you can use one of these approaches:

• Copy an existing view, rename it, and customize the view.
• Create a completely new view.

After you create a new view, you can customize the view as described in “Customizing
Views” on page 11-28.

Copying and renaming an existing view

You can build a new view by copying an existing view, renaming it, and optionally
customizing the renamed view. In the View Manager dialog box:

1 Select the view that you want to use as the starting point for your new view.
2 Click the Copy button.

A new row appears at the bottom of the View Manager table of views. The new row
contains the name of the view you copied, followed by a number in parentheses.
For example, if you copy the Stateflow view, the initial name of the copied view is
Stateflow (1).

Creating a completely new view

To create a completely view, in the View Manager dialog box, click the New button. A
new view row appears at the bottom of the View Manager dialog box list of views.

Naming and describing a new view

Once you create a view, you can name the view and provide a description of the view:

 Control Model Explorer Contents Using Views

11-31

1 Double-click New View in the left column of the table of views and replace the text
with a name for the view.

2 Double-click Description in the table and replace the text with a description of the
view.

3 Click OK.

Deleting Views

To delete a view from the Column View list of views:

1 In the View Manager dialog box, select one or more views that you want to remove
from the list.

2 Click the Delete button or the Delete key.
3 Click OK.

Deleting a view using the View Manager dialog box permanently deletes that view from
the Model Explorer interface.

If you think you or someone else might want to use a view again, consider exporting the
view before you delete it (see “Exporting Views” on page 11-31).

Reordering Views

To change the position of a view in the Column View list, in the View Manager dialog
box:

1 Select one or more views that you wish to move up or down one row in the table of
views.

2 Click the up or down arrow buttons to the right of the table of views. Repeat this step
until the view appears where you want it to be in the table.

3 Click OK.

Exporting Views

To export views that you or others can then import, in the View Manager dialog box:

1 In the View Manager dialog box, select one or more views that you want to export.
2 Click the Export button.

An Export Views dialog box opens, with check marks next to the views that you
selected.

11 Exploring, Searching, and Browsing Models

11-32

3 Click OK.

An Export to File Name dialog box opens.
4 Navigate to the folder to which you want to export the view.

By default, the Model Explorer exports views to the MATLAB current folder.
5 Specify the file name for the exported view.

The file format is .mat.
6 Click OK.

Importing Views

To import view files from another location for use by the Model Explorer:

1 In the View Manager dialog box, click the Import button.

The Select .mat File to Import dialog box opens.
2 Navigate to the folder from which you want to import the view.
3 Select the MAT-file containing the view that you want to import and then click

Open.

A confirmation dialog box opens. Click OK to import the view.

The imported view appears at the bottom of the Column View list of views.

The Model Explorer automatically renames the view if a name conflict occurs.

Resetting Views to Factory Settings

You can reset (restore) the original definition of a specific standard view (that is, a view
shipped with the Model Explorer) if that view is the current view. To do so, click the
Options button in the column view details section and select Reset This View to
Factory Settings.

To reset the factory settings for all standard views in one step, in the View Manager
dialog box, click the Options button and select Reset All Views to Factory Settings.

Note: When you reset all views, the Model Explorer removes all the custom views you
have created. Before you reset views to factory settings, export any views that you will
want to use in the future.

 Organize Data Display in Model Explorer

11-33

Organize Data Display in Model Explorer

In this section...

“Layout Options” on page 11-33
“Sorting Column Contents” on page 11-33
“Grouping by a Property” on page 11-34
“Changing the Order of Property Columns” on page 11-37
“Adding Property Columns” on page 11-38
“Hiding or Removing Property Columns” on page 11-39
“Marking Nonexistent Properties” on page 11-41

Layout Options

You can control how the object property table and Search Results pane organize the
layout of property information by:

• Sorting column contents
• Grouping by a property
• Changing the order of property columns
• Adding a property column
• Hiding and removing property columns

Sorting Column Contents

To sort the column contents in ascending order, click the heading of the property
column. A triangle pointing up appears in the column heading. To change the order
from ascending to descending, or from descending to ascending, click the heading of the
column again.

For example, if properties are in ascending order, based on the Name property (the
default), click the heading of the Name column to display objects by name, in descending
order.

By default, the Contents pane displays its contents in ascending order, based on the
name of the object. Objects that have no values in any property columns appear at the
end of the object property table.

11 Exploring, Searching, and Browsing Models

11-34

Note: When you group by property, the Model Explorer applies sorting of column
contents within each group.

Grouping by a Property

Organizing Contents by Property Values

When you explore a model, you might want to focus on all objects with the same property
value. One approach is to group data by a property column.

For example, suppose that you want to see all of the blocks in the f14 model. You could
perform the following search.

The search results obscure the whole path name for lower-level nodes:

By grouping on the Path property column, you see the whole path for lower-level nodes.

 Organize Data Display in Model Explorer

11-35

You can also collapse groups to focus on specific portions of a model.

How to Group by a Property Column

To group by a property:

1 In the object property table, right-click the column heading of the property by which
you want to group contents.

You can group by object icons, such as a block icon (), which represents a type of
object. Right-click the empty column heading in the first column.

2 From the context menu, select the Group By This Column menu item.

11 Exploring, Searching, and Browsing Models

11-36

Sorting with Grouped Data

When you group by property, the Model Explorer applies sorting of column contents
within each group.

Expanding and Collapsing Grouped Data

By default, Model Explorer displays groups in expanded form. That is, all the objects in
each group are visible. You can collapse and expand groups.

• To collapse the contents of a group, click the minus sign icon for that group.
• To expand a group, click the plus sign.
• To collapse or expand all the groups, right-click anywhere in the object property table

and select either the Collapse All Groups menu item (Shift+C) or Expand All
Groups menu item (Shift+E).

Hiding the Group Column

By default, the property column that you use for grouping appears in the property table.
That property also appears in the top row for each group.

To hide the group column in the property table, use one of the following approaches:

• From the View menu, clear the Show Group Column check box.
• Right-click a column heading in the property table and clear the Show Group

Column check box.

Persistence of Grouped Data Settings

If you group by a property, that grouping is saved as part of the view definition.

When you select a different node in the Model Hierarchy pane, the contents for the new
node are grouped by that same property. However, all groups are expanded, even if you
had collapsed all groups before switching nodes.

Grouping Search Results

You can use grouping to organize the Search Results pane. The grouping that you apply
to the Search Results pane also applies to the object property table, if that property
is in the table. If the search results include a property that is not in the object property

 Organize Data Display in Model Explorer

11-37

table, and you group on that property, then the Model Explorer removes the grouping
setting that was in effect in the object property table.

Changing the Order of Property Columns

Object Icon and Name Columns Are Always First

The first two columns of every object property table are the object icon column (the
column with a blank column heading) and the Name property column. You cannot hide,
remove, or change the location of the first two columns.

How to Change the Order of Property Columns

To change the order of property columns in the object property table, use one of these
approaches:

• In the object property table, select a column heading and drag it to a new location in
the table.

This approach avoids opening the column view details section and makes it easier to
move a column a short distance to the right or left.

• In the column view details section, select one or more property columns and move
them up or down in the list, using the arrow buttons to the right of the list.

This approach allows you to move several property columns in one step, but it moves
the selected columns right or left by only one column at a time.

To move a property column by using the view details interface:

1 In the Display column names in this order list on the right side of the column
view details section, select one or more property columns that you want to move.

11 Exploring, Searching, and Browsing Models

11-38

2 Click the Move column left in view button () or the Move column right in

view button ().

Adding Property Columns

To add property columns to a view:

1 If you do not have the column view details section of the Contents pane already
open, then at the top of the Contents pane, select Show Details.

 Organize Data Display in Model Explorer

11-39

2 In the list of properties on left side of the column view details section, select one or
more properties that you want to add.

• The list displays property names in alphabetical order. You can use the Find
Properties search box in the column view details section to search for properties
that contain the text string that you enter. You can specify the scope of the search
with the From list to the right of the search box.

3 In the list of column names on the right side, select the property column that you
want to be to the left of the property columns you insert.

4 Click the Display property as column in view button ()

Adding a Path Property Column

The Model Explorer provides a shortcut for adding a Path property column to a view. To
add a Path property column:

1 Right-click the column heading in the object property table to the right of which you
want to insert a Path column.

2 From the context menu, select Insert Path.

Hiding or Removing Property Columns

You can choose between two approaches to hide (remove) a property column from the
object property table. Hiding and removing a column both have the same result. You can:

11 Exploring, Searching, and Browsing Models

11-40

• Hide a column using the context menu for a column heading. This approach avoids
needing to open the column view details section.

• Remove a column using the column view details interface. This approach allows you
to delete several properties in one step.

Hiding a Column Using the Column Heading Context Menu

1 Right-click the column heading of the column that you want to remove.
2 From the context menu, select Hide.

Removing a Column Using the Column View Details Interface

1 If you do not have the column view details section of the Contents pane already
open, then at the top of the Contents pane, select Show Details.

2 In the column view details section of the Contents pane, in the Display column
names in this order list, select one or more properties that you want to remove.

3 Click the Remove column from view button () or the Delete key.

Inserting Recently Hidden or Removed Columns

The Model Explorer maintains a list of columns you hide or remove for each view during
a Simulink session.

To add a recently hidden or removed column back into a view:

1 Right-click the column heading of the column to the right of which you want to insert
a recently hidden column.

 Organize Data Display in Model Explorer

11-41

2 From the context menu, select Insert Recently Hidden Columns.
3 Select the column that you want to insert.

See “Hiding or Removing Property Columns” on page 11-39.

Marking Nonexistent Properties

Usually, some of the properties that the Contents pane displays do not apply to all the
displayed objects (in other words, some objects do not have values set). By default, the
Model Explorer displays a dash (–) to mark properties that do not have a value.

If you want the Model Explorer to display a blank (instead of the default dash) in
property cells that have no values, clear the View > Show Nonexistent Properties as
“–” option. The Contents pane looks similar to the following graphic:

11 Exploring, Searching, and Browsing Models

11-42

Filter Objects in the Model Explorer
In this section...

“Controlling the Set of Objects to Display” on page 11-42
“Using the Row Filter Option” on page 11-42
“Filtering Contents” on page 11-44

Controlling the Set of Objects to Display

Two techniques that you can use to control the set of objects that the Contents pane
displays are:

• Using the Row Filter option
• Filtering contents

For a summary of other techniques, see “Focusing on Specific Elements of a Model or
Chart” on page 11-7.

Using the Row Filter Option

You can filter the kinds of objects that the Contents pane displays:

1 Open the Row Filter options menu. In the Model Explorer, at the top-right corner of
the Contents pane, click the Row Filter button.

An alternative way to open the Row Filter menu is to select View > Row Filter.

 Filter Objects in the Model Explorer

11-43

By default, the Contents pane displays these kinds of objects for the selected node:

• Blocks
• Signals and connections
• Stateflow states, functions, and boxes
• Stateflow events
• Stateflow data

2 Clear the kinds of objects that you do not want to display in the Contents pane, or
enable any cleared options to display more kinds of objects. For example, clear All
Signals/Connections to prevent the display of signal and connection objects in the
Contents pane.

Object Count

The top-right portion of the Contents pane includes an object counter, indicating how
many objects the Contents pane is displaying.

When you use the Row Filter option to filter objects, the object count indicator reflects
that the Contents pane displays a subset of all the model and chart objects.

11 Exploring, Searching, and Browsing Models

11-44

To view an explanation of the current object count, click the object count link (for
example, 12 of 25 objects). That link displays a pop-up information box:

Filtering Contents

To refine the display of objects that are currently displayed in the Contents pane, you
can use the Filter Contents text box at the top of the Contents pane to specify search
strings for filtering a subset of objects.

 Filter Objects in the Model Explorer

11-45

Using the Filter Contents text box can help you to find specific objects within the set of
objects, based on a particular object name, property value, or property that is of interest
to you. For example, if you enter the text string fuel in the Filter Contents edit box,
the Model Explorer displays results similar to those shown above. The results highlight
the text string that you specified.

Specifying Filter Text Strings

As you enter text in the Filter Contents text box, the Model Explorer performs a
dynamic search, displaying results that reflect the text as you enter it.

The text strings you enter must be in the format consistent with the guidelines described
in the following sections.

Case Sensitivity

By default, the Model Explorer ignores case as it performs the filtering.

To specify that you want the Model Explorer to respect case sensitivity for a text string
that you enter, put that text string in quotation marks. For example, if you want to
restrict the filtering to display only objects that include the text Fuel (with a capital F),
enter "Fuel" (with quotation marks).

Specifying Properties and Property Values

To restrict the filtering to apply to objects with a specific property, specify the property
name followed by a colon (:). The Contents pane displays objects that have that
property.

To filter for a objects for which a specific property has a specific value, specify the
property name followed by a colon (:) and then the value. For example, to filter the
contents to display only objects whose OutDataTypeStr property has a value that
includes Inherit, enter OutDataTypeStr: Inherit (alternatively, you could put the
whole string in quotation marks to enforce case sensitivity):

11 Exploring, Searching, and Browsing Models

11-46

Wildcards and MATLAB Expressions Not Supported

The Model Explorer does not recognize wildcard characters, such as an asterisk (*), as
having any special meaning. For example, if you enter fuel* in the Filter Contents
text box, you get no results, even if several objects contain the text string fuel.

Also, if you specify a MATLAB expression, in the Filter Contents text box, the Model
Explorer interprets that string as literal text, not as a MATLAB expression.

Clearing the Filtered Contents

To redisplay the object property table as it appeared before you filtered the contents,
click the X in the Filter Contents text box.

Filtering Removes Grouping

If you have set up grouping on a column, then when you filtering contents, the Model
Explorer does not retain that grouping.

 Workspace Variables in Model Explorer

11-47

Workspace Variables in Model Explorer

In this section...

“Finding Variables That Are Used by a Model or Block” on page 11-47
“Finding Blocks That Use a Specific Variable” on page 11-50
“Finding Unused Workspace Variables” on page 11-51
“Editing Workspace Variables” on page 11-53
“Rename Variables” on page 11-54
“Compare Duplicate Workspace Variables” on page 11-56
“Export Workspace Variables” on page 11-57
“Importing Workspace Variables” on page 11-59

Finding Variables That Are Used by a Model or Block

In the Model Explorer, you can get a list of variables that a model or block uses. The
following approach is one way to get that list of variables:

1 In the Contents pane, right-click the block for which you want to find the variables
that it uses.

2 Select the Find Referenced Variables menu item.

11 Exploring, Searching, and Browsing Models

11-48

Model Explorer returns results similar to these:

 Workspace Variables in Model Explorer

11-49

For performance, Model Explorer uses cached information from the last compiled version
of the model. If you want to recompile the model, either do so manually or, in the Model
Explorer, set the Update diagram field to yes and repeat the search.

You can also use the following approaches to find variables that a model or block uses:

• In the Model Explorer, in the Model Hierarchy pane, right-click a block or model
node and select the Find Referenced Variables menu item.

• In the Model Explorer, in the search bar, use the for Referenced Variables
search type option.

• In the Simulink Editor, right-click a block, subsystem, or in the canvas and select the
Find Referenced Variables menu item. Clicking the canvas returns results for the
whole model.

The Simulink.findVars function provides additional options for returning information
about workspace variables that is not available from the Model Explorer or Simulink
Editor.

For information about limitations when finding referenced variables, see the
Simulink.findVars documentation.

11 Exploring, Searching, and Browsing Models

11-50

Using the Set of Returned Variables

For a variable in the set of returned variables, you can find the blocks that use that
variable (for details, see “Finding Blocks That Use a Specific Variable” on page
11-50). Also, you can export variables from the returned set of variables. For details,
see “Export Workspace Variables” on page 11-57.

Finding Blocks That Use a Specific Variable

This example shows how to use Model Explorer to get a list of blocks that use a specific
workspace variable.

1 Open the model f14.
2 Open Model Explorer.
3 In the Model Hierarchy pane, select the Base Workspace node.
4 In the Contents pane, right-click the variable Mq and select Find Where Used.
5 In the Select a system dialog box, select f14.
6 Clear the Search in referenced models check box, since f14 does not reference

any models, and click OK.

With Search in referenced models selected, you can find the target variable
everywhere it is used in a model reference hierarchy. However, finding the target
variable in an entire hierarchy can take more time.

The Update diagram to include recent changes check box is cleared by default
to save time by avoiding unnecessary model diagram updates. Select the check box to
incorporate recent changes you made to the model by forcing a diagram update.

7 Click OK in response to the message to update the model diagram.

Since you just opened the model, you must update the model diagram at least once
before finding a variable. You could have selected Update diagram to include
recent changes in the Select a system dialog box to force an initial diagram
update, though you typically use that option when you make changes to the model
while performing multiple searches with Find Where Used.

8 Model Explorer displays the search results:

 Workspace Variables in Model Explorer

11-51

The property columns whose values include Mq represent the block parameters that
use the Mq variable. If those property columns are not already in the view, then the
Model Explorer adds them to the end of the search results display.

You can also find blocks that use a specific variable by using one of these approaches:

• In the search bar, select the for Variable Usage search type option.
• In the Search Results pane, right-click a variable and select the Find Where Used

menu item.

Finding Unused Workspace Variables

You can use the Model Explorer to get a list of variables that are defined in a workspace
but not used by a model or block. One way to get that list of variables is to right-click a
workspace name in the Model Hierarchy pane and select the Find Unused Variables
menu item. For example:

1 Open the f14 model.
2 Open the Model Explorer.
3 In the search toolbar, set the Update diagram field to yes.
4 In the Model Hierarchy pane, right-click the Base Workspace node and select the

Find Unused Variables menu item.

11 Exploring, Searching, and Browsing Models

11-52

5 The Model Explorer displays output similar to this:

 Workspace Variables in Model Explorer

11-53

The Simulink.findVars function provides additional options for returning
information about unused workspace variables that is not available from the Model
Explorer or Simulink Editor.

Editing Workspace Variables

In the Model Explorer Contents pane, you can use the Variable Editor to edit variables
from the MATLAB workspace or model workspace. The Variable Editor is available for
editing large arrays and structures.

To open the Variable Editor for a variable that is an array or structure:

1 Click the Value cell for the variable.
2 Select the Variable Editor icon.

The Variable Editor opens:

11 Exploring, Searching, and Browsing Models

11-54

Right-click in an edit box to open a context menu with several editing options:

You can resize and move the Variable Editor. The Contents pane reflects the edits that
you make in the Variable Editor.

When you finish editing, the Variable Editor closes when you click the Close button in
the upper right corner of the editor or when you click outside of the editor.

Rename Variables

This example shows how to use Model Explorer to rename a variable everywhere it is
used by blocks in Simulink models.

 Workspace Variables in Model Explorer

11-55

1 Open the model sldemo_absbrake. The model loads data to the MATLAB base
workspace.

2 Open Model Explorer.
3 In the Model Hierarchy pane, select the base workspace.
4 In the Contents pane, right-click the base workspace variable m and select Rename

All.
5 In the Select a system dialog box, click the name of the model sldemo_absbrake

to select it as the context for renaming the variable m.
6 Clear the Search in referenced models check box and click OK. The model

sldemo_absbrake references the model sldemo_wheelspeed_absbrake, but only
sldemo_absbrake uses the variable m.

With Search in referenced models selected, you can rename the target variable
everywhere it is used in a model reference hierarchy. However, renaming the target
variable in an entire hierarchy can take more time.

The Update diagram to include recent changes check box is cleared by default
to save time by avoiding unnecessary model diagram updates. Select the check box to
incorporate recent changes you made to the model by forcing a diagram update.

7 Click OK in response to the message to update the model diagram.

Since you just opened the model, you must update the model diagram at least once
before renaming a variable. You could have selected Update diagram to include
recent changes in the Select a system dialog box to force an initial diagram
update, though you typically use that option when you make changes to the model
while performing multiple variable renaming operations.

8 In the Rename All dialog box, type a new name for the variable in the New name
box and click OK.

You can use the hyperlinks in the Corresponding blocks section of the Rename
All dialog box to view the target blocks.

Note: You can rename only variables that the function Simulink.findVars supports.

11 Exploring, Searching, and Browsing Models

11-56

Compare Duplicate Workspace Variables

You can compare duplicate variables that are stored in the same workspace or in
different workspaces. For example, you can compare a variable stored in the base
workspace with its duplicate, which is stored in the model workspace.

1 Open a model and the Model Explorer.
2 In the search toolbar, search for the variable that is duplicated. Select the rows with

the duplicate entries. Then, right-click and select Compare Selected.

3 Review the differences in the Comparison Viewer.

 Workspace Variables in Model Explorer

11-57

Export Workspace Variables

You can export (save) a set of variables listed in the Model Explorer, exporting either
individual variables or all the variables in the base or model workspace.

One possible workflow is to export the set of variables returned with the Find
Referenced Variables option or the Simulink.findVars function. For details, see
“Finding Variables That Are Used by a Model or Block” on page 11-47.

Note: All the variables that you export must be from the same workspace.

To export all the variables in a workspace in the Model Explorer to a MATLAB code file
or MAT-file:

1 Select the variables that you want to export.

11 Exploring, Searching, and Browsing Models

11-58

a To select all the variables in a workspace, right-click the workspace node (for
example, Base Workspace) and select the Export menu item. For example:

b To select individual variables, in the Contents pane, select the variables that
you want to export. Right-click one of the highlighted variables and select the
Export Selected menu item.

If the Contents pane has data grouped by a property, selecting the top line in a
group does not select all the variables in that group. For details about grouped data,
see“Grouping by a Property” on page 11-34.

2 Specify whether to save the variables in a MATLAB code file or a MAT-file.

The MATLAB code file format is easier to read, is editable, and supports version
control. The MAT-file format is binary, which has performance advantages.

If you specify a MATLAB code file format, the Model Explorer may create an
associated MAT-file, reflecting the name of the MATLAB code file, but with an
extension of .mat instead of .m.

 Workspace Variables in Model Explorer

11-59

3 Specify a name and location for the file.
4 If the file already exists, Model Explorer displays a dialog box asking you to choose

one of these options:

• Overwrite entire file

• Replaces all variables in the target file with the selected variables, which are
stored in alphabetical order.

• Update variables that exist in file and append new variables to file

• Updates existing variables in place and appends new variables.
• Only update variables that exist in file

• Updates existing variables, but does not add any new variables, which
eliminates potentially extraneous variables.

Importing Workspace Variables

You can import (load) a set of variables from a file into the base workspace or into a
model workspace using the Model Explorer. When you import variables into a workspace,
the Model Explorer overwrites existing variables and adds any new variables.

To import variables into a workspace:

1 In the Model Hierarchy pane, right-click the workspace into which you want to
import variables.

2 Select the Import menu item.
3 In the Import from File dialog box, select a MATLAB code file or MAT-file for the

variables that you want to import.

Note: If you import a MATLAB code file, then Simulink also imports the associated
MAT-file.

11 Exploring, Searching, and Browsing Models

11-60

Search Using Model Explorer

In this section...

“Searching in the Model Explorer” on page 11-60
“The Search Bar” on page 11-60
“Show and Hide the Search Bar” on page 11-61
“Search Bar Controls” on page 11-61
“Search Options” on page 11-63
“Run a Search” on page 11-65
“Refine a Search” on page 11-65

Searching in the Model Explorer

Use the Model Explorer search bar to search for specific objects from the node you select
in the Model Hierarchy pane.

The Model Explorer displays search results in the Search Results tab of the Contents
pane.

The search results appear in a table that is similar to the object property table in the
Contents tab. The search results table uses the current column view (the object property
table) definition as a starting point, and adds relevant properties that are not already
included in the current view. Any additional property columns added to the Search
Results pane do not affect the view definition.

If you modify the property columns in the search results table that also appear in the
property table view, the changes you make affect both tables. For example, if you hide
OutMax column in the search results table, and the OutMax column was also in the object
property view table, then the OutMax column is hidden in both tables. However, if in the
search results table you reorder where the Complexity column appears, if the view does
not include the Complexity property, then that change to the search results table does
not affect the view.

You can edit property values in the search results table.

The Search Bar

The search bar appears at the top of the Model Explorer window.

 Search Using Model Explorer

11-61

Search

bar

Show and Hide the Search Bar

By default, the search bar is visible. To show or hide the search bar, select or clear the
View > Toolbars > Search Bar option.

Search Bar Controls

The search bar includes the following controls:

Select
search
type

Specify
search
criteria

Start
search

Select
search
options

Search Type

Use the Search Type control to specify the type of objects or properties to include in the
search.

Search Type Option Description

by Name Searches a model or chart for all objects
that have the specified string in the name
of the object. See “Search Strings” on page
11-64.

11 Exploring, Searching, and Browsing Models

11-62

Search Type Option Description

by Property Name Searches for objects that have a specified
property. Specify the target property name
from a list of properties that objects in the
search domain can have.

by Property Value Searches for objects with a property value
that matches the value you specify. Specify
the name of the property, the value to
be matched, and the type of match (for
example, equals, less than, or greater
than). See “Search Strings” on page
11-64.

by Block Type Searches for blocks of a specified block
type. Select the target block type from the
list of types contained in the currently
selected model.

by Stateflow Type Searches for Stateflow objects of a specified
type.

for Variable Usage Searches for blocks that use variables
defined in a workspace. Select the base
workspace or a model workspace (model
name) and, optionally, the name of a
variable. See “Search Strings” on page
11-64.

for Referenced Variables Searches for variables that a model or block
uses. Specify the name of the model or
block in the by System field. The model
or block must be in the Model Hierarchy
pane.

for Unused Variables Searches for variables that are defined
in a workspace but not used by any
model or block. Select the name of the
workspace from the drop-down list for the
in Workspace field.

for Library Links Searches for library links in the current
model.

 Search Using Model Explorer

11-63

Search Type Option Description

by Class Searches for Simulink objects of a specified
class.

for Fixed Point Capable Searches a model for all blocks that support
fixed-point computations.

for Model References Searches a model for references to other
models.

by Dialog Prompt Searches a model for all objects whose
dialogs contain the prompt you specify. See
“Search Strings” on page 11-64.

by String Searches a model for all objects in which
the string you specify occurs. See “Search
Strings” on page 11-64.

Search Options

Use the Search Options control to specify the scope and how to apply search strings.

Search Option Description

Match Whole String Do not allow partial string matches (for
example, do not allow sub to match
substring).

Match Case Considers case when matching strings (for
example, Gain does not match gain).

Regular Expression Considers a string to be matched as a
regular expression.

Evaluate Property Values During
Search

Applies only for searches by property value.
If enabled, the option causes the Model
Explorer to evaluate the value of each
property as a MATLAB expression and
compare the result to the search value. If
this option is disabled (the default), the
Model Explorer compares the unevaluated
property value to the search value.

Refine Search Initiates a secondary search that provides
additional search criteria to refine the

11 Exploring, Searching, and Browsing Models

11-64

Search Option Description

initial search results. The second search
operation searches for objects that meet
both the original and the new search
criteria (see “Refine a Search” on page
11-65).

By default, the Model Explorer searches for objects in the system that you select in the
Model Hierarchy pane. It does not search in child systems. You can override that default,
so that the Model Explorer searches for objects in the whole hierarchy of the currently
selected system. To toggle between searching only in the current system and searching in
the whole system hierarchy of the current system, use one of these techniques:

• Select View > Show Current System and Below.
• Click the Show Current System and Below button at the top of the Contents

pane.

Search Strings

By default, search strings are case-insensitive and are treated as regular expressions.

By default, the search allows partial string matches. You cannot use wildcard characters
in search strings. For example, if you enter *1 as a name search string, you get no search
results unless there is an item whose name starts with the two characters *1. If there is
an out1 item, the search results do not include that item.

 Search Using Model Explorer

11-65

Run a Search

To start the search, click the Search button. The Model Explorer displays the results of
the search in the Search Results pane.

To view a summary of the search options that you used (such as search criteria), click the
Show Search Details button .

You can edit the results displayed in the Search Results pane. For example, to change
all objects found by a search to have the same property value, select the objects in the
Search Results pane and change the property value of one of the objects.

Refine a Search

To refine the previous search, in the search bar, click the Select Search Options button
() and select Refine Search. A Refine button replaces the Search button on the
search bar. Use the search bar to define new search criteria and then click the Refine
button. The Model Explorer searches for objects that match both the previous search
criteria and the new criteria.

11 Exploring, Searching, and Browsing Models

11-66

Model Explorer: Property Dialog Pane

In this section...

“What You Can Do with the Dialog Pane” on page 11-66
“Showing and Hiding the Dialog Pane” on page 11-66
“Editing Properties in the Dialog Pane” on page 11-66

What You Can Do with the Dialog Pane

You can use the Dialog pane to view and change properties of objects that you select in
the Model Hierarchy pane or in the Contents pane.

Showing and Hiding the Dialog Pane

By default, the Dialog pane appears in the Model Explorer, to the right of the Contents
pane. To show or hide the Dialog pane, use one of these approaches:

• From the View menu, select Show Dialog Pane.
• From the main toolbar, click the Dialog View button ().

Editing Properties in the Dialog Pane

To edit property values using the Dialog pane:

1 In the Contents pane, select an object (such as a block or signal). The Dialog pane
displays the properties of the object you selected.

 Model Explorer: Property Dialog Pane

11-67

2 Change a property (for example, the port number of an Outport block) in the Dialog
pane.

3 Click Apply to accept the change, or click Revert to return to the original value.

By default, clicking outside a dialog box with unapplied changes causes the Apply
Changes dialog box to appear:

Click Apply to accept the changes or Ignore to revert to the original settings.

To prevent display of the Apply Changes dialog box:

1 In the dialog box, click the In the future Apply or Ignore (whichever I select)
without asking check box.

2 If you want Simulink to apply changes without warning you, press Apply. If you
want Simulink to ignore changes without warning you, press Ignore.

11 Exploring, Searching, and Browsing Models

11-68

To restore display of the Apply Changes dialog box, from the Tools menu, select
Prompt if dialog has unapplied changes.

 Locate Simulink Objects Using Find

11-69

Locate Simulink Objects Using Find

This example shows how to use the Find dialog box to search for objects such as blocks,
signals, and annotations in a Simulink model according to criteria you specify. For this
example, the model has several blocks with a parameter called data type, which has a
value of s16En15.

1 Open the model sldemo_fuelsys.

2 Select Edit > Find.
3 In the Find dialog box, under Filter Options, expand the Simulink objects node

and clear the Stateflow objects check box.
4 Under Search criteria in the Find what text box, type s16En15.
5 Select the Search block dialog parameters check box.
6 Click Find.

Simulink objects that match the criteria appear in the list at the bottom of the dialog
box.

11 Exploring, Searching, and Browsing Models

11-70

7 Double-click the first item in the list (Discrete Integrator block) to locate the block in
the model.

 Locate Stateflow Objects Using Find

11-71

Locate Stateflow Objects Using Find

This example shows how to use the Find dialog box to search for a state object in a
Stateflow chart in a Simulink model.

1 Open the model sldemo_fuelsys.

2 Select Edit > Find.
3 In the Find dialog box, under Filter Options, clear the Simulink objects check

box and the Stateflow objects check box. Expand the Stateflow objects node and
select the States check box.

4 Under Search criteria, in the Find what text box, type Single_Failure.
5 Click Find.
6 Double-click the highlighted line at the bottom for the States location in the

Stateflow chart.

11 Exploring, Searching, and Browsing Models

11-72

7 In the State Single_Failure dialog box, click Single Failure to see the Single_Failure
state.

 Model Browser

11-73

Model Browser

In this section...

“About the Model Browser” on page 11-73
“Navigating with the Mouse” on page 11-74
“Navigating with the Keyboard” on page 11-75
“Showing Library Links” on page 11-75
“Showing Masked Subsystems” on page 11-75

About the Model Browser

The Model Browser enables you to

• Navigate a model hierarchically
• Open systems in a model
• Determine the blocks contained in a model

Note The browser is available only on Microsoft Windows platforms.

To display the Model Browser, in the Simulink Editor, select View > Model Browser >
Show Model Browser.

11 Exploring, Searching, and Browsing Models

11-74

The model window splits into two panes. The left pane displays the browser, a tree-
structured view of the block diagram displayed in the right pane.

The top entry in the tree view corresponds to your model. A button next to the model
name allows you to expand or contract the tree view. The expanded view shows the
model's subsystems. A button next to a subsystem indicates that the subsystem itself
contains subsystems. You can use the button to list the subsystem's children. To view
the block diagram of the model or any subsystem displayed in the tree view, select the
subsystem. You can use either the mouse or the keyboard to navigate quickly to any
subsystem in the tree view.

Navigating with the Mouse

Click any subsystem visible in the tree view to select it. Click the + button next to any
subsystem to list the subsystems that it contains. Click the button again to contract the
entry.

 Model Browser

11-75

Navigating with the Keyboard

Use the up/down arrows to move the current selection up or down the tree view. Use the
left/right arrow or +/- keys on your numeric keypad to expand an entry that contains
subsystems.

Showing Library Links

The Model Browser can include or omit library links from the tree view of a model. Use
the Preferences dialog box to specify whether to display library links by default. To toggle
display of library links, select View > Model Browser > Include Library Links.

Showing Masked Subsystems

The Model Browser can include or omit masked subsystems from the tree view. If
the tree view includes masked subsystems, selecting a masked subsystem in the tree
view displays its block diagram in the diagram view. Use the Preferences dialog box
to specify whether to display masked subsystems by default. To toggle display of
masked subsystems, select View > Model Browser > Include Systems with Mask
Parameters.

11 Exploring, Searching, and Browsing Models

11-76

Model Dependency Viewer

In this section...

“Model Dependency Views” on page 11-76
“View Model File and Library Dependencies” on page 11-79

Model Dependency Views

The Model Dependency Viewer displays a dependency view of a model. The dependency
view is a graph of all the models and libraries referenced directly or indirectly by
the model. You can use the dependency view to find and open referenced libraries
and models. To identify and package all required files instead, see “Analyze Model
Dependencies” on page 17-19.

The Model Dependency Viewer allows you to choose between the file dependency view
and the model instances view.

File Dependency View

The file dependency view shows the model and library files referenced by a top model.
A referenced model or library appears only once in the view even if it is referenced more
than once in the model. The figure shows a dependency view. Gray blocks represent
model files and blue boxes represent libraries. Arrows represent dependencies. For
example, the arrows in this view indicate that the aero_guidance model references two
libraries: aerospace and simulink_need_slupdate.

An arrow from a library that points to itself indicates that the library references itself.
Blocks in the library reference other blocks in that same library. The example view shows
that the aerospace library references itself.

 Model Dependency Viewer

11-77

A file dependency view can include a legend that identifies the model in the view and the
date and time the view was created.

Model Instances View

The model instances view shows every reference to a model in a model reference
hierarchy (see “Model Reference”) with the top model at the root of the hierarchy. If
a model hierarchy references the same model more than once, the referenced model
appears multiple times in the instance view, once for each reference. For example, this
view indicates that the model reference hierarchy for sldemo_mdlref_depgraph
contains two references to the model sldemo_mdlref_F2C.

In an instance view, boxes represent a top model and model references. Boxes
representing accelerated-mode instances (see “Referenced Model Simulation Modes”

11 Exploring, Searching, and Browsing Models

11-78

on page 8-29) have filled triangles in their corners; boxes representing normal-mode
instances have empty triangles in their corners. For example, the previous diagram
shows that one of the references to sldemo_mdlref_F2C operates in normal mode, and
the other operates in accelerated mode.

Boxes representing “Protected Model” on page 8-71 show the protected models .slxp
extension. You cannot expand protected reference models.

An instance view displays information icons on instance boxes to indicate an
override in simulation mode for that instance. For example, if a referenced model is
configured to run in normal mode and it runs in accelerator mode, its simulation mode
is overridden. This override occurs because another referenced model that runs in
accelerator mode directly or indirectly references it.

Processor-in-the-Loop Mode Indicator

An instance view appends PIL to the names of models that run in processor-in-the-loop
mode (see “Specify the Simulation Mode” on page 8-31). For example, this dependency
instance view indicates one instance of the referenced model ModDepViewerSub runs in
processor-in-the-loop mode.

 Model Dependency Viewer

11-79

View Model File and Library Dependencies

This example shows how to use Model Dependency Viewer to view model file and
library dependencies of the model. To identify and package all required files instead, see
“Analyze Model Dependencies” on page 17-19.

1 Open the model sldemo_mdlref_depgraph.
2 To open the Model Dependency Viewer in file dependency view, select Analysis >

Model Dependencies > Model Dependency Viewer > Models Only.
3 Select the User-Defined Libraries check box. The viewer shows dependencies on

user-defined libraries, if such dependencies exist.

You can open this view directly from the Simulink Editor by selecting Analysis >
Model Dependencies > Model Dependency Viewer > Models & Libraries.

4 Select the Built-In Libraries check box to show dependencies on MathWorks built-
in libraries.

5 To view the dependencies laid out horizontally, click Options and, under Layout,
select Horizontal.

6 Collapse the dependencies of sldemo_mdlref_outdoor_temp. Click – on the box
for sldemo_mdlref_outdoor_temp.

7 Hide the dependency viewer legend. Click Options and, under Display, select the
Legend check box.

8 Click Model Instances to open the model instance view.

11 Exploring, Searching, and Browsing Models

11-80

You can open this view directly from the Simulink editor by selecting Analysis >
Model Dependencies > Model Dependency Viewer > Referenced Model
Instances.

9 To display full paths in the boxes representing the instances, click Options and,
under Display, select the Full path check box. Each box in the instance view
displays the path of the Model block corresponding to the instance. The name of the
referenced model appears in parentheses.

10 Select the box for sldemo_mdlref_heat2cost and click Highlight Box. The
corresponding block in the sldemo_mdlref_depgraph model appears highlighted.

11 In the dependency viewer, double-click the sldemo_mdlref_heat2cost box to open
the model in the Simulink Editor.

 View Linked Requirements in Models and Blocks

11-81

View Linked Requirements in Models and Blocks

In this section...

“Requirements Traceability in Simulink” on page 11-81
“Highlight Requirements in a Model” on page 11-81
“View Information About a Requirements Link” on page 11-84
“Navigate to Requirements from a Model” on page 11-85
“Filter Requirements in a Model” on page 11-86

Requirements Traceability in Simulink

If your Simulink model has links to requirements in external documents, you can review
these links. To identify which model objects satisfy certain design requirements, use the
following requirements features available in Simulink software:

• Highlighting objects in your model that have links to external requirements
• Viewing information about a requirements link
• Navigating from a model object to its associated requirement
• Filtering requirements highlighting based on specified keywords

Having a Simulink Verification and Validation license enables you to perform the
following additional tasks, using the Requirements Management Interface (RMI):

• Adding new requirements
• Changing existing requirements
• Deleting existing requirements
• Applying user tags to requirements
• Creating reports about requirements links in your model
• Checking the validity of the links between the model objects and the requirements

documents

Highlight Requirements in a Model

You can highlight a model to identify which objects in the model have links to
requirements in external documents. Both the Simulink Editor and the Model Explorer
provide this capability.

11 Exploring, Searching, and Browsing Models

11-82

• “Highlight a Model Using the Simulink Editor” on page 11-82
• “Highlight a Model Using the Model Explorer” on page 11-83

Note: If your model contains a Model block whose referenced model contains
requirements, those requirements are not highlighted. If you have Simulink Verification
and Validation, you can view this information only in requirements reports. To generate
requirements information for referenced models and then see highlighted snapshots of
those requirements, follow the steps in “Report for Requirements in Model Blocks”.

Highlight a Model Using the Simulink Editor

If you are working in the Simulink Editor and want to see which model objects in the
slvnvdemo_fuelsys_officereq model have requirements, follow these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Select Analysis > Requirements Traceability > Highlight Model.

Two types of highlighting indicate model objects with requirements:

• Yellow highlighting indicates objects that have requirements links for the object
itself.

• Orange outline indicates objects, such as subsystems, whose child objects have
requirements links.

 View Linked Requirements in Models and Blocks

11-83

Objects that do not have requirements are colored gray.

3 To remove the highlighting from the model, select Analysis > Requirements
Traceability > Unhighlight Model. Alternatively, you can right-click anywhere in
the model, and select Remove Highlighting.

While a model is highlighted, you can still manage the model and its contents.

Highlight a Model Using the Model Explorer

If you are working in Model Explorer and want to see which model objects have
requirements, follow these steps:

11 Exploring, Searching, and Browsing Models

11-84

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Select View > Model Explorer.
3 To highlight all model objects with requirements, click the Highlight items with

requirements on model icon ().

The Simulink Editor window opens, and all objects in the model with requirements
are highlighted.

Note: If you are running a 64-bit version of MATLAB, when you navigate to a
requirement in a PDF file, the file opens at the top of the page, not at the bookmark
location.

View Information About a Requirements Link

Using Simulink, you can view detailed information about a requirements link, such as
identifying the location and type of document that contains the requirement.

Note: You can only modify the requirements information if you have a Simulink
Verification and Validation license.

For example, to view information about the requirements link from the MAP Sensor
block in the slvnvdemo_fuelsys_officereq example model, follow these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Right-click the MAP sensor block, and select Requirements > Edit/Add Links.

The Requirements dialog box opens and displays the following information about the
requirements link:

• The description of the link (which is the actual text of the requirement).

 View Linked Requirements in Models and Blocks

11-85

• The Microsoft Excel® workbook named
slvnvdemo_FuelSys_TestScenarios.xlsx, which contains the linked
requirement.

• The requirements text, which appears in the named cell
Simulink_requirement_item_2 in the workbook.

• The user tag test, which is associated with this requirement.

Navigate to Requirements from a Model

Navigate from the Model Object

You can navigate directly from a model object to that object's associated requirement.
When you take these steps, the external requirements document opens in the
application, with the requirements text highlighted.

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open the fuel rate controller subsystem.
3 To open the linked requirement, right-click the Airflow calculation subsystem and

select Requirements Traceability > 1. “Mass airflow estimation”.

The Microsoft Word document slvnvdemo_FuelSys_DesignDescription.docx,
opens with the section 2.1 Mass airflow estimation selected.

Note: If you are running a 64-bit version of MATLAB, when you navigate to a
requirement in a PDF file, the file opens at the top of the page, not at the bookmark
location.

Navigate from a System Requirements Block

Sometimes you want to see all the requirements links at a given level of the model
hierarchy. In such cases, you can insert a System Requirements block to collect all
requirements links in a model or subsystem. The System Requirements block lists
requirements links for the model or subsystem in which it resides; it does not list
requirements links for model objects inside that model or subsystem, because those are
at a different level of the model hierarchy.

11 Exploring, Searching, and Browsing Models

11-86

In the following example, you insert a System Requirements block at the top level of the
slvnvdemo_fuelsys_officereq model, and navigate to the requirements using the
links inside the block.

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 In the Simulink Editor, select Analysis > Requirements Traceability >
Highlight Model.

3 Open the fuel rate controller subsystem.

The Airflow calculation subsystem has a requirements link.
4 Open the Airflow calculation subsystem.
5 In the Simulink Editor, select View > Library Browser.
6 On the Libraries pane, select Simulink Verification and Validation.

This library contains only one block—the System Requirements block.
7 Drag a System Requirements block into the Airflow calculation subsystem.

The RMI software collects and displays any requirements links for that subsystem in
the System Requirements block.

8 In the System Requirements block, double-click 1. “Mass airflow subsystem”.

The Microsoft Word document, slvnvdemo_FuelSys_DesignDescription.docx,
opens, with the section 2.1 Mass airflow estimation selected.

Filter Requirements in a Model

• “Filtering Requirements Highlighting by User Tag” on page 11-86
• “Filtering Options for Highlighting Requirements” on page 11-87

Filtering Requirements Highlighting by User Tag

Some requirements links in your model can have one or more associated user tags. User
tags are keywords that you create to categorize a requirement, for example, design or
test.

For example, in the slvnvdemo_fuelsys_officereq model, the requirements link
from the MAP sensor block has the user tag test.

 View Linked Requirements in Models and Blocks

11-87

To highlight only all the blocks that have a requirement with the user tag test:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 In the Simulink Editor, select Analysis > Requirements > Settings.

The Requirements Settings dialog box opens. If you do not have a Simulink
Verification and Validation license, the Filters tab is the only option available.

By default, your model has no requirements filtering enabled.
3 Select Filter links by user tags when highlighting and reporting

requirements.
4 In the Include links with any of these tags text box, delete design, and enter

test.
5 Press Enter.
6 Highlight the slvnvdemo_fuelsys_officereq model for requirements. Select

Analysis > Requirements > Highlight Model.

In the top-level model, only the MAP sensor block and the Test inputs block are
highlighted.

7 To disable the filtering by user tag, select Analysis > Requirements > Settings,
and clear Filter links by user tags when highlighting and reporting
requirements.

The model highlighting updates immediately.

Filtering Options for Highlighting Requirements

On the Filters tab, you select options that designate which objects with requirements
are highlighted. The following table describes these settings, which apply to all
requirements in your model for the duration of your MATLAB session.

Option Description

Filter links by user tags when
highlighting and reporting
requirements

Enables filtering for highlighting and
reporting, based on specified user tags.

Include links with any of these tags Highlights all objects whose requirements
match at least one of the specified user

11 Exploring, Searching, and Browsing Models

11-88

Option Description

tags. The tag names must match exactly.
Separate multiple user tags with commas
or spaces.

Exclude links with any of these tags Excludes from the highlighting all objects
whose requirements match at least one
of the specified user tags. The tag names
must match exactly. Separate multiple user
tags with commas or spaces.

Apply same filters in context menus Disables navigation links in context menus
for all objects whose requirements do not
match at least one of the specified user
tags.

Under Link type filters, Disable
DOORS surrogate item links in
context menus

Disables links to IBM® Rational® DOORS®

surrogate items from the context menus
when you right-click a model object. This
option does not depend on current user tag
filters.

 Trace Connections Using Interface Display

11-89

Trace Connections Using Interface Display

In this section...

“How Interface Display Works” on page 11-89
“Trace Connections in a Subsystem” on page 11-89

How Interface Display Works

In the Simulink Editor, you can turn on and off the display of interfaces in a model.
When you are building large, complex models, you can connect or add signal lines
between blocks or buses that are at different levels. The interface view allows you to
trace signals through the nested levels. This capability helps you to:

• Identify inputs and outputs.
• Trace signal lines and bus elements to sources and terminations.
• Annotate signal characteristics such as data type, dimensions, and sample time.

When you build a model, transition block pairs such as Inport and Outport and From
and Goto help you to simplify connections of the crossovers among many signal lines. The
interface view enables you to trace the hand-off and receipt between such blocks by way
of colored highlights.

Trace Connections in a Subsystem

This example shows how to use the display of model interfaces to examine, trace, and
understand the flow of signals and buses. This model propagates bus signals into
referenced models.

1 Open the model sldemo_mdlref_counter_bus.

The counter_bus_input port channels the data and saturation limits of the counter
to count and sets the upper and lower limit values. The increment_bus_input port
channels a bus signal to change the increment and reset the counter.

11 Exploring, Searching, and Browsing Models

11-90

2 Select Display > Interface to enable the interface view.

Tip Use the perspectives control in the lower-right corner of the model to toggle the
display of interfaces.

The three bars next to the counter_input and increment_input interfaces
indicate the bus input signals. The single bars indicate data lines, such as counts
per second, or command lines, such as reset, to start a new counting sequence. The
three bars next to limits indicate that bus signals are nested inside the COUNTER
subsystem.

 Trace Connections Using Interface Display

11-91

3 Under counter_input, click data.

The path for the data appears in blue. The COUNTER subsystem is highlighted,
indicating the path continues within it.

11 Exploring, Searching, and Browsing Models

11-92

4 Double-click the COUNTER subsystem.

The continuation of the path for the data signal appears in blue.
5 Select Simulation > Update Diagram.

Note: This model requires values from a parent model to simulate completely.

The counter_signal interface displays these signal attributes, which help you to
synchronize signals between blocks during simulation:

• Data type: int32 (signed 32-bit integer)
• Dimensions: (2) (a 1-D Simulink representation of a scalar)
• Sample time: Ts:D1 (a discrete sample time of D1, which is the highest speed)

In addition, when you update the diagram with interfaces displayed, the model
displays the color code for sample time at each interface. For example, this model
displays a red bar at each interface to indicate a sample time of D1.

 Trace Connections Using Interface Display

11-93

Tip To display a legend of the meaning of sample time colors, select Display >
Sample Time > Colors.

6 Click the counter_signal output interface to see the output of the bus outlined in
blue, where the path ends.

11 Exploring, Searching, and Browsing Models

11-94

7 If you want to print this diagram with the interfaces displayed, select File > Print >
Print.

12

Managing Model Configurations

• “About Model Configurations” on page 12-2
• “Multiple Configuration Sets in a Model” on page 12-3
• “Share a Configuration for Multiple Models” on page 12-4
• “Share a Configuration Across Referenced Models” on page 12-6
• “Manage a Configuration Set” on page 12-11
• “Manage a Configuration Reference” on page 12-17
• “About Configuration Sets” on page 12-25
• “About Configuration References” on page 12-28
• “Model Configuration Command Line Interface” on page 12-32

12 Managing Model Configurations

12-2

About Model Configurations

A model configuration is a named set of values for the parameters of a model. It
is referred to as a configuration set. Every new model is created with a default
configuration set, called Configuration, that initially specifies default values for
the model parameters. You can change the default values for new models by setting
the Model Configuration Preferences. For more information, see “Model Configuration
Preferences” on page 12-27.

You can subsequently create and modify additional configuration sets and associate them
with the model. The configuration sets associated with a model can specify different
values for any or all configuration parameters. For more information, see “About
Configuration Sets” on page 12-25. For examples on how to use configuration sets,
see:

• “Multiple Configuration Sets in a Model” on page 12-3
• “Manage a Configuration Set” on page 12-11

By default, a configuration set resides within a single model so that only that model
can use it. Alternatively, you can store a configuration set independently, so that other
models can use it. A configuration set that exists outside any model is a freestanding
configuration set. Each model that uses a freestanding configuration set defines a
configuration reference that points to the freestanding configuration set. A freestanding
configuration set allows you to single-source a configuration set for several models. For
more information, see “About Configuration References” on page 12-28. For examples
on how to use configuration references, see:

• “Share a Configuration for Multiple Models” on page 12-4
• “Share a Configuration Across Referenced Models” on page 12-6
• “Manage a Configuration Reference” on page 12-17

 Multiple Configuration Sets in a Model

12-3

Multiple Configuration Sets in a Model

A model can include many different configuration sets. This capability is useful if you
want to compare the difference in simulation output after changing the values of several
parameters. Attaching additional configuration sets allows you to quickly switch the
active configuration.

1 To create additional configuration sets in your model, in the Model Explorer, select
your model node in the Model Hierarchy pane and do one of the following:

• Right-click the model node and select Configuration > Add Configuration.
• Right-click an existing configuration set. In the context menu, select Copy.

2 To import a previously saved configuration set, right-click the model node and select
Configuration > Import. In the Import Configuration From File dialog box, select
a configuration file.

3 To modify the newly added configuration set, in the Model Hierarchy pane, select the
configuration node. In the Contents pane, select a component, and then modify any
parameters which are displayed in the right pane.

4 To make the new configuration set the active configuration, in the configuration set
context menu, select Activate. In the Model Hierarchy pane, the new configuration
set name is now displayed as (Active).

5 To simulate your model using a different configuration set, switch the active
configuration by repeating step 4.

12 Managing Model Configurations

12-4

Share a Configuration for Multiple Models
To share a configuration set between models, the configuration set must be a
configuration set object in the base workspace and you must create a configuration
reference in your model to reference the configuration set object. You can create
configuration references in other models that also point to the same configuration set
object.

For example, first convert an existing configuration set in your model to a configuration
reference:

1 Open the Model Explorer.
2 In the Model Hierarchy pane, right-click the active configuration set to share.
3 In the configuration set context menu, select Convert to Configuration

Reference, which opens a dialog box. Alternatively, you can right-click the model
node and select Configuration > Convert Active Configuration to Reference.

4 In the Convert Active Configuration to Reference dialog box, use the default
configuration set object name, configSetObj, or type a name.

5 Click OK, which creates a configuration reference in the model and a configuration
set object in the base workspace. The configuration reference points to the
configuration set object, which has the same values as the original active
configuration set. The configuration reference name in the Model Hierarchy is now
marked as (Active).

6 To change the name of the configuration reference, select it in the Model Hierarchy,
and in the right pane, change the Name field.

To share the preceding configuration set, which is stored as configSetObj in the base
workspace, create a configuration reference in another model:

1 In the Model Hierarchy pane, right-click the model node.
2 In the context menu, select Configuration > Add Configuration Reference.
3 The Create Configuration Reference dialog box opens. Specify the name of the

configuration set object, configSetObj, in the base workspace.
4 To make the new configuration reference the active configuration, in the Model

Hierarchy, right-click the configuration reference. In the context menu, select
Activate.

Both models now contain a configuration reference that points to the same configuration
set object in the base workspace. Before saving and closing your models, follow the

 Share a Configuration for Multiple Models

12-5

instructions to “Save a Referenced Configuration Set” on page 12-22. If you do not
save the referenced configuration set from the base workspace, when you reopen your
model, the configuration reference is unresolved. To set up your model to automatically
load the configuration set object, see “Callbacks for Customized Model Behavior” on page
4-68.

12 Managing Model Configurations

12-6

Share a Configuration Across Referenced Models

This example shows how to share the same configuration set for the top model and
referenced models in a model reference hierarchy. You can use a configuration reference
in each of the models to reference the same configuration set object in the base
workspace.

In the diagram, each model shown in the Model Dependency Viewer specifies
the configuration reference, my_configuration, as its active configuration set.
my_configuration points to the freestanding configuration set, Configuration.
Therefore, the parameter values in Configuration apply to all four models. Any
parameter change in Configuration applies to all four models.

 Share a Configuration Across Referenced Models

12-7

Convert Configuration Set to Configuration Reference

In the top model, you must convert the active configuration set to a configuration
reference:

1 Open the sldemo_mdlref_depgraph model and the Model Explorer.
2 In the Model Hierarchy pane, expand the top model, sldemo_mdlref_depgraph.

In the list, right-click Configuration (Active). In the context menu, select
Convert to Configuration Reference.

3 In the Configuration set name field, specify a name for the configuration set
object, or use the default name, configSetObj. This configuration set object is
stored in the base workspace.

4 Optionally, you can save the configuration set to a MAT-file. Select Save
configuration set to file. This enables the File name parameter.

5 In the File name field, specify a name for the MAT-file.

6 Click OK.

The original configuration set is now stored as a configuration set object, configSetObj,
in the base workspace. The configuration set is also stored in a MAT-file,
configuration_set.mat. The active configuration for the top model is now a

12 Managing Model Configurations

12-8

configuration reference. This configuration reference points to the configuration set object
in the base workspace.

Propagate a Configuration Reference

Now that the top model contains an active configuration reference, you can propagate
this configuration reference to all of the child models. Propagation creates a copy of the
top model configuration reference in each referenced model. For each referenced model,
the configuration reference is now the active configuration. The configuration references
point to the configuration set object, configSetObj, in the base workspace.

1 In the Model Explorer, in the Model Hierarchy pane, expand the
sldemo_mdlref_depgraph node.

 Share a Configuration Across Referenced Models

12-9

2 Right-click the active configuration reference, Reference (Active). In the context
menu, select Propagate to Referenced Models.

3 In the Configuration Reference Propagation dialog box, select the check box for each
referenced model. In this example, they are already selected.

4 Verify that your current folder is a writable folder. The propagation mechanism
saves the original configuration parameters for each referenced model so that you
can undo the propagation. Click Propagate.

5 In the Propagation Confirmation dialog box, click OK.
6 In the Configuration Reference Propagation dialog box, the Propagation Report is

updated and the Status for each referenced model is marked as Converted.

Undo a Configuration Reference Propagation

After propagating a configuration reference from a top model to the referenced models,
you can undo the propagation for all referenced models by clicking Restore All. If you
want to undo the propagation for individual referenced models, in the Undo/Redo
column, click the Undo button. The Propagation Report is updated and the Status for
the referenced model is set to Restored.

12 Managing Model Configurations

12-10

 Manage a Configuration Set

12-11

Manage a Configuration Set

In this section...

“Create a Configuration Set in a Model” on page 12-11
“Create a Configuration Set in the Base Workspace” on page 12-11
“Open a Configuration Set in the Configuration Parameters Dialog Box” on page
12-12
“Activate a Configuration Set” on page 12-13
“Set Values in a Configuration Set” on page 12-13
“Copy, Delete, and Move a Configuration Set” on page 12-13
“Save a Configuration Set” on page 12-14
“Load a Saved Configuration Set” on page 12-15
“Copy Configuration Set Components” on page 12-15

Create a Configuration Set in a Model

1 Open the Model Explorer.
2 In the Model Hierarchy pane, select the model name.
3 You can create a new configuration set in any of the following ways:

• From the Add menu, select Configuration.
• On the toolbar, click the Add Configuration button .
• In the Model Hierarchy pane, right-click an existing configuration set and copy

and paste the configuration set.

Create a Configuration Set in the Base Workspace

1 Open the Model Explorer.
2 In the Model Hierarchy pane, select Base Workspace.
3 You can create a new configuration set object in the following ways:

• From the Add menu, select Configuration

12 Managing Model Configurations

12-12

• In the toolbar, click the Add Configuration button
4 The configuration set object appears in the Contents pane, with the default name,

ConfigSet.

Open a Configuration Set in the Configuration Parameters Dialog Box

In the Model Explorer, to open the Configuration Parameters dialog box for a
configuration set, right-click the configuration set's node to display the context menu,
then select Open. You can open the Configuration Parameters dialog box for any
configuration set, whether or not it is active.

The title bar of the dialog box indicates whether the configuration set is active or
inactive.

 Manage a Configuration Set

12-13

Note: Every configuration set has its own Configuration Parameters dialog box. As you
change the state of a configuration set, the title bar of the dialog box changes to reflect
the state.

Activate a Configuration Set

Only one configuration set associated with a model is active at any given time. The active
set determines the current values of the model parameters. You can change the active or
inactive set at any time (except when executing the model). In this way, you can quickly
reconfigure a model for different purposes, for example, testing and production, or apply
standard configuration settings to new models.

To activate a configuration set, right-click the configuration set node to display the
context menu, then select Activate.

Set Values in a Configuration Set

To set the value of a parameter in a configuration set, in the Model Explorer:

1 In the Model Hierarchy, select the configuration set node.
2 In the Contents pane, select the component from where the parameter resides.
3 In the Dialog pane, edit the parameter value.

Copy, Delete, and Move a Configuration Set

You can use edit commands on the Model Explorer Edit or context menus or object drag-
and-drop operations to delete, copy, and move configuration sets among models displayed
in the Model Hierarchy pane.

For example, to copy a configuration set from one model to another:

1 In the Model Hierarchy pane, right-click the configuration set node that you want
to copy.

2 Select Copy in the configuration set context menu.
3 Right-click the model node in which you want to create the copy.
4 Select Paste from the model context menu.

12 Managing Model Configurations

12-14

To copy the configuration set using object drag-and-drop, hold down the right mouse
button and drag the configuration set node to the node of the model in which you want to
create the copy.

To move a configuration set from one model to another using drag-and-drop, hold the left
mouse button down and drag the configuration set node to the node of the destination
model.

Note You cannot move or delete an active configuration set from a model.

Save a Configuration Set

You can save the settings of configuration sets as MATLAB functions or scripts. Using
the MATLAB function or script, you can share and archive model configuration sets. You
can also compare the settings in different configuration sets by comparing the MATLAB
functions or scripts of the configuration sets.

To save an active or inactive configuration set from the Model Explorer:

1 Open the model.
2 Open the Model Explorer.
3 Save the configuration set:

a In the Model Hierarchy pane:

• Right-click the model node and select Configuration > Export Active
Configuration Set.

• Right-click a configuration set and select Export.
• Select the model. In the Contents pane, right-click a configuration set and

select Export.
b In the Export Configuration Set to File dialog box, specify the name of the

file and the file type. If you specify a .m extension, the file contains a function
that creates a configuration set object. If you specify a .mat extension, the file
contains a configuration set object.

 Manage a Configuration Set

12-15

Note: Do not specify the name of the file to be the same as a model name. If the
file and model have the same name, the software cannot determine which file
contains the configuration set object when loading the file.

c Click Save. The Simulink software saves the configuration set.

Load a Saved Configuration Set

You can load configuration sets that you previously saved as MATLAB functions or
scripts.

To load a configuration set from the Model Explorer:

1 Open the model.
2 Open the Model Explorer.
3 In the Model Hierarchy pane, right-click the model and select Configuration >

Import.
4 In the Import Configuration Set From File dialog box, select the .m file that contains

the function to create the configuration set object, or the .mat file that contains the
configuration set object.

5 Click Open. The Simulink software loads the configuration set.

Note: If you load a configuration set object that contains an invalid custom target,
the software sets the “System target file” parameter to ert.tlc.

6 Optionally, activate the configuration set. For more information, see “Activate a
Configuration Set” on page 12-13.

Copy Configuration Set Components

To copy a configuration set component from one configuration set to another:

1 Select the component in the Model Explorer Contents pane.
2 From either the Model Explorer Edit menu or the component context menu, select

Copy.
3 Select the configuration set into which you want to copy the component.

12 Managing Model Configurations

12-16

4 From either the Model Explorer Edit menu or the component context menu, select
Paste.

Note The copy replaces the component of the same name in the destination
configuration set. For example, if you copy the Solver component of configuration
set A and paste it into configuration set B, the copy replaces the existing Solver
component in B.

 Manage a Configuration Reference

12-17

Manage a Configuration Reference
In this section...

“Create and Attach a Configuration Reference” on page 12-17
“Resolve a Configuration Reference” on page 12-18
“Activate a Configuration Reference” on page 12-20
“Manage Configuration Reference Across Referenced Models” on page 12-21
“Change Parameter Values in a Referenced Configuration Set” on page 12-22
“Save a Referenced Configuration Set” on page 12-22
“Load a Saved Referenced Configuration Set” on page 12-23
“Why is the Build Button Not Available for a Configuration Reference?” on page
12-23

Create and Attach a Configuration Reference

To use a configuration reference, it must point to freestanding configuration set. Create
a freestanding configuration set before creating a configuration reference, see “Create a
Configuration Set in the Base Workspace” on page 12-11.

To create a configuration reference:

1 In the Model Explorer, in the Model Hierarchy pane, select the model.
2

Click the Add Reference tool or select Add > Configuration Reference. The
Create Configuration Reference dialog box opens.

3 Specify the Configuration set name of the configuration set object in the base
workspace to be referenced.

4 Click OK. If you chose to create a configuration reference without first creating a
configuration set object, a dialog box opens asking if you would like to continue. If
you choose:

• Yes, an unresolved configuration reference is created. For more information, see
“Unresolved Configuration References” on page 12-29. Follow the instructions
in “Resolve a Configuration Reference” on page 12-18.

• No, then the configuration reference is not created. Follow the instructions in
“Create a Configuration Set in the Base Workspace” on page 12-11, and then
return to step 1 above.

12 Managing Model Configurations

12-18

5 A new configuration reference appears in the Model Hierarchy under the selected
model. The default name of the new reference is Reference.

Resolve a Configuration Reference

An unresolved configuration reference is a configuration reference that is not pointing to
a valid configuration set object.

To resolve a configuration reference:

1 In the Model Hierarchy pane, select the unresolved configuration reference or right-
click the configuration reference, and select Open from the context menu.

The Configuration Reference dialog box opens in the Dialog pane or a separate
window.

 Manage a Configuration Reference

12-19

2 Specify the Referenced configuration set to be a configuration set object already
in the base workspace. If one does not exist, see “Create a Configuration Set in the
Base Workspace” on page 12-11.

Tip Do not specify the name of a configuration reference. If you nest a configuration
reference, an error occurs.

3 Click OK or Apply.

If you specified a Referenced configuration that exists in the base workspace, the Is
Resolved field in the dialog box changes to yes.

12 Managing Model Configurations

12-20

Activate a Configuration Reference

After you create a configuration reference and attach it to a model, you can activate it so
that it is the active configuration.

• In the GUI, from the context menu of the configuration reference, select Activate.
• From the API, execute setActiveConfigSet, specifying the configuration reference

as the second argument.

When a configuration reference is active, the Is Active field of the Configuration
Reference dialog box changes to yes. Also, the Model Explorer shows the name of the
reference with the suffix (Active).

 Manage a Configuration Reference

12-21

The freestanding configuration set of the active reference now provides the configuration
parameters for the model.

Manage Configuration Reference Across Referenced Models

In a model hierarchy, you can share a configuration reference across referenced
models. Using the Configuration Reference Propagation dialog box, you can propagate
a configuration reference of a top model to an individual referenced model or to all
referenced models in the model hierarchy. The dialog box provides:

• A list of referenced models in the top model.
• The ability to select only specific referenced models for propagation.
• After propagation, the status for the converted configuration for each referenced

model.
• A view of the changed parameters after the propagation.
• The ability to undo the configuration reference and restore the previous configuration

settings for a referenced model.

To open the dialog box, in the Model Explorer, in the model hierarchy pane, right-click
the configuration reference node of a model. In the context menu, select Propagate to
Referenced Models. For an example, see “Share a Configuration Across Referenced
Models” on page 12-6.

12 Managing Model Configurations

12-22

Change Parameter Values in a Referenced Configuration Set

To obtain a referenced configuration set:

1 In the Model Hierarchy pane, select the configuration reference, or right-click the
configuration reference, and select Open from the context menu.

The Configuration Reference dialog box appears in the Dialog pane or in a separate
window.

2 To the right of the Referenced configuration field, click Open. The Configuration
Parameters dialog box opens. You can now change and apply parameter values as
you would for any configuration set.

Save a Referenced Configuration Set

If your model uses a configuration reference to specify the model configuration, before
closing your model, you need to save the referenced configuration set to a MAT-file or
MATLAB script.

 Manage a Configuration Reference

12-23

1 In the Model Explorer, in the Model Hierarchy, select Base Workspace.
2 In the Contents pane, right-click the name of the referenced configuration set object.
3 From the context menu, select Export Selected.
4 Specify the filename for saving the configuration set as either a MAT-file or a

MATLAB script.

Tip When you reopen the model you must load the saved configuration set, otherwise,
the configuration reference is unresolved. To set up your model to automatically load the
configuration set object, see “Callbacks for Customized Model Behavior” on page 4-68.

Load a Saved Referenced Configuration Set

If your model uses a configuration reference to specify the model configuration, you need
to load the referenced configuration set from a MAT-file or MATLAB script to the base
workspace.

1 In the Model Explorer, in the Model Hierarchy, right-click Base Workspace.
2 From the context menu, select Import.
3 Specify the filename for the saved configuration set and select OK. The configuration

set object appears in the base workspace.

Tip When you reopen the model you must load the saved configuration set, otherwise,
the configuration reference is unresolved. To set up your model to automatically load the
configuration set object, see “Callbacks for Customized Model Behavior” on page 4-68.

Why is the Build Button Not Available for a Configuration Reference?

The Code Generation pane of the Configuration Parameters dialog box contains a Build
button. Its availability depends on whether the configuration set displayed by the dialog
box resides in a model or is a freestanding configuration set.

• When the pane displays a configuration set stored in a model, the Build button is
available. Click it to generate and compile code for the model.

• When the pane displays a freestanding configuration set, the Build button is
unavailable. The configuration set does not know which (if any) models link to it.

12 Managing Model Configurations

12-24

To provide the same capabilities whether a configuration set resides in a model or is
freestanding, the Configuration Reference dialog box contains a Build button. This
button has the same capability as its equivalent in the Configuration Parameters dialog
box. It operates on the model that contains the configuration reference.

 About Configuration Sets

12-25

About Configuration Sets

In this section...

“What Is a Configuration Set?” on page 12-25
“What Is a Freestanding Configuration Set?” on page 12-26
“Model Configuration Preferences” on page 12-27

What Is a Configuration Set?

A configuration set comprises groups of related parameters called components. Every
configuration set includes the following components:

• Solver
• Data Import/Export
• Optimization
• Diagnostics
• Hardware Implementation
• Model Referencing
• Simulation Target

Some MathWorks products that work with Simulink, such as Simulink Coder, define
additional components. If such a product is installed on your system, the configuration
set also contains the components that the product defines.

When you select any model configuration, the Model Configuration dialog appears in the
Model Explorer Dialog pane. In this location, you can edit the name and description of
your configuration.

12 Managing Model Configurations

12-26

What Is a Freestanding Configuration Set?

A freestanding configuration set is a configuration set object, Simulink.ConfigSet,
stored in the base workspace. To use a freestanding configuration set as the configuration
for a model, you must create a configuration reference in the model that references it.
You can create a freestanding configuration set in the base workspace in these ways:

• Create a new configuration set object.
• Copy a configuration set that resides within a model to the base workspace.
• Load a configuration set from a MAT-file.

You can store any number of configuration sets in the base workspace by assigning each
set to a different MATLAB variable.

 About Configuration Sets

12-27

Note: Although you can store a configuration set in a model and point to it with a
base workspace variable, such a configuration set is not freestanding. Using it in a
configuration reference causes an error.

Model Configuration Preferences

Model Configuration Preferences are the preferred configuration for new models. You can
change the preferred configuration by editing the settings in the Model Explorer.

1 Select View > Show Configuration Preferences to display the Configuration
Preferences node in the expanded Simulink Root node.

2 Under the Simulink Root node, select Configuration Preferences . The Model
Configuration Preferences dialog box opens in the Dialog pane.

3 In the Contents pane, select components and change any parameter values.

12 Managing Model Configurations

12-28

About Configuration References

In this section...

“What Is a Configuration Reference?” on page 12-28
“Why Use Configuration References?” on page 12-28
“Unresolved Configuration References” on page 12-29
“Configuration Reference Limitations” on page 12-29
“Configuration References for Models with Older Simulation Target Settings” on page
12-30

What Is a Configuration Reference?

A configuration reference in a model is a reference to a configuration set object in the
base workspace. A model that has a configuration reference that points to a freestanding
configuration set uses that configuration set when configuration reference is active. The
model then has the same configuration parameters as if the referenced configuration set
resides directly in the model.

You can attach any number of configuration references to a model. Each reference must
have a unique name. For more information, see “Why Use Configuration References?”
on page 12-28. For an example on how to use configuration references, see “Share a
Configuration for Multiple Models” on page 12-4 or “Create and Attach a Configuration
Reference” on page 12-17.

Tip Save or export the configuration set object. Otherwise, when you reopen your model
the configuration reference is unresolved. To set up your model to automatically load the
configuration set object, see “Callbacks for Customized Model Behavior” on page 4-68.

Why Use Configuration References?

You can use configuration references and freestanding configuration sets to:

• Assign the same configuration set to any number of models

Each model that uses a given configuration set contains a configuration reference
that points to a MATLAB variable. The value of that variable is a freestanding
configuration set. All the models share that configuration set. Changing the value of

 About Configuration References

12-29

any parameter in the set changes it for every model that uses the set. Use this feature
to reconfigure many referenced models quickly and ensure consistent configuration of
parent models and referenced models.

• Replace the configuration sets of any number of models without changing
the model files

When multiple models use configuration references to access a freestanding
configuration set, assigning a different set to the MATLAB variable assigns that set
to all models. Use this feature to maintain a library of configuration sets and assign
them to any number of models in a single operation.

• Use different configuration sets for a referenced model used in different
contexts without changing the model file

A referenced model that uses different configuration sets in different contexts
contains a configuration reference that specifies the referenced model configuration
set as a variable. When you call an instance of the referenced model, Simulink
software assigns that variable a freestanding configuration set for the current context.

Unresolved Configuration References

When a configuration reference does not reference a valid configuration set, the Is
Resolved field of the Configuration Reference dialog box has the value no. If you
activate an unresolved configuration reference, no warning or error occurs. However, an
unresolved configuration reference that is active provides no configuration parameter
values to the model. Therefore:

• Fields that display values known only by accessing a configuration parameter, like
Stop Time in the model window, are blank.

• Trying to build the model, simulate it, generate code for it, or otherwise require it to
access configuration parameter values, causes an error.

For more information, see “Resolve a Configuration Reference” on page 12-18.

Configuration Reference Limitations

• You cannot nest configuration references. Only one level of indirection is available,
so a configuration reference cannot link to another configuration reference. Each
reference must specify a freestanding configuration set.

• If you replace the base workspace variable and configuration set that configuration
references use, execute refresh for each reference that uses the replaced variable

12 Managing Model Configurations

12-30

and set. See “Use refresh When Replacing a Referenced Configuration Set” on page
12-39.

• If you activate a configuration reference when using a custom target, the
ActivateCallback function does not trigger to notify the corresponding
freestanding configuration set. Likewise, if a freestanding configuration set switches
from one target to another, the ActivateCallback function does not trigger to
notify the new target. This behavior occurs, even if an active configuration reference
points to that target. For more information about ActivateCallback functions, see
“rtwgensettings Structure” in the Simulink Coder documentation.

Configuration References for Models with Older Simulation Target
Settings

Suppose that you have a nonlibrary model that contains one of these blocks:

• MATLAB Function
• Stateflow chart
• Truth Table
• Attribute Function

In R2008a and earlier, this type of nonlibrary model does not store simulation target (or
sfun) settings in the configuration parameters. Instead, the model stores the settings
outside any configuration set.

When you load this older type of model, the simulation target settings migrate to
parameters in the active configuration set.

• If the active configuration set resides internally with the model, the migration
happens automatically.

• If the model uses an active configuration reference to point to a configuration set in
the base workspace, the migration process is different.

The following sections describe the two types of migration for nonlibrary models that use
an active configuration reference.

Default Migration Process That Disables the Configuration Reference

Because multiple models can share a configuration set in the base workspace, loading
a nonlibrary model cannot automatically change any parameter values in that

 About Configuration References

12-31

configuration set. By default, these actions occur during loading of a model to ensure that
simulation results are the same, no matter which version of the software that you use:

• A copy of the configuration set in the base workspace attaches to the model.
• The simulation target settings migrate to the corresponding parameters in this new

configuration set.
• The new configuration set becomes active.
• The old configuration reference becomes inactive.

A warning message appears in the MATLAB Command Window to describe those
actions. Although this process ensures consistent simulation results for the model,
it disables the configuration reference that links to the configuration set in the base
workspace.

12 Managing Model Configurations

12-32

Model Configuration Command Line Interface

In this section...

“Overview” on page 12-32
“Load and Activate a Configuration Set at the Command Line” on page 12-33
“Save a Configuration Set at the Command Line” on page 12-34
“Create a Freestanding Configuration Set at the Command Line” on page 12-34
“Create and Attach a Configuration Reference at the Command Line” on page 12-35
“Attach a Configuration Reference to Multiple Models at the Command Line” on page
12-36
“Get Values from a Referenced Configuration Set” on page 12-37
“Change Values in a Referenced Configuration Set” on page 12-37
“Obtain a Configuration Reference Handle” on page 12-38
“Use refresh When Replacing a Referenced Configuration Set” on page 12-39

Overview

An application programming interface (API) lets you create and manipulate
configuration sets at the command line or in a script. The API includes the
Simulink.ConfigSet and Simulink.ConfigSetRef classes and the following
functions:

• attachConfigSet

• attachConfigSetCopy

• detachConfigSet

• getConfigSet

• getConfigSets

• setActiveConfigSet

• getActiveConfigSet

• openDialog

• closeDialog

• Simulink.BlockDiagram.saveActiveConfigSet

• Simulink.BlockDiagram.loadActiveConfigSet

 Model Configuration Command Line Interface

12-33

These functions, along with the methods and properties of Simulink.ConfigSet class,
allow you to create a script to:

• Create and modify configuration sets.
• Attach configuration sets to a model.
• Set the active configuration set for a model.
• Open and close configuration sets.
• Detach configuration sets from a model.
• Save configuration sets.
• Load configuration sets.

For examples using the preceding functions and the Simulink.ConfigSet class, see the
function and class reference pages.

Load and Activate a Configuration Set at the Command Line

To load a configuration set from a MATLAB function or script:

1 Use the getActiveConfigSet or getConfigSet function to get a handle to the
configuration set that you want to update.

2 Call the MATLAB function or execute the MATLAB script to load the saved
configuration set.

3 Optionally, use the attachConfigSet function to attach the configuration set to the
model. To avoid configuration set naming conflicts, set allowRename to true.

4 Optionally, use the setActiveConfigSet function to activate the configuration set.

Alternatively, to load a configuration set at the command line and make it the active
configuration set:

1 Open the model.
2 Use the Simulink.BlockDiagram.loadActiveConfigSet function to load the

configuration set and make it active.

Note: If you load a configuration set with the same name as the:

• Active configuration set, the software overwrites the active configuration set.

12 Managing Model Configurations

12-34

• Inactive configuration set that is associated with the model, the software
detaches the inactive configuration from the model.

Save a Configuration Set at the Command Line

To save an active or inactive configuration set as a MATLAB function or script:

1 Use the getActiveConfigSet or getConfigSet function to get a handle to the
configuration set.

2 Use the saveAs method of the Simulink.Configset class to save the
configuration set as a function or script.

Alternatively, to save the active configuration set:

1 Open the model.
2 Use the Simulink.BlockDiagram.saveActiveConfigSet function to save the

active configuration set.

Create a Freestanding Configuration Set at the Command Line

Copy a Configuration Set Stored in a Model

Create a freestanding configuration set to be referenced by a configuration reference in
several models. You must copy any configuration set obtained from an existing model,
otherwise, cset refers to the existing configuration set stored in the model, rather than
a new freestanding configuration set in the base workspace. For example, use one of the
following:

• cset = copy (getActiveConfigSet(model))

• cset = copy (getConfigSet(model, ConfigSetName))

model is any open model, and ConfigSetName is the name of any configuration set
attached to the model.

Read a Configuration Set from a MAT-File

To use a freestanding configuration set across multiple MATLAB sessions, you can save
it to a MAT-file. To create the MAT-file, you first copy the configuration set to a base
workspace variable, then save the variable to the MAT-file:

 Model Configuration Command Line Interface

12-35

save (workfolder/ConfigSetName.mat, cset)

workfolder is a working folder, ConfigSetName.mat is the MAT-file name, and cset
is a base workspace variable whose value is the configuration set to save. When you later
reopen your model, you can reload the configuration set into the variable:

load (workfolder/ConfigSetName.mat)

To execute code that reads configuration sets from MAT-files, use one of these
techniques:

• The preload function of a top model
• The MATLAB startup script
• Interactive entry of load statements

Create and Attach a Configuration Reference at the Command Line

To create and populate a configuration reference, Simulink.ConfigSetRef, using the API:

1 Create the reference:

cref = Simulink.ConfigSetRef

2 Change the default name if desired:

cref.Name = 'ConfigSetRefName'

3 Specify the referenced configuration set:

cref.SourceName = 'cset'

Tip Do not specify the name of a configuration reference. If you nest a configuration
reference, an error occurs.

4 Attach the reference to a model:

attachConfigSet(model, cref, true)

The third argument is optional and authorizes renaming to avoid a name conflict.

Using a configuration reference with an invalid configuration set, SourceName,
generates an error and is called an unresolved configuration reference. The GUI

12 Managing Model Configurations

12-36

equivalent of SourceName is Referenced configuration. You can later use the API or
GUI to provide the name of a freestanding configuration set. For more information, see
“Unresolved Configuration References” on page 12-29.

Note: A Simulink.ConfigSetRef object cannot be saved to a MATLAB file. To save
the configuration, call the Simulink.ConfigSetRef.getRefConfigSet method. Then
save the Simulink.ConfigSet object that the method returns. For more information,
see “Save a Configuration Set at the Command Line” on page 12-34.

Attach a Configuration Reference to Multiple Models at the Command
Line

After you create a configuration reference and attach it to a model, you can attach
copies of the reference to any other models. Each model has its own copy of any
configuration reference attached to it, just as each model has its own copy of any
attached configuration set.

If you use the GUI, attaching an existing configuration reference to another model
automatically attaches a distinct copy to the model. If necessary to prevent name conflict,
the GUI adds or increments a digit at the end of the name of the copied reference. If you
use the API, be sure to copy the configuration reference explicitly before attaching it,
with statements like:

cref = copy (getConfigSet(model, ConfigSetRefName))

attachConfigSet (model, cref, true)

If you omit the copy operation, cref becomes a handle to the original configuration
reference, rather than a copy of the reference. Any attempt to use cref causes an error.
If you omit the argument true to attachConfigSet, the operation fails if a name
conflict exists.

The following example shows code for obtaining a freestanding configuration set and
attaching references to it from two models. After the code executes, one of the models
contains an internal configuration set and a configuration reference that points to a
freestanding copy of that set. If the internal copy is an extra copy, you can remove it with
detachConfigSet, as shown in the last line of the example.

open_system('model1')

% Get handle to local cset

 Model Configuration Command Line Interface

12-37

cset = getConfigSet('model1', 'Configuration')

% Create freestanding copy; original remains in model

cset1 = copy(cset)

% In the original model, create a configuration

% reference to the cset copy

cref1 = Simulink.ConfigSetRef

cref1.SourceName = 'cset1'

% Attach the configuration reference to the model

attachConfigSet('model1', cref1, true)

% In a second model, create a configuration

% reference to the same cset

open_system('model2')

% Rename if name conflict occurs

attachConfigSetCopy('model2', cref1, true)

% Delete original cset from first model

detachConfigSet('model1', 'Configuration')

Get Values from a Referenced Configuration Set

You can use get_param on a configuration reference to obtain parameter values from
the linked configuration set, as if the reference object were the configuration set itself.
Simulink software retrieves the referenced configuration set and performs the indicated
get_param on it.

For example, if configuration reference cref links to configuration set cset, the
following operations give identical results:

get_param (cset, 'StopTime')

get_param (cref, 'StopTime')

Change Values in a Referenced Configuration Set

By operating on only a configuration reference, you cannot change the referenced
configuration set parameter values. If you execute:

set_param (cset, 'StopTime', '300')

set_param (cref, 'StopTime', '300') % ILLEGAL

12 Managing Model Configurations

12-38

the first operation succeeds, but the second causes an error. Instead, you must obtain the
configuration set itself and change it directly, using the GUI or the API.

To obtain a referenced configuration set using the API:

1 Follow the instructions in “Obtain a Configuration Reference Handle” on page
12-38.

2 Obtain the configuration set cset from the configuration reference cref:

cset = cref.getRefConfigSet

You can now use set_param on cset to change parameter values. For example:

set_param (cset, 'StopTime', '300')

Tip If you want to change parameter values through the GUI, execute:

cset.openDialog

The Configuration Parameters dialog box opens on the specified configuration set.

Obtain a Configuration Reference Handle

Most functions and methods that operate on a configuration reference take a handle to
the reference. When you create a configuration reference:

cref = Simulink.ConfigSetRef

the variable cref contains a handle to the reference. If you do not already have a handle,
you can obtain one by executing:

cref = getConfigSet(model, 'ConfigSetRefName')

ConfigSetRefName is the name of the configuration reference as it appears in the
Model Explorer, for example, Reference. You specify this name by setting the Name
field in the Configuration Reference dialog box or executing:

cref.Name = 'ConfigSetRefName'

The technique for obtaining a configuration reference handle is the same technique
you use to obtain a configuration set handle. Wherever the same operation applies to
both configuration sets and configuration references, applicable functions and methods
overload to perform correctly with either class.

 Model Configuration Command Line Interface

12-39

Use refresh When Replacing a Referenced Configuration Set

You can replace the base workspace variable and configuration set that a configuration
reference uses. However, the pointer from the configuration reference to the
configuration set becomes invalid. To avoid this situation, execute:

cref.refresh

cref is the configuration reference. If you do not execute “refresh”, the configuration
reference continues to use the previous instance of the base workspace variable and its
configuration set. This example illustrates the problem.

% Create a new configuration set

cset1 = Simulink.ConfigSet;

% Set a non-default stop time

set_param (cset1, 'StopTime', '500')

% Create a new configuration reference

cref1 = Simulink.ConfigSetRef;

% Resolve the configuration reference to the configuration set

cref1.SourceName = 'cset1';

% Attach the configuration reference to an untitled model

attachConfigSet('untitled', cref1, true)

% Set the active configuration set to the reference

setActiveConfigSet('untitled','Reference')

% Replace config set in the base workspace

cset1 = Simulink.ConfigSet;

% Call to refresh is commented out!

% cref1.refresh;

% Set a different stop time

set_param (cset1, 'StopTime', '75')

If you simulate the model, the simulation stops at 500, not 75. Calling cref1.refresh
as shown prevents the problem.

13

Configuring Models for Targets with
Multicore Processors

• “Concepts in Multicore Programming” on page 13-2
• “Multicore Programming with Simulink” on page 13-10
• “Modeling Process for Concurrent Execution” on page 13-26
• “Configure Your Model” on page 13-27
• “Customize Concurrent Execution Settings” on page 13-29
• “Interpret Simulation Results” on page 13-38
• “Build and Download to a Multicore Target” on page 13-43
• “Concurrent Execution Models” on page 13-54
• “Command-Line Interface for Concurrent Execution” on page 13-55

13 Configuring Models for Targets with Multicore Processors

13-2

Concepts in Multicore Programming

In this section...

“Basics of Multicore Programming” on page 13-2
“Types of Parallelism” on page 13-3
“System Partitioning for Parallelism” on page 13-6
“Challenges in Multicore Programming” on page 13-7

Basics of Multicore Programming

Multicore programming helps you create concurrent systems for deployment on multicore
processor and multiprocessor systems. A multicore processor system is a single processor
with multiple execution cores in one chip. By contrast, a multiprocessor system has
multiple processors on the motherboard or chip. A multiprocessor system might include
a Field-Programmable Gate Array (FPGA). An FPGA is an integrated circuit containing
an array of programmable logic blocks and a hierarchy of reconfigurable interconnects.
A processing node processes input data to produce outputs. It can be a processor in a
multicore or multiprocessor system, or an FPGA.

The multicore programming approach can help when:

• You want to take advantage of multicore and FPGA processing to increase the
performance of an embedded system.

• You want to achieve scalability so your deployed system can take advantage of
increasing numbers of cores and FPGA processing power over time.

Concurrent systems that you create using multicore programming have multiple tasks
executing in parallel. This is known as concurrent execution. When a processor executes
multiple parallel tasks, this is known as multitasking. A CPU has firmware called
a scheduler, which handles the tasks that execute in parallel. The CPU implements
tasks using operating system threads. Your tasks can execute independently but have
some data transfer between them, such as data transfer between a data acquisition
module and controller for the system. Data transfer between tasks means there is a data
dependency.

Multicore programming is commonly used in signal processing and plant-control systems.
In signal processing, you can have a concurrent system that processes multiple frames

 Concepts in Multicore Programming

13-3

in parallel. In plant-control systems, the controller and the plant can execute as two
separate tasks. Using multicore programming helps to split your system into multiple
parallel tasks, which run simultaneously, speeding up the overall execution time.

To model a concurrently executing system, see “Ways to Partition” on page 13-21.

Types of Parallelism

The concept of multicore programming is to have multiple system tasks executing in
parallel. Types of parallelism include:

• Data parallelism
• Task parallelism
• Pipelining

Data Parallelism

Data parallelism involves processing multiple pieces of data independently in parallel.
The processor performs the same operation on each piece of data. You achieve parallelism
by feeding the data in parallel.

The figure shows the timing diagram for this parallelism. The input is divided into four
chunks, A, B, C, and D. The same operation F() is applied to each of these pieces and the
output is OA, OB, OC, and OD respectively. All four tasks are identical, and they run in
parallel.

13 Configuring Models for Targets with Multicore Processors

13-4

The time taken per processor cycle, known as cycle time, is

t = tF.

The total processing time is also tF, since all four tasks run simultaneously. In the
absence of parallelism, all four pieces of data are processed by one processing node. The
cycle time is tF for each task but the total processing time is 4*tF, since the pieces are
processed in succession.

You can use data parallelism in scenarios where it is possible to process each piece of
input data independently. For example, a web database with independent data sets for
processing or processing frames of a video independently are good candidates for data
parallelism.

Task Parallelism

In contrast to data parallelism, task parallelism doesn’t split up the input data.
Instead, it achieves parallelism by splitting up an application into multiple tasks. Task
parallelism involves distributing tasks within an application across multiple processing
nodes. Some tasks can have data dependency on others, so all tasks do not run at exactly
the same time.

Consider a system that involves four functions. Functions F2a() and F2b() are in
parallel, that is, they can run simultaneously. In task parallelism, you can divide your
computation into two tasks. Function F2b() runs on a separate processing node after it
gets data Out1 from Task 1, and it outputs back to F3() in Task 1.

 Concepts in Multicore Programming

13-5

The figure shows the timing diagram for this parallelism. Task 2 does not run until it
gets data Out1 from Task 1. Hence, these tasks do not run completely in parallel. The
time taken per processor cycle, known as cycle time, is

t = tF1 + max(tF2a, tF2b) + tF3.

You can use task parallelism in scenarios such as a factory where the plant and
controller run in parallel.

Model Pipeline Execution (Pipelining)

Use model pipeline execution, or pipelining, to work around the problem of task
parallelism where threads do not run completely in parallel. This approach involves
modifying your system model to introduce delays between tasks where there is a data
dependency.

In this figure, the system is divided into three tasks to run on three different processing
nodes, with delays introduced between functions. At each time step, each task takes in
the value from the previous time step by way of the delay.

13 Configuring Models for Targets with Multicore Processors

13-6

Each task can start processing at the same time, as this timing diagram shows. These
tasks are truly parallel and they are no longer serially dependent on each other in
one processor cycle. The cycle time does not have any additions but is the maximum
processing time of all the tasks.

t = max(Task1, Task2, Task3) = max(tF1, tF2a, tF2b, tF3).

You can use pipelining wherever you can introduce delays artificially in your
concurrently executing system. The resulting overhead due to this introduction must not
exceed the time saved by pipelining.

System Partitioning for Parallelism

Partitioning methods help you to designate areas of your system for concurrent
execution. Partitioning allows you to create tasks independently of the specifics of the
target system on which the application is deployed.

Consider this system. F1–F6 are functions of the system that can be executed
independently. An arrow between two functions indicates a data dependency. For
example, the execution of F5 has a data dependency on F3.

Execution of these functions is assigned to the different processor nodes in the target
system. The grey arrows indicate assignment of the functions to be deployed on the CPU

 Concepts in Multicore Programming

13-7

or the FPGA. The CPU scheduler determines when individual tasks run. The CPU and
FPGA communicate via a common communication bus.

The figure shows one possible configuration for partitioning. In general, you test different
configurations and iteratively improve until you get the optimal distribution of tasks for
your application.

Challenges in Multicore Programming

Manually coding your application onto a multicore processor or an FPGA poses
challenges beyond the problems caused by manual coding. In concurrent execution, you
must track:

• Scheduling of the tasks that execute on the embedded processing system multicore
processor

13 Configuring Models for Targets with Multicore Processors

13-8

• Data transfers to and from the different processing nodes

Simulink manages the implementation of tasks and data transfer between tasks. It
also generates the code that is deployed for the application. For more information, see
“Multicore Programming with Simulink” on page 13-10.

In addition to these challenges, there are challenges when you want to deploy your
application to different architectures and when you want to improve the performance of
the deployed application.

Portability: Deployment to Different Architectures

The hardware configuration that runs the deployed application is known as the
architecture. It can contain multicore processors, multiprocessor systems, FPGAs, or a
combination of these. Deployment of the same application to different architectures can
require effort due to:

• Different number and types of processor nodes on the architecture
• Communication and data transfer standards for the architecture
• Standards for certain events, synchronization, and data protection in each

architecture

To deploy the application manually, you must reassign tasks to different processing
nodes for each architecture. You might also need to reimplement your application if each
architecture uses different standards.

Simulink helps overcome these problems by offering portability across architectures. For
more information, see “How Simulink Helps You to Overcome Challenges in Multicore
Programming” on page 13-10.

Deployment Efficiency

You can improve the performance of your deployed application by balancing the load
of the different processing nodes in the multicore processing environment. You must
iterate and improve upon your distribution of tasks during partitioning, as mentioned in
“System Partitioning for Parallelism” on page 13-6. This process involves moving
tasks between different processing nodes and testing the resulting performance. Since it
is an iterative process, it takes time to find the most efficient distribution.

Simulink helps you to overcome these problems using profiling. For more information,
see “How Simulink Helps You to Overcome Challenges in Multicore Programming” on
page 13-10.

 Concepts in Multicore Programming

13-9

Cyclic Data Dependency

Some tasks of a system depend on the output of other tasks. The data dependency
between tasks determines their processing order. Two or more partitions containing data
dependencies in a cycle creates a data dependency loop, also known as an algebraic loop.

Simulink identifies loops in your system before deployment. For more information, see
“How Simulink Helps You to Overcome Challenges in Multicore Programming” on page
13-10.

13 Configuring Models for Targets with Multicore Processors

13-10

Multicore Programming with Simulink

In this section...

“How Simulink Helps You to Overcome Challenges in Multicore Programming” on page
13-10
“Implement Data Parallelism in Simulink” on page 13-13
“Implement Task Parallelism in Simulink” on page 13-16
“Implement Pipelining in Simulink” on page 13-19
“Ways to Partition” on page 13-21
“Supported Targets” on page 13-22
“Simulation Limitations” on page 13-24

Using the process of partitioning, mapping, and profiling in Simulink, you can address
common challenges of designing systems for concurrent execution.

Partitioning enables you to designate regions of your model as tasks, independent of
the details of the embedded multicore processing hardware. This independence enables
you to arrange the content and hierarchy of your model to best suit the needs of your
application.

In a partitioned system, mapping enables you to assign partitions to processing elements
in your embedded processing system. You can use the Simulink mapping tool to
represent and manage the details of executing threads, HDL code on FPGAs, and the
work that these threads or FPGAs perform. While creating your model, you do not need
to keep track of the partitions or data transfer between them. The tool does this work.
This capability enables you to reuse your model across multiple architectures.

Profiling simulates deployment of your application under typical computational loads. It
enables you to determine the partitioning and mapping for your model that gives the best
performance, before you deploy to your hardware.

How Simulink Helps You to Overcome Challenges in Multicore
Programming

Manually programming your application for concurrent execution poses challenges
beyond the typical challenges with manual coding. With Simulink, you can overcome the
challenges of portability across multiple architectures, efficiency of deployment for an

 Multicore Programming with Simulink

13-11

architecture, and cyclic data dependencies between application components. For more
information on these challenges, see “Challenges in Multicore Programming” on page
13-7

Portability

Simulink enables you to determine the content and hierarchical needs of the modeled
system without considering the target system. While creating model content, you do not
need to keep track of the number of cores in your target system. Instead, you select the
partitioning methods that allow you to create model content. Simulink generates code for
the architecture you specify.

You can select an architecture from the available supported architectures or add a
custom architecture. When you change your architecture, Simulink generates only the
code that needs to change for the second architecture. The new architecture reuses blocks
and functions. For more information, see “Supported Targets” on page 13-22 and
“Select Target Architecture” on page 13-31.

Handle Data Transfers

Data dependencies arise when a signal originates from one block in one partition and
is connected to a block in another partition. To create opportunities for parallelism,
Simulink provides multiple options for handling data transfers between concurrently
executing partitions. These options help you trade off computational latency for
numerical signal delays:

Goal Action

• Create opportunity for parallelism.
• Produce numeric results that are

repeatable with each run of the
generated code.

• In the Data Transfer pane of the
Concurrent Execution dialog box, select
Ensure deterministic transfer
(Maximum Delay) for either signal
type.

• To achieve this behavior, Simulink
introduces signal delays, which can
have numeric impact on the numeric
results. To compensate, you might need
to specify an initial condition for these
delay elements.

• Create opportunity for parallelism.
• Reduce signal latency.

• In the Data Transfer pane of the
Concurrent Execution dialog box, select

13 Configuring Models for Targets with Multicore Processors

13-12

Goal Action

Ensure data integrity only for either
signal type.

• Simulink generates code to operate with
maximum responsiveness and data
integrity. However, the implementation
is interruptible, which can lead to loss of
data during data transfer.

• Use a deterministic execution schedule
to achieve determinism in the
deployment environment.

• Enforce data dependency.
• Produce numeric results that are

repeatable with each run of the
generated code.

• In the Data Transfer pane of the
Concurrent Execution dialog box, select
Ensure deterministic transfer
(Minimum Delay) for either signal
type.

• Simulink uses target specific
synchronization primitives to
synchronize data transfer.

For example, consider a control application in which a controller that reads sensory data
at time T must produce the control signals to the actuator at time T+Δ.

• If the sequential algorithm meets the timing deadlines, consider using option 3.
• If the embedded system provides deterministic scheduling, consider using option 2.
• Otherwise, use option 1 to create opportunities for parallelism by introducing signal

delays.

The table provides the model-level options that you can apply to each signal that
requires data transfer in the system. In addition to model-level control, Simulink enables
you to override how the data transfer settings are handled for each signal. For more
information, see “Configuring Data Transfer Communications” on page 13-29.

Deployment Efficiency

To improve the performance of the deployed application, Simulink allows you to simulate
it under typical computational loads and try multiple configurations of partitioning
and mapping the application. Simulink compares the performance of each of these
configurations to provide the optimal configuration for deployment. This is known as

 Multicore Programming with Simulink

13-13

profiling. Profiling helps you determine the optimum partition configuration before you
deploy your system to the desired hardware.

You can create a mapping for your application in which Simulink maps the application
components across different processing nodes. You can also manually assign components
to processing nodes. For any mapping, you can see the data dependencies between
components and remap accordingly. You can also introduce and remove data
dependencies between different components.

Cyclic Data Dependency

Some tasks of a system depend on the output of other tasks. The data dependency
between tasks determines their processing order. Two or more partitions containing data
dependencies in a cycle creates a data dependency loop, also known as an algebraic loop.
Simulink does not allow algebraic loops to occur across potentially parallel partitions
because of the high cost of solving the loop using parallel algorithms.

In some cases, the algebraic loop is artificial. For example, you can have an artificial
algebraic loop because of Model-block-based partitioning. An algebraic loop involving
Model blocks is artificial if removing the use of Model partitioning eliminates the loop.
You can minimize the occurrence of artificial loops. In the Configuration Parameter
dialog boxes for the models involved in the algebraic loop, select Model Referencing >
Minimize algebraic loop occurrences.

Additionally, if the model is configured for the Generic Real-Time target (grt.tlc) or
the Embedded Real-Time target (ert.tlc) in the Configuration Parameters dialog box,
clear the Code Generation > Interface > Single output/update function check box.

If the algebraic loop is a true algebraic condition, you must either contain all the blocks
in the loop in one Model partition, or eliminate the loop by introducing a delay element
in the loop.

The following examples show how to implement different types of parallelism in
Simulink. These examples contain models that are partitioned and mapped to a simple
architecture with one CPU and one FPGA.

Implement Data Parallelism in Simulink

This example shows how to implement data parallelism in a Simulink model. The
model consists of an input, a functional component that applies to each input, and a
concatenated output.

13 Configuring Models for Targets with Multicore Processors

13-14

Set up this model for concurrent execution. To see the completed model, open
ex_data_parallelism_top.

1 Convert areas in this model to referenced models. Use the same referenced model to
replace each of the functional components that process the input. The figure shows a
sample configuration.

 Multicore Programming with Simulink

13-15

2 Open the Model Explorer.
3 Expand the options for the top-level model and right-click the Configuration

(Active), the active configuration set. Select Show Concurrent Execution
options to see how the options for concurrent execution are set in the model
configuration parameters.

4 Close the Model Explorer and open the model configuration parameters. On the
Code Generation > Interface pane, clear the MAT-file logging check box.

5 On the Solver pane, set Type to Fixed-step and click Apply. Under Additional
options, click Configure Tasks.

6 In the Concurrent Execution dialog box, in the right pane, select the Enable
explicit model partitioning for concurrent behavior check box. With explicit
partitioning, you can partition your model manually.

7
In the selection pane, select CPU. Click Add task four times to add four new
tasks.

8 In the selection pane, select Tasks and Mapping. On the Map block to tasks
pane:

• Under Block: Input, click select task and select Periodic: Task.
• Under Block: Function 1, select Periodic: Task1.
• Under Block: Function 2, select Periodic: Task2.
• Under Block: Function 3, select Periodic: Task3.
• Under Block: Output, select Periodic: Task.

This maps your partitions to the tasks you created. The Input and Output model
blocks are on one task. Each functional component is assigned a separate task.

9 In the selection pane, select Data transfer. In the Data Transfer Options pane,
set the parameter Periodic signals to Ensure deterministic transfer
(minimum delay). Click Apply and close the Concurrent Execution dialog box.

10 Apply these configuration parameters to all referenced models. For more
information, see “Share a Configuration for Multiple Models” on page 12-4.

Update your model to see the tasks mapped to individual model blocks.

13 Configuring Models for Targets with Multicore Processors

13-16

Implement Task Parallelism in Simulink

This example shows how to implement task parallelism in a Simulink model. The
model consists of an input, functional components applied to the same input, and a
concatenated output.

 Multicore Programming with Simulink

13-17

Setup this model for concurrent execution. To see the completed model, open
ex_task_parallelism_top.

1 Convert areas in this model to referenced models. Use the same referenced model to
replace each of the functional components that process the input. The figure shows a
sample configuration.

2 Open the Model Explorer.

13 Configuring Models for Targets with Multicore Processors

13-18

3 Expand the options for the top-level model and right-click the Configuration
(Active), the active configuration set. Select Show Concurrent Execution
options to see how the options for concurrent execution are set in the model
configuration parameters.

4 Close the Model Explorer and open the model configuration parameters. On the
Code Generation > Interface pane, clear the MAT-file logging check box.

5 On the Solver pane, set Type to Fixed-step and click Apply. Under Additional
options, click Configure Tasks.

6 In the Concurrent Execution dialog box, in the right pane, select the Enable
explicit model partitioning for concurrent behavior check box. With explicit
partitioning, you can partition your model manually.

7
In the selection pane, select CPU. Click Add task three times to add three new
tasks.

8 In the selection pane, select Tasks and Mapping. On the Map block to tasks
pane:

• Under Block: Input, click select task and select Periodic: Task.
• Under Block: Function 1, select Periodic: Task1.
• Under Block: Function 2, select Periodic: Task2.
• Under Block: Output, select Periodic: Task.

This maps your partitions to the tasks you created. The Input and Output model
blocks are on one task. Each functional component is assigned a separate task.

9 In the selection pane, select Data transfer. In the Data Transfer Options pane,
set the parameter Periodic signals to Ensure deterministic transfer
(minimum delay). Click Apply and close the Concurrent Execution dialog box.

10 Apply these configuration parameters to all referenced models. For more
information, see “Share a Configuration for Multiple Models” on page 12-4.

Update your model to see the tasks mapped to individual model blocks.

 Multicore Programming with Simulink

13-19

Implement Pipelining in Simulink

This example shows how to implement pipelining in a Simulink model. The model
consists of an input, functional components applied to the same input, and a
concatenated output.

13 Configuring Models for Targets with Multicore Processors

13-20

Setup this model for concurrent execution. To see the completed model, open
ex_pipelining_top.

1 Convert areas in this model to referenced models. Use the same referenced model to
replace each of the functional components that process the input. The figure shows a
sample configuration.

2 Open the Model Explorer.
3 Expand the options for the top-level model and right-click the Configuration

(Active), the active configuration set. Select Show Concurrent Execution
options to see how the options for concurrent execution are set in the model
configuration parameters.

4 Close the Model Explorer and open the model configuration parameters. On the
Code Generation > Interface pane, clear the MAT-file logging check box.

5 On the Solver pane, set Type to Fixed-step and click Apply. Under Additional
options, click Configure Tasks.

6 In the Concurrent Execution dialog box, in the right pane, select the Enable
explicit model partitioning for concurrent behavior check box. With explicit
partitioning, you can partition your model manually.

7
In the selection pane, select CPU. Click Add task three times to add three new
tasks.

8 In the selection pane, select Tasks and Mapping. On the Map block to tasks
pane:

• Under Block: Input, click select task and select Periodic: Task.
• Under Block: Function 1, select Periodic: Task1.

 Multicore Programming with Simulink

13-21

• Under Block: Function 2, select Periodic: Task2.
• Under Block: Output, select Periodic: Task.

This maps your partitions to the tasks you created. The Input and Output model
blocks are on one task. Each functional component is assigned a separate task.

9 Close the Concurrent Execution dialog box.
10 Apply these configuration parameters to all referenced models. For more

information, see “Share a Configuration for Multiple Models” on page 12-4.

Update your model to see the tasks mapped to individual model blocks.

Ways to Partition

There are multiple ways to partition your model for concurrent execution in Simulink.
Rate and model based approaches give you primarily graphical means to represent
concurrency for systems that are represented using Simulink and Stateflow blocks. You
can partition MATLAB code using the MATLAB System block. You can also partition
models of physical systems using multisolver methods.

Each method has additional considerations to help you decide which to use.

To Valid Partitioning Methods Considerations

Increase the performance
of a simulation on the host
computer.

None of the listed. In general, Simulink tries
to make the best use of the
host computer performance

13 Configuring Models for Targets with Multicore Processors

13-22

To Valid Partitioning Methods Considerations

regardless of the modeling
method you use. For more
information on the ways that
Simulink helps you improve
performance, see “Performance”.

Increase the performance of a
plant simulation in a multicore
HIL system.

You can use any of the
partitioning methods as well as
their combinations.

The processing characteristics
of the HIL system and the
embedded processing system
can vary greatly. Consider
partitioning your system
into more units of work
than there are number of
processing elements in the
HIL or embedded system. This
convention allows flexibility in
the mapping process.

Create a valid model of a
multirate concurrent system to
take advantage of a multicore
processing system.

You can use any of the
partitioning methods as well as
their combinations.

Partitioning can introduce
signal delays to represent the
data transfer requirements for
concurrent execution. For more
information, see .

Create a valid model of a
heterogeneous system to take
advantage of multicore and
FPGA processing.

• Multicore processing: Use
any of the partitioning
methods.

• FPGA processing: Partition
your model using Model
blocks.

Consider partitioning for
FPGA processing where your
computations have bottlenecks
that can benefit from fine-grain
hardware parallelism.

Supported Targets

Supported Multicore Targets

You can build and download concurrent execution models for the following multicore
targets using system target files:

• Linux, Windows, and Mac OS using ert.tlc and grt.tlc
• Simulink Real-Time™ using slrt.tlc and slrtert.tlc

 Multicore Programming with Simulink

13-23

• Linux, Windows, and VxWorks® using idelink_ert.tlc, idelink_grt.tlc, and
ert.tlc with the Code Generation > Target hardware parameter set to a value
other than None

Note:

• To build and download your model, you must have Simulink Coder software installed.

• To build and download your model to a Simulink Real-Time system, you must have
Simulink Real-Time software installed. You must also have a multicore target system
supported by the Simulink Real-Time product.

• Deploying to an embedded processor that runs Linux and VxWorks operating systems
requires the Embedded Coder product.

Supported Heterogeneous Targets

In addition to multicore targets, Simulink also supports building and downloading
partitions of a model to heterogeneous targets that contain a multicore target and one or
more field-programmable gate arrays (FPGAs).

In addition to the supported multicore targets listed in “Supported Targets” on page
13-22 for building and downloading to the multicore target, select the heterogeneous
architecture using the Target architecture option in the Concurrent Execution dialog box
Concurrent Execution pane:

Property Description

Sample Architecture Example architecture consisting of single CPU
with multiple cores and two FPGAs. You can
use this architecture to model for concurrent
execution.

Simulink Real-Time Simulink Real-Time target containing FPGA
boards.

Xilinx Zynq ZC702 evaluation

kit
Xilinx® Zynq® ZC702 evaluation kit target.

Xilinx Zynq ZC706 evaluation

kit

Xilinx Zynq ZC706 evaluation kit target.

Xilinx Zynq Zedboard Xilinx Zynq ZedBoard™ target.

13 Configuring Models for Targets with Multicore Processors

13-24

Note: Building HDL code and downloading it to FPGAs requires the HDL Coder™
product. You can generate HDL code if:

• You have an HDL Coder license
• You are building on Windows or Linux operating systems

You cannot generate HDL code on Macintosh systems.

Simulation Limitations

The following limitations apply when partitioning a model for concurrent execution.

• A partitioned model must consist entirely of Model blocks, MATLAB System blocks,
and virtual connectivity blocks at the root-level. The following are valid virtual
connectivity blocks:

• Goto and From blocks
• Ground and Terminator blocks
• Inport and Outport blocks
• Virtual subsystem blocks that contain permitted blocks

• Configure the model to use the fixed-step solver.
• Do not use the following modes of simulation for models in the concurrent execution

environment:

• External mode
• Logging to MAT-files (Configuration Parameters > Interface > MAT-file

logging check box selected). However, you can use the To Workspace and To
File blocks.

• If you are simulating your model using Rapid Accelerator mode, the top-level
model cannot contain a root level Inport block that outputs function calls.

• In the Configuration Parameters dialog box, set the Diagnostics > Sample Time
> Multitask conditionally executed subsystem and Diagnostics > Data
Validity > Multitask data store parameters to error.

• In addition, use the model-level control to handle data transfer for rate transition
or if you use Rate Transition blocks, then:

• Select the Ensure data integrity during data transfer check box.

 Multicore Programming with Simulink

13-25

• Clear the Ensure deterministic data transfer (maximum delay) check
box.

13 Configuring Models for Targets with Multicore Processors

13-26

Modeling Process for Concurrent Execution

You can model for concurrent execution using the following general workflow. These
steps assume that you have a model that meets the modeling guidelines in “Multicore
Programming with Simulink” on page 13-10.

1 Optionally, save your original model to a temporary folder.
2 Configure your model for concurrent execution.
3 Perform baseline analysis of your model for concurrent execution.
4 Explicitly configure the architecture and map partitions.
5 Simulate the model and evaluate the results
6 As necessary, refine the results.
7 Build and download the model to the multicore/heterogeneous target and evaluate

the results.
8 As necessary, refine the results.

 Configure Your Model

13-27

Configure Your Model
You can use configuration references or configuration sets to configure a model for
concurrent execution.

To Do

Preserve existing configuration settings for
your model.

Open Model Explorer and expand the node
for the model. Under the model, right-
click Configuration, then select Show
Concurrent Execution options.

Create new configuration settings. Open Model Explorer and expand the
node for the model. Right-click the
model node and select Configuration >
Add Configuration for Concurrent
Execution.

Activate the configuration set by right-
clicking it and selecting Activate.

When using referenced models, consider using a configuration reference. For more
information on configuration references and configuration sets, see “Configuration
Reuse”.

In addition, for the top model, you must select the Allow tasks to execute
concurrently on target check box in the Solver pane of the Configuration Parameters
dialog box.

Note: Selection of the Allow tasks to execute concurrently on target check box is
optional for models referenced in the model hierarchy. When you select this option for
a referenced model, Simulink allows each rate in the referenced model to execute as an
independent concurrent task on the target processor.

When the configuration is complete, decide on your next step.

To Go to

Explicitly configure how data is transferred
to override the settings detected by
automatic analysis.

“Customize Concurrent Execution Settings”
on page 13-29.

13 Configuring Models for Targets with Multicore Processors

13-28

To Go to

Simulate the model. “Interpret Simulation Results” on page
13-38.

 Customize Concurrent Execution Settings

13-29

Customize Concurrent Execution Settings

You can configure the concurrency settings of your target architecture by creating a
different number of tasks or setting data transfer parameters.

Configuring Data Transfer Communications

Use the Data Transfer Options pane to define communications between tasks. The
settings you make here are the values used for the Use global setting option of the
Data Transfer tab of the Signal Properties dialog box. You can also override these options
for each signal from the Data Transfer pane of the Signal Properties dialog box.

Data Transfer Options

Data Transfer Type Simulation Deployment

Ensure data integrity only. Data transfer is simulated
using a one-step delay.

Simulink Coder ensures
data integrity during data
transfer. Simulink generates
code to operate with
maximum responsiveness
and data integrity. However,
the implementation is
interruptible, which can lead
to loss of data during data
transfer.

Ensure deterministic
transfer (maximum delay).

Data transfer is simulated
using a one-step delay.

Ensure deterministic
transfer (minimum delay).

Data transfer occurs within
the same step.

Simulink Coder ensures
data integrity during
data transfer. In addition,
Simulink Coder ensures data
transfer is identical with
simulation.

• For continuous signals, Simulink uses extrapolation methods to compensate for
numerical errors that were introduced due to delays and discontinuities in data
transfer.

• For signals that are configured for Ensure Data Integrity Only and Ensure
deterministic transfer (maximum delay) data transfers, you might need
to provide an initial condition to avoid numerical errors. You can specify this initial
condition in the Data Transfer tab of the Signal Properties dialog box. To access this

13 Configuring Models for Targets with Multicore Processors

13-30

dialog box, right-click the signal line and select Properties from the context menu. A
dialog box like the following is displayed.

1 From the Data Transfer Options table, determine how you want your tasks to
communicate.

2 In the Concurrent Execution dialog box, select Data Transfer defaults and apply
the settings from step 1.

 Customize Concurrent Execution Settings

13-31

3 Apply your changes.

Select Target Architecture

1 In the Concurrent Execution dialog box, in the Concurrent Execution pane, click
Select. The concurrent execution target architecture selector appears.

13 Configuring Models for Targets with Multicore Processors

13-32

2 Select your target.

Property Description

Multicore Single CPU with multiple cores.
Sample Architecture Single CPU with multiple cores and two

FPGAs.
Simulink Real-Time Simulink Real-Time target.
Get more ... Click OK to start the Support Package

Installer. From the list, select the target and
follow the instructions.

3 In the Target architecture window, clear the Preserve compatible properties
check box to reset existing target property settings to their default. Alternatively,
select the Preserve compatible properties check box to preserve existing target
property settings.

4 Click OK.

Simulink adds the corresponding software and hardware nodes to the configuration
tree hierarchy. For example, the following illustrates one software node and

 Customize Concurrent Execution Settings

13-33

two hardware nodes added to the configuration tree when you select Sample
architecture as the target architecture.

Configuring Periodic Triggers and Tasks

If you want to explore the effects of increasing the concurrency on your model execution,
you can create additional periodic tasks in your model.

1 In the Concurrent Execution dialog box, right-click on the Periodic node and select
Add task.

A task node appears in the Configuration Execution hierarchy.
2 Select the task node and enter a name and period for the task, then click Apply.

The task node is renamed to the name you enter.

13 Configuring Models for Targets with Multicore Processors

13-34

3 Optionally, specify a color for the task. The color illustrates the block-to-task
mapping. If you do not assign a color, Simulink chooses a default color. If you enable
sample time colors for your model, the software honors the setting.

4 Click Apply as necessary.

To create more periodic triggers, click the Add periodic trigger symbol. You can also
create multiple periodic triggers with their own trigger sources.

Note: Periodic triggers let you represent multiple periodic interrupt sources such as
multiple timers. The periodicity of the trigger is either the base rate of the tasks that the
trigger schedules, or the period of the trigger. Data transfers between triggers can only
be Ensure Data Integrity Only types. With blocks mapped to periodic triggers, you
can only generate code for ert.tlc and grt.tlc system target files.

When the periodic tasks and trigger configurations are complete, configure the aperiodic
(interrupt) tasks as necessary. If you do not need aperiodic tasks, continue to “Map
Blocks to Tasks, Triggers, and Nodes” on page 13-36.

Configuring Aperiodic Triggers and Tasks

1 To create an aperiodic trigger, in the Concurrent Execution dialog box, right-click the
Concurrent Execution node and click the Add aperiodic trigger symbol.

A node named InterruptN appears in the configuration tree hierarchy.
2 Select Interrupt.

This node represents an aperiodic trigger for your system.
3 Specify the name of the trigger and configure the aperiodic trigger source. Depending

on your deployment target, choose either Posix Signal (Linux/VxWorks 6.x)
or Event (Windows). For POSIX® signals, specify the signal number to use for
delivering the aperiodic event. For Windows events, specify the name of the event.

 Customize Concurrent Execution Settings

13-35

4 Click Apply.

The software services aperiodic triggers as soon as possible. If you want to process the
trigger response using a task:

1 Right-click the Interrupt node and select Add task.

A new task node appears under the Interrupt node.
2 Specify the name of the new task node.
3 Optionally, specify a color for the task. The color illustrates the block-to-task

mapping. If you do not assign a color, Simulink chooses a default color.
4 Click Apply.

You can delete tasks (both periodic and aperiodic) as well as triggers by right-clicking
them in the pane and selecting Delete.

When the aperiodic tasks are complete, continue to “Map Blocks to Tasks, Triggers, and
Nodes” on page 13-36.

13 Configuring Models for Targets with Multicore Processors

13-36

Map Blocks to Tasks, Triggers, and Nodes

After you specify the target architecture and create tasks and triggers, you can explicitly
assign partitions to these execution elements.

1 In the Concurrent Execution dialog box, click the Tasks and Mapping node.

The Tasks and Mapping pane appears. If you added a new Model block to your
model, the new block appears in the table with a select task entry under it.

2 If you want to add a new task to a block, in the Name column, right-click a task
under the block and select Add new entry.

3 To assign a task for the entry, click the box in the Name column and select an entry
from the list. For example:

The block-to-task mapping symbol appears on the top-left corner of the Model block.
For example:

 Customize Concurrent Execution Settings

13-37

If you assign a Model block to multiple tasks, multiple task symbols are displayed in
the top-left corner.

To display the Concurrent Execution dialog box from the block, click the block-to-
task mapping symbol.

4 Click Apply.

Note the following:

• System tasks allow you to incrementally perform the mapping process. This means
that if there is only one periodic trigger, Simulink assigns any Model block partitions
or MATLAB System blocks, that you have not explicitly mapped to a task, trigger, or
hardware node, to a task created by the system. Simulink creates at most one system
task for each rate in the model. If there are multiple periodic triggers created, you
must explicitly map the Model block partitions or MATLAB System blocks to a task,
trigger or hardware node.

• You must map Model block partitions that contain continuous blocks to the same
periodic trigger.

• You can map only Model blocks to hardware nodes. Additionally, if you map the Model
block to a hardware node, and the Model block contains multiple periodic sample
times, you must clear the Allow tasks to execute concurrently on target check
box in the Solver pane of the Configuration Parameters dialog box.

When the mapping is complete, simulate the model again. See “Interpret Simulation
Results” on page 13-38 .

13 Configuring Models for Targets with Multicore Processors

13-38

Interpret Simulation Results

In this section...

“Introduction” on page 13-38
“Baseline Configuration” on page 13-38
“Sample Configured Model with Multiple Target Tasks” on page 13-39

Introduction

The simulation itself does not require or use multicore target capabilities as configured
in the Concurrent Execution dialog box. In general, use these concurrent execution
modeling concepts for real-time system design. Note that these concepts are not helpful
if you want to improve the performance of a Simulink simulation on a non-real-time host
computer. Simulink tries to optimize use of host computers, regardless of the modeling
pattern you use. For more information on these techniques, see “Performance”.

Consider the model sldemo_concurrent_execution. To understand simulation
results, compare the signal x in two scenarios:

• Baseline configuration — The target has exactly one periodic task and all blocks are
mapped to execute within this task. In this configuration, the target does not allow for
any concurrent execution.

• Sample configuration — The target has three periodic tasks and all blocks are
mapped to execute concurrently in these tasks.

Baseline Configuration

In the following example, the model is configured as described with no user defined
tasks or triggers. Because this model contains only one sample time (continuous sample
time), the sample-time analysis configures the target with one system task and implicitly
assigns all blocks to run in that task. The period of the task is selected as 0.1, which
agrees with the fixed-step size of the model. Because the design has only one task, no
task-to-task data transfer is needed. Simulation of the model should produce the same
numeric results as if the model is not configured for concurrent execution.

 Interpret Simulation Results

13-39

Configure the model to record logged data in the Simulation Data Inspector by clicking
the Simulation Data Inspector arrow in the tool bar and selecting Send Logged
Workspace Data to Data Inspector. (Alternatively, in the Configuration Parameters
dialog box, select the Data Import/Export > Record logged workspace data in
Simulation Data Inspector check box). After you enable the Simulation Data Inspector
to record logged data, click Simulate > Run to simulate the model using the single task
configuration. After simulation, launch the Simulation Data Inspector by clicking the
Simulation Data Inspector button in the editor tool bar. Observe that the tool has
recorded the simulation results for the signal labeled x.

Sample Configured Model with Multiple Target Tasks

In the Concurrent Execution dialog box, create two additional tasks and map the
ControllerA block to the first additional task and the ControllerB block to the second
additional task.

13 Configuring Models for Targets with Multicore Processors

13-40

1 Open the Concurrent Execution dialog box.
2 Click the Add Task button three times.
3 Select the first added task and label it ControllerA.
4 Select the second added task and label it ControllerB.
5 Select the third added task and label it Plant.
6 In the Tasks and Mapping pane, assign the ControllerA block to execute within the

ControllerA task, the ControllerB block to execute within the ControllerB task, and
the Periodic and Compensator blocks to execute within the Plant task. Assign the
Interrupt block to the Interrupt trigger.

7 Simulate the model again.
8 After simulation completes, inspect the results for the baseline and custom

configurations using the Simulation Data Inspector.

 Interpret Simulation Results

13-41

To understand the source of the phase margin, observe that:

• For the first run of the model, signal x, identified by the blue line, shows a baseline
configuration.

• In the second run of the model, signal x, identified by the green line, shows a custom
task configuration and the effects of communication latencies from lines crossing task
boundaries. This is different from the first run, which has only one periodic task and
therefore, no communication latencies.

• The default setting for data transfer is to ensure determinism (maximum delay), so
the data transfer is deterministic. See Data Transfer Options .

13 Configuring Models for Targets with Multicore Processors

13-42

Because the data transfer is deterministic, the simulated model takes into account a unit
delay to capture the effects of data transfer. This delay causes a small phase margin in
the mapped design.

 Build and Download to a Multicore Target

13-43

Build and Download to a Multicore Target

In this section...

“Generating Code” on page 13-43
“Customize the Generated C Code” on page 13-44
“Define a Custom Architecture File” on page 13-44
“Native Threads Example” on page 13-47
“Profile and Evaluate” on page 13-49
“Generate Profile Report” on page 13-50

Generating Code

To generate code, in the Simulink editor window, select Code > C/C++ Code > Build
Model. The code generation process generates:

• C code for parts of the model that are mapped to tasks and triggers in the Concurrent
Execution dialog box. For more information, see “Code Generation” and “Code
Generation”.

• HDL code for parts of the model that are mapped to hardware nodes in the
Concurrent Execution dialog box. For more information, see “HDL Code Generation
from Simulink”.

• Code to handle data transfer between the concurrent tasks and triggers and to
interface with the hardware and software components.

The generated C code contains one function for each task or trigger defined in the
system. The task and trigger determines the name of the function as follows:

void <TriggerName>_TaskName(void);

The content for each such function consists of target independent C code except for:

• Code corresponding to blocks that implement target specific functionality
• Customizations, including those derived from “Custom Storage Classes” or “Code

Replacement Libraries”
• Code that is generated to handle how data is transferred between tasks. In particular,

Simulink Coder uses target specific implementations of mutual exclusion primitives
and data synchronization semaphores to implement the data transfer as described in
the following table of pseudocode.

13 Configuring Models for Targets with Multicore Processors

13-44

Data Transfer Initialization Reader Writer

Data Integrity
Only

BufferIndex = 0;

Initialize Buffer[1] with IC

Begin mutual exclusion

 Tmp = 1 – BufferIndex;

End mutual exclusiton

 Read Buffer[Tmp];

Write Buffer[BufferIndex];

Begin mutual exclusion

BufferIndex = 1 – BufferIndex;

End mutual exclusion

Ensure
Determinism
(Maximum
Delay)

WriterIndex = 0;

ReaderIndex = 1;

Initialize Buffer[1] with IC

Read Buffer[ReaderIndex];

ReaderIndex = 1 – ReaderIndex;

Write Buffer[WriterIndex]

 WriterIndex = 1 – WriterIndex;

Ensure
Determinism
(Minimum
Delay)

NA Wait dataReady;

Read data;

Post readDone;

Wait readDone;

Write data;

Post dataReady;

Data Integrity
Only

C-HDL
interface

The Simulink Coder and HDL Coder products both take advantage of target
specific communication implementations and devices to handle the data transfer
between hardware and software components.

The generated HDL code contains one HDL project for each hardware node.

Customize the Generated C Code

The generated code is suitable for many different applications and development
environments. To meet your needs, you can customize the generated C code as described
in “Target Development”. In addition to those customization capabilities, for multicore
and heterogeneous targets you can further customize the generated code as follows:

• You can register your preferred implementation of mutual exclusion and data
synchronization primitives using the code replacement library.

• You can define a custom target architecture file that allows you to specify target
specific properties for tasks and triggers in the Concurrent Execution dialog box. For
more information, see “Define a Custom Architecture File” on page 13-44.

Define a Custom Architecture File

A custom architecture file is an XML file that allows you to define custom target
properties for tasks and triggers. For example, you may want to define custom properties

 Build and Download to a Multicore Target

13-45

to represent the properties of threading APIs. Threading APIs are necessary to take
advantage of concurrency on your target processor. The following is an example custom
architecture file:

<architecture brief="Multicore with custom threading API"

 format="1.1" revision="1.1"

 uuid="MulticoreCustomAPI" name="MulticoreCustomAPI">

<configurationSet>

 <parameter name="SystemTargetFile" value="ert.tlc"/>

 <parameter name="SystemTargetFile" value="grt.tlc"/>

</configurationSet>

<node name="MulticoreProcessor" type="SoftwareNode" uuid="MulticoreProcessor"/>

<template name="CustomTask" type="Task" uuid="CustomTask">

 <property name="affinity" prompt="Affinity:" value="1" evaluate="true"/>

 <property name="schedulingPolicy" prompt="Scheduling policy:" value="Rate-monotonic">

 <allowedValue>Rate-monotonic</allowedValue>

 <allowedValue>Round-robin</allowedValue>

 </property>

 </template>

</architecture>

An architecture file must contain:

• The architecture element that defines basic information Simulink uses to identify the
architecture.

• A configurationSet element that lists the system target files for which this
architecture is valid.

• One node element that Simulink uses to identify the multicore processing element.

Note: The architecture must contain exactly one node element that identifies a
multicore processing element. You cannot create multiple nodes identifying multiple
processing elements or an architecture with no multicore processing element.

• One or more template elements that lists custom properties for tasks and triggers.

• The type attribute can be Task, PeriodicTrigger, or AperiodicTrigger.
• Each property is editable and has the default value specified in the value

attribute.
• Each property can be a text box, check box, or combo box. A check box is one where

you can set the value attribute to on or off. A combo box is one where you can
optionally list allowedValue elements as part of the property.

• Each text box property can also optionally define an evaluate attribute. This lets
you place MATLAB variable names as the value of the property.

13 Configuring Models for Targets with Multicore Processors

13-46

Assuming that you have saved the custom target architecture file in
C:\custom_arch.xml, register this file with Simulink using the
Simulink.architecture.register function.

For example,

1 Save the contents of the listed XML file in custom_arch.xml.
2 In the MATLAB Command Window, type:

Simulink.architecture.register('custom_arch.xml')

3 In the MATLAB Command Window, type:

sldemo_concurrent_execution

4 In the Simulink editor, open the Configuration Parameters > Solver pane and
click Configure Tasks.

The Concurrent Execution dialog box displays.
5 In the Concurrent Execution pane, click Select... for Target Architecture.

The Target architecture window displays.
6 Click MulticoreCustomAPI and click OK.

 Build and Download to a Multicore Target

13-47

Your Concurrent Execution dialog box updates to contain Code Generation properties for
the tasks as shown. These are the properties defined in the XML file.

Native Threads Example

Simulink Coder and Embedded Coder targets provide an example target to generate code
for Windows, Linux and Mac OS operating systems.

For an Embedded Coder target, in the Configuration Parameters dialog box:

• Select the Code Generation > Templates > Generate an example main
program check box.

• From the Code Generation > Templates > Target Operating System list, select
NativeThreadsExample.

The native threads example illustrates how Simulink Coder and Embedded Coder
leverage target specific threading APIs and data management primitives, as shown in
Threading APIs used by Native Threads Example.

Threading APIs used by Native Threads Example

13 Configuring Models for Targets with Multicore Processors

13-48

Aspect of Concurrent
Execution

Linux Implementation Windows Implementation Mac OS Implementation

Periodic triggering
event

POSIX timer Windows timer Not applicable

Aperiodic triggering
event

POSIX real-time signal Windows event POSIX non-real-time
signal

Aperiodic trigger For blocks mapped
to an aperiodic task:
thread waiting for a
signal

For blocks mapped to
an aperiodic trigger:
signal action

Thread waiting for an
event

For blocks mapped
to an aperiodic task:
thread waiting for a
signal

For blocks mapped to
an aperiodic trigger:
signal action

Threads POSIX Windows POSIX
Threads priority Assigned based on

sample time: fastest
task has highest
priority

Priority class inherited
from the parent
process.

Assigned based on
sample time: fastest
task has highest
priority for the first
three fastest tasks. The
rest of the tasks share
the lowest priority.

Assigned based on
sample time: fastest
task has highest
priority

Example of overrun
detection

Yes Yes No

The data transfer between concurrently executing tasks behave as described in Data
Transfer Options. The coders use the following APIs on supported targets for this
behavior:

Data Protection and Synchronization APIs Used by Native Threads Example

API Linux Implementation Windows Implementation Mac OS Implementation

Data protection
API

• pthread_mutex_init • CreateMutex • pthread_mutex_init

 Build and Download to a Multicore Target

13-49

API Linux Implementation Windows Implementation Mac OS Implementation

• pthread_mutex_-

destroy

• pthread_mutex_lock

• pthread_mutex_-

unlock

• CloseHandle

• WaitForSingleObject

• ReleaseMutex

• pthread_mutex_-

destroy

• pthread_mutex_lock

• pthread_mutex_-

unlock

Synchronization
API

• sem_init

• sem_destroy

• sem_wait

• sem_post

• CreateSemaphore

• CloseHandle

• WaitForSingle-

Object

• ReleaseSemaphore

• sem_open

• sem_unlink

• sem_wait

• sem_post

Profile and Evaluate

Profile the execution of your code on the multicore target using the Profile Report pane
of the Concurrent Execution dialog box. You can profile using Simulink Coder (GRT) and
Embedded Coder (ERT) targets. Profiling helps you identify the areas in your model that
are execution bottlenecks. You can analyze the execution time of each task and find the
task that takes most of the execution time. For example, you can compare the average
execution times of the tasks. If a task is computation intensive, or does not satisfy real-
time requirements and overruns, you can break it into tasks that are less computation
intensive and that can run concurrently.

When you generate a profile report, the software:

1 Builds the model.
2 Generates code for the model.
3 Adds tooling to the generated code to collect data.
4 Executes the generated code on the target and collects data.
5 Collates the data, generates an HTML file (model_name_ProfileReport.html) in

the current folder, and displays that HTML file in the Profile Report pane of the
Concurrent Execution dialog box.

Note: If an HTML profile report exists for the model, the Profile Report pane

displays that file. To generate a new profile report, click .

13 Configuring Models for Targets with Multicore Processors

13-50

Section Description

Summary Summarizes model execution statistics, such as
total execution time and profile report creation time.
It also lists the total number of cores on the host
machine.

Task Execution Time Displays the execution time, in microseconds, for
each task in a pie chart color coded by task.

Visible for Windows, Linux, and Mac OS platforms.
Task Affinitization to Processor Cores Platform-dependent. For each time step and task,

displays the processor core number the task started
executing on at that time step, color coded by
processor.

If there is no task scheduled for a particular time
step, NR is displayed.

Visible for Windows and Linux platforms.

After you analyze the profile report, consider explicitly changing the mapping of Model
blocks to efficiently use the concurrency available on your multicore system (see “Map
Blocks to Tasks, Triggers, and Nodes” on page 13-36.

Some products, such as Simulink Real-Time and Embedded Coder, have tools you can
use to profile execution for particular targets:

Product For more information, see...

Simulink Real-Time “Execution Profiling for Real-Time Applications”
Embedded Coder “Perform Execution Time Profiling for IDE and

Toolchain Targets”

Generate Profile Report

This topic assumes a previously configured model ready to be profiled for concurrent
execution. Otherwise, see “Configure Your Model” on page 13-27.

1 In the Concurrent Execution dialog box, click the Profile report node.

 Build and Download to a Multicore Target

13-51

The profile tool looks for a file named model_name_ProfileReport.html. If such
a file does not exist for the current model, the Profile Report pane displays:

Note: If an HTML profile report exists for the model, the Profile Report pane

displays that file. To generate a new profile report, click .

2 Enter the number of time steps for which you want the profiler to collect data for the
model execution.

3 Click the Generate task execution profile report button.

This action builds the model, generates the code, adds data collection tooling to
the code, and then executes the code on the target, which also generates an HTML
profile report. This process can take several minutes. When the process is complete,
the contents of the profile report appear in the Profile Report pane. For example:

13 Configuring Models for Targets with Multicore Processors

13-52

4 Analyze the profile report, create and reassign new tasks as needed, and regenerate
the profile report.

 Build and Download to a Multicore Target

13-53

Generate Profile Report at Command Line

Alternatively, you can generate a profile report for a model configured for concurrent
execution at the command line. Use the Simulink.architecture.profile function.

For example, to create a profile report for the model sldemo_concurrent_execution:

Simulink.architecture.profile('sldemo_concurrent_execution');

To create a profile report with a specific number of samples (100) for the model
sldemo_concurrent_execution:

Simulink.architecture.profile('sldemo_concurrent_execution',120);

The function creates a profile report named
sldemo_concurrent_execution_ProfileReport.html in your current folder.

13 Configuring Models for Targets with Multicore Processors

13-54

Concurrent Execution Models

The table contains models configured to work in a concurrent execution environment.

Model Description

Modeling Concurrent Execution on Multicore
Targets

Illustration of how to take advantage of a
multicore computer for simulating a plant
model. It requires Simulink Coder to generate
multithreaded code.

Implement an FFT with Multicore and FPGA Illustration in which you can accelerate parts
of an algorithm by deploying on an FPGA using
HDL Coder software. The rest of the algorithm
is deployed on a multicore processor.

Assign Code to Cores Illustration of how to assign code from parts of
your model to cores of a multicore processor.
It requires Simulink Coder to generate
multithreaded code.

 Command-Line Interface for Concurrent Execution

13-55

Command-Line Interface for Concurrent Execution

Use these functions to configure models for concurrent execution.

To Use

Create or convert
configuration for
concurrent execution.

Simulink.architecture.config

Add triggers to the
software node or add tasks
to triggers.

Simulink.architecture.add

Delete triggers or tasks. Simulink.architecture.delete

Find objects with specified
parameter values.

Simulink.architecture.find_system

Get configuration
parameters for target
architecture.

Simulink.architecture.get_param

Import and select
architecture.

Simulink.architecture.importAndSelect

Generate profile report
for model configured for
concurrent execution.

Simulink.architecture.profile

Add custom target
architecture.

Simulink.architecture.register

Set properties for a
concurrent execution object
(such as task, trigger, or
hardware node).

Simulink.architecture.set_param

Configure concurrent
execution data transfers.

Simulink.GlobalDataTransfer

Map Blocks to Tasks

To map blocks to tasks, use the set_param function.

Map a block to one task:

13 Configuring Models for Targets with Multicore Processors

13-56

set_param(block,'TargetArchitectureMapping',[bdroot 'CPU/PeriodicTrigger1/Task1']);

Map a block to multiple tasks:
set_param(block,'TargetArchitectureMapping',...

{[bdroot 'CPU/PeriodicTrigger1/Task1'];...

[bdroot 'CPU/PeriodicTrigger1/Task2']});

Get the current mapping of a block:

get_param(block,'TargetArchitectureMapping');

14

Modeling Best Practices

• “General Considerations when Building Simulink Models” on page 14-2
• “Model a Continuous System” on page 14-8
• “Best-Form Mathematical Models” on page 14-11
• “Model a Simple Equation” on page 14-15
• “Model Differential Algebraic Equations” on page 14-17
• “Componentization Guidelines” on page 14-28
• “Modeling Complex Logic” on page 14-45
• “Modeling Physical Systems” on page 14-46
• “Modeling Signal Processing Systems” on page 14-47

14 Modeling Best Practices

14-2

General Considerations when Building Simulink Models

In this section...

“Avoiding Invalid Loops” on page 14-2
“Shadowed Files” on page 14-4
“Model Building Tips” on page 14-6

Avoiding Invalid Loops

You can connect the output of a block directly or indirectly (i.e., via other blocks) to its
input, thereby, creating a loop. Loops can be very useful. For example, you can use loops
to solve differential equations diagrammatically (see “Model a Continuous System” on
page 14-8) or model feedback control systems. However, it is also possible to create
loops that cannot be simulated. Common types of invalid loops include:

• Loops that create invalid function-call connections or an attempt to modify the input/
output arguments of a function call (see “Create a Function-Call Subsystem” on page
9-50 for a description of function-call subsystems)

• Self-triggering subsystems and loops containing non-latched triggered subsystems
(see “Create a Triggered Subsystem” on page 9-38 in the Using Simulink
documentation for a description of triggered subsystems and Inport in the Simulink
reference documentation for a description of latched input)

• Loops containing action subsystems

The Subsystem Examples block library in the Ports & Subsystems library contains
models that illustrates examples of valid and invalid loops involving triggered and
function-call subsystems. Examples of invalid loops include the following models:

• simulink/Ports&Subsystems/sl_subsys_semantics/Triggered subsystem/

sl_subsys_trigerr1 (sl_subsys_trigerr1)
• simulink/Ports&Subsystems/sl_subsys_semantics/Triggered subsystem/

sl_subsys_trigerr2 (sl_subsys_trigerr2)
• simulink/Ports&Subsystems/sl_subsys_semantics/Function-call

systems/sl_subsys_fcncallerr3 (sl_subsys_fcncallerr3)

You might find it useful to study these examples to avoid creating invalid loops in your
own models.

 General Considerations when Building Simulink Models

14-3

Detecting Invalid Loops

To detect whether your model contains invalid loops, select Update Diagram from the
model's Simulation menu. If the model contains invalid loops, the invalid loops are
highlighted. This is illustrated in the following model ,

and displays an error message in the Diagnostic Viewer.

14 Modeling Best Practices

14-4

Shadowed Files

If there are two Model files with the same name (e.g. mylibrary.slx) on the MATLAB
path, the one higher on the path is loaded, and the one lower on the path is said to be
"shadowed".

Tip To help avoid problems with shadowed files, turn on the Simulink preference Do not
load models that are shadowed on the MATLAB path. See “Do not load models that
are shadowed on the MATLAB path”.

The rules Simulink software uses to find Model files are similar to those used by
MATLAB software. See “What Is the MATLAB Search Path?” in the MATLAB

 General Considerations when Building Simulink Models

14-5

documentation. However, there is an important difference between how Simulink
block diagrams and MATLAB functions are handled: a loaded block diagram takes
precedence over any unloaded ones, regardless of its position on the MATLAB path. This
is done for performance reasons, as part of the Simulink software's incremental loading
methodology.

The precedence of a loaded block diagram over any others can have important
implications, particularly since a block diagram can be loaded without the corresponding
Simulink window being visible.

Making Sure the Correct Block Diagram Is Loaded

When using libraries and referenced models, you can load a block diagram without
showing its window. If the MATLAB path or the current MATLAB folder changes while
block diagrams are in memory, these block diagrams can interfere with the use of other
files of the same name.

For example, open a model with a library called mylib, change to another folder, and
then open another model with a library also called mylib. When you run the first model,
it uses the library associated with the second model.

This can lead to problems including:

• Simulation errors
• "Unresolved Link" icons on blocks that are library links
• Wrong results

Detecting and Fixing Problems

To help avoid problems with shadowed files, you can turn on the Simulink preference Do
not load models that are shadowed on the MATLAB path. See “Do not load models
that are shadowed on the MATLAB path”.

When updating a block diagram, the Simulink software checks the position of its file on
the MATLAB path and will issue a warning if it detects that another file of the same
name exists and is higher on the MATLAB path. The warning reads:

The file containing block diagram 'mylibrary' is shadowed

by a file of the same name higher on the MATLAB path.

This may indicate that the wrong file called mylibrary.slx is being used. To see which
file called mylibrary.slx is loaded into memory, enter:

14 Modeling Best Practices

14-6

 which mylibrary

C:\work\Model1\mylibrary.slx

To see all the files called mylibrary which are on the MATLAB path, including
MATLAB scripts, enter:

which -all mylibrary

C:\work\Model1\mylibrary.slx

C:\work\Model2\mylibrary.slx % Shadowed

To close the block diagram called mylibrary and let the Simulink software load the file
which is highest on the MATLAB path, enter:

close_system('mylibrary')

Model Building Tips

Here are some model-building hints you might find useful:

• Memory issues

In general, more memory will increase performance.
• Using hierarchy

More complex models often benefit from adding the hierarchy of subsystems to the
model. Grouping blocks simplifies the top level of the model and can make it easier to
read and understand the model. For more information, see “Create a Subsystem” on
page 4-41. The Model Browser provides useful information about complex models (see
“Model Browser” on page 11-73).

• Cleaning up models

Well organized and documented models are easier to read and understand. Signal
labels and model annotations can help describe what is happening in a model.
For more information, see “Signal Names and Labels” on page 60-5 and
“Annotations” on page 4-21.

• Modeling strategies

If several of your models tend to use the same blocks, you might find it easier to save
these blocks in a model. Then, when you build new models, just open this model and
copy the commonly used blocks from it. You can create a block library by placing a

 General Considerations when Building Simulink Models

14-7

collection of blocks into a system and saving the system. You can then access the
system by typing its name in the MATLAB Command Window.

Generally, when building a model, design it first on paper, then build it using the
computer. Then, when you start putting the blocks together into a model, add the
blocks to the model window before adding the lines that connect them. This way, you
can reduce how often you need to open block libraries.

14 Modeling Best Practices

14-8

Model a Continuous System

To model the differential equation

x´= –2x(t)+u(t),

where u(t) is a square wave with an amplitude of 1 and a frequency of 1 rad/sec, use an
integrator block and a gain block. The Integrator block integrates its input x´ to produce
x. Other blocks needed in this model include a Gain block and a Sum block. To generate a
square wave, use a Signal Generator block and select the Square Wave form but change
the default units to radians/sec. Again, view the output using a Scope block. Gather the
blocks and define the gain.

In this model, to reverse the direction of the Gain block, select the block, then use the
Diagram > Rotate & Flip > Flip Block command. To create the branch line from the
output of the Integrator block to the Gain block, hold down the Ctrl key while drawing
the line. For more information, see “Draw a Branch Line” on page 4-12.

Now you can connect all the blocks.

An important concept in this model is the loop that includes the Sum block, the
Integrator block, and the Gain block. In this equation, x is the output of the Integrator
block. It is also the input to the blocks that compute x´, on which it is based. This
relationship is implemented using a loop.

The Scope displays x at each time step. For a simulation lasting 10 seconds, the output
looks like this:

 Model a Continuous System

14-9

The equation you modeled in this example can also be expressed as a transfer function.
The model uses the Transfer Fcn block, which accepts u as input and outputs x. So, the
block implements x/u. If you substitute sx for x´ in the above equation, you get
sx = –2x + u.

Solving for x gives
x = u/(s + 2)

or,
x/u = 1/(s + 2).

The Transfer Fcn block uses parameters to specify the numerator and denominator
coefficients. In this case, the numerator is 1 and the denominator is s+2. Specify both
terms as vectors of coefficients of successively decreasing powers of s.

In this case the numerator is [1] (or just 1) and the denominator is [1 2].

14 Modeling Best Practices

14-10

The results of this simulation are identical to those of the previous model.

 Best-Form Mathematical Models

14-11

Best-Form Mathematical Models

In this section...

“Series RLC Example” on page 14-11
“Solving Series RLC Using Resistor Voltage” on page 14-12
“Solving Series RLC Using Inductor Voltage” on page 14-13

Series RLC Example

You can often formulate the mathematical system you are modeling in several ways.
Choosing the best-form mathematical model allows the simulation to execute faster and
more accurately. For example, consider a simple series RLC circuit.

R L C

VAC

According to Kirchoff's voltage law, the voltage drop across this circuit is equal to the
sum of the voltage drop across each element of the circuit.

V V V VAC R L C= + +

Using Ohm's law to solve for the voltage across each element of the circuit, the equation
for this circuit can be written as

V Ri L
di

dt C
i t dtAC

t
= + +

-•Ú
1

()

You can model this system in Simulink by solving for either the resistor voltage or
inductor voltage. Which you choose to solve for affects the structure of the model and its
performance.

14 Modeling Best Practices

14-12

Solving Series RLC Using Resistor Voltage

Solving the RLC circuit for the resistor voltage yields

V Ri

Ri V L
di

dt C
i t dt

R

AC

t

=

= - -
-•Ú

1
()

Circuit Model

The following diagram shows this equation modeled in Simulink where R is 70, C is
0.00003, and L is 0.04. The resistor voltage is the sum of the voltage source, the
capacitor voltage, and the inductor voltage. You need the current in the circuit to
calculate the capacitor and inductor voltages. To calculate the current, multiply the
resistor voltage by a gain of 1/R. Calculate the capacitor voltage by integrating the
current and multiplying by a gain of 1/C. Calculate the inductor voltage by taking the
derivative of the current and multiplying by a gain of L.

This formulation contains a Derivative block associated with the inductor. Whenever
possible, you should avoid mathematical formulations that require Derivative blocks as
they introduce discontinuities into your system. Numerical integration is used to solve
the model dynamics though time. These integration solvers take small steps through

 Best-Form Mathematical Models

14-13

time to satisfy an accuracy constraint on the solution. If the discontinuity introduced by
the Derivative block is too large, it is not possible for the solver to step across it.

In addition, in this model the Derivative, Sum, and two Gain blocks create an algebraic
loop. Algebraic loops slow down the model's execution and can produce less accurate
simulation results. See “Algebraic Loops” on page 3-37 for more information.

Solving Series RLC Using Inductor Voltage

To avoid using a Derivative block, formulate the equation to solve for the inductor
voltage.

V L
di

dt

L
di

dt
V Ri

C
i t dt

L

AC

t

=

= - -
-•Ú

1
()

Circuit Model

The following diagram shows this equation modeled in Simulink. The inductor voltage is
the sum of the voltage source, the resistor voltage, and the capacitor voltage. You need
the current in the circuit to calculate the resistor and capacitor voltages. To calculate
the current, integrate the inductor voltage and divide by L. Calculate the capacitor
voltage by integrating the current and dividing by C. Calculate the resistor voltage by
multiplying the current by a gain of R.

14 Modeling Best Practices

14-14

This model contains only integrator blocks and no algebraic loops. As a result, the model
simulates faster and more accurately.

 Model a Simple Equation

14-15

Model a Simple Equation
To model the equation that converts Celsius temperature to Fahrenheit

TF = 9/5(TC) + 32

First, consider the blocks needed to build the model:

• A Ramp block to input the temperature signal, from the Sources library
• A Constant block to define a constant of 32, also from the Sources library
• A Gain block to multiply the input signal by 9/5, from the Math Operations library
• A Sum block to add the two quantities, also from the Math Operations library
• A Scope block to display the output, from the Sinks library

Next, gather the blocks into your model window.

Assign parameter values to the Gain and Constant blocks by opening (double-clicking)
each block and entering the appropriate value. Then, click the OK button to apply the
value and close the dialog box.

Now, connect the blocks.

14 Modeling Best Practices

14-16

The Ramp block inputs Celsius temperature. Open that block and change the Initial
output parameter to 0. The Gain block multiplies that temperature by the constant 9/5.
The Sum block adds the value 32 to the result and outputs the Fahrenheit temperature.

Open the Scope block to view the output. Now, choose Run from the Simulation menu
to run the simulation. The simulation runs for 10 seconds.

 Model Differential Algebraic Equations

14-17

Model Differential Algebraic Equations

In this section...

“Overview of Robertson Reaction Example” on page 14-17
“Simulink Model from ODE Equations” on page 14-17
“Simulink Model from DAE Equations” on page 14-20
“Simulink Model from DAE Equations Using Algebraic Constraint Block” on page
14-23

Overview of Robertson Reaction Example

Robertson [1] created a system of autocatalytic chemical reactions to test and compare
numerical solvers for stiff systems. The reactions, rate constants (k), and reaction rates
(V) for the system are given as follows:

A B k V k A

B B C B k V k B B

B C

k

k

k

1

2

3

1 1 1

2
7

2 2

0 04

3 10

æ Ææ = =

+ æ Ææ + = ◊ =

+ æ

. []

[][]

ÆÆæ + = ◊ =A C k V k B C3
4

3 31 10 [][]

Because there are large differences between the reaction rates, the numerical solvers see
the differential equations as stiff. For stiff differential equations, some numerical solvers
cannot converge on a solution unless the step size is extremely small. If the step size is
extremely small, the simulation time can be unacceptably long. In this case, you need to
use a numerical solver designed to solve stiff equations.

Simulink Model from ODE Equations

A system of ordinary differential equations (ODE) has the following characteristics:

• All of the equations are ordinary differential equations.
• Each equation is the derivative of a dependent variable with respect to one

independent variable, usually time.
• The number of equations is equal to the number of dependent variables in the system.

14 Modeling Best Practices

14-18

Using the reaction rates, you can create a set of differential equations describing the
rate of change for each chemical species. Since there are three species, there are three
differential equations in the mathematical model.

¢ = - + ◊

¢ = - ◊ - ◊

¢ = ◊

A A BC

B A BC B

C B

0 04 1 10

0 04 1 10 3 10

3 10

4

4 7 2

7 2

.

.

Initial conditions: A =1 , B = 0 , and C = 0 .

Build the Model

Create a model, or open the model ex_hb1ode.

1 Add three Integrator blocks to your model. Label the inputs A', B', and C', and the
outputs A, B, and C respectively.

2 Add Sum, Product, and Gain blocks to solve each differential variable. For example,
to model the signal C’,

a Add a Math Function block and connect the input to signal B. Set the Function
parameter to square.

b Connect the output from the Math Function block to a Gain block. Set the Gain
parameter to 3e7.

c Continue to add the remaining differential equation terms to your model.
3 Model the initial condition of A by setting the Initial condition parameter for the A

Integrator block to 1.
4 Add Out blocks to save the signals A, B, and C to the MATLAB variable yout.

 Model Differential Algebraic Equations

14-19

Simulate the Model

Create a script that uses the sim command to simulate your model. This script saves the
simulation results in the MATLAB variable yout. Since the simulation has a long time
interval and B initially changes very fast, plotting values on a logarithmic scale helps to
visually compare the results. Also, since the value of B is small relative to the values of A
and C, multiply B by 1 10

4
◊ before plotting the values.

1 Enter the following statements in a MATLAB script. If you built your own model,
replace ex_hblode with the name of your model.

sim('ex_hb1ode')

yout(:,2) = 1e4*yout(:,2);

figure;

semilogx(tout,yout);

xlabel('Time');

ylabel('Concentration');

title('Robertson Reactions Modeled with ODEs')

2 From the Simulink Editor menu, select Simulation > Model Configuration
Parameters:

14 Modeling Best Practices

14-20

— In the Solver pane, set the Stop time to 4e5 and the Solver to ode15s (stiff/
NDF).

— In the Data Import pane, select the Time and Output check boxes.
3 Run the script. Observe that all of A is converted to C.

Simulink Model from DAE Equations

A system of differential algebraic equations (DAE) has the following characteristics:

• It contains both ordinary differential equations and algebraic equations. Algebraic
equations do not have any derivatives.

• Only some of the equations are differential equations defining the derivatives of some
of the dependent variables. The other dependent variables are defined with algebraic
equations.

• The number of equations is equal to the number of dependent variables in the system.

 Model Differential Algebraic Equations

14-21

Some systems contain constraints due to conservation laws, such as conservation of
mass and energy. If you set the initial concentrations to A =1 , B = 0 , and C = 0 , the total
concentration of the three species is always equal to 1 since A B C+ + =1 . You can replace
the differential equation for ¢C with the following algebraic equation to create a set of
differential algebraic equations (DAEs).

C A B= - -1

The differential variables A and B uniquely determine the algebraic variable C.

¢ = - + ◊

¢ = - ◊ - ◊

= - -

A A BC

B A BC B

C A B

0 04 1 10

0 04 1 10 3 10

1

4

4 7 2

.

.

Initial conditions: A =1and B = 0 .

Build the Model

Make these changes to your model or to the model ex_hb1ode, or open the model
ex_hb1dae.

1 Delete the Integrator block for calculating C.
2 Add a Sum block and set the List of signs parameter to +– –.
3 Connect the signals A and B to the minus inputs of the Sum block.
4 Model the initial concentration of A with a Constant block connected to the plus

input of the Sum block. Set the Constant value parameter to 1.
5 Connect the output of the Sum block to the branched line connected to the Product

and Out blocks.

14 Modeling Best Practices

14-22

Simulate the Model

Create a script that uses the sim command to simulate your model.

1 Enter the following statements in a MATLAB script. If you built your own model,
replace ex_hbldae with the name of your model.

sim('ex_hb1dae')

yout(:,2) = 1e4*yout(:,2);

figure;

semilogx(tout,yout);

xlabel('Time');

ylabel('Concentration');

title('Robertson Reactions Modeled with DAEs')

2 From the Simulink Editor menu, select Simulation > Model Configuration
Parameters:

 Model Differential Algebraic Equations

14-23

— In the Solver pane, set the Stop time to 4e5 and the Solver to ode15s (stiff/
NDF).

— In the Data Import pane, select the Time and Output check boxes.
3 Run the script. The simulation results when you use an algebraic equation are the

same as for the model simulation using only differential equations.

Simulink Model from DAE Equations Using Algebraic Constraint Block

Some systems contain constraints due to conservation laws, such as conservation of
mass and energy. If you set the initial concentrations to A =1 , B = 0 , and C = 0 , the total
concentration of the three species is always equal to 1 since A B C+ + =1 .

You can replace the differential equation for ¢C with an algebraic equation modeled
using an Algebraic Constraint block and a Sum block. The Algebraic Constraint block
constrains its input signal F(z) to zero and outputs an algebraic state z. In other words,
the block output is a value needed to produce a zero at the input. Use the following
algebraic equation for input to the block.

14 Modeling Best Practices

14-24

0 1= + + -A B C

The differential variables A and B uniquely determine the algebraic variable C.

¢ = - + ◊

¢ = - ◊ - ◊

= - -

A A BC

B A BC B

C A B

0 04 1 10

0 04 1 10 3 10

1

4

4 7 2

.

.

Initial conditions: A =1 , B = 0 , and C = ◊
-

1 10
3 .

Build the Model

Make these changes to your model or to the model ex_hb1ode, or open the model
ex_hb1dae_acb.

1 Delete the Integrator block for calculating C.
2 Add an Algebraic Constraint block. Set the Initial guess parameter to 1e-3.
3 Add a Sum block. Set the List of signs parameter to –+++.
4 Connect the signals A and B to plus inputs of the Sum block.
5 Model the initial concentration of A with a Constant block connected to the minus

input of the Sum block. Set the Constant value parameter to 1.
6 Connect the output of the Algebraic Constraint block to the branched line connected

to the Product and Out block inputs.
7 Create a branch line from the output of the Algebraic Constraint block to the final

plus input of the Sum block.

 Model Differential Algebraic Equations

14-25

Simulate the Model

Create a script that uses the sim command to simulate your model.

1 Enter the following statements in a MATLAB script. If you built your own model,
replace ex_hbl_acb with the name of your model.

sim('ex_hb1dae_acb')

yout(:,2) = 1e4*yout(:,2);

figure;

semilogx(tout,yout);

xlabel('Time');

ylabel('Concentration');

title('Robertson Reactions Modeled with DAEs and Algebraic Constraint Block')

2 From the Simulink Editor menu, select Simulation > Model Configuration
Parameters:

14 Modeling Best Practices

14-26

— In the Solver pane, set the Stop time to 4e5 and the Solver to ode15s (stiff/
NDF).

— In the Data Import pane, select the Time and Output check boxes.
3 Run the script. The simulation results when you use an Algebraic Constraint block

are the same as for the model simulation using only differential equations.

Using an Algebraic Constraint block creates an algebraic loop in a model, If you set
the Algebraic Loop parameter to warning (Simulation > Model Configuration
Parameters > Diagnostics > Algebraic Loop), the following message displays in the
Diagnostic Viewer during simulation.

 Model Differential Algebraic Equations

14-27

For this model, the algebraic loop solver was able to find a solution for the simulation,
but algebraic loops don’t always have a solution, and they are not supported for code
generation. For more information about algebraic loops in Simulink models and how to
remove them, see “Algebraic Loops” on page 3-37.

References

[1] Robertson, H. H. “The solution of a set of reaction rate equations.” Numerical
Analysis: An Introduction (J. Walsh ed.). London, England:Academic Press, 1966,
pp. 178–182.

See Also
hb1dae | hb1ode

MATLAB:edit('hb1dae')
MATLAB:edit('hb1ode')

14 Modeling Best Practices

14-28

Componentization Guidelines

Componentization

A component is a piece of your design, a unit level item, or a subassembly, that you can
work on without needing the higher level parts of the model.

Componentization involves organizing your model into components. Componentization
provides many benefits for organizations that develop large Simulink models that consist
of many functional pieces. The benefits include:

• Meeting development process requirements, such as:

• Component reuse
• Team-based development
• Intellectual property protection
• Unit testing

• Improving performance for:

• Model loading
• Simulation speed
• Memory usage

Componentization Techniques

Key componentization techniques that you can use with Simulink include:

• Subsystems
• Libraries
• Model referencing

These componentization techniques support a wide range of modeling requirements
for models that vary in size and complexity. Most large models use a combination of
componentization techniques. For example, you can include subsystems in referenced
models, and include referenced models in subsystems. As another example, a large model
might use model reference Accelerator blocks at the top level component partitions and
blend model reference Accelerator and atomic subsystem libraries at lower levels.

 Componentization Guidelines

14-29

Simulink provides tools to convert from subsystems to model referencing. Because of the
differences between subsystems and model referencing, switching from subsystems to
model referencing can involve several steps (see “Convert a Subsystem to a Referenced
Model” on page 8-16). Consider scalability and support for anticipated future modeling
requirements, such as how a model is likely to grow in size and complexity and possible
code generation requirements. Designing a scalable architecture can avoid later
conversion costs.

General Componentization Guidelines

This table provides high-level guidelines about the kinds of modeling goals and models
for which subsystems, libraries, and model referencing are each particularly well suited.

Componentization Technique Modeling Goals for Which the Technique Is Well Suited

Subsystems • Add hierarchy to organize and visually simplify a
model.

• Maximize design reuse with inherited attributes for
context-dependent behavior.

Libraries • Provide a frequently used, and infrequently changed,
modeling utility.

• Reuse components repeatedly in a model or in
multiple models.

Model referencing • Develop a referenced model independently from the
models that use it.

• Obscure the contents of a referenced model, allowing
you to distribute it without revealing the intellectual
property that it embodies.

• Reference a model multiple times without having to
make redundant copies.

• Facilitate changes by multiple people, with defined
interfaces for top-level components.

• Improve the overall performance by using
incremental model loading, update diagram,
simulation, and code generation for large models (for
example, a model with 10,000 blocks).

• Perform unit testing.

14 Modeling Best Practices

14-30

Componentization Technique Modeling Goals for Which the Technique Is Well Suited

• Simplify debugging for large models.
• Generate code that reflects the model structure.

For a more detailed comparison of these modeling techniques, see “Summary of
Componentization Techniques” on page 14-30.

Summary of Componentization Techniques

This section compares subsystems, libraries, and model referencing. The table includes
recommendations and notes about a range of modeling requirements and features.

To see more information about a specific requirement or feature, click a link in a table
cell.

Modeling
Requirement or
Feature

Subsystems Libraries Model Referencing

Development Process
Component
reuse

Not supported Well suited Well suited

Team-based
development

Not supported Supported, with
limitations

Well suited

Intellectual
property
protection

Not supported Not supported Well suited

Unit testing Supported, with
limitations

Supported, with
limitations

Well suited

Performance
Model loading
speed

Supported, with
limitations

Well suited Well suited

Simulation
speed for large
models

Supported, with
limitations

Supported, with
limitations

Well suited

Memory Supported, with
limitations

Supported, with
limitations

Well suited

 Componentization Guidelines

14-31

Modeling
Requirement or
Feature

Subsystems Libraries Model Referencing

Artificial
algebraic loop
avoidance

Well suited Well suited Supported, with
limitations

Features
Signal property
inheritance

Well suited Well suited Supported, with
limitations

State
initialization

Well suited Well suited Supported, with
limitations

Buses Well suited Well suited Supported, with
limitations

S-functions Well suited Well suited Supported, with
limitations

Model
configuration
settings

Well suited Well suited Supported, with
limitations

Tools Well suited Well suited Supported, with
limitations

Code generation Supported, with
limitations

Supported, with
limitations

Well suited

For each modeling technique, you can see a summary table that includes the
more detailed information included in the links in the above summary table of
componentization techniques:

• “Subsystems Summary” on page 14-31
• “Libraries Summary” on page 14-35
• “Model Referencing Summary” on page 14-38

Subsystems Summary

This section provides guidelines for using subsystems for each of the modeling
requirements and features highlighted in the “Summary of Componentization
Techniques” on page 14-30.

14 Modeling Best Practices

14-32

For additional information about subsystems, see:

• “Create a Subsystem” on page 4-41
• “Conditional Subsystems”

Modeling Requirement or
Feature

Guidelines for Subsystems

Development Process
Component reuse Not supported

• Copy a subsystem to reuse it in a model.
• Subsystem copies are independent of each other.
• Save a subsystem by saving the model that contains the

subsystem.
• Configuration management for subsystems is difficult.

Team-based
development

Not supported

• For subsystems in a model, Simulink provides no direct
interface with source control tools.

• To create or change a subsystem, you need to open the
parent model’s file. This can lead to file contention when
multiple people want to work on multiple subsystems in a
model.

Intellectual property
protection

Not supported

Use model referencing protected models instead.
Unit testing Supported, with limitations

• For coverage testing, use Signal Builder and source blocks.
• Each time a subsystem changes, you need to copy the

subsystem to a harness model.
• The test harness may have different Simulink sort orders,

due to virtual boundaries.
• Test harness files require configuration management

overhead.
Performance

 Componentization Guidelines

14-33

Modeling Requirement or
Feature

Guidelines for Subsystems

Model loading speed Supported, with limitations

Loading a model loads all subsystems at one time. There is no
incremental loading.

Simulation speed for
large models

Supported, with limitations

• To speed simulation, use Accelerator or Rapid Accelerator
simulation mode.

• Simulation mode applies to the whole model. Model
referencing provides a finer level of control for simulation
modes.

Memory Supported, with limitations

Memory use for simulation and code generation is comparable
for subsystems and libraries. For models with over 500 blocks,
model reference Accelerator mode can significantly reduce
memory usage for simulation and code generation.

Artificial algebraic loop
avoidance

Well suited

• Virtual subsystems avoid artificial algebraic loops.
• For nonvirtual subsystems, consider enabling the

Subsystem block parameter Minimize algebraic loop
occurrences.

Features
Signal property
inheritance

Well suited

• Inheriting signal properties from outside of the subsystem
boundary avoids your having to specify properties for every
signal.

• Propagation of signal properties can lead to Simulink using
signal properties that you did not anticipate.

State initialization Well suited

You can initialize states of subsystems.

14 Modeling Best Practices

14-34

Modeling Requirement or
Feature

Guidelines for Subsystems

Tunability Well suited

• Tune subsystems using a block parameterization or masked
subsystems.

• Control tunability in generated code using Configuration
Parameters > Optimization > Signals and
Parameters > Default parameter behavior.

Buses Well suited

Subsystems do not require the use of bus objects for virtual
buses.

S-functions Well suited

Subsystems support inlined or noninlined S-functions.
Model configuration
settings

Well suited

A subsystem uses the model configuration settings of the model
that contains the subsystem.

Tools Well suited

Subsystems provide extensive support for Simulink tools.
Code generation Supported, with limitations

• To generate code for a subsystem by itself, right-click the
Subsystem block and select a code generation option.

• As an optimization, Simulink attempts to recognize
identical subsystems. For detected identical subsystems,
the generated code includes only one copy of code for the
multiple subsystems.

• For virtual subsystems, you cannot specify file or function
code partitions for code generation.

 Componentization Guidelines

14-35

Libraries Summary

This section provides guidelines for using libraries for each of the modeling requirements
and features highlighted in the “Summary of Componentization Techniques” on page
14-30.

For additional information about libraries, see “Libraries”.

Modeling Requirement or
Feature

Guidelines for Libraries

Development Process
Component reuse Well suited

• Access a collection of well-defined utility blocks.
• Create a component once and reuse it in models.
• Link to the same library block multiple times without

creating multiple copies.
• Link to the same library block from multiple models.
• Restrict write access to library components.
• Maintain one truth: propagate changes from a single library

block to all blocks that link to that library.
• Disable a link to allow independent changes to a linked

block.
• Managing library links adds some overhead.
• Save library in a file similar to a Simulink model, but you

cannot simulate the file contents.
Team-based
development

Supported, with limitations

• Place library files in source control for version control and
configuration management.

• Maintain one truth: propagate changes from a single library
block to all blocks that link to that library.

• To reduce file contention, use one subsystem per library.
• Link to the same library block from multiple models.
• Restrict write access to library component.

14 Modeling Best Practices

14-36

Modeling Requirement or
Feature

Guidelines for Libraries

• See “General Reusability Limitations” on page 8-82.
Intellectual property
protection

Not supported

Use model referencing protected models instead.
Unit testing Supported, with limitations

• For coverage testing, use Signal Builder and source blocks.
• Test harness may have different Simulink sort orders, due

to virtual boundaries.
• Test harness files require configuration management

overhead.
Performance
Model loading speed Well suited

Simulink incrementally loads a library at the point needed
during editing, updating a diagram, or simulating a model.

Simulation speed for
large models

Supported, with limitations

• To speed simulation, use Accelerator or Rapid Accelerator
simulation mode.

• Simulation mode applies to the whole model. Model
referencing provides a finer level of control for simulation
modes.

Memory Supported, with limitations

• Simulink incrementally loads libraries at the point needed
during editing, updating a diagram, or simulating a model.

• Simulink duplicates library block instances during block
update.

• Memory usage for simulation and code generation is
comparable for subsystems and libraries. For models with
over 500 blocks, model reference Accelerator mode can
significantly reduce memory usage for simulation and code
generation.

 Componentization Guidelines

14-37

Modeling Requirement or
Feature

Guidelines for Libraries

Artificial algebraic loop
avoidance

Well suited

• Virtual subsystems avoid artificial algebraic loops.
• For nonvirtual subsystems, consider enabling the

Subsystem block parameter Minimize algebraic loop
occurrences.

Features
Signal property
inheritance

Well suited

• Inheriting signal properties from outside of the library block
boundary avoids your having to specify properties for every
signal.

• Propagation of signal properties can lead to Simulink using
signal properties that you did not anticipate.

State initialization Well suited

You can initialize states of library blocks.
Tunability Well suited

• Tune library blocks using block parameterization or masked
subsystems.

• Control tunability in generated code using Configuration
Parameters > Optimization > Signals and
Parameters > Default parameter behavior.

Buses Well suited

Libraries do not require the use of bus objects for virtual buses.
S-functions Well suited

Libraries support inlined and noninlined S-functions.

14 Modeling Best Practices

14-38

Modeling Requirement or
Feature

Guidelines for Libraries

Model configuration
settings

Well suited

• Library models do not have model configuration settings.
• A referenced library block uses the model configuration

setting of the model that contains that block.
Tools Supported, with limitations

There are some limitations for using some Simulink tools, such
as the Model Advisor, with libraries.

Code generation Supported, with limitations

• As an optimization, Simulink attempts to recognize
identical subsystems. For detected identical subsystems,
the generated code includes only one copy of code for the
multiple subsystems.

• For virtual subsystems, you cannot specify file or function
code partitions for code generation.

Model Referencing Summary

This section provides guidelines for using model referencing for each of the modeling
requirements and features highlighted in the “Summary of Componentization
Techniques” on page 14-30.

For additional information about model referencing, see:

• “Model Reference”
• “Simulink Model Referencing Requirements” on page 8-53
• “Model Referencing Limitations” on page 8-81

Modeling Requirement or
Feature

Guidelines for Model Referencing

Development Process Requirements
Component reuse Well suited

 Componentization Guidelines

14-39

Modeling Requirement or
Feature

Guidelines for Model Referencing

• Create a standalone component once and reuse it in
multiple models.

• Reference the same model multiple times without creating
multiple copies.

• Reference the same model from multiple models.
• Model referencing uses specified boundaries for preserving

component integrity.
Team-based
development

Well suited

• For version control and configuration management, you can
place model reference files in a source control system.

• Design, create, simulate, and test a referenced model
independently from the model that references it.

• Link to the same model reference from multiple models.
• Changes made to a referenced model apply to all instances

of that referenced model.
• Simulink does not limit access for changing a model

reference.
• You save a referenced model in a separate file from the

model that references it. Using separate files helps to avoid
file contention.

Intellectual property
protection

Well suited

• Use the protected model feature to obscure contents of a
referenced model in a distributed model.

• Creating a protected model feature requires a Simulink
Coder license. Using a protected model does not require a
Simulink Coder license.

14 Modeling Best Practices

14-40

Modeling Requirement or
Feature

Guidelines for Model Referencing

Unit testing Well suited

• Test components independently to isolate behaviors, by
simulating them standalone.

• You can eliminate unit retest for unchanged components.
• Use a data-defined test harness, with MATLAB test vectors

and direct coverage collection.
• For coverage testing, use root inports and outports.

Performance
Model loading speed Well suited

• Simulink incrementally loads a referenced model at the
point needed during editing, updating a diagram, or
simulating a model.

• If a simulation target build is required, first-time loading
can be slow.

Simulation speed for
large models

Well suited

• Simulate a referenced model standalone.
• The Model block has an option for specifying the simulation

mode.
• You can improve rebuild performance by selecting the

appropriate setting for the Configuration Parameters >
Model Referencing > Rebuild parameter.

• Simulation through code generation can have a slow start-
up time, which might be undesirable during prototyping.

• See “Limitations on Normal Mode Referenced Models” on
page 8-84, “Limitations on Accelerator Mode Referenced
Models” on page 8-84, and “Limitations on SIL and PIL
Mode Referenced Models” on page 8-88.

 Componentization Guidelines

14-41

Modeling Requirement or
Feature

Guidelines for Model Referencing

Memory Well suited

• Simulink loads a referenced model at the point that
model is needed for navigation during editing, updating a
diagram, or simulating a model.

• Use model reference Accelerator mode to reduce memory
usage, incrementally loading a compiled version of a
referenced model.

Artificial algebraic loop
avoidance

Supported, with limitations

Consider enabling Configuration Parameters > Model
Referencing > Minimize algebraic loop occurrences.

Features
Signal property
inheritance

Supported, with limitations

• Inherit sample time when the referenced model is
sample-time independent. You cannot propagate a
continuous sample time to a Model block that is sample-
time independent.

• Model block is context-independent, so it cannot inherit
signal properties. Explicitly set input and output signal
properties.

• Use a bus object to define the signal data type of a bus
signal that is passed into a referenced model.

• Goto and From block lines cannot cross model referencing
boundaries.

•
• See “Index Base Limitations” on page 8-81.

14 Modeling Best Practices

14-42

Modeling Requirement or
Feature

Guidelines for Model Referencing

State initialization Supported, with limitations

• You can initialize states from the top model.
• Use either the structure format or structure with time

format to initialize the states of a top model and the models
that it references.

• To use the SimState (simulation state) feature with model
referencing, simulate all Model blocks in Normal mode.

• See “State Information for Referenced Models” on page
57-148.

Tunability Supported, with limitations

• To have each instance of a referenced model use different
values, use model arguments in the Model block.

• To have each instance of a referenced model use the same
values, use Simulink.Parameter objects.

• By default, all other parameters are inlined in generated
code.

Buses Supported, with limitations

You must use bus objects for bus signals that cross referenced
model boundaries (for example, global data stores, root inports,
root outports).

S-functions Supported, with limitations

Model referencing generally supports inlined or noninlined S-
functions. See “S-Function Limitations” on page 8-86.

 Componentization Guidelines

14-43

Modeling Requirement or
Feature

Guidelines for Model Referencing

Model configuration
settings

Supported, with limitations

• To apply the same model configuration settings to all
models in a model hierarchy, use a referenced configuration
set.

• Configuration settings for the root model and referenced
models must be consistent. However, not all configuration
settings need to be the same across the model hierarchy.

Tools Supported, with limitations

• There are some limitations for using some Simulink tools,
such as the Simulink Debugger, with model referencing.

• For details, see “Simulink Tool Limitations” on page 8-82.
Code generation Well suited

• By default, model referencing generates code incrementally.
• You can improve rebuild performance by selecting the

appropriate setting for the Configuration Parameters >
Model Referencing > Rebuild parameter.

• Model referencing requires the use of bus objects. For
information about the impact of bus objects for code
generation, in the Embedded Coder documentation, see
“Code Generation with Buses”.

Related Examples
• “Create a Subsystem” on page 4-41
• “Convert a Subsystem to a Referenced Model” on page 8-16
• “Create and Work with Linked Blocks” on page 36-4
• “Create a Model Reference” on page 8-8
• “Determine Where to Store Data for Simulink Models” on page 55-61

More About
• “Design Partitioning” on page 20-2

14 Modeling Best Practices

14-44

• “Interface Design” on page 20-13
• “Configuration Management” on page 20-17
• “Subsystem Advantages” on page 4-41
• “Conditional Subsystems”
• “About Block Libraries and Linked Blocks” on page 36-2
• “Overview of Model Referencing” on page 8-2
• “Simulink Model Referencing Requirements” on page 8-53
• “Model Referencing Limitations” on page 8-81

 Modeling Complex Logic

14-45

Modeling Complex Logic

To model complex logic in a Simulink model, consider using Stateflow software.

Stateflow extends Simulink with a design environment for developing state transition
diagrams and flow charts. Stateflow provides the language elements required to describe
complex logic in a natural, readable, and understandable form. It is tightly integrated
with MATLAB and Simulink products, providing an efficient environment for designing
embedded systems that contain control, supervisory, and mode logic.

For more information on Stateflow software, see “Stateflow”.

14 Modeling Best Practices

14-46

Modeling Physical Systems

To model physical systems in the Simulink environment, consider using Simscape
software.

Simscape extends Simulink with tools for modeling systems spanning mechanical,
electrical, hydraulic, and other physical domains as physical networks. It provides
fundamental building blocks from these domains to let you create models of custom
components. The MATLAB based Simscape language enables text-based authoring of
physical modeling components, domains, and libraries.

For more information on Simscape software, see “Simscape”.

 Modeling Signal Processing Systems

14-47

Modeling Signal Processing Systems

To model signal processing systems in the Simulink environment, consider using DSP
System Toolbox™ software.

DSP System Toolbox provides algorithms and tools for the design and simulation of
signal processing systems. These capabilities are provided as MATLAB functions,
MATLAB System objects, and Simulink blocks. The system toolbox includes design
methods for specialized FIR and IIR filters, FFTs, multirate processing, and DSP
techniques for processing streaming data and creating real-time prototypes. You can
design adaptive and multirate filters, implement filters using computationally efficient
architectures, and simulate floating-point digital filters. Tools for signal I/O from files
and devices, signal generation, spectral analysis, and interactive visualization enable
you to analyze system behavior and performance. For rapid prototyping and embedded
system design, the system toolbox supports fixed-point arithmetic and C or HDL code
generation.

For more information on DSP System Toolbox software, see “DSP System Toolbox”.

15

Simulink Project Setup

• “Organize Large Modeling Projects” on page 15-2
• “What Are Simulink Projects?” on page 15-3
• “Try Simulink Project Tools with the Airframe Project” on page 15-5
• “Create a Project from a Model” on page 15-18
• “Create a New Project to Manage Existing Files” on page 15-20
• “Add Files to the Project” on page 15-24
• “Create a New Project from an Archived Project” on page 15-26
• “Create a New Project Using Templates” on page 15-27
• “Use Project Templates from R2014a or Before” on page 15-30
• “Open Recent Projects” on page 15-31
• “Change the Project Name, Root, Description, and Startup Folder” on page 15-33
• “Specify Project Path” on page 15-35
• “What Can You Do With Project Shortcuts?” on page 15-37
• “Automate Startup Tasks with Shortcuts” on page 15-38
• “Automate Shutdown Tasks with Shortcuts” on page 15-40
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Use Shortcuts to Find and Run Frequent Tasks” on page 15-46
• “Using Templates to Create Standard Project Settings” on page 15-49
• “Create a Template from the Current Project” on page 15-50
• “Create a Template from a Project Under Version Control” on page 15-51
• “Edit a Template” on page 15-52
• “Explore the Example Templates” on page 15-53

15 Simulink Project Setup

15-2

Organize Large Modeling Projects

You can use Simulink Projects to help you organize your work. To get started with
managing your files in a project:

1 Try an example project to see how the tools can help you organize your work. See
“Try Simulink Project Tools with the Airframe Project” on page 15-5.

2 Create a new project. See “Create a New Project to Manage Existing Files” on page
15-20.

3 Use the Dependency Analysis view to analyze your project and check required files.
See “Run Dependency Analysis” on page 17-3.

4 Explore views of your files. See “Work with Project Files” on page 16-6.
5 Create shortcuts to save and run frequent tasks. See “Use Shortcuts to Find and Run

Frequent Tasks” on page 15-46.
6 Run operations on batches of files. See “Run a Simulink Project Batch Job” on page

16-32.
7 If you use a source control integration, you can use the Modified Files view to

review changes, compare revisions, and commit modified files. If you want to use
source control with your project, see “About Source Control with Projects” on page
18-2.

For guidelines on structuring projects, see “Componentization Guidelines” on page 14-28.

More About
• “Design Partitioning” on page 20-2
• “Interface Design” on page 20-13
• “Configuration Management” on page 20-17

 What Are Simulink Projects?

15-3

What Are Simulink Projects?

You can use Simulink Projects to help you organize your work. Find all your required
files; manage and share files, settings, and user-defined tasks; and interact with source
control.

If your work involves any of the following:

• More than one model file
• More than one model developer
• More than one model version

— then Simulink Projects can help you organize your work. You can manage all the files
you need in one place — all MATLAB and Simulink files, and any other file types you
need such as data, requirements, reports, spreadsheets, tests, or generated files.

Projects can promote more efficient team work and individual productivity by helping
you:

• Find all the files that belong with your project.
• Create standard ways to initialize and shut down a project.
• Create, store, and easily access common operations.
• View and label modified files for peer review workflows.
• Share projects using built-in integration with Subversion® (SVN) or Git™, external

source control tools.

See the Web page http://www.mathworks.com/products/simulink/simulink-
projects/ for the latest information, downloads, and videos.

To get started with managing your files in a project:

1 Try an example project to see how the tools can help you organize your work. See
“Try Simulink Project Tools with the Airframe Project” on page 15-5.

2 Create a new project. See “Create a New Project to Manage Existing Files” on page
15-20.

3 Analyze your project and check required files by using the Dependency Analysis
view. See “Run Dependency Analysis” on page 17-3.

4 Explore views of your files. See “Work with Project Files” on page 16-6.

http://www.mathworks.com/products/simulink/simulink-projects/
http://www.mathworks.com/products/simulink/simulink-projects/

15 Simulink Project Setup

15-4

5 Create shortcuts to save and run frequent tasks. See “Use Shortcuts to Find and Run
Frequent Tasks” on page 15-46.

6 Run operations on batches of files. See “Run a Simulink Project Batch Job” on page
16-32.

7 If you use a source control integration, you can use the Modified Files view to
review changes, compare revisions, and commit modified files. If you want to use
source control with your project, see “About Source Control with Projects” on page
18-2.

For guidelines on structuring projects, see “Componentization Guidelines” on page 14-28.

More About
• “Design Partitioning” on page 20-2
• “Interface Design” on page 20-13
• “Configuration Management” on page 20-17

 Try Simulink Project Tools with the Airframe Project

15-5

Try Simulink Project Tools with the Airframe Project

In this section...

“Explore the Airframe Project” on page 15-5
“Set Up Project Files and Open Simulink Project” on page 15-6
“View, Search, and Sort Project Files” on page 15-6
“Understand Project Startup and Shutdown Tasks” on page 15-7
“Create a Startup Shortcut” on page 15-9
“Open and Run Frequently Used Files” on page 15-9
“Review Changes in Modified Files” on page 15-10
“Run Project Integrity Checks” on page 15-12
“Run Dependency Analysis” on page 15-12
“Commit Modified Files” on page 15-15
“View Project and Source Control Information” on page 15-16

Explore the Airframe Project

Try an example Simulink project to see how the tools can help you organize your work.
Projects can help you manage:

• Your design (model and library files, .m, .mat, and other files, source code for S-
functions, data)

• A set of actions to use with your project (run setup code, open models, simulate, build,
run shutdown code)

• Working with files under source control (check out, compare revisions, tag or label,
check in)

The Airframe example shows how to:

1 Set up and browse some example project files under source control.
2 Examine project shortcuts to run setup and shutdown tasks and access frequently

used files and tasks.
3 Analyze dependencies in the example project and locate required files that are not

yet in the project.

15 Simulink Project Setup

15-6

4 Modify some project files, find and review modified files, compare to an ancestor
version, and commit modified files to source control.

5 Explore views of project files only, modified files, and all files under the project root
folder.

Set Up Project Files and Open Simulink Project

Run this command to create a working copy of the project files and open the project:

sldemo_slproject_airframe_svn

The project example copies files to your temporary folder so that you can edit them and
put them under SVN source control.

The Simulink Project opens and loads the project. The project is configured to run some
startup tasks, including changing the current working folder to the project root folder.

Note: Alternatively, you can try this example project using Git source control, by
specifying sldemo_slproject_airframe_git. The following example shows the
options when using SVN.

View, Search, and Sort Project Files

1 From the Simulink Project tree, select the Files node to manage the files within
your project. When Project Files View is selected, only the files in your project are
shown.

2 To see all the files in your sandbox, click the Project Files View button and select
All Files View. This view shows all the files that are under the project root, not just
the files that are in the project. This view is useful for adding files to the project from
your sandbox.

3 To find particular files or file types, in any file view, type in the search box or click
the Filter button.

 Try Simulink Project Tools with the Airframe Project

15-7

Click the x to clear the search.
4 To view files as a list instead of a tree, click the List view button.

5 To sort files and to customize the columns, click the Actions button at the far right of
the search box.

6 You can dock and undock the Simulink Project into the MATLAB Desktop. If you
want to maximize space for viewing your project files, undock the Simulink Project.
Drag the title bar to undock it.

Understand Project Startup and Shutdown Tasks

You can use shortcuts to run automatically startup or shutdown tasks, and to find files
within a large project.

15 Simulink Project Setup

15-8

You can view and run shortcuts on the Project Shortcuts toolstrip. The shortcuts are
organized into groups that you specify through the Shortcut Management view.

In this example, you can see that some files are set as Run at Startup shortcuts.
Startup shortcut files automatically run, load, or open when you open the project.
You can use these shortcuts to set up the environment for your project. The file
set_up_project.m defines where to create the slprj folder.

• Open the Set Up Project shortcut to understand how it works. In the Shortcut
Management view, double-click the shortcut, or right-click and select Open. The file
set_up_project.m opens in the Editor. The following lines use the project API to
get the current project and the root folder:

project = simulinkproject;

projectRoot = project.RootFolder;

• The shortcut Clean Up Project is set as a Run at Shutdown shortcut.
This type of shortcut runs before the current project closes. In this

 Try Simulink Project Tools with the Airframe Project

15-9

example, clean_up_project.m resets the environment changes made by
set_up_project.m.

Create a Startup Shortcut

1 From the Simulink Project tree, select the Files node and select Project Files
View.

2 Right-click a file, and select Create Shortcut.
3 In the Shortcut Management view, right-click the shortcut you created and select

Set Shortcut Action > Startup to make the file run, load, or open at startup.

When you open the project, the project performs the default action for startup
shortcut files depending on their type:

• Run .m files.
• Load .mat files.
• Open Simulink models.

For details on shortcuts, see “Automate Startup Tasks with Shortcuts” on page 15-38.

Open and Run Frequently Used Files

You can use shortcuts to make scripts easier to find in a large project. In this example,
the script that regenerates S-functions is set as a shortcut so that a new user of the
project can easily find it. You can also make the top-level model, or models, within a
project easier to find. In this example, the top-level model, slproject_f14.mdl, is a
shortcut.

Regenerate the S-functions.

1 The shortcut file builds a MEX-file. If you do not have a compiler set up, follow the
instructions to choose a compiler.

2 Select the Project Shortcuts tab in the toolstrip, and click the shortcut Rebuild
Project's S-functions.

Open the rebuild_s_functions.m file to explore how it works.

Open the top model.

15 Simulink Project Setup

15-10

• On the Project Shortcuts tab, click the shortcut F14 Model to open the root model for
this project. This model runs only after you compile the required S-function.

• To create shortcuts to access frequently used files, select the Project > Files
node, right-click a file, and select Create Shortcut > General or any other
shortcutGroupName. This action creates a basic shortcut with no startup or
shutdown action.

Review Changes in Modified Files

Open and make changes to files and review changes.

1 Select Project Files View and expand the utilities folder.
2 Either double-click to open the set_up_project file for editing from the Simulink

Project, or right-click and select Open.
3 Make a change in the Editor, such as adding a comment, and save the file.
4 Under Files, select the Modified Files node. The files you changed appear in the

list.
5 To review changes, right-click the set_up_project file in the Modified Files view

and select Compare to Ancestor.

 Try Simulink Project Tools with the Airframe Project

15-11

The MATLAB Comparison Tool opens a report comparing the modified version of
the file in your sandbox against its ancestor stored in the version control tool. The
comparison report type can differ depending on the file you select.

If you select a Simulink model to Compare to Ancestor, and you have Simulink
Report Generator installed, this command runs a Simulink XML comparison.

If you have Simulink Report Generator, try the following example.

1 Select the Files node and expand the models folder.
2 Either double-click to open the AnalogControl file for editing from the Simulink

Project, or right-click and select Open.
3 Make a change in the model, such as opening a block and changing some

parameters, and then save the model.
4 To review changes, right-click the file in the Modified Files view and select

Compare to Ancestor.

15 Simulink Project Setup

15-12

The Comparison Tool opens a report.

Run Project Integrity Checks

In the Modified Files view, under Precommit actions, click Check Project to run
the project integrity checks. The checks look for missing files, files to add to source
control or retrieve from source control, and other issues. The checks dialog box can offer
automatic fixes to problems found.

When you click a Fix button in the Checks dialog box, you can view recommended
actions and decide whether to make the changes.

For an example using the project checks to fix issues, see “Upgrade Model Files to SLX
and Preserve Revision History” on page 16-13.

Run Dependency Analysis

To check that all required files are in the project, run a file dependency analysis on the
modified files in your project.

1 From the Simulink Project tree, select Dependency Analysis.
2 Click Analyze.

The Impact graph displays the structure of all analyzed dependencies in the project.

 Try Simulink Project Tools with the Airframe Project

15-13

3
Select Table View and click the Show only problem files button .

4 In the Dependency Analysis view, the text in the Problem Description column
states that the file is not in the project. Click timesthree.mexw64.

Under Upstream Dependencies, the Name and Path columns display the name
and location of the file that uses the selected problem file.

15 Simulink Project Setup

15-14

Observe that timesthree.mexw64 is an S-function binary file required by
f14_airframe.slx. You can add binary files to your project or, as in this project,
provide a utility script that regenerates them from the source code that is part of the
project.

5 To remove the file from the problem files list, right-click the file and select Add
External File. The next time you run a dependency analysis, the file does not
appear as a problem file.

In this example, you do not want to add the binary file to the project, but instead use
the script to regenerate the binary file from the source code in the project. Use Add
External File to stop such files being marked as problems.

6 Select Impact View. On the Dependency Analysis tab, select Find > All Files.
7 In the Impact Analysis section, choose Select > Modified Files.

 Try Simulink Project Tools with the Airframe Project

15-15

8 To view dependencies of the modified files, in the Impact Analysis section, select
Find > All Dependencies of Selection.

Commit Modified Files

After you modify files and you are satisfied with the results of the checks, you can
commit your changes to the source control repository.

1 In the Modified Files view, under Precommit actions, click Check Project to
make sure that your changes are ready to commit.

2 Observe that the Modified Files list includes a .SimulinkProject folder. The
files stored in the .SimulinkProject folder are internal project definition files
generated by your changes. These definition files allow you to add a label to a file
without checking it out. You do not need to view the definition files directly unless
you need to merge them, but they are listed so you know about all the files being

15 Simulink Project Setup

15-16

committed to the source control system. See “Project Definition Files” on page
18-44.

3 To commit your changes to source control, click Commit Modified Files.
4 Enter a comment for your submission, and click Submit.

Watch the messages as the example source control commits your changes.

View Project and Source Control Information

Click the root tree node Project: Simulink Project Airframe Example to see
information about:

• The open project, which includes a description and the location of the project root
folder.

• The source control tool used by the current project.

 Try Simulink Project Tools with the Airframe Project

15-17

This Airframe example project is under the control of the SVN source control tool.

For next steps, see “Project Management ”.

15 Simulink Project Setup

15-18

Create a Project from a Model

Create a project to organize your model and any dependent files. Simulink projects can
help you organize your work and collaborate in teams. The project can help you to:

• Find all your required files
• Manage and share files, settings, and user-defined tasks
• Interact with source control.

1 In a Simulink model, select File > Simulink Project > Create Project from
Model.

Simulink runs dependency analysis on your model to identify required files and a
project root location that contains all dependencies.

2 In the New Simulink Project dialog box, edit any settings you want to change:

• Project Root — A folder that dependency analysis identified to contain all
dependencies. If you want, click to select a different folder in the file system
hierarchy between the file system root and the model folder.

• Project Name — By default, the name of the suggested project root folder. Edit
if desired.

• Project Files — Files to include in the project. Files with selected check boxes
are identified by dependency analysis. Select check boxes to specify all the files
you want to include.

Any external dependencies are listed. If required files are outside your project
root, then you cannot add these files to your project. An external dependency
might not indicate a problem if the file is on your path and is a utility or other
resource that is not part of your project.

3 Click Create to create the Simulink project containing your model and any other
specified files.

For an example showing what you can do with projects, see “Try Simulink Project Tools
with the Airframe Project” on page 15-5.

Related Examples
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Automate Startup Tasks with Shortcuts” on page 15-38

 Create a Project from a Model

15-19

• “Open Recent Projects” on page 15-31
• “Try Simulink Project Tools with the Airframe Project” on page 15-5

More About
• “What Are Simulink Projects?” on page 15-3
• “What Can You Do With Project Shortcuts?” on page 15-37
• “Sharing Simulink Projects” on page 16-34
• “About Source Control with Projects” on page 18-2

15 Simulink Project Setup

15-20

Create a New Project to Manage Existing Files

If you have many files that you want to organize into a project, with or without source
control, use the following steps for a new project.

Note: If you have a model (with or without other dependent files) that you want to put in
a project, see instead “Create a Project from a Model” on page 15-18.

If you want to retrieve a project from a source control repository, see instead “Retrieve a
Working Copy of a Project from Source Control” on page 18-26.

To create a new project to manage your files:

• From MATLAB, on the Home tab, in the File section, select New > Simulink
Project > Blank Project.

• From the Model Editor, select File > New > Simulink Project.
• From the Simulink Project, on the Simulink Project tab, click New.

The New Simulink Project dialog box appears.

1 Specify the project name and location. The default project folder is a subfolder inside
your current folder.

 Create a New Project to Manage Existing Files

15-21

2 If you want, click Add to use the Select a Template dialog box to add one or more
templates to apply to the project. See “Create a New Project Using Templates” on
page 15-27. Note: avoid adding templates if you are creating a project in a folder
that already contains files, unless you know that the template files are compatible.
You see a warning if a template will overwrite files.

• Try the Project Environment template if you are creating a project in a new
folder and intend to add files later. The Project Environment template can
create a new project with a preconfigured structure, and utilities to configure the
environment with startup and shutdown shortcuts. You can modify any of these
files, folders, and settings later.

• Try the Code Generation Example template to set up a project with settings
for production code generation of a plant and controller. This template requires
Simulink Coder and Embedded Coder.

• Create your own templates. See “Using Templates to Create Standard Project
Settings” on page 15-49.

15 Simulink Project Setup

15-22

3 If your project folder is already under a supported source control, click Show More
Options, then click Detect to check the project folder for source control integration
options. See below for details.

4 Click Create to create the project.

The Simulink Project displays the empty Project Files view for the specified project
root. Your project does not yet contain any files. You need to select files to add. For
next steps, see “Add Files to the Project” on page 15-24.

If you have existing source control in your project folder, you might need the following
options when creating projects. Click Show More Options to expand them.

• Click Detect to check the project folder for source control integration options. If your
selected folder is under source control that the project can recognize, the Source
control integration field reports the detected source control. For example, you
might want to use this option to use a specific version of SVN. See “Set Up SVN
Source Control” on page 18-10.

Note: You can put the project under source control later by using the Source Control
node in the Project tree. See “Add a Project to Source Control” on page 18-5.

• Change project definition files.

Use multiple project files — This option is the default and is better for
avoiding merging issues on shared projects.

Use a single project file (not recommended for source control) —
This option is likely to cause merge issues when multiple users submit changes in the
same project to a source control tool. See “Project Definition Files” on page 18-44.

Related Examples
• “Create a Project from a Model” on page 15-18
• “Add Files to the Project” on page 15-24
• “Work with Project Files” on page 16-6
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Add a Project to Source Control” on page 18-5

 Create a New Project to Manage Existing Files

15-23

More About
• “What Can You Do With Project Shortcuts?” on page 15-37

15 Simulink Project Setup

15-24

Add Files to the Project
After creating a new Simulink Project, unless you created the project from a model, then
the Files node in the Project tree shows the empty Project Files view. Files under your
chosen project root are not included in your project until you add them. If you created
your project from a model, you already specified initial files to include in the project.

To display all files in your project folder (or projectroot), in the Files view, click
the Project Files View button and select All Files View You might not want to
include all files in your project. For example, you might want to exclude some files under
projectroot from your project, such as SVN or CVS source control folders.

To add existing files to your project, use any of these methods:

• In All Files View, select files or folders, right-click, and select Add to Project or
Add to Project (including child files).

• To add files to your project, cut and paste or drag and drop files from a file browser
or the Current Folder browser onto the Project Files view. If you drag a file from
outside the project root, this moves the file and adds it to your project. You can drag
files within project root to move them.

Caution When your project is under source control, do not manage files in the Current
Folder browser because it does not perform the corresponding source control actions.
To ensure that your project handles source control operations, move, rename, copy, or
delete files in Simulink Project.

• Add and remove project files at the command line using addFile.

To create new files or folders in the project, right-click a white space in the Files view
and select New Folder or New File. The new files are added to the project.

To learn how to set up your project with all required files, see “Run Dependency
Analysis” on page 17-3.

To add or remove project folders from the MATLAB search path, see “Specify Project
Path” on page 15-35.

To configure your project to automatically run startup and shutdown tasks, see
“Automate Startup Tasks with Shortcuts” on page 15-38.

You can access your recent projects direct from MATLAB. See “Open Recent Projects” on
page 15-31.

 Add Files to the Project

15-25

If you want to add source control, see “Add a Project to Source Control” on page 18-5.

Related Examples
• “Work with Project Files” on page 16-6
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Add a Project to Source Control” on page 18-5

More About
• “What Can You Do With Project Shortcuts?” on page 15-37

15 Simulink Project Setup

15-26

Create a New Project from an Archived Project

To create a new project from an archived project:

1 From MATLAB, on the Home tab, in the File section, select New > Simulink
Project > From Archive.

2 In Simulink Project, on the Simulink Project tab, specify:

• In the Zip file field, the location of the archived project.
• In the Project folder field, the location of the new project. For example, C:

\myNewProject.
3 Click Extract.

The new project opens. The current working folder, for example, C:\myNewProject,
contains the imported project folders.

If the archived project contains referenced projects, Simulink Project imports files
into two subfolders, mains and refs. The current working folder, for example, C:
\myNewProject\main contains the project folders and C:\myNewProject\refs
contains the referenced project folders.

Related Examples
• “Archive Projects in Zip Files” on page 16-40

More About
• “Sharing Simulink Projects” on page 16-34

 Create a New Project Using Templates

15-27

Create a New Project Using Templates

In Simulink Project, you can apply one or more templates when creating a project.

1 To browse for templates, on the Simulink Project tab, select New > Choose
Template.

The Select a Template dialog box opens.
2 Click a template in the list to read the description. For example, click Project

Environment.
3 Click the Files tab to view the file names in the template.
4 If your templates do not appear, locate them by clicking Browse. All project

templates (*.sltx) on the MATLAB path appear in the dialog box.
5 Click Select to use the template and return to the New Project dialog box.
6 You can click Add to choose additional templates to apply to the same project.
7 Simulink Project warns you if there are any conflicts between templates or with

existing files in the selected project folder. If the dialog box reports any conflicts,
click View Conflicts to examine them.

The Project Preview dialog box opens.
8 Examine the conflicted files, shown in red with a warning icon. If you are applying

multiple templates and they conflict, you can choose template priority. To change

15 Simulink Project Setup

15-28

which template to use when there is a conflict, select a template and click Move Up
or Move Down to change priority. Your choice of template priorities applies to all
conflicts.

The figure shows a combination of files from two example templates. In this case,
the project paths are not compatible. Ensure you choose compatible files when you
combine templates.

9 When you are satisfied with the priority order for conflicted files, click Apply.
10 In the New Project dialog box, specify your project folder and click Create to create

the new project using the selected templates.

Note: If you create a project in a folder that already contains files, a warning appears
if there are any conflicts with the template. The template overwrites the existing
files only if you choose to continue.

You can select recently used project templates direct from the New menu in either
MATLAB or the Simulink Project. For example, to use the Project Environment
template, from the MATLAB Home tab, select New > Simulink Project > Project
Environment.

On the Simulink Project tab, select a template from the New list under Templates

 Create a New Project Using Templates

15-29

Related Examples
• “Create a Template from the Current Project” on page 15-50
• “Create a Template from a Project Under Version Control” on page 15-51
• “Edit a Template” on page 15-52
• “Use Project Templates from R2014a or Before” on page 15-30
• “Explore the Example Templates” on page 15-53

More About
• “Using Templates to Create Standard Project Settings” on page 15-49

15 Simulink Project Setup

15-30

Use Project Templates from R2014a or Before

To use project templates created in R2014a or earlier, browse to them when creating a
new project.

1 On the Simulink Project tab, in the File section, select New > Choose Template.
2 In the Select a Template dialog box, click Browse.
3 Browse to the folder that contains the template.
4 For templates created in R2014a or earlier, make them visible in the Open dialog box

by changing the file type list from Simulink Template files (*.sltx) to R2011b-
R2014a Simulink Project Template (*.zip).

5 Select the template and click Open.
6 In the New Project dialog box, specify your project folder and click Create to create

the new project using the selected template.

After you use a zip file template to create a project, it appears in the list in the Select
a Template dialog box. This makes the template visible to use in new projects without
needing to browse. If you want to remove a template, in the Select a Template dialog box,
right-click and select Remove.

Related Examples
• “Create a New Project Using Templates” on page 15-27
• “Create a Template from the Current Project” on page 15-50
• “Create a Template from a Project Under Version Control” on page 15-51
• “Edit a Template” on page 15-52
• “Explore the Example Templates” on page 15-53

More About
• “Using Templates to Create Standard Project Settings” on page 15-49

 Open Recent Projects

15-31

Open Recent Projects

Note: You can have one project open at a time, to avoid conflicts. If you open another
project, any currently open project closes.

You can use any of these methods to open recent Simulink projects:

• On the MATLAB Home tab, click the Open arrow and select your project under the
Recent Simulink Projects list.

• From the Current Folder browser, double-click the .prj file.
• In the Simulink Editor, if an open model, library, or chart belongs to a project, you

can select File > Simulink Project > Open Project.

Alternatively, open Simulink Project by entering simulinkproject, or in the Simulink
Editor, select View > Simulink Project. When Simulink Project is open, you can open
projects with these methods:

• On the Simulink Project tab, click the Open arrow and select your project under
the Recent list.

• For projects created or saved in Release 2012b or later, select Open > Open Project
File. Browse and select your project .prj file.

• For projects saved in Release 2012a or earlier, select Open > Open Project by
Folder. Navigate to the folder containing the .SimulinkProject folder, and click
OK to load the project. After you load this project once, then you can use Open
Project File to open the project.

Tip Create a MATLAB shortcut for opening or giving focus to the Simulink Project
by dragging this command to the toolstrip from the Command History or Command
Window:

simulinkproject

When you open a project, you are prompted if loaded files shadow your project model
files. To avoid working on the wrong files, close the shadowing files. See “Manage
Shadowed and Dirty Model Files” on page 16-9.

15 Simulink Project Setup

15-32

Related Examples
• “Work with Project Files” on page 16-6

 Change the Project Name, Root, Description, and Startup Folder

15-33

Change the Project Name, Root, Description, and Startup Folder

In Simulink Project, use the Project root tree node to edit the project name or add a
description. If you edit the name or description, click Apply to save your changes.

You can view the project root folder, and click Set as Current Folder to change the
current working folder to your project root. You can change your project root by moving
your entire project on your file system, and reopening your project in its new location. All
project file paths are stored as relative paths.

The check box option Change current folder to project root on start up is selected
by default. Clear the check box if you do not want to change to the project root folder on
startup.

You can also configure startup shortcut scripts that set the current folder and perform
other setup tasks. If you configure startup shortcuts to set the current folder, your

15 Simulink Project Setup

15-34

shortcut setting takes precedence over the check box at the Project node. To set up
shortcuts, see “Automate Startup Tasks with Shortcuts” on page 15-38.

If your project is under source control, you can view source control information at the root
node. See “Add a Project to Source Control” on page 18-5.

 Specify Project Path

15-35

Specify Project Path

When Simulink Project:

• Opens your project, it adds the project path to the MATLAB search path before
applying startup shortcuts.

• Closes your project, it removes the project path from the MATLAB search path after
applying shutdown shortcuts.

You can add or remove folders from the project path. Add project folders to ensure
dependency analysis detects project files. On the Simulink Project tab, in the
Environment section, click Project Path:

• To add a folder (without subfolders) to the project path, click Add Folder. If you want
to add a folder and its subfolders, click Add with Subfolders instead. Then use the
Open dialog box to add the new folder.

• To remove a folder from the project path, from the display list, select the folder. Then
click Remove.

In the Project > Files view, you can use the context menu to add or remove folders from
the project path.

Folders on the project path display the project path icon in the Status column.

If you want to set the startup folder, see the check box option at the root project node:
Change current folder to project root on start up.

15 Simulink Project Setup

15-36

Related Examples
• “Change the Project Name, Root, Description, and Startup Folder” on page 15-33

More About
• “What Is the MATLAB Search Path?”
• “What Can You Do With Project Shortcuts?” on page 15-37

 What Can You Do With Project Shortcuts?

15-37

What Can You Do With Project Shortcuts?

In Simulink Project, use shortcuts to make it easy for any project user to find and access
important files and operations. You can use shortcuts to make top models or scripts
easier to find in a large project. You can group shortcuts to organize them by type and
annotate them to use meaningful names instead of cryptic file names.

You can automate shortcuts to perform startup and shutdown tasks. Startup shortcuts
help you set up the environment for your project. Shutdown shortcuts help you clean up
the environment for the current project when you close it.

In the Shortcut Management view, you can execute, group, annotate, or automate
shortcuts. You can specify Startup, Shutdown, or basic shortcuts.

• Startup shortcuts run when you open your project.
• Shutdown shortcuts run when you close your project.
• Basic shortcuts run when you execute them manually from the context menu or

Project Shortcuts tab in the toolstrip.

Related Examples
• “Automate Startup Tasks with Shortcuts” on page 15-38
• “Automate Shutdown Tasks with Shortcuts” on page 15-40
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Use Shortcuts to Find and Run Frequent Tasks” on page 15-46
• “Specify Project Path” on page 15-35

15 Simulink Project Setup

15-38

Automate Startup Tasks with Shortcuts
In Simulink Project, startup shortcuts help you set up the environment for your project.

Startup shortcut files are automatically run (.m files), loaded (.mat files), and opened
(Simulink models) when you open the project.

Note: Files named startup.m on the MATLAB path run when you start MATLAB. If
your startup.m file calls the project with simulinkproject, an error appears because
no project is loaded yet. To avoid the error, rename startup.m and use it as a project
startup shortcut instead.

Projects warn if you have more than one startup shortcut. Startup shortcuts run in
alphabetical order. If execution order is important, consider creating one script that calls
all the others, and use that script as your only startup shortcut.

Create a new startup shortcut file.

1 In the Shortcut Management view, click Create Action Shortcut > Startup
Script.

2 Name and save the file. Startup shortcut scripts can have any name. You do not need
to use startup.m.

The tool adds the new file to the project and sets it to Run at Startup.
3 Right-click the file and select Open.
4 Write the shortcut script using the Editor.
5 Click Save.

Configure an existing file as a shortcut to run when you open your project.

1 In the Files view, select All Files View or Project Files View.
2 Right-click the file and select Create Shortcut > General, or if you have created a

shortcut group you want to use, then select Create Shortcut > GroupName. You can
change shortcut group later.

3 Select Shortcuts Management.
4 Right-click the shortcut file and select Set Shortcut Action > Startup .

The Shortcut Action column displays Run at Startup.

 Automate Startup Tasks with Shortcuts

15-39

Note: Shortcuts are included when you commit modified files to source control. Any
startup shortcuts you create run for all other project users.

To stop a shortcut running at startup, change back to a basic shortcut using Set
Shortcut Action > None.

If you want to set the start up folder, see the check box option at the root project node:
Change current folder to project root on start up. See “Change the Project Name,
Root, Description, and Startup Folder” on page 15-33.

Related Examples
• “Specify Project Path” on page 15-35
• “Automate Shutdown Tasks with Shortcuts” on page 15-40
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Use Shortcuts to Find and Run Frequent Tasks” on page 15-46

More About
• “What Can You Do With Project Shortcuts?” on page 15-37

15 Simulink Project Setup

15-40

Automate Shutdown Tasks with Shortcuts

In Simulink Project, shutdown shortcuts help you clean up the environment for the
current project when you close it. Shutdown shortcuts should undo the settings applied
in startup shortcuts. You can view an example in the sldemo_slproject_airframe
project.

Create a new shutdown shortcut file.

1 In the Shortcut Management view, click Create Action Shortcut > Shutdown
Script.

2 Name and save the file.

The tool adds the new file to the project and sets it to Run at Shutdown.
3 Right-click the file and select Open.
4 Write the shortcut script using the Editor.
5 Click Save.

Configure an existing file as a shortcut to run when you close your project.

1 Right-click the file in All Files View or Project Files View and select Create
Shortcut > General, or if you have created a shortcut group you want to use, then
select Create Shortcut > GroupName. You can change shortcut group later.

2 Click the Shortcut Management node.
3 Right-click the shortcut file and select Set Shortcut Action > Shutdown.

The Action column displays Run at Shutdown.

Note: Shortcuts are included when you commit modified files to source control. Any
shutdown shortcuts you create run for all other project users.

To stop a shortcut running at shutdown, change back to a basic shortcut using Set
Shortcut Action > None.

Related Examples
• “Automate Startup Tasks with Shortcuts” on page 15-38

 Automate Shutdown Tasks with Shortcuts

15-41

• “Specify Project Path” on page 15-35
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Use Shortcuts to Find and Run Frequent Tasks” on page 15-46

More About
• “What Can You Do With Project Shortcuts?” on page 15-37

15 Simulink Project Setup

15-42

Create Shortcuts to Frequent Tasks

In this section...

“Create Shortcuts” on page 15-42
“Group Shortcuts” on page 15-43
“Annotate Shortcuts to Use Meaningful Names” on page 15-44

Create Shortcuts

In Simulink Project, create shortcuts for common project tasks and to make it easy to
find and access important files and operations. For example, find and open top models,
run startup code (for example, to load data), simulate models, or run shutdown code.

To create a shortcut to an existing project file, use any of the following methods:

• Right-click the file in All Files View or Project Files View and select Create
Shortcut > General, or ShortcutGroupName.

• Click New on the Project Shortcuts tab on the toolstrip and browse to select a file.

The shortcut appears on the Project Shortcuts tab on the toolstrip.

You can create new shortcuts interactively only in the Simulink Project, but you can get
and view your shortcuts at the command line. For details, see “Query Shortcuts” on page
16-27.

Note: Shortcuts are included when you commit your modified files to source control, so
you can share shortcuts with other project users.

 Create Shortcuts to Frequent Tasks

15-43

Group Shortcuts

You can group shortcuts to organize them by type. For example, you can group shortcuts
for loading data, opening models, generating code, and running tests.

By default, new shortcuts appear in the General group on the Project Shortcuts toolstrip
tab and in the Shortcut Management view.

Create new shortcut groups to organize your shortcuts:

• Right-click in the Shortcut Groups pane and select Create New Shortcut Group.
Enter a name for the group and click OK.

The new shortcut group appears in the Shortcut Groups pane.
• Alternatively, click New in the Project Shortcuts tab. Right-click in the Select a

Shortcut Group pane to create a new group.

To organize your shortcuts by group, either:

• In All Files View or Project Files View, right-click a file and select Create
Shortcut > ShortcutGroupName.

• In the Shortcut Management view, drag a shortcut group onto a file from the
Shortcut Groups pane, or right-click a file and select Set Shortcut Group >
ShortcutGroupName.

The shortcuts are organized by group in the Project Shortcuts tab and in the Shortcut
Management view.

15 Simulink Project Setup

15-44

To change shortcut group, in the Shortcut Management view, drag a different group onto
the file, or right-click and select Set Shortcut Group > GroupName.

Annotate Shortcuts to Use Meaningful Names

Annotating shortcuts makes their purpose visible, without changing the file name or
location of the script or model the shortcut points to. For example, you can change a
cryptic file name to a useful string for the shortcut name. To put shortcuts in a workflow
order on the toolstrip, prefix the shortcut names with numbers.

In the Shortcut Management view, right-click and select Rename to edit the Shortcut
Name column. The Shortcut Name does not affect the file name or location.

Your specified Shortcut Name appears on the Project Shortcuts tab, to make it easier to
find your shortcuts.

 Create Shortcuts to Frequent Tasks

15-45

Related Examples
• “Use Shortcuts to Find and Run Frequent Tasks” on page 15-46

More About
• “What Can You Do With Project Shortcuts?” on page 15-37

15 Simulink Project Setup

15-46

Use Shortcuts to Find and Run Frequent Tasks

In Simulink Project, use shortcuts to make it easy for any project user to find and
access important files and operations. You can use shortcuts to make top models or
scripts easier to find in a large project. Shortcuts are available from any file view via the
toolstrip.

If your project does not yet contain any shortcuts, see “Create Shortcuts to Frequent
Tasks” on page 15-42.

To use shortcuts:

• In the Project Shortcuts toolstrip tab, click the shortcut. Clicking a shortcut in the
toolstrip performs the default action for the file type, for example, run .m files, load
.mat files, and open models. Hover over a shortcut to view the full path.

• Alternatively, select the Shortcut Management view, right-click the shortcut file, and
select an action, such as Open or Run.

 Use Shortcuts to Find and Run Frequent Tasks

15-47

• To make a shortcut available in the Batch Job list without browsing for the file, select
Set Shortcut Action > Batch Job.

Choose which behavior you want when running shortcuts:

• If the script is not on the path, and you want to switch to the parent folder and run
the script without being prompted, then right-click and select Run Shortcut in the
Shortcut Management view or click the shortcut in the Project Shortcuts toolstrip tab.
If you use this option, the result of pwd in the script is the parent folder of the script.

• If you select Run in the Files view context menu, and the script is not on the path,
then MATLAB asks if you want to change folder or add the folder to the path. This is
the same behavior as running from the Current Folder browser. If you use this option,
the result of pwd in the script is the current folder when you run the script.

15 Simulink Project Setup

15-48

Related Examples
• “Create Shortcuts” on page 15-42
• “Group Shortcuts” on page 15-43
• “Annotate Shortcuts to Use Meaningful Names” on page 15-44
• “Create Shortcuts to Batch Job Functions” on page 16-31

More About
• “What Can You Do With Project Shortcuts?” on page 15-37

 Using Templates to Create Standard Project Settings

15-49

Using Templates to Create Standard Project Settings

In Simulink Project, use templates to create and reuse a standard project structure.
Templates help you make consistent projects across teams. You can use templates to
create new projects that:

• Use a standard folder structure.
• Set up a company standard environment, for example, with company libraries on the

path.
• Have access to tools such as company Model Advisor checks.
• Use company standard startup and shutdown scripts.
• Share labels and categories.

You can use templates to share information and best practices. You or your colleagues
can create templates.

Create a template from a project when it is useful to reuse or share with others. You can
use the template when creating new projects.

Related Examples
• “Create a New Project Using Templates” on page 15-27
• “Create a Template from the Current Project” on page 15-50
• “Create a Template from a Project Under Version Control” on page 15-51
• “Edit a Template” on page 15-52
• “Explore the Example Templates” on page 15-53
• “Compare Templates”

15 Simulink Project Setup

15-50

Create a Template from the Current Project

In Simulink Project, when you create a template, it contains the structure and all the
contents of the current project, enabling you to reuse scripts and other files for your
standard project setup. Simulink Project does not include the contents of referenced
projects in the template.

1 Before creating the template, create a copy of the project, and edit the copy to
contain only the files you want to reuse. Use the copy as the basis for the template.

Note: If the project is under version control, see instead “Create a Template from a
Project Under Version Control” on page 15-51.

2 On the Simulink Project tab, in the File section, select Share > Template.
3 On the Create Template dialog box, edit the name, add a description to help

template users, then click Save As. Choose a file location and click Save.

Related Examples
• “Create a New Project Using Templates” on page 15-27
• “Create a Template from a Project Under Version Control” on page 15-51
• “Edit a Template” on page 15-52
• “Explore the Example Templates” on page 15-53
• “Compare Templates”

More About
• “Using Templates to Create Standard Project Settings” on page 15-49

 Create a Template from a Project Under Version Control

15-51

Create a Template from a Project Under Version Control

1 Get a new working copy of the project. See “Retrieve a Working Copy of a Project
from Source Control” on page 18-26.

2 To avoid accidentally committing changes to your project meant only for the
template, stop using source control with this sandbox as you work on the template.
In the Source Control view, under Available Source Control Integrations, select
No Source Control Integration and click Reload.

3 Remove the files that you do not want in the template. For example, you might want
to reuse only the utility functions, startup and shutdown scripts, and labels. In the
Files view, right-click unwanted files and select Remove from Project.

4 On the Simulink Project tab, in the File section, select Share > Template and
use the dialog box to name and save the file.

To verify that your template behaves as you expect, create a new project that uses your
new template. See “Create a New Project Using Templates” on page 15-27.

Related Examples
• “Create a New Project Using Templates” on page 15-27
• “Create a Template from the Current Project” on page 15-50
• “Edit a Template” on page 15-52
• “Explore the Example Templates” on page 15-53
• “Compare Templates”

More About
• “Using Templates to Create Standard Project Settings” on page 15-49

15 Simulink Project Setup

15-52

Edit a Template

1 Create a new project that uses the template you want to modify. See “Create a New
Project Using Templates” on page 15-27.

2 Make the changes.
3 On the Simulink Project tab, in the File section, select Share > Template.

Use the dialog box to create a new template or overwrite the existing one.

To remove a template from the list,

1 On the Simulink Project tab, in the File section, select New > Choose Template.
2 Right-click a template in the list and select Remove.

You cannot remove built-in templates.

Related Examples
• “Create a New Project Using Templates” on page 15-27
• “Create a Template from the Current Project” on page 15-50
• “Create a Template from a Project Under Version Control” on page 15-51
• “Explore the Example Templates” on page 15-53
• “Compare Templates”

More About
• “Using Templates to Create Standard Project Settings” on page 15-49

 Explore the Example Templates

15-53

Explore the Example Templates

Example templates are supplied with Simulink Project. You can use these templates as
example structures for a new project. The templates include:

• The Project Environment template, which shows how to set up a project with a
preconfigured structure and utilities to configure the environment with startup and
shutdown shortcuts.

• The Code Generation Example template, which shows how to set up a project
with settings for production code generation of a plant and controller. This template
requires Simulink Coder and Embedded Coder.

You can explore the templates using the Select a Template dialog box.

1 On the Simulink Project tab, in the File section, select New > Choose Template.
2 Select the template you want to explore.
3 Read the description for detailed information about the template.
4 Click the Files tab and explore the utilities and other files provided.

To try the example templates, select them when creating a new project. See “Create a
New Project Using Templates” on page 15-27.

Related Examples
• “Create a New Project Using Templates” on page 15-27
• “Create a Template from a Project Under Version Control” on page 15-51
• “Edit a Template” on page 15-52
• “Use Project Templates from R2014a or Before” on page 15-30

More About
• “Using Templates to Create Standard Project Settings” on page 15-49

16

Simulink Project File Management

• “Group and Sort File Views” on page 16-2
• “Search and Filter File Views” on page 16-4
• “Work with Project Files” on page 16-6
• “Manage Shadowed and Dirty Model Files” on page 16-9
• “Move, Rename, Copy, or Delete Project Files” on page 16-11
• “Back Out Changes” on page 16-12
• “Upgrade Model Files to SLX and Preserve Revision History” on page 16-13
• “Create Labels” on page 16-18
• “Add Labels to Files” on page 16-19
• “View and Edit Label Data” on page 16-20
• “Automate Project Management Tasks” on page 16-22
• “Create a Batch Function” on page 16-30
• “Create Shortcuts to Batch Job Functions” on page 16-31
• “Run a Simulink Project Batch Job” on page 16-32
• “Sharing Simulink Projects” on page 16-34
• “Share Project by Email” on page 16-36
• “Share Project as a MATLAB Toolbox” on page 16-37
• “Share Project on GitHub” on page 16-38
• “Archive Projects in Zip Files” on page 16-40

16 Simulink Project File Management

16-2

Group and Sort File Views

In Simulink Project, to group and sort the views in the Files view:

• Use the List view or Tree view buttons to switch between a flat list of files and a
hierarchical tree of files.

In a list view, you can click the Hide Folders button if you want to view only files.
• Click the Actions button to specify display columns and sort order. For example,

you can display columns for label categories that you created and sort files by label
category.

 Group and Sort File Views

16-3

Related Examples
• “Search and Filter File Views” on page 16-4

16 Simulink Project File Management

16-4

Search and Filter File Views

In the Simulink Project Files, Batch Job and Dependency Analysis views, you can use the
search box and filtering tools to specify file display.

• To view files, select the Files node. When Project Files View is selected, only the
files in your project are shown. To see all the files in your sandbox, click the Project
Files View button and select All Files View. This view shows all the files that are
under the project root, not just the files that are in the project.

• To search, type a search term in the search box, for example, part of a file name, or a
file extension. You can use wildcards, for example, *.m, or *.m*.

Click the x to clear the search.
•

To build a filter for the current view, click the filter button .

In the Filter Builder dialog box you can select multiple filter criteria to apply using
names, file types, project status, and labels. Press Ctrl to select multiple labels.

The dialog box reports the resulting filter at the bottom, for example:

Filter = file type is 'Model files (*.slx, *.mdl)' AND project status

 is 'In project' AND has label 'Engine Type:Diesel'

When you click Apply, the search box shows the filter that you are applying.

Other ways to search:

 Search and Filter File Views

16-5

• To search model contents without loading the models into memory, on the MATLAB
Home tab, in the File section, click Find Files. You can search a folder or the entire
path. However, you cannot open SLX files from the results in the Find Files dialog
box. Open the files from the project or Current Folder browser instead. See “Advanced
Search for Files”.

• To search a model hierarchy, in the Simulink Editor, select Edit > Find. Select
options to look inside masks, links, and references. This search loads the models into
memory.

• To search a model hierarchy and contents using more options, use the Model
Explorer. In the Model Explorer, select View > Show Current System and Below
to search the whole hierarchy. This search loads the models into memory.

Related Examples
• “Group and Sort File Views” on page 16-2

16 Simulink Project File Management

16-6

Work with Project Files

In Simulink Project, in the Files view, use the context menus to perform actions on the
files that you are viewing. Right-click a file (or selected multiple files) to perform project
options such as:

• Open files.
• Add and remove files from the project.
• Add, change, and remove labels. See “Add Labels to Files” on page 16-19.
• Create entry point shortcuts (for example, code to run at startup or shutdown, open

models, simulate, or generate code). See “Create Shortcuts to Frequent Tasks” on
page 15-42.

• If a source control interface is enabled, you can also:

• Refresh source control status.
• Update from source control.
• Check for modifications.
• Revert.
• Compare against revision (select a version to compare).

See “About Source Control with Projects” on page 18-2.

 Work with Project Files

16-7

In the Files view, if you select, for example a model file, the bottom right-hand pane
displays file information, a model preview, and file labels.

16 Simulink Project File Management

16-8

Related Examples
• “Open Recent Projects” on page 15-31
• “Add Files to the Project” on page 15-24
• “Move, Rename, Copy, or Delete Project Files” on page 16-11
• “Back Out Changes” on page 16-12
• “Group and Sort File Views” on page 16-2
• “Search and Filter File Views” on page 16-4
• “Create a Batch Function” on page 16-30

More About
• “What Can You Do With Project Shortcuts?” on page 15-37
• “About Source Control with Projects” on page 18-2

 Manage Shadowed and Dirty Model Files

16-9

Manage Shadowed and Dirty Model Files

In this section...

“Identify Shadowed Project Files When Opening a Project” on page 16-9
“Manage Open Models When Closing a Project” on page 16-10

Identify Shadowed Project Files When Opening a Project

If there are two model files with the same name on the MATLAB path, then the one
higher on the path is loaded, and the one lower on the path is shadowed. This shadowing
applies to all models and libraries (SLX and MDL files).

A loaded model always takes precedence over unloaded ones, regardless of its position
on the MATLAB path. Loaded models can interfere when you try to use other files of the
same name, especially when models are loaded but not visible. Simulink warns when you
try to load a shadowed model, because the other model is already loaded and can cause
conflicts. Simulink Project checks for shadowed files when you open a project.

1 When you open a Simulink project, it warns you if any models of the same names
as your project models are already loaded. This check enables you to find and avoid
shadowed files before opening any project models.

The Configuring Project Environment dialog box reports the Identify shadowed
project files check fails. Click Details.

2 In the dialog box, you can choose to show or close individual files, or close all
potentially shadowing files, by clicking the hyperlinks. To avoid working on the
wrong files, close the loaded models.

3 After deciding whether to show or close the loaded models, click OK to return to the
Configuring Project Environment dialog box.

4 Inspect the other project loading tasks, then click Continue to view the project.

Tip To help avoid problems with shadowed files, turn on the Simulink preference Do not
load models that are shadowed on the MATLAB path. See “Do not load models that
are shadowed on the MATLAB path”.

16 Simulink Project File Management

16-10

Manage Open Models When Closing a Project

When you close a project, it closes any project models that are open, unless they are dirty.

When you close a project, if there are model files with unsaved changes, a message
prompts you to save or discard changes. You can see all dirty files, grouped by project if
you have referenced projects. To avoid losing work, you can save or discard changes by
file, by project, or globally.

Control this behavior using the Simulink project shutdown preferences.

 Move, Rename, Copy, or Delete Project Files

16-11

Move, Rename, Copy, or Delete Project Files

Caution If your project is under source control, do not manage files in the Current Folder
browser because you will not get the corresponding source control actions. Make sure
that you move, rename, copy, or delete in Simulink Project, and then the project handles
the source control operations.

To move or add project files, you can drag them to Simulink Project, or use clipboard
operations.

• To move files within your project, cut and paste or drag files in the Simulink Project.
• To add files to your project, you can paste files or drag them from your operating

system file browser or the MATLAB Current Folder browser onto the Project Files
View in Simulink Project. When you drag a file to the Project Files View, you add the
file to the project. For projects under source control, you also add the file to source
control.

See also “Add Files to the Project” on page 15-24.

16 Simulink Project File Management

16-12

Back Out Changes

Similar to many applications, Simulink Project enables you to Undo and Redo, to back
out recent changes.

1 Click the arrow next to the Undo or Redo button.
2 Select the actions you want to undo or redo. You can select multiple actions. Hover

over each action to view details in a tooltip.

If you are using source control, you can revert to particular versions of files or projects.
See “Revert Changes” on page 18-51.

 Upgrade Model Files to SLX and Preserve Revision History

16-13

Upgrade Model Files to SLX and Preserve Revision History

In this section...

“Project Tools for Migrating Model Files to SLX” on page 16-13
“Upgrade the Model and Commit the Changes” on page 16-13
“Verify Changes After Upgrade to SLX” on page 16-16

Project Tools for Migrating Model Files to SLX

Simulink Project helps you upgrade model files from MDL format to SLX format. You
can use the project integrity checks to automatically add the new SLX file to your project,
remove the MDL file from the project, and preserve the revision history of your MDL file
with the new SLX file. You can then commit your changes to source control and maintain
the continuity of your model file history.

Upgrade the Model and Commit the Changes

1 Open a new copy of the airframe project.

sldemo_slproject_airframe

2 In the Project Files View, right-click the model file AnalogControl.mdl, and select
Open.

3 Select File > Save As.
4 Ensure that Save as type is SLX, and click Save. SLX is the default unless you

change your preferences.
5 To see the results, in the Files view, click the Project Files View button and

change the selection to the All Files View. Expand the models folder.

Simulink saves the model in SLX format, and creates a backup file by renaming
the MDL file to AnalogControl.mdl.releasename. The project also reports the
original name of the MDL file as missing.

16 Simulink Project File Management

16-14

6 To resolve these issues, on the Simulink Project tab, click Check Project to run the
project integrity checks. The checks look for MDL files converted to SLX, and offer
automatic fixes if that check fails.

7 Click the Fix button to view recommended actions and decide whether to make the
changes.

When you click Fix, the Missing Files dialog box offers to remove the missing MDL
file from the project and add the new SLX file to the project.

8 Click Yes to perform the fix.

 Upgrade Model Files to SLX and Preserve Revision History

16-15

Project checks rerun after you click Yes to perform the fix.

Close the Project Integrity Checks dialog box.

16 Simulink Project File Management

16-16

9 Select the Modified Files view. Expand the models folder and check the
Modifications column to see that the newly created SLX file has been added to the
project, and the original MDL file is scheduled for removal.

10 Click Commit Modified Files. Enter a comment for your submission in the dialog
box, for example, Convert to SLX, and click Submit.

Verify Changes After Upgrade to SLX

1 In the Files view, ensure the All Files View is selected. Check that the backup file
AnalogControl.mdl.r2012b is still present, along with the new SLX file. Click

the Actions button to customize the columns to show, such as Date Modified.

2 In the Files view, click the All Files View button and change the selection to the
Project Files View. Check that only the new SLX file is included in the project, and
the backup file is not included in the project.

 Upgrade Model Files to SLX and Preserve Revision History

16-17

3 Right-click the model file AnalogControl.slx and select Show Revisions.
4 In the File Revisions dialog box, verify that the previous revision is

AnalogControl.mdl. The revision history of the previous model file is preserved
with the new SLX file.

For an example showing commands to find and upgrade all model files in the project to
SLX, see Converting from MDL to SLX Model File Format in a Simulink Project.

../examples/converting-from-mdl-to-slx-model-file-format-in-a-simulink-project.html

16 Simulink Project File Management

16-18

Create Labels

In Simulink Project, use labels to organize files and communicate information to project
users. You can create these types of label categories:

• Single-valued — You can attach only one label from the category to a file.
• Multi-valued — You can attach multiple labels from the category to a file.

The Labels tree has built-in labels in the single-valued Classification category:

• You cannot rename or delete Artifact, Convenience, Derived, None, and Other.
• You can rename or delete Test and Utility.
• You cannot annotate built-in labels.

To create a label category:

1 In Simulink Project, right-click the Labels pane. Then select Create New
Category.

2 In the Create Category dialog box, enter a name for the new category.
3 If you require a single-valued label category, select the Single Valued check box.

The default is multi-valued.
4 If you want to specify a data type for the label other than String, from the Type

list, select Double, Integer, Logical, or None.
5 Click Create.

To create a label in a category:

1 In the Labels pane, right-click the label category and select Create New Label.
2 In the Create Label dialog box, enter a name for the new label and click OK.

To rename or delete a category or label, right-click it and select Rename or Remove.

To create new labels at the command line, see “Automate Project Management Tasks” on
page 16-22.

Related Examples
• “Add Labels to Files” on page 16-19
• “View and Edit Label Data” on page 16-20

 Add Labels to Files

16-19

Add Labels to Files

In Simulink Project, use labels to organize files and communicate information to project
users.

To add a label to a file, use one of these methods:

• Drag the label from the Labels pane onto the file.
• In the Files view, select the file. Then, drag the label from the Labels pane into the

label editor.

To add a label to multiple files, in the Files view or Impact graph, select the files that
require the label. Then right-click and select Add Label. Use the dialog box to specify
the label.

To add labels programmatically, for example, in batch job functions, see “Automate
Project Management Tasks” on page 16-22.

Note: After you add a label to a file, the label persists across file revisions.

After you add labels, you can organize files by label in the Files view and Impact graph.
See “Group and Sort File Views” on page 16-2 and “Perform Impact Analysis” on page
17-7.

If the project is under SVN source control, adding tags to all your project files enables
you to mark versions. See “Tag and Retrieve Versions of Project Files” on page 18-31.

Related Examples
• “Create Labels” on page 16-18
• “View and Edit Label Data” on page 16-20

16 Simulink Project File Management

16-20

View and Edit Label Data

When you select a file in the Simulink Project Files view, the file labels appear in the
label editor view.

To change a label that belongs to a single-valued category, select the new value from the
label list.

You can annotate labels from categories that you create. In the label, insert or modify
text. Then, click Apply.

 View and Edit Label Data

16-21

Related Examples
• “Create Labels” on page 16-18
• “Add Labels to Files” on page 16-19

16 Simulink Project File Management

16-22

Automate Project Management Tasks

In this section...

“Manipulate a Simulink Project at the Command Line” on page 16-22
“Get Simulink Project at the Command Line” on page 16-22
“Find Project Commands” on page 16-23
“Examine Project Files” on page 16-23
“Create New Category of Project Labels” on page 16-24
“Define a New Label” on page 16-25
“Label a Project File” on page 16-25
“Attach Data to a Label” on page 16-26
“Attach New Label with Numeric Data Type” on page 16-26
“Query Shortcuts” on page 16-27
“Close Project” on page 16-28
“More Project API Examples” on page 16-29

Manipulate a Simulink Project at the Command Line

You can automate some Simulink project tasks using scripts. You can manipulate project
files and labels and use commands for scripting operations on project files. This example
shows how to use commands to automate Simulink project tasks with files and labels.

To automate startup and shutdown tasks, see “Automate Startup Tasks with Shortcuts”
on page 15-38.

Get Simulink Project at the Command Line

This example shows how to open the Airframe project and use simulinkproject to get
a project object to manipulate the project at the command line. You must open a project
in Simulink Project to perform command-line operations on the project.

sldemo_slproject_airframe

proj = simulinkproject

proj =

 Automate Project Management Tasks

16-23

 ProjectManager with properties:

 Name: 'Simulink Project Airframe Example'

 Categories: [1x1 slproject.Category]

 Shortcuts: [1x10 slproject.Shortcut]

 ProjectPath: [1x6 slproject.PathFolder]

ProjectReferences: [1x1 slproject.ProjectReference]

 Files: [1x26 slproject.ProjectFile]

 RootFolder: 'C:\Work\temp\slexamples\airframe'

Find Project Commands

This example shows how to find out what you can do with your project.

Examine project commands.

methods(proj)

Methods for class slproject.ProjectManager:

addFile export reload

addFolderIncludingChildFiles

findCategory removeCategory

close findFile removeFile

createCategory isLoaded

Examine Project Files

After you get a project object, you can examine project properties.

1 Examine the project files.

files = proj.Files

files =

 1x26 ProjectFile array with properties:

 Path

 Labels

2 Use indexing to access files in this list. The following command gets file number 9.
Each file has two properties describing its path and attached labels.

16 Simulink Project File Management

16-24

proj.Files(9)

ans =

 ProjectFile with properties:

 Path: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

3 Examine the labels of the ninth file.

proj.Files(9).Labels

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: []

 DataType: 'none'

 Name: 'Design'

 CategoryName: 'Classification'

4 Get a particular file by name.

myfile = findFile(proj, 'models/AnalogControl.mdl')

myfile =

 ProjectFile with properties:

 Path: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Labels: [1x1 slproject.Label]

5 Find out what you can do with the file.

methods(myfile)

Methods for class slproject.ProjectFile:

addLabel findLabel removeLabel

Create New Category of Project Labels

1 Create a new category of labels, of type char.

createCategory(proj, 'Engineers', 'char')

 Automate Project Management Tasks

16-25

ans =

 Category with properties:

 Name: 'Engineers'

 DataType: 'char'

 LabelDefinitions: []

In Simulink Project, the new Engineers category appears in the Labels pane.
2 Find out what you can do with the new category.

category = findCategory(proj, 'Engineers')

methods(category)

Methods for class slproject.Category:

createLabel findLabel removeLabel

Define a New Label

1 Define a new label in the new category.

createLabel(category, 'Bob')

2 Get a label definition.

ld = findLabel(category, 'Bob')

ld =

 LabelDefinition with properties:

 Name: 'Bob'

 CategoryName: 'Engineers'

Label a Project File

• Attach a label to the retrieved file, myfile.

 addLabel(myfile, 'Engineers', 'Bob');

If you select the file in Simulink Project, you can see this label in the label editor
pane.

16 Simulink Project File Management

16-26

Attach Data to a Label

• Get a particular label and attach data to it, for example, the string Please assess.

label = findLabel(myfile, 'Engineers', 'Bob');

label.Data = 'Please assess'

label =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: 'Please assess'

 DataType: 'char'

 Name: 'Bob'

 CategoryName: 'Engineers'

You can specify a variable for the label data: mydata = label.Data.

Attach New Label with Numeric Data Type

1 Create label category with numeric data type.

createCategory(proj, 'Assessors', 'double');

category = findCategory(proj, 'Assessors');

2 Create new label.

createLabel(category, 'Sam');

3 Specify project file.

myfile = proj.Files(9);

4 Attach label to file and assign data value 2 to the label.

addLabel(myfile, 'Assessors', 'Sam', 2)

ans =

 Label with properties:

 File: 'C:\Work\temp\slexamples\airframe\models\AnalogControl.mdl'

 Data: 2

 DataType: 'double'

 Name: 'Sam'

 CategoryName: 'Assessors'

 Automate Project Management Tasks

16-27

Query Shortcuts

1 Examine the project’s Shortcuts property.

shortcuts = proj.Shortcuts

shortcuts =

 1x10 Shortcut array with properties:

 File

 RunAtStartup

 RunAtShutdown

2 Examine the fifth shortcut in the array.

shortcuts(5)

ans =

 Shortcut with properties:

 File: 'C:\Work\temp\slexamples\airframe\data\f14_digital_data.mat'

 RunAtStartup: 1

 RunAtShutdown: 0

The RunAtStartup property is set to 1, so this shortcut file is set to run at project
startup. At the command line, you can view but not change the RunAtStartup and
RunAtShutdown properties. To set these properties, use the Shortcut Management
node in the Simulink Project.

3 Get the file path of the second shortcut.

shortcuts(5).File

ans =

C:\Work\temp\slexamples\airframe\data\f14_digital_data.mat

4 Examine all the files in the shortcuts cell array.

{shortcuts.File}'

ans =

 'C:\Work\temp\slexamples\airframe\batch_jobs\checkCodeProblems.m'

16 Simulink Project File Management

16-28

 'C:\Work\temp\slexamples\airframe\batch_jobs\runUnitTest.m'

 'C:\Work\temp\slexamples\airframe\batch_jobs\saveModelFiles.m'

 'C:\Work\temp\slexamples\airframe\data\buses.mat'

 'C:\Work\temp\slexamples\airframe\data\f14_digital_data.mat'

 'C:\Work\temp\slexamples\airframe\models\slproject_f14.slx'

 'C:\Work\temp\slexamples\airframe\reports\slproject_f14.pdf'

 'C:\Work\temp\slexamples\airframe\utilities\clean_up_project.m'

 'C:\Work\temp\slexamples\airframe\utilities\rebuild_s_functions.m'

 'C:\Work\temp\slexamples\airframe\utilities\set_up_project.m'

5 Create a logical array that shows the shortcuts set to run at startup.

idx = [shortcuts.RunAtStartup]

idx =

 0 0 0 1 1 0 0 0 0 1

6 Use the logical array to get only the startup shortcuts.

startupshortcuts = shortcuts(idx)

startupshortcuts =

 1x3 Shortcut array with properties:

 File

 RunAtStartup

 RunAtShutdown

7 Get the path of the third startup shortcut by accessing the File property.

startupshortcuts(3).File

ans =

C:\Work\temp\slexamples\airframe\utilities\set_up_project.m

Close Project

• close(proj)

Closing the project at the command line is the same as closing the project using the
Simulink Project tool. For example, the software runs shutdown scripts.

 Automate Project Management Tasks

16-29

More Project API Examples

For more examples, see:

• Automate Label Management in a Simulink Project
• Examples on specific function pages, for example, addLabel, createLabel,

createCategory.

../examples/automate-label-management-in-a-simulink-project.html

16 Simulink Project File Management

16-30

Create a Batch Function

In Simulink Project, in the Batch Job view, you can create functions and run them on
selected project files.

For example batch jobs, see Running Batch Jobs with a Simulink Project.

To create a batch function:

1 In the Simulink Project Batch Job view, click Create.
2 Name and save the file on your MATLAB path. Simulink Project adds the file to the

project and makes it a batch job shortcut so it is easy to reuse.
3 The MATLAB Editor opens the new file containing a simple example batch job

for you to edit. Edit the function to perform the desired action on each file. The
instructions guide you to create a batch job with the correct function signature.

4 In the Batch Job view, click Select to choose your new batch job function from the
list.

Similarly, you can create a batch job at the Shortcut Management node by selecting
Create Action Shortcut > Batch Job Function.

To make existing batch functions into shortcuts, see “Create Shortcuts to Batch Job
Functions” on page 16-31.

Related Examples
• “Run a Simulink Project Batch Job” on page 16-32

../examples/running-batch-jobs-with-a-simulink-project.html

 Create Shortcuts to Batch Job Functions

16-31

Create Shortcuts to Batch Job Functions

You can make existing batch functions in the project easier to find and reuse by making
them shortcuts. These shortcuts are available in the Batch Job list without browsing for
the file.

1 In the Project Files view, right-click the batch function and select Create Shortcut.
2 In the Shortcut Management view, right-click the batch function and select Set

Shortcut Action > Batch Job.
3 In the Batch Job view, click Select to choose from a list of batch job shortcuts and

recently used shortcuts.

Related Examples
• “Create a Batch Function” on page 16-30
• “Run a Simulink Project Batch Job” on page 16-32

16 Simulink Project File Management

16-32

Run a Simulink Project Batch Job

1 In Simulink Project, in the Batch Job view, select the check boxes of project files you
want to include in the batch job.

Tip If the batch function can identify the files to operate on, include all files. For
example, the batch job function saveModelFiles in the airframe project checks
that the file is a Simulink model and does nothing if it is not.

To select multiple files, Shift or Ctrl+click, and then right-click a file and select
Include or Exclude.

2 Specify the batch function to run in the Batch function box. Enter the name, or click
Select to browse or choose from a list of Batch Job shortcuts and recently used
shortcuts.

If your project does not yet contain any batch functions, see “Create a Batch
Function” on page 16-30.

3 Click Run Batch Job.

Simulink Project displays the results in the Batch Job Results column.
4 Expand the Results pane to view details of results for the currently selected file.

 Run a Simulink Project Batch Job

16-33

Tip To try an example batch job in a project, see the example Running Batch Jobs with a
Simulink Project.

Related Examples
• “Create a Batch Function” on page 16-30
• Running Batch Jobs with a Simulink Project
• Perform Impact Analysis with a Simulink Project

../examples/running-batch-jobs-with-a-simulink-project.html
../examples/running-batch-jobs-with-a-simulink-project.html
../examples/running-batch-jobs-with-a-simulink-project.html
../examples/perform-impact-analysis-with-a-simulink-project.html

16 Simulink Project File Management

16-34

Sharing Simulink Projects

Simulink projects help you collaborate. Use the Share menu to share your project in
these ways:

• Archive your project in a zip file.
• Share your project by email (Windows only).
• Create a template from your project.
• Package your project as a MATLAB toolbox.
• Make your project publicly available on GitHub®.

You can also collaborate by using source control within Simulink projects.

Related Examples
• “Archive Projects in Zip Files” on page 16-40
• “Create a Template from the Current Project” on page 15-50
• “Share Project by Email” on page 16-36

 Sharing Simulink Projects

16-35

• “Share Project as a MATLAB Toolbox” on page 16-37
• “Share Project on GitHub” on page 16-38

More About
• “About Source Control with Projects” on page 18-2

16 Simulink Project File Management

16-36

Share Project by Email

To package and share Simulink project files on Windows, you can email your project as a
zip file attachment. For example, you can share the project with people who do not have
access to the connected source control tool.

1 With a project loaded, on the Simulink Project tab, select Share > Email.

The project opens a new email in your default email client with the project attached
as a zip file.

2 Edit and send the email.

Related Examples
• “Create a New Project from an Archived Project” on page 15-26
• “Archive Projects in Zip Files” on page 16-40

More About
• “Sharing Simulink Projects” on page 16-34

 Share Project as a MATLAB Toolbox

16-37

Share Project as a MATLAB Toolbox

To package and share Simulink project files, you can create a MATLAB toolbox from your
project.

1 With a project loaded, on the Simulink Project tab, select Share > Toolbox.

The packager adds all project files to the toolbox and opens the Package a Toolbox
dialog box.

2 The Toolbox Information fields are populated with the project name, author, and
description. Edit the information if needed.

3 If you want to include files not already included in the project files, edit the excluded
files and folders.

4 Click Package.

Related Examples
• “Create and Share Toolboxes”

More About
• “Sharing Simulink Projects” on page 16-34

16 Simulink Project File Management

16-38

Share Project on GitHub

To share your Simulink project, you can make your project publicly available on GitHub.
First, create a login on GitHub.

You can share any project. Sharing adds Git source control to the open project. If your
project is already under source control, sharing replaces the source control configuration
with Git, and the project’s remote repository is GitHub.

Note: If you do not want to change your current source control in the open project, share
a copy of the project instead. To create a copy to share, see “Archive Projects in Zip Files”
on page 16-40.

1 With a project loaded, on the Simulink Project tab, select Share > Get More.
2 Add the GitHub option to your Share menu. In the Manage Sharing dialog box,

select GitHub and click Close.
3 Select Share > GitHub.
4 In the Create GitHub Repository dialog box, enter your GitHub user name and

password, and edit the name for the new repository. Click Create.

A warning prompts you to confirm that you want to create a public repository and
modify the current project’s remote repository location. To continue, click Yes.

5 The Create GitHub Repository dialog box displays the URL address for your new
repository. Click the link to view the new repository on the GitHub website. The
repository contains the initial check-in of your project files.

6 The source control in your current project now references the new repository on
GitHub as the remote repository. To use the project with the new repository, in the
Create GitHub Repository dialog box, click Reload Project.

In the project, you can find the URL address for your remote repository at the top project
node, under Source Control, in the Repository location field.

If you have not already set up Git, you need some additional setup steps before you can
merge branches. You can use other Git functionality without any additional installation.
See “Set Up Git Source Control” on page 18-18.

 Share Project on GitHub

16-39

Related Examples
• “Archive Projects in Zip Files” on page 16-40
• “Set Up Git Source Control” on page 18-18

More About
• “Sharing Simulink Projects” on page 16-34

16 Simulink Project File Management

16-40

Archive Projects in Zip Files

To package and share project files, you can export all project files to a zip file. For
example, you can share a zipped project with people who do not have access to the
connected source control tool.

1 With a project loaded, on the Simulink Project tab, select Share > Zip Archive.
2 Use the file browser to specify a file path in the Zip file field. By default, the file

myProjectName.zip is created in the current working folder.
3 If you want to export files from referenced projects, select the Copy referenced

projects into archive check box.
4 Click Archive.

To share projects with other users, it can be useful to create a model dependencies
manifest report showing required toolboxes for your top model. You can save and share
that information by adding the manifest report to the project. See “Generate Manifests”
on page 17-20.

Related Examples
• “Create a New Project from an Archived Project” on page 15-26
• “Share Project by Email” on page 16-36

More About
• “Sharing Simulink Projects” on page 16-34

17

Simulink Project Dependency Analysis

• “What Is Dependency Analysis?” on page 17-2
• “Run Dependency Analysis” on page 17-3
• “Check Dependency Results and Resolve Problems” on page 17-4
• “Perform Impact Analysis” on page 17-7
• “Find Requirements Documents in a Project” on page 17-17
• “Save, Open, and Compare Dependency Analysis Results” on page 17-18
• “Analyze Model Dependencies” on page 17-19

17 Simulink Project Dependency Analysis

17-2

What Is Dependency Analysis?

Project Dependency Analysis

In Simulink Project, you can analyze project structure and discover files required by your
project in the Dependency Analysis view.

• You can use dependency analysis to help you set up your project with all required
files. For example, you can add a top-level model to your project, analyze the model
dependencies, and then add all dependent files to your project. See “Run Dependency
Analysis” on page 17-3.

• You can run dependency analysis at any point in your workflow when you want to
check that the project has all required files. For example, you can check dependencies
before submitting a version of your project to source control. To work with results, see
“Check Dependency Results and Resolve Problems” on page 17-4.

• You can use the Impact graph view of a dependency analysis to analyze the structure
of a project visually. You can perform impact analysis to find the impact of changing
particular files. From the graph, you can examine your project structure and perform
file operations such as adding labels and opening files. See “Perform Impact Analysis”
on page 17-7.

• You can search for requirements documents in a project. See “Find Requirements
Documents in a Project” on page 17-17.

Model Dependency Analysis

Simulink Project can analyze file dependencies for your entire project. For detailed
dependency analysis of a specific model, use the manifest tools to control more options.
Use the manifest tools if you want to:

• Save the list of the model dependencies to a manifest file.
• Create a report to identify where dependencies arise.
• Control the scope of dependency analysis.
• Identify required toolboxes.

See “Analyze Model Dependencies” on page 17-19.

 Run Dependency Analysis

17-3

Run Dependency Analysis

Note: You can analyze only files that are in your project. If your project is new, add files
to the project before running a dependency analysis. See “Add Files to the Project” on
page 15-24.

1 From the Simulink Project tree, select Dependency Analysis.
2 If you want to analyze the dependencies of external toolboxes, select Options >

Analyze External Toolboxes.

After you run the first dependency analysis of your project, subsequent analyses are
incremental updates. However, if you update external toolboxes and want to discover
dependency changes in them, you must perform a complete analysis. In this case,
turn off Options > Perform Incremental Updates before running the dependency
analysis.

3 To analyze all files in your project, on the Dependency Analysis tab, select
Analyze.

If you want to analyze specific files, on the Dependency Analysis tab, click
Analyze > Select Files to Analyze. In the Dependency Analysis dialog box, select
files for analysis, and click Analyze.

In the Simulink Editor, if an open model, library, or chart belongs to a project, you
can find file dependencies. Select File > Simulink Project > Find Dependencies.
Simulink Project analyzes the whole project and shows upstream and downstream
dependencies for the file.

Related Examples
• “Check Dependency Results and Resolve Problems” on page 17-4
• “Perform Impact Analysis” on page 17-7
• “Save, Open, and Compare Dependency Analysis Results” on page 17-18
• “Find Requirements Documents in a Project” on page 17-17

17 Simulink Project Dependency Analysis

17-4

Check Dependency Results and Resolve Problems

In Simulink Project, a dependency analysis identifies files that are required by the
project but are not in the project or are missing from the file system.

After you run an initial analysis, you see the Impact graph for the whole project in
Impact View. You can examine problem files and resolve issues using Table View or
Impact View.

Investigate Problem Files in Table View

1 From the Simulink Project tree, select Dependency Analysis. If you have not yet
run an analysis, click Analyze.

2
Select Table View and click the Show only problem files button .

3 Click each file in the problem list.

The lower pane, under Upstream Dependencies: filename, displays the files that
use the selected file.

Check the message in the Problem Description column.

 Check Dependency Results and Resolve Problems

17-5

These are some of the actions you can take to resolve problems after running a
dependency analysis:

• In the dependencies table, check the problem description and project status of
dependent files.

• To open the referencing component for editing, right-click a file in the Upstream
Dependencies: filename table and select Open. MATLAB files open in the
MATLAB Editor, and Simulink models open in the Simulink Editor with the
referencing component block highlighted.

• Check the path, where $ indicates the project root. Check if required files are outside
your project root. You cannot add these files to your project. This dependency might
not indicate a problem if the file is on your path and is a utility or resource that is
not part of your project. Use dependency analysis to ensure that you understand the
design dependencies.

17 Simulink Project Dependency Analysis

17-6

You do not need to add all required files to the project. For example, you can exclude
derived S-Function binary files that the source code in your project generates. See
“Work with Derived Files in Projects” on page 18-65.

• To remove a file from the problem list without adding it to the project, right-click the
file and select Add External File. The file disappears from the problem list. The next
time you run a dependency analysis, this file does not appear in the problem list. To
view all external files, click the Show only external files button .

• If you need a file that is outside the project root to be in your project, copy or move the
file within the project root, and add it to the project and the path. Remove the original
file location from the path.

• Clear the search box to view all identified dependencies, not just problem files.
• Select Impact View to investigate your project dependencies graphically. See

“Perform Impact Analysis” on page 17-7.

Investigate Problem Files in Impact View

1 From the Simulink Project tree, select Dependency Analysis.
2

Select Impact View and click the Show only problem files button .
3 To view files that use a problem file, select the problem file and Find > Files

Impacted by Selection.
4 You can take actions to resolve the problem file. For example, right-click the file and

select Add to Project or Add External File.

Related Examples
• “Run Dependency Analysis” on page 17-3
• “Perform Impact Analysis” on page 17-7
• “Save, Open, and Compare Dependency Analysis Results” on page 17-18

 Perform Impact Analysis

17-7

Perform Impact Analysis

In this section...

“About Impact Analysis” on page 17-7
“Run Dependency Analysis” on page 17-8
“Examine Impact of Selected Files” on page 17-9
“Explore Impact Graph” on page 17-11
“Export Impact Results” on page 17-15

About Impact Analysis

In Simulink Project, use impact analysis to find out the impact of changing particular
files. You can investigate dependencies visually and explore the structure of your project.
You can also analyze selected or modified files to find their required files and the files
they affect. Visualize changes and dependencies in the Impact graph.

Impact analysis can show you how a change affects other files before you make the
change. For example:

• Investigate the potential impact of a change in requirements by finding the design
files linked to the requirements document.

• Investigate change set impact by finding upstream and downstream dependencies of
modified files before committing the changes. Finding these dependencies can help
you identify design and test files that need modification and help you find the tests
you need to run.

After performing impact analysis, you can:

• Label or open the files
• Export the results to a workspace variable
• Export the results for batch processing
• Save the graph as an image file
• Save the impact results to a .graphml file, which you can later reload in Simulink

Project

Exporting the results enables further processing or archiving of impact analysis results.
You can add the exported list of files to reports or artifacts that describe the impact of a
change.

17 Simulink Project Dependency Analysis

17-8

For an example showing how to perform file-level impact analysis to find and run the
tests affected by modified files, see Perform Impact Analysis with a Simulink Project.

Run Dependency Analysis

To investigate dependencies visually, first run a dependency analysis on your project.

1 From the Simulink Project tree, select Dependency Analysis.
2 If you want to analyze the dependencies of external toolboxes, select Options >

Analyze External Toolboxes.
3 On the Dependency Analysis tab, click Analyze.
4 Select Impact View.

The Impact graph displays the structure of all analyzed dependencies in the project.
Project files that are not detectable dependencies of the analyzed files do not appear
on the graph.

../examples/perform-impact-analysis-with-a-simulink-project.html

 Perform Impact Analysis

17-9

After you run the first dependency analysis of your project, clicking Analyze again
produces incremental updates.

However, if you update external toolboxes and want to discover dependency changes in
them, you must turn off the option Options > Perform Incremental Updates and
select Options > Analyze External Toolboxes.

Examine Impact of Selected Files

After a dependency analysis, to find out the impact of particular files, select Impact
View and use controls in the View and Impact Analysis sections of the Dependency
Analysis tab.

1 Select files to investigate using one of these methods:

• Click the graph or a legend.

17 Simulink Project Dependency Analysis

17-10

For example, select all model files by clicking Simulink Model in the File Type
legend. To change the legend, in the View section of the toolstrip, use the Group
By menu. This menu lets you show, for example, modified files or particular
labels.

• In the Impact Analysis section of the toolstrip, choose files using the Select
menu: Modified Files, Problem Files, or External Files.

2 In the Impact Analysis section, select Find and then specify the range of
dependencies you want to display: All Dependencies of Selection, Files
Impacted by Selection, or Files Required by Selection.

The graph shows the selected files and their file dependencies.

You can use the search and filter controls to modify the graph.

 Perform Impact Analysis

17-11

3 To see the blocks that have dependencies, expand the files in the graph. In the View
section, click Expand All.

The Impact graph expands the dependent files. You can see the subsystems that
have dependencies. You can view dependent blocks, models, libraries, and library
blocks.

To highlight a dependent block in the model, double-click the block name in the
expanded file.

Tip You can also expand or collapse files individually in the graph by clicking the
arrows next to the file names.

4 To investigate modified files, you can right-click and select Compare to Ancestor
or Compare to Revision. See “Compare Revisions” on page 18-45.

Tip To reset the graph to show all analyzed dependencies in the project, on the
Dependency Analysis tab, in the Impact Analysis section, select Find > All Files.

Explore Impact Graph

These are some of the actions you can take to investigate the structure of your project in
the graph.

To highlight or select groups of files:

17 Simulink Project Dependency Analysis

17-12

• On the Dependency Analysis tab, in the View section, use the Group By control to
highlight graph item categories such as file type, project status, source control status,
project, and problem type.

For example:

• If your project is under source control, to show modified files, select Group By >
SVN (or Git).

• To identify whether files are in your project or a referenced project, select Group
By > Project.

• Click a legend item to select files. For example, select Group By > File Type. In the
File Type legend, click Simulink Model to select all the model files. Selected files
display a blue box.

• Select Group By, and then select a category of labels to use for highlighting. For
example, select Group By > Classification to see the files that have labels in a
Classification category, for example, Design.

The Classification legend appears and files in the graph are colored to indicate the
labels on each file.

To perform file operations:

• Hover over a file to read the file name in the tooltip at any zoom level. Double-click to
open the file. You can expand or collapse files in the graph by clicking the arrows next
to the file names. You can view dependent blocks under an expanded file, and double-
click a dependent block to highlight it in the model.

• Right-click files in the graph to use commands such as Open, Add Label, or Remove
from Project.

 Perform Impact Analysis

17-13

You can perform file operations on multiple files. To select multiple files, press Shift
and drag to enclose the files. Hold down Ctrl to multiselect and add to any existing
selection. Press F to fit the view to the currently selected files.

• You can take actions to resolve problems in the Impact graph. For example, right-click
a problem file and select Add to Project or Add External File.

17 Simulink Project Dependency Analysis

17-14

To change the graph layout and view, on the Dependency Analysis tab, use the
controls in the View and Layout sections.

Your graph layout is saved with the project. You can also save and reload graph layouts.
See “Save, Open, and Compare Dependency Analysis Results” on page 17-18.

 Perform Impact Analysis

17-15

Export Impact Results

To export impact analysis results, on the Dependency Analysis tab, in the Impact
Analysis section, use the Export controls, or use the Export context menu on selected
files.

Select Files to Export

To export all the files in the current view, check that no files are selected. (Click the
graph background to clear the selection on all files.) Click Export to display Files in
view: number of files.

Select a subset of files in the graph to export. Click Export to see how many files are
selected: Selected files: number of files.

Export Files

• To save the selected file paths to a variable, select Export > Save to Workspace.
• To switch to the Batch Job view with the batch job files selected, select Export >

Send to Batch Job.
• To switch to the Files view with the files selected, select Export > Show in Files

View.

Export Graph to Image File

To export the Impact graph as an image file for sharing or archiving, you can either:

• Save an image file. On the Dependency Analysis tab, in the File section, select
Save As > Save As Image. Use the Save dialog box to specify the name, file type,
and location. The default file type is SVG, which supports image scaling.

• Copy the image to the clipboard using the keyboard. You can paste the clipboard
contents into other documents.

Export Reloadable Results

To export the impact results to a .graphml file that you can reload in Simulink Project,
see “Save, Open, and Compare Dependency Analysis Results” on page 17-18.

Related Examples
• Perform Impact Analysis with a Simulink Project

../examples/perform-impact-analysis-with-a-simulink-project.html

17 Simulink Project Dependency Analysis

17-16

• “Run Dependency Analysis” on page 17-3
• “Check Dependency Results and Resolve Problems” on page 17-4
• “Save, Open, and Compare Dependency Analysis Results” on page 17-18
• “Find Requirements Documents in a Project” on page 17-17

 Find Requirements Documents in a Project

17-17

Find Requirements Documents in a Project

In Simulink Project, a dependency analysis finds requirements documents linked using
the Requirements Management Interface.

• You can view and navigate to and from the linked requirements documents.
• You can create or edit Requirements Management links only if you have Simulink

Verification and Validation.

1 From the Simulink Project tree, select Dependency Analysis.
2 Click the Analyze button.

The Impact graph displays the structure of all analyzed dependencies in the project.
Project files that are not detectable dependencies of the analyzed files are not visible
in the graph.

3 To highlight requirements documents in the graph, in the Dependency Type legend,
click Requirements Link . Arrows connect requirements documents to the files
with the requirement links.

4 To find the specific block containing a requirement link, expand the model file in the
graph. Click Expand All or click the arrows next to the file name. View the arrow
connecting the block containing the requirement link to the requirements document
file.

5 To open a requirements document, double-click the document in the graph.

Related Examples
• “Run Dependency Analysis” on page 17-3
• “Check Dependency Results and Resolve Problems” on page 17-4
• “Perform Impact Analysis” on page 17-7
• “Save, Open, and Compare Dependency Analysis Results” on page 17-18
• “View Linked Requirements in Models and Blocks” on page 11-81

17 Simulink Project Dependency Analysis

17-18

Save, Open, and Compare Dependency Analysis Results

In Simulink Project, you can save the results of a dependency analysis. You can view
the saved results later, without having to repeat the analysis. You can also save results
separately in named files and reload them.

Save, open, and compare dependency analysis results from the File section of the
Dependency Analysis tab.

• To save your results as a .graphml file, click Save As and choose a file name and
location.

• To open saved dependency analysis results, click Open.
• To compare results with previously saved results, click Compare to Saved. Select a

.graphml file. Inspect the differences in the comparison report.

You can save reports that include more detailed results by using model dependency
analysis. For more information about choosing model or project dependency analysis, see
“What Is Dependency Analysis?” on page 17-2.

 Analyze Model Dependencies

17-19

Analyze Model Dependencies

In this section...

“What Are Model Dependencies?” on page 17-19
“Generate Manifests” on page 17-20
“Command-Line Dependency Analysis” on page 17-25
“Edit Manifests” on page 17-28
“Compare Manifests” on page 17-31
“Export Files in a Manifest” on page 17-32
“Scope of Dependency Analysis” on page 17-34
“Best Practices for Dependency Analysis” on page 17-37
“Use the Model Manifest Report” on page 17-38

What Are Model Dependencies?

Each Simulink model requires a set of files to run successfully. These files can include
referenced models, data files, S-functions, and other files the model cannot run without.
These required files are called model dependencies.

Dependency Analysis Requirements Tools to Choose

Find required files for an entire project. Use dependency analysis from the
Simulink Project. See “Dependency
Analysis”.

Perform detailed dependency analysis of a
specific model with control of more options.

Use the manifest tools from your model.
See “Generate Manifests” on page
17-20.

Generate a manifest if you want to:

• Save the list of the model dependencies
to a manifest file.

• Create a report to identify where
dependencies arise.

• Control the scope of dependency
analysis.

17 Simulink Project Dependency Analysis

17-20

Dependency Analysis Requirements Tools to Choose

• Identify required toolboxes.

After you generate a manifest for a model to determine its dependencies, you can:

• View the files required by your model in a manifest file.
• Trace dependencies using the report to understand why a particular file or toolbox is

required by a model.
• Package the model with its required files into a zip file to send to another Simulink

user.
• Compare older and newer manifests for the same model.
• Save a specific version of the model and its required files in a revision control system.

You can also view the libraries and models referenced by your model in a graphical
format using the Model Dependency Viewer. See “Model Dependency Viewer” on page
11-76.

Generate Manifests

Generating a manifest performs the dependency analysis and saves the list of model
dependencies to a manifest file. You must generate the manifest before using any of the
other Simulink Manifest Tools.

Note: The model dependencies identified in a manifest depend upon the Analysis
Scope options you specify. For example, performing an analysis without selecting Find
Library Links might not find all the Simulink blocksets that your model requires,
because they are often included in a model as library links. See “Manifest Analysis Scope
Options” on page 17-23.

To generate a manifest:

1 Select Analysis > Model Dependencies > Generate Manifest.

The Generate Model Manifest dialog box appears.

 Analyze Model Dependencies

17-21

17 Simulink Project Dependency Analysis

17-22

2 Click OK to generate a manifest and report using the default settings.

Alternatively you can first change the following settings:

• Select the Analysis scope check boxes to specify the type of dependencies you
want to detect (see “Manifest Analysis Scope Options” on page 17-23).

• Control whether to report file dependency locations by selecting Report file
dependency locations for:

• User files only (default) — only report locations where dependencies
are upon user files. Use this option if you want to understand the
interdependencies of your own code and do not care about the locations of
dependencies on MathWorks products. This option speeds up report creation
and streamlines the report.

• All files — report all locations where dependencies are introduced,
including all dependencies on MathWorks products. This is the slowest
option and the most verbose report. Use this option if you need to trace all
dependencies to understand why a particular file or toolbox is required by a
model. If you need to analyze many references, it can be helpful to sort the
results by clicking the report column headers.

• None — do not report any dependency locations. This is the fastest option
and the most streamlined report. Use this option if you want to discover
and package required files and do not require all the information about file
references.

• If desired, change the Project Root Location. Select one of the check box
options: Folder containing root model file (the default), Common root
folder of required files, or User-defined location — for this option, enter a
path in the edit box, or browse to a location.

• If desired, edit the Manifest file name and location in which to save the file.
• Use the check box View HTML report on completion to specify if you want to

generate a report when you generate the manifest. You can edit the Report file
name or leave the default, mymodelname_manifest_report.html. You can set
the Report style to Plain HTML or HTML with Hyperlinks.

When you click OK Simulink generates a manifest file containing a list of the model
dependencies. If you selected View HTML report on completion, the Model Manifest
Report appears after Simulink generates the manifest. See “Use the Model Manifest
Report” on page 17-38 for an example.

 Analyze Model Dependencies

17-23

The manifest is an XML file with the extension .smf located (by default) in the same
folder as the model itself.

Manifest Analysis Scope Options

The Simulink Manifest Tools allow you to specify the scope of analysis when generating
the manifest. The dependencies identified by the analysis depend upon the scope you
specify.

Tip You can select analysis options that perform a Model Update. If Model Update fails
you see an error message. Either clear those analysis options to generate a manifest
without a Model Update, or try a manual Model Update to find out more about the
problem. For example your model might require variables that are not present in the
workspace (for example, if a block parameter defines a variable that you forgot to load
manually).

The following table describes the Analysis Scope options.

Check Box Option Description

Find orphaned base workspace
data (performs a Model
Update)

Searches for base workspace variables the model
requires, that are not defined in any file in this
Manifest.

Find enumeration definition
files (performs a Model Update)

Searches for enumeration definition files. Turn on
this option to detect enumerated datatypes used as
part of a bus object definition.

Find and analyze model
references

Searches for Model blocks in the model, and
identifies any referenced models as dependencies.

Find and analyze linked
libraries

Searches for links to library blocks in the model,
and identifies any library links as dependencies.

Allow models with unsaved
changes to be analyzed

Select this check box only if you want to allow
analysis of unsaved changes.

Find requirements documents Searches for requirements documents linked
using the Requirements Management Interface.
Note that requirements links created with IBM
Rational DOORS software are not included
in manifests. For more information, see “Find
Requirements Documents in a Project” on page

17 Simulink Project Dependency Analysis

17-24

Check Box Option Description

17-17 and “Requirements Management Interface
Setup” in the Simulink Verification and Validation
documentation.

Click the >> button on the right to show the following advanced analysis options.
Find S-functions Searches for S-Function blocks in the model, and

identifies S-function files (MATLAB code and C) as
dependencies. See the source code item in “Special
Cases” on page 17-35.

Analyze model and block
callbacks (including
Interpreted MATLAB Function
blocks)

Searches for file dependencies introduced by the
code in Interpreted MATLAB Function blocks,
block callbacks, and model callbacks. For more
detail on how callbacks are analyzed, see “Code
Analysis” on page 17-35.

Find files required for code
generation

Searches for file dependencies introduced by
Simulink Coder custom code, and Embedded Coder
templates. If you do not have a code generation
product, this check is off by default, and produces a
warning if you select it.
This includes analysis of all configuration sets
(not just the Active set) and STF_make_rtw_hook
functions, and locates system target files and Code
Replacement Library definition files (.m or .mat).
See also “Required Toolboxes” on page 17-39,
and the source code item in “Special Cases” on page
17-35.

Find data files (e.g. in “From
File” blocks)

Searches for explicitly referenced data files, such
as those in From File blocks, and identifies those
files as dependencies. See “Special Cases” on page
17-35.

Analyze Stateflow charts Searches for file dependencies introduced by using
syntax such as ml.mymean(myvariable) in
models that use Stateflow.

 Analyze Model Dependencies

17-25

Check Box Option Description

Analyze code in MATLAB
Functions blocks

Searches for MATLAB Function blocks in the
model, and identifies any file dependencies
(outside toolboxes) introduced in the code. Toolbox
dependencies introduced by a MATLAB Function
block are not detected.

Analyze files in “user
toolboxes”

Searches for file dependencies introduced by files in
user-defined toolboxes. See “Special Cases” on page
17-35.

Analyze MATLAB files Searches for file dependencies introduced by
MATLAB files called from the model. For example,
if this option is selected and you have a callback
to mycallback.m, then the referenced file
mycallback.m is also analyzed for further
dependencies. See “Code Analysis” on page
17-35.

Store MATLAB code analysis
warnings in manifest

Saves any warnings in the manifest.

See also “Scope of Dependency Analysis” on page 17-34 for more information.

Command-Line Dependency Analysis

• “Check File Dependencies” on page 17-25
• “Check Toolbox Dependencies” on page 17-26

Check File Dependencies

To programmatically check for file dependencies, use the function
dependencies.fileDependencyAnalysis as follows.
[files, missing, depfile, manifestfile] =

dependencies.fileDependencyAnalysis('modelname', 'manifestfile')

This returns the following:

• files — a cell array of strings containing the full-paths of all existing files
referenced by the model modelname.

• missing — a cell array of strings containing the names all files that are referenced
by the model modelname, but cannot be found.

17 Simulink Project Dependency Analysis

17-26

• depfile — returns the full path of the user dependencies (.smd) file, if it exists,
that stores the names of any files you manually added or excluded. Simulink uses the
.smd file to remember your changes the next time you generate a manifest. See “Edit
Manifests” on page 17-28.

• manifestfile — (optional input) specify the name of the manifest file to create. The
suffix .smf is always added to the user-specified name.

If you specify the optional input, manifestfile, then the command creates a
manifest file with the specified name and path manifestfile. manifestfile
can be a full-path or just a file name (in which case the file is created in the current
folder).

If you try this analysis on an example model, it returns an empty list of required files
because the standard MathWorks installation includes all the files required for the
example models.

Check Toolbox Dependencies

To check which toolboxes are required, use the function
dependencies.toolboxDependencyAnalysis as follows:

[names,dirs] = dependencies.toolboxDependencyAnalysis(files_in)

files_in must be a cell array of strings containing .m or model files on the MATLAB path.
Simulink model names (without file extension) are also allowed.

This returns the following:

• names — a cell-array of toolbox names required by the files in files_in.
• dirs — a cell-array of the toolbox folders.

Note: The method toolboxDependencyAnalysis looks for toolbox dependencies of the
files in files_in but does not analyze any subsequent dependencies.

If you want to find all detectable toolbox dependencies of your model and the files it
depends on:

1 Call fileDependencyAnalysis on your model.

For example:

 Analyze Model Dependencies

17-27

[files, missing, depfile, manifestfile] = dependencies.fileDependencyAnalysis('mymodel')

files =

 'C:\Work\manifest\foo.m'

 'C:\Work\manifest\mymodel'

missing =

 []

depfile =

 []

manifestfile =

 []

2 Call toolboxDependencyAnalysis on the files output of step 1.

For example:

tbxes = dependencies.toolboxDependencyAnalysis(files)

tbxes =

[1x24 char] 'MATLAB' 'Simulink Coder' 'Simulink'

To view long product names examine the tbxes cell array as follows:

tbxes{:}

ans =

Image Processing Toolbox

ans =

MATLAB

ans =

Simulink Coder

ans =

Simulink

For command-line dependency analysis, the analysis uses the default settings for
analysis scope to determine required toolboxes. For example, if you have code generation
products, then the check Find files required for code generation is on by default
and Simulink Coder is always reported as required. See “Required Toolboxes” on page
17-39 for more examples of how your installed products and analysis scope settings
can affect reported toolbox requirements.

17 Simulink Project Dependency Analysis

17-28

Edit Manifests

After you generate a manifest, you can view the list of files identified as dependencies,
and manually add or delete files from the list.

To edit the list of required files in a manifest:

1 Select Analysis > Model Dependencies > Edit Manifest Contents.

Alternatively, if you are viewing a manifest report you can click Edit in the top
Actions box, or you can click View and Edit Manifest in the Export Manifest
dialog box.

The View and Edit Manifest dialog box appears, showing the latest manifest for the
current model.

 Analyze Model Dependencies

17-29

Note: You can open a different manifest by clicking the Browse for manifest file

button . If you have not generated a manifest, select Generate Manifest to
open the Generate Model Manifest dialog box (see “Generate Manifests” on page
17-20).

17 Simulink Project Dependency Analysis

17-30

2 Examine the Files to be exported list on the left side of the dialog box. This list
shows the files identified as dependencies.

3 To add a file to the manifest:

a Click Add Files.

The Add Files to Manifest dialog box opens.
b Select the file you want to add, then click Open.

The selected file is added to the Files to be exported list.
4 To remove a file from the manifest:

a Select the file you want to remove from the Files to be exported list.
b

Click the Exclude selected files button .

The selected file is moved to the Excluded files list.

Note: If you add a file to the manifest and then exclude it, that file is removed
from the dialog box (it is not added to the Excluded files list). Only files
detected by the Simulink Manifest Tools are included in the Excluded files list.

5 If desired, change the Project Root Location.
6 Click Save to save your changes to the manifest file.

Simulink saves the manifest (.smf) file, and creates a user dependencies (.smd) file
that stores the names of any files you manually added or excluded. Simulink uses
the .smd file to remember your changes the next time you generate a manifest, so
you do not need to repeat manual editing. For example, you might want to exclude
source code or include a copyright document every time you generate a manifest for
exporting to a customer. The user dependencies (.smd) file has the same name and
folder as the model. By default, the user dependencies (.smd) file is also included in
the manifest.

Note: If the user dependencies (.smd) file is read-only, a warning is displayed when
you save the manifest.

7 To view the Model Manifest Report for the updated manifest, click Show Report.

 Analyze Model Dependencies

17-31

An updated Model Manifest Report appears, listing the required files and toolboxes,
and details of references to other files. See “Use the Model Manifest Report” on page
17-38 for an example.

8 When you are finished editing the manifest, click OK.

Compare Manifests

You can compare two manifests to see how the list of model dependencies differs between
two models, or between two versions of the same model. You can also compare a manifest
with a folder or a ZIP file.

To compare manifests:

1 From the Current Folder browser, right-click a manifest file and select Compare
Against > Choose.

Alternatively, from your model, select Analysis > Model Dependencies >
Compare Manifests.

The dialog box Select Files or Folders for Comparison appears.
2 In the dialog box Select Files or Folders for Comparison, select files to compare, and

the comparison type.

a Use the drop-down lists or browse to select manifest files to compare.
b Select the Comparison type. For two manifests you can select:

• Simulink manifest comparison — Select for a manifest file list
comparison reporting new, removed, and changed files. The report contains
links to open files and compare files that differ. You can use a similar file
List comparison for comparing a manifest to a folder or a ZIP file.

• Simulink manifest comparison (printable) — Select for a printable
Model Manifest Differences Report without links. The report provides details
about each manifest file, and lists the differences between the files.

3 View the report in the Comparison Tool comparing the file names, dates, and sizes
stored in the manifests.

Be aware the details stored in the manifest might differ from the files on disc. If you
click a “compare” link in the report, you see warnings if there are problems such as
size mismatches, or if the tool cannot find those files on disc.

17 Simulink Project Dependency Analysis

17-32

For more information on the Comparison Tool, see “Comparing Files and Folders” in
the MATLAB Data and File Management documentation.

Export Files in a Manifest

You can export copies of the files listed in the manifest to a ZIP file. Exporting the files
allows you to package the model with its required files into a single ZIP file, so you can
easily send it to another user or save it in a revision control system.

To export your model with its required files:

1 Select Analysis > Model Dependencies > Export Files in Manifest.

Alternatively, if you are viewing a manifest report you can click Export in the top
Actions box.

The Export Files in Manifest dialog box appears, showing the latest manifest for the
current model.

 Analyze Model Dependencies

17-33

Note: You can export a different manifest by clicking the Browse for manifest file

button . If you have not generated a manifest, select Generate Manifest to
open the Generate Model Manifest dialog box (see “Generate Manifests” on page
17-20).

2 If you want to view or edit the manifest before exporting it, click View and Edit
Manifest to view or change the list of required files. See “Edit Manifests” on page
17-28. When you close the View and Edit Manifest dialog box, you return to the
Export Files in Manifest dialog box.

3 Click Validate to check the manifest. Validation reports information about possible
problems such as missing files, warnings, and orphaned base workspace data.

4 Enter the ZIP file name to which you want to export the model.

17 Simulink Project Dependency Analysis

17-34

5 Select Preserve folder hierarchy when exporting if you want to keep folder
structure for your exported model and files. Then, select the root folder to use for
this structure (usually the same as the Project Root Location on the Generate
Manifest dialog box).

Note: You must select Preserve folder hierarchy if you are exporting a model that
uses an .m file inside a MATLAB class (to maintain the folder structure of the class),
or if the model refers to files in other folders (to ensure the exported files maintain
the same relative paths).

6 Click OK.

The model and its file dependencies are exported to the specified ZIP file.

Scope of Dependency Analysis

The Simulink Manifest Tools identify required files and list them in an XML file called
a manifest. When Simulink generates a manifest file, it performs a static analysis on
your model, which means that the model does not need to be capable of performing an
“update diagram” operation (see “Update Diagram and Run Simulation” on page 1-50).
The only exception to this is when you select the analysis option Find orphaned base
workspace data (performs a Model Update).

You can specify the type of dependencies you want to detect when you generate the
manifest. See “Manifest Analysis Scope Options” on page 17-23.

For more information on what the tool analyzes, refer to the following sections:

• “Analysis Limitations” on page 17-34
• “Code Analysis” on page 17-35
• “Special Cases” on page 17-35

Analysis Limitations

The analysis might not find all files required by your model (for examples, see “Code
Analysis” on page 17-35).

The analysis might not report certain blocksets or toolboxes required by a model. You
should be aware of this limitation when sending a model to another user. Blocksets
that do not introduce dependence on any files (such as Fixed-Point Designer™) cannot

 Analyze Model Dependencies

17-35

be detected. Some SimEvents blocks do not introduce a detectable dependence on
SimEvents.

To include dependencies that the analysis cannot detect, you can add additional file
dependencies to a manifest file using the View/Edit Manifest Contents option (see “Edit
Manifests” on page 17-28).

Code Analysis

When the Simulink Manifest Tools encounter MATLAB code, for example in a model or
block callback, or in a .m file S-function, they attempt to identify the files it references.
If those files contain MATLAB code, and the analysis scope option Analyze MATLAB
files is selected, the referenced files are also analyzed. This function is similar to
matlab.codetools.requiredFilesAndProducts but with some enhancements:

• Strings passed into calls to eval, evalc, and evalin are analyzed.
• File names passed to load, fopen, xlsread, importdata, dlmread, and imread

are identified.

Files that are in MathWorks toolboxes are not analyzed.

File names passed to load, etc., are identified only if they are literal strings. For
example:

load('mydatafile')

load mydatafile

The following example, and anything more complicated, is not identified as a file
dependency:

str = 'mydatafile';

load(str);

Similarly, arguments to eval, etc., are analyzed only if they are literal strings.

The Simulink Manifest Tools look inside MAT-files to find the names of variables to be
loaded. This enables them to distinguish reliably between variable names and function
names in block callbacks.

If a model depends upon a file for which both .m and .p files exist, then the manifest
reports both, and, if the Analyze MATLAB files option is selected, the .m file is
analyzed.

Special Cases

The following list contains more information about specific cases:

17 Simulink Project Dependency Analysis

17-36

• If your model references a data class created using MATLAB syntax, for example
called MyPackage.MyClass, all files inside the folder MyPackage and its subfolders
are added to the manifest.

Warning The analysis adds all files in the class, which includes any source control
files such as .svn or .cvs. You might want to edit the manifest to remove these files.

• A user-defined toolbox must have a properly configured Contents.m file. The
Simulink Manifest Tools search user-defined toolboxes as follows:

• If you have a Contents.m file in folder X, any file inside a subfolder of X is
considered part of your toolbox.

• If you have a Contents.m file in folder X/X, any file inside all subfolders of the
“outer” folder X is considered part of your toolbox.

For more information on the format of a Contents.m file, see ver.
• If your S-functions require TLC files, these are detected.
• If you have Simscape, your Simscape components are analyzed. See also “Required

Toolboxes” on page 17-39 for other effects of your installed products on manifests.
• If you create a UI using GUIDE and add this to a model callback, then the

dependency analysis detects the .m and .fig file dependencies.
• If you have a dependence on source code, such as .c, .h files, these files are not

analyzed at all to find any files that they depend upon. For example, subsequent
#include calls inside .h files are not detected. To make such files detectable, you
can add them as dependent files to the "header file" section of the Custom Code pane
of the Simulink Coder section of the Configuration Parameters dialog box (or specify
them with rtwmakecfg). Alternatively, to include dependencies that the analysis
cannot detect, you can add additional file dependencies to a manifest file using the
View/Edit Manifest Contents option (see “Edit Manifests” on page 17-28).

• Various blocksets and toolboxes can introduce a dependence on a file through their
additional source blocks. If the analysis scope option Find data files (e.g. in “From
File” blocks) is selected, the analysis detects file dependencies introduced by the
following blocks:

Product Blocks

DSP System Toolbox From Wave File (Obsolete) block
(Microsoft Windows operating system
only)

 Analyze Model Dependencies

17-37

Product Blocks

From Multimedia File block
(Windows only)

Computer Vision System Toolbox™ Image From File block

Read Binary File block
Simulink 3D Animation™ VR Sink block

The option Find data files also detects dependencies introduced by setting a
"Model Workspace" for a model to either MAT-File or MATLAB Code, and model
dependencies specified on the Model Referencing pane of the Configuration
Parameters dialog box.

Best Practices for Dependency Analysis

The starting point for dependency analysis is the model itself. Make sure that the model
refers to any data files it needs, even if you would normally load these manually. For
example, add code to the model's PreLoadFcn to load them automatically, like this
example:

load mydatafile

load('my_other_data_file.mat')

This way, the Simulink Manifest Tools can add them to the manifest. For more detail on
callback analysis, see the notes on code analysis (see “Code Analysis” on page 17-35).

More generally, ensure that the model creates or loads any variables it uses, either in
model callbacks or in scripts called from model callbacks. This reduces the possibility
of the Simulink Manifest Tools confusing variable names with function names when
analyzing block callbacks.

If you plan to export the manifest after creating it, ensure that the model does not refer
to any files by their absolute paths, for example:

load C:\mymodel\mydata\mydatafile.mat

Absolute paths can become invalid when you export the model to another machine. If
referring to files in other folders, do it by relative path, for example:

load mydata\mydatafile.mat

Select Preserve folder hierarchy when exporting, so that the exported files are in the
same locations relative to each other. Also, choose a root folder so that all the files listed

17 Simulink Project Dependency Analysis

17-38

in the manifest are inside it. Otherwise, any files outside the root are copied into a new
folder called external underneath the root, and relative paths to those files become
invalid.

If you are exporting a model that uses a .m file inside a MATLAB class (in a folder called
@myclass, for example), you must select the Preserve folder hierarchy check box
when exporting, to maintain the folder structure of the class.

Always test exported ZIP files by extracting the contents to a new location on your
computer and testing the model. Be aware that in some cases required files might be on
your path but not in the ZIP file, if your path contains references to folders other than
MathWorks toolboxes.

Use the Model Manifest Report

• “Report Sections” on page 17-38
• “Required Toolboxes” on page 17-39
• “Example Model Manifest Report” on page 17-40

Report Sections

If you selected View HTML report on completion in the Generate Model Manifest
dialog box, the Model Manifest Report appears after Simulink generates the manifest.
The report shows:

• Analysis date
• Actions pane — Provides links to regenerate, edit, or compare the manifest, and

export the files in the manifest to a ZIP file.
• Model Reference and Library Link Hierarchy — Links you can click to open

models.
• Files used by this model — Required files, with paths relative to the

projectroot.

You can sort the results by clicking the report column headers.
• Toolboxes required by this model. For details, see “Required Toolboxes” on page

17-39.
• References in this model — This section provides details of references to other files

so you can identify where dependencies arise. You control the scope of this section
with the Report file dependency locations options on the Generate Manifest

 Analyze Model Dependencies

17-39

dialog box. You can choose to include references to user files only, all files, or no files.
See “Generate Manifests” on page 17-20. Use this section of the report to trace
dependencies to understand why a particular file or toolbox is required by a model. If
you need to analyze many references, it can be helpful to sort the results by clicking
the report column headers.

• Folders referenced by this model
• Orphaned base workspace variables — If you selected the analysis option Find

orphaned base workspace data, this section reports any base workspace variables
the model requires that are not defined in a file in this manifest.

• Warnings generated while analyzing MATLAB code — You can opt out of this
section by clearing the Store MATLAB code analysis warnings in manifest
analysis option.

• Dependency analysis settings — Records the details of the analysis scope options.

See the examples shown in “Example Model Manifest Report” on page 17-40.

Required Toolboxes

In the report, the “Toolboxes required by this model” section lists all products required
by the model that the analysis can detect. Be aware that the analysis might not report
certain blocksets or toolboxes required by a model, e.g., blocksets that do not introduce
dependence on any files (such as Fixed-Point Designer) cannot be detected. Some
MathWorks files under toolbox/shared can report only requiring MATLAB instead of
their associated toolbox.

The results reported can be affected by your analysis scope settings and your installed
products. For example:

• If you have code generation products and select the scope option “Find files
required for code generation”, then:

• Simulink Coder software is always reported as required.
• If you also have an .ert system target file selected, then Embedded Coder

software is always reported as required.
• If you clear the Find library links option, then the analysis cannot find a

dependence on, for example, someBlockSet, and so no dependence is reported upon
the block set.

• If you clear the Analyze MATLAB files option, then the analysis cannot find a
dependence upon fuzzy.m, and so no dependence is reported upon the Fuzzy Logic
Toolbox™.

17 Simulink Project Dependency Analysis

17-40

Example Model Manifest Report

You should always check the Dependency analysis settings section in the Model
Manifest Report to see the scope of analysis settings used to generate it.

Following are portions of a sample report.

 Analyze Model Dependencies

17-41

18

Simulink Project Source Control

• “About Source Control with Projects” on page 18-2
• “Add a Project to Source Control” on page 18-5
• “Register Model Files with Source Control Tools” on page 18-9
• “Set Up SVN Source Control” on page 18-10
• “Set Up Git Source Control” on page 18-18
• “Disable Source Control” on page 18-23
• “Change Source Control” on page 18-24
• “Write a Source Control Integration with the SDK” on page 18-25
• “Retrieve a Working Copy of a Project from Source Control” on page 18-26
• “Tag and Retrieve Versions of Project Files” on page 18-31
• “Refresh Status of Project Files” on page 18-33
• “Check for Modifications” on page 18-37
• “Update Revisions of Project Files” on page 18-38
• “Get File Locks” on page 18-40
• “View Modified Files” on page 18-43
• “Compare Revisions” on page 18-45
• “Precommit Actions” on page 18-47
• “Commit Modified Files to Source Control” on page 18-49
• “Revert Changes” on page 18-51
• “Branch and Merge Files with Git” on page 18-53
• “Push and Fetch Files with Git” on page 18-57
• “Resolve Conflicts” on page 18-60
• “Work with Derived Files in Projects” on page 18-65

18 Simulink Project Source Control

18-2

About Source Control with Projects

You can use Simulink Project to work with source control. You can perform operations
such as update, commit, merge changes, and view revision history directly from the
Simulink Project environment.

Simulink Project has interfaces to:

• Subversion (SVN) — See “Set Up SVN Source Control” on page 18-10.
• Git— See “Set Up Git Source Control” on page 18-18.
• Software Development Kit (SDK) — You can use the SDK to integrate Simulink

Projects with third-party source control tools. See “Write a Source Control Integration
with the SDK” on page 18-25.

To use source control in your project, use any of the following workflows:

• Add source control to a project. See “Add a Project to Source Control” on page
18-5.

• Retrieve files from an existing repository and create a new project. See “Retrieve a
Working Copy of a Project from Source Control” on page 18-26.

• Create a new project in a folder already under source control and click Detect. See
“Create a New Project to Manage Existing Files” on page 15-20.

• Make your project publicly available on GitHub. See “Share Project on GitHub” on
page 16-38.

When your project is under source control, you can:

• “Retrieve a Working Copy of a Project from Source Control” on page 18-26
• “Compare Revisions” on page 18-45
• “Commit Modified Files to Source Control” on page 18-49

Caution Before using source control, you must register model files with your source
control tools to avoid corrupting models. See “Register Model Files with Source Control
Tools” on page 18-9.

When your project is under source control, do not manage files in the Current Folder
browser because it does not perform the corresponding source control actions. To ensure

 About Source Control with Projects

18-3

that your project handles source control operations, move, rename, copy, or delete files in
Simulink Project.

To view an example project under source control, see “Try Simulink Project Tools with
the Airframe Project” on page 15-5.

Classic and Distributed Source Control

This diagram represents the classic source control workflow (for example, using SVN).

Benefits of classic source control:

• Locking and user permissions on a per-file basis (e.g., you can enforce locking of model
files)

• Central server, reducing local storage needs
• Simple and easy to learn

This diagram represents the distributed source control workflow (for example, using Git).

18 Simulink Project Source Control

18-4

Benefits of distributed source control:

• Offline working
• Local repository, which provides full history
• Branching
• Multiple remote repositories, enabling large-scale hierarchical access control

To choose classic or distributed source control, consider these tips.

Classic source control can be helpful if:

• You need file locks.
• You are new to source control.

Distributed source control can be helpful if:

• You need to work offline, commit regularly, and need access to the full repository
history.

• You need to branch locally.

 Add a Project to Source Control

18-5

Add a Project to Source Control

In this section...

“Add a Project to Git Source Control” on page 18-5
“Add a Project to SVN Source Control” on page 18-6

Add a Project to Git Source Control

If you want to add version control to your Simulink project files without sharing with
another user, it is quickest to create a local Git repository in your sandbox.

1 Select the top Project node in the project tree.
2 Under Source Control, click Add project to source control.
3 In the Add to Source Control dialog box, in the Source control integration list,

select Git to use the Git source control integration provided by Simulink Project.
4 Click Convert to finish adding the project to source control.

Git creates a local repository in your sandbox project root folder. The project runs
integrity checks.

5 Click Open Project to return to your project.

The Project node displays the source control name Git and the repository location
Local Repository: yoursandboxpath.

6 Select the Modified Files view and click Commit Modified Files to commit the first
version of your files to the new repository.

In the dialog box, enter a comment if you want, and click Submit.

You need some additional setup steps only if you want to merge branches with Git. See
“Install Command-Line Git Client” on page 18-20.

Tip If you want to use Git and share with other users:

• To clone an existing remote Git repository, see “Retrieve a Working Copy of a Project
from Source Control” on page 18-26.

18 Simulink Project Source Control

18-6

• To make your project publicly available on GitHub, see “Share Project on GitHub” on
page 16-38.

Caution When your project is under source control, do not manage files in the Current
Folder browser because it does not perform the corresponding source control actions. To
ensure that your project handles source control operations, move, rename, copy, or delete
files in Simulink Project.

Add a Project to SVN Source Control

Caution Before you start, check that your sandbox folder is on a local hard disc. Using a
network folder with SVN is slow and unreliable.

This procedure adds a project to the built-in SVN integration that comes with Simulink
Project. If you want to use a different version of SVN, see “Set Up SVN Source Control”
on page 18-10.

1 Select the top Project node in the project tree.
2 Under Source Control, click Add project to source control.
3 In the Add to Source Control dialog box, leave the default Source control

integration selected to use Built-In SVN Integration.
4 Next to Repository path, click Change.
5 In the Specify SVN Repository URL dialog box, select an existing repository or create

a new one.

•
To specify an existing repository, click Generate URL from folder to browse
for your repository, paste a URL into the box, or use the list to select a recent
repository.

• To create a new repository, click Create an SVN repository in a folder . Using
the file browser, create a folder where you want to create the new repository and
click Select Folder. Do not place the new repository inside the existing project
folder.

 Add a Project to Source Control

18-7

Simulink Project creates a repository in your folder, and you return to the
Specify SVN Repository URL dialog box. The URL of the new repository is in the
Repository URL box, and the project automatically selects the trunk folder.

Caution Specify file:// URLs and create new repositories for single users only. For
multiple users, see “Share a Subversion Repository” on page 18-16.

6 Click Validate to check the path to the selected repository.

When the path is valid, you can browse the repository folders. For example, select
the trunk folder, and verify the selected URL at the bottom of the dialog box, as
shown.

7 Click OK to return to the Add to Source Control dialog box.

If your repository has a file URL, a warning appears that file URLs are for single
users. Click OK to continue.

8 Click Convert to finish adding the project to source control.

The project runs integrity checks.
9 After the integrity checks run, click Open Project to return to your project.

18 Simulink Project Source Control

18-8

The Project node displays details of the current source control tool and the repository
location.

10 If you created a new repository, select the Modified Files view and click Commit
Modified Files to commit the first version of your files to the new repository. In the
dialog box, enter a comment if you want, and click Submit.

Caution Before using source control, you must register model files with your source
control tools to avoid corrupting models. See “Register Model Files with Subversion” on
page 18-12.

When your project is under source control, do not manage files in the Current Folder
browser because it does not perform the corresponding source control actions. To ensure
that your project handles source control operations, move, rename, copy, or delete files in
Simulink Project.

Related Examples
• “Set Up SVN Source Control” on page 18-10
• “Set Up Git Source Control” on page 18-18
• “Register Model Files with Source Control Tools” on page 18-9
• “Retrieve a Working Copy of a Project from Source Control” on page 18-26
• “Get File Locks” on page 18-40
• “Work with Project Files” on page 16-6
• “View Modified Files” on page 18-43
• “Commit Modified Files to Source Control” on page 18-49

More About
• “About Source Control with Projects” on page 18-2

 Register Model Files with Source Control Tools

18-9

Register Model Files with Source Control Tools

If you use third-party source control tools, you must register your model file extensions
(.mdl and .slx) as binary formats. If you do not, these third-party tools can corrupt your
model files when you submit them, by changing end-of-line characters, expanding tokens,
substituting keywords, or attempting to automerge. Corruption can occur whether
you use the source control tools outside of Simulink or if you try submitting files from
Simulink Project without first registering your file formats.

Also check that other file extensions are registered as binary to avoid corruption at
check-in for files such as .mat, .mlx, .mdlp, .slxp, .sldd, .p, MEX-files, .xlsx, .jpg,
.pdf, .docx, etc.

For instructions with SVN, see “Register Model Files with Subversion” on page
18-12. You must register model files if you use SVN, including the Built-In SVN
Integration provided by Simulink Project.

For instructions with Git, see “Register Model Files with Git” on page 18-21.

18 Simulink Project Source Control

18-10

Set Up SVN Source Control
In this section...

“Set Up SVN Integration Provided with Simulink Project” on page 18-10
“Set Up SVN Integration for SVN Version Already Installed” on page 18-11
“Set Up SVN Integration for SVN Version Not Yet Provided with Simulink Project” on
page 18-11
“Register Model Files with Subversion” on page 18-12
“Enforce SVN Locking Model Files Before Editing” on page 18-16
“Share a Subversion Repository” on page 18-16

Set Up SVN Integration Provided with Simulink Project

Simulink Project provides Built-In SVN Integration for use with Subversion (SVN)
sandboxes and repositories at version 1.8. You do not need to install SVN to use this
integration because it includes an implementation of SVN.

Note: This integration ignores any existing SVN installation.

The Built-In SVN Integration supports secure logins.

To use the version of SVN provided with Simulink Project, when you add a project to
source control or retrieve from source control, select Built-In SVN Integration in
the Source control integration list. For instructions, see

• “Add a Project to Source Control” on page 18-5, or
• “Retrieve a Working Copy of a Project from Source Control” on page 18-26.

When you create a new sandbox using the Simulink Project Built-In SVN
Integration, the new sandbox uses the latest version of SVN provided by Simulink
Project.

When your project is under source control, you can use these project features:

• “Retrieve a Working Copy of a Project from Source Control” on page 18-26
• “Compare Revisions” on page 18-45
• “Commit Modified Files to Source Control” on page 18-49

 Set Up SVN Source Control

18-11

Caution Before using source control, you must register model files with the source control
tools to avoid corrupting models. See “Register Model Files with Subversion” on page
18-12.

When your project is under source control, do not manage files in the Current Folder
browser because it does not perform the corresponding source control actions. To ensure
that your project handles source control operations, move, rename, copy, or delete files in
Simulink Project.

You can check out from a branch, but the project Built-In SVN Integration does not
support branch merging. Use an external tool such as TortoiseSVN to perform branch
merging. You can use the project tools for comparing and merging by configuring
TortoiseSVN to generate an XML comparison report when you perform a diff on model
files. See “Compare XML from Models Managed with Subversion”.

Set Up SVN Integration for SVN Version Already Installed

If you want to use Simulink Project with an earlier SVN version you already have
installed, create a new project in a folder already under SVN source control and click
Detect in the New Project dialog box.

For example:

1 Create the sandbox using TortoiseSVN from Windows Explorer.
2 Use Simulink Project to create a new project in that folder, then click Detect to

discover the existing source control. If the sandbox is version 1.6, for example, it
remains a version 1.6 sandbox.

Note: Before using source control, you must register model files with the tools. See
“Register Model Files with Subversion” on page 18-12.

Set Up SVN Integration for SVN Version Not Yet Provided with Simulink
Project

If you need to use a later version of SVN than 1.8, you can use Command-Line SVN
Integration (compatibility mode), but you must also install a command-line SVN
client.

18 Simulink Project Source Control

18-12

Note: Select Command-Line SVN Integration (compatibility mode) only
if you need to use a later version of SVN than 1.8. Otherwise, use Built-In SVN
Integration instead, for more features, improved performance, and no need to install
an additional command-line SVN client.

Command-line SVN integration communicates with any Subversion (SVN) client that
supports the command-line interface.

1 Install an SVN client that supports the command-line interface.

Note: TortoiseSVN does not support the command-line interface. However, you can
continue to use TortoiseSVN from Windows Explorer after installing another SVN
client that supports the command-line interface. Ensure that the major version
numbers match, for example, both clients are SVN 1.7.

You can find Subversion clients on this Web page:

http://subversion.apache.org/packages.html

2 In Simulink Project, select Command-Line SVN Integration (compatibility
mode).

With Command-Line SVN Integration (compatibility mode), if you try to
rename a file in a project and the folder name contains an @ character, an error appears
because command-line SVN treats all characters after the @ symbol as a peg revision
value.

Tip You can check for updated source control integration downloads on the Simulink
Projects Web page: http://www.mathworks.com/products/simulink/simulink-
projects/

Register Model Files with Subversion

You must register model files if you use SVN, including the Built-In SVN
Integration provided by Simulink Project.

http://subversion.apache.org/packages.html
http://www.mathworks.com/products/simulink/simulink-projects/
http://www.mathworks.com/products/simulink/simulink-projects/

 Set Up SVN Source Control

18-13

If you do not register your model file extension as binary, SVN might add annotations to
conflicted Simulink files and attempt automerge. This corrupts model files so you cannot
load the models in Simulink.

To avoid this problem when using SVN, register file extensions.

1 Locate your SVN config file. Look for the file in these locations:

• C:\Users\myusername\AppData\Roaming\Subversion\config or C:
\Documents and Settings\myusername\Application Data\Subversion

\config on Windows
• In ~/.subversion on Linux or Mac OS X

2 If you do not find a config file, create a new one. See “Create SVN Config File” on
page 18-13.

3 If you find an existing config file, you have previously installed SVN. Edit the
config file. See “Update Existing SVN Config File” on page 18-14.

Create SVN Config File

1 If you do not find an SVN config file, create a text file containing these lines:

[miscellany]

enable-auto-props = yes

[auto-props]

*.mdl = svn:mime-type=application/octet-stream

*.mat = svn:mime-type=application/octet-stream

*.slx = svn:mime-type= application/octet-stream

*.mlx = svn:mime-type=application/octet-stream

2 Check for other file types you use in your projects that you also need to register as
binary to avoid corruption at check-in. Check for files such as .mat, .mdlp, .slxp,
.p, MEX-files (.mexa64, .mexmaci64, .mexw32, .mexw64), .xlsx, .jpg, .pdf,
.docx, etc. Add a line to the attributes file for each file type you need. Examples:

*.mdlp = svn:mime-type=application/octet-stream

*.slxp = svn:mime-type=application/octet-stream

*.sldd = svn:mime-type=application/octet-stream

*.p = svn:mime-type=application/octet-stream

*.mexa64 = svn:mime-type=application/octet-stream

*.mexw32 = svn:mime-type=application/octet-stream

*.mexw64 = svn:mime-type=application/octet-stream

*.mexmaci64 = svn:mime-type=application/octet-stream

*.xlsx = svn:mime-type=application/octet-stream

18 Simulink Project Source Control

18-14

*.docx = svn:mime-type=application/octet-stream

*.pdf = svn:mime-type=application/octet-stream

*.jpg = svn:mime-type=application/octet-stream

*.png = svn:mime-type=application/octet-stream

3 Name the file config and save it in the appropriate location:

• C:\Users\myusername\AppData\Roaming\Subversion\config or C:
\Documents and Settings\myusername\Application Data\Subversion

\config on Windows
• ~/.subversion on Linux or Mac OS X

After you create the SVN config file, SVN treats new model files as binary.

If you already have models in repositories, see “Register Models Already in Repositories”
on page 18-15.

Update Existing SVN Config File

If you find an existing config file, you have previously installed SVN. Edit the config
file to register files as binary.

1 Edit the config file in a text editor.
2 Locate the [miscellany] section, and verify the following line enables auto-props

with yes:

enable-auto-props = yes

Ensure that this line is not commented (that is, that it does not start with a #).
Config files can contain example lines that are commented out. If there is a #
character at the beginning of the line, delete it.

3 Locate the [auto-props] section. Ensure that [auto-props] is not commented. If
there is a # character at the beginning, delete it.

4 Add the following lines at the end of the [auto-props] section:

*.mdl = svn:mime-type= application/octet-stream

*.mat = svn:mime-type=application/octet-stream

*.slx = svn:mime-type= application/octet-stream

*.mlx = svn:mime-type=application/octet-stream

These lines prevent SVN from adding annotations to MATLAB and Simulink files on
conflict and from automerging.

5 Check for other file types you use in your projects that you also need to register as
binary to avoid corruption at check-in. Check for files such as .mat, .mdlp, .slxp,

 Set Up SVN Source Control

18-15

.p, MEX-files (.mexa64, .mexmaci64, .mexw32, .mexw64), .xlsx, .jpg, .pdf,

.docx, etc. Add a line to the config file for each file type you need.

Examples:

*.mdlp = svn:mime-type=application/octet-stream

*.slxp = svn:mime-type=application/octet-stream

*.sldd = svn:mime-type=application/octet-stream

*.p = svn:mime-type=application/octet-stream

*.mexa64 = svn:mime-type=application/octet-stream

*.mexw32 = svn:mime-type=application/octet-stream

*.mexw64 = svn:mime-type=application/octet-stream

*.mexmaci64 = svn:mime-type=application/octet-stream

*.xlsx = svn:mime-type=application/octet-stream

*.docx = svn:mime-type=application/octet-stream

*.pdf = svn:mime-type=application/octet-stream

*.jpg = svn:mime-type=application/octet-stream

*.png = svn:mime-type=application/octet-stream

6 Save the config file.

After you create or update the SVN config file, SVN treats new model files as binary.

If you already have models in repositories, register them as described next.

Register Models Already in Repositories

Caution Changing your SVN config file does not affect model files already committed to
an SVN repository. If a model is not registered as binary, use svn propset to manually
register models as binary.

To manually register a file in a repository as binary, use the following command with
command-line SVN:

svn propset svn:mime-type application/octet-stream modelfilename

If you need to install a command-line SVN client, see “Set Up SVN Integration for SVN
Version Not Yet Provided with Simulink Project” on page 18-11.

18 Simulink Project Source Control

18-16

Enforce SVN Locking Model Files Before Editing

To ensure users remember to get a lock on model files before editing, you can configure
SVN to make specified file extensions read only. To locate your SVN config file, see
“Register Model Files with Subversion” on page 18-12.

After this setup, SVN sets model files to read only when you open the project, so you
need to select Get File Lock before you can edit them. Doing so helps prevent editing of
models without getting the file lock. When the file has a lock, other users know the file is
being edited, and you can avoid merge issues.

1 To make SLX files read only, add this property to your SVN config file in the [auto-
props] section:

*.slx = svn:needs-lock=yes

2 Re-create the sandbox for the config to take effect.
3 You need to select Get File Lock before you can edit model files. See “Get File

Locks” on page 18-40.

Share a Subversion Repository

You can specify a repository location using the file:// protocol. However, Subversion
documentation strongly recommends only single users access a repository directly via
file:// URLs. See the Web page:
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.choosing.recommendations

Caution Do not allow multiple users to access a repository directly via file:// URLs or
you risk corrupting the repository. Use file:// URLs only for single-user repositories.

Be aware of this caution with these workflows:

• If you specify a repository with a file:// URL, or
• If you use Simulink Projects to create a repository, this uses the file:// protocol.

Creating new repositories is provided for local single-user access only, for testing and
debugging.

Also, accessing a repository via file:// URLs is slower than using a server.

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.choosing.recommendations

 Set Up SVN Source Control

18-17

When you want to share a repository, you need to set up a server. You can use svnserve
or the Apache™ SVN module. See the Web page references:

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.svnserve

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.httpd

Standard Repository Structure

Create your repository with the standard tags, trunk, and branches folders, and check
out files from trunk. The Subversion project recommends this structure. See the Web
page:

http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

If you use Simulink Project to create an SVN repository, it creates the standard
repository structure. To enable tagging, the repository must have trunk/ and tags/
folders.

After you create a repository with this structure, you can click Tag in the SVN pane to
add tags to all your project files. See “Tag and Retrieve Versions of Project Files” on page
18-31.

More About
• “About Source Control with Projects” on page 18-2

http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.svnserve
http://svnbook.red-bean.com/en/1.7/svn-book.html#svn.serverconfig.httpd
http://svn.apache.org/repos/asf/subversion/trunk/doc/user/svn-best-practices.html

18 Simulink Project Source Control

18-18

Set Up Git Source Control

In this section...

“About Git Source Control” on page 18-18
“Use Git Source Control in Simulink Project” on page 18-19
“Install Command-Line Git Client” on page 18-20
“Register Model Files with Git” on page 18-21

About Git Source Control

If you want to manage your models and source code using Git, you can integrate with
Simulink Project.

Git integration with Simulink Project provides distributed source control with support
for creating and merging branches. Git is a distributed source control tool, so you
can commit changes to a local repository and later synchronize with other remote
repositories.

Git supports distributed development because every sandbox contains a complete
repository. The full revision history of every file is saved locally. This enables working
offline, because you do not need to contact remote repositories for every local edit and
commit, only when pushing batches of changes. In addition, you can create your own
branches and commit local edits. Doing so is fast, and you do not need to merge with
other changes on each commit.

Capabilities of Git source control:

• Branch management
• Local full revision history
• Local access that is quicker than remote access
• Offline working
• Tracking of file names and contents separately
• Enforcing of change logs for tracing accountability
• Integration of batches of changes when ready

These capabilities do not suit every situation. If your project is not appropriate for offline
working or your repository is too large for a full local revision history, for example, Git

 Set Up Git Source Control

18-19

is not the ideal source control. In addition, if you need to enforce locking of files before
editing, Git does not have this ability. In that situation, SVN is the better choice.

When you use Git in Simulink Project, you can:

• Create local Git repositories.
• Fetch files from remote Git repositories.
• Create and switch branches.
• Merge branches locally.
• Commit locally.
• Push files to remote Git repositories.

This diagram represents the distributed Git workflow.

Use Git Source Control in Simulink Project

To use the version of Git provided with Simulink Project, when you add a project
to source control or retrieve from source control, select Git in the Source control
integration list.

• If you add an existing project to Git source control, you create a local Git repository
in that sandbox. You cannot connect to a remote repository using this workflow. See
“Add a Project to Source Control” on page 18-5

18 Simulink Project Source Control

18-20

• If you want to clone a remote Git repository to create a project, select New >
Simulink Project > From Source Control on the MATLAB Home tab. After you
specify a remote repository to retrieve from, a local repository is created. You can also
fetch and push changes to the remote repository. See “Retrieve a Working Copy of a
Project from Source Control” on page 18-26.

Note: You cannot add empty folders to Git source control. Use Check Project
instead. See “Push and Fetch Files with Git” on page 18-57.

To use a Git server for your remote repository, you can set up your own Apache Git
server or use a Git server hosting solution. If you cannot set up a server and must use
a remote repository via the file system using the file:/// protocol, make sure that
it is a bare repository with no checked out working copy.

• To make your project publicly available on GitHub, see “Share Project on GitHub”
on page 16-38. Sharing adds Git source control to the open project and the project’s
remote repository is GitHub.

Caution When your project is under source control, do not manage files in the Current
Folder browser because it does not perform the corresponding source control actions. To
ensure that your project handles source control operations, move, rename, copy, or delete
files in Simulink Project.

Install Command-Line Git Client

If you want to use Git to merge branches in Simulink Project, you must also install a
command-line Git client that is available systemwide. You can use other Git functionality
without any additional installation.

Some clients are not available systemwide, including the mingw32 environment provided
by GitHub (Git Shell on the Start menu). Installing command-line Git makes it
available systemwide, and then Simulink Project can locate standard ssh keys.

Check if Git is available by using the command !git in MATLAB. If Git is not available,
install it.

On Windows:

1 Download the Git installer and run it. You can find command-line Git at:

 Set Up Git Source Control

18-21

http://msysgit.github.io/

2 In the section on adjusting your PATH, choose the install option to Use Git from
the Windows Command Prompt. This option adds Git to your PATH variable, so
that the Simulink Project can communicate with Git.

3 In the section on configuring the line-ending conversions, choose the option
Checkout as-is, commit as-is to avoid converting any line endings in files.

On Linux, Git is available for most distributions. Install Git for your distribution. For
example, on Debian®, install Git by entering:

sudo apt-get install git

On Mac, on Mavericks (10.9) or above, try to run git from the Terminal. If you do not
have Git installed already, it will prompt you to install Xcode Command Line Tools. For
more options, see http://git-scm.com/doc.

Caution To avoid corrupting models, before using Git to merge branches, register model
files. See “Register Model Files with Git” on page 18-21.

Register Model Files with Git

After you install a command-line Git client, you can prevent Git from corrupting your
Simulink models by inserting conflict markers. To do so, edit your .gitattributes file
to register model files as binary. For details, see:

http://git-scm.com/docs/gitattributes

1 If you do not already have a .gitattributes file in your project root folder, create
one by entering in MATLAB:

edit .gitattributes

2 Add these lines to the .gitattributes file:

*.slx -crlf -diff –merge

*.mdl -crlf -diff –merge

*.mat -crlf -diff –merge

*.mlx -crlf -diff –merge

These lines specify not to try automatic line feed, diff, and merge attempts for
MATLAB and Simulink files.

http://msysgit.github.io/
http://git-scm.com/doc
http://git-scm.com/docs/gitattributes

18 Simulink Project Source Control

18-22

3 Check for other file types you use in your projects that you also need to register as
binary to avoid corruption at check-in. Check for files such as .mat, .mdlp, .slxp,
.p, MEX-files (.mexa64, .mexmaci64, .mexw32, .mexw64), .xlsx, .jpg, .pdf,
.docx, etc. Add a line to the attributes file for each file type you need.

Examples:

.mdlp -crlf -diff –merge

*.slxp -crlf -diff –merge

*.sldd -crlf -diff –merge

*.p -crlf -diff –merge

*.mexa64 -crlf -diff –merge

*.mexw32 -crlf -diff –merge

*.mexw64 -crlf -diff –merge

*.mexmaci64 -crlf -diff –merge

*.xlsx -crlf -diff –merge

*.docx -crlf -diff –merge

*.pdf -crlf -diff –merge

*.jpg -crlf -diff –merge

*.png -crlf -diff –merge

4 Restart MATLAB so you can start using the Git client with Simulink Project.

After you have installed a command-line Git client and registered your model files as
binary, you can use the merging features of Git in Simulink Project.

Related Examples
• “Branch and Merge Files with Git” on page 18-53

 Disable Source Control

18-23

Disable Source Control

Disabling source control is useful when you are preparing a project to create a template
from it, and you want to avoid accidentally committing unwanted changes.

1 Select the top Project node in the project tree.
2 Under Source Control, change the selection from the current source control to No

source control integration.
3 Click Reload.

Note: Source control tools create files in the project folders (for example, SVN creates
an .svn folder), so you can put the project back under the same source control only
by selecting your previous source control from the list.

18 Simulink Project Source Control

18-24

Change Source Control

Changing source control is useful when you want to create a new local repository for
testing and debugging.

1 Prepare your project by checking for any updates from the existing source control
tool repository and committing any local changes.

2 On the Simulink Project tab, click Share > Zip Archive to save a zip file
containing the project without any source control information.

3 On the Simulink Project tab, select New > From Archive to create a new project
from the archived project.

4 In the top Project node, under Source Control, click Add project to source
control to select a new source control. For details, see “Add a Project to Source
Control” on page 18-5.

Tip To avoid accidentally committing changes to the previous source control, delete the
original sandbox.

 Write a Source Control Integration with the SDK

18-25

Write a Source Control Integration with the SDK

Simulink provides a Software Development Kit (SDK) that you can use to integrate
Simulink Projects with third-party source control tools.

The SDK provides instructions for writing an integration to a source control tool that has
a published API you can call from Java®.

You must create a .jar file that implements a collection of Java interfaces and a Java
Manifest file, that defines a set of required properties.

The SDK provides example source code, Javadoc, and files for validating, building, and
testing your source control integration. Build and test your own interfaces using the
example as a guide. Then you can use your source control integration with Simulink
Projects.

1 Extract the contents of the SDK.
run(fullfile(matlabroot,'toolbox','shared','cmlink','adapterSDK', 'extractSDK'))

Select a folder to place the cm_adapter_SDK folder and files in, and click OK.
2 Locate the new folder cm_adapter_SDK, and open the file

cm_adapter_SDK_guide.pdf for instructions.

After you write a source control integration, see “Add a Project to Source Control” on
page 18-5.

More About
• “About Source Control with Projects” on page 18-2

18 Simulink Project Source Control

18-26

Retrieve a Working Copy of a Project from Source Control

Create a new local copy of a project by retrieving files from source control.

1 From MATLAB, on the Home tab, in the File section, select New > Simulink
Project > From Source Control.

Alternatively, on the Simulink Project tab, in the File section, select New > From
Source Control.

2 In the Project Retriever dialog box, select the source control interface from the
Source control integration list.

• To use SVN, leave the default Built-In SVN Integration.
• To use Git, select Git.

3 If you know your repository location, you can paste it into the Repository Path box
and proceed to step 8. Click Change to browse for and validate the repository path
to retrieve files from.

4 In the dialog box, specify the repository URL by entering or pasting a URL in the
box, using the list of recent repositories, or by using the Generate URL from

folder button .

 Retrieve a Working Copy of a Project from Source Control

18-27

Caution Use file:// URLs only for single-user repositories. For more information,
see “Share a Subversion Repository” on page 18-16.

5 Click Validate to check the repository path.

If the path is invalid, check the URL against your source control repository browser.
6 If you see an authentication dialog box for your repository, enter login information to

continue.
7 If necessary, select a deeper folder in the repository tree. You might want to check

out from trunk or from a branch folder under tags, if your repository contains
tagged versions of files. The example shows trunk selected, and the Selected URL
displays at the bottom of the dialog box. The retriever uses this URL when you click
OK.

8 When you have finished specifying the URL path you want to retrieve, click OK.
9 In the Project Retriever, select the sandbox folder where you want to put the

retrieved files for your new project, and click Retrieve.

18 Simulink Project Source Control

18-28

Caution Use local sandbox folders. Using a network folder with SVN is slow.

The source control pane (for example, Built-In SVN Integration or Git) displays
messages as the project retrieves the files from source control.

If your repository already contains a Simulink project, the project is ready when the
tool finishes retrieving files to your selected sandbox folder.

10 If your sandbox does not yet contain a Simulink project, then a dialog box prompts
you to check whether you want to create a project in the folder. Click Yes to continue
creating the project.

The new project controls appear.

 Retrieve a Working Copy of a Project from Source Control

18-29

a In the new project controls, enter a project name.
b Click Create to finish creating the new project in your new sandbox.

Simulink Project displays the empty Project Files list for the chosen project root.
The project does not yet contain any files. For next steps, see “Add Files to the
Project” on page 15-24.

Note: To update an existing project sandbox from source control, see “Update Revisions
of Project Files” on page 18-38.

Troubleshooting

If you encounter errors like OutOfMemoryError: Java heap space, for example
when cloning big Git repositories, then edit your MATLAB preferences to increase the
heap size.

1 On the Home tab, in the Environment section, click Preferences.
2 Select MATLAB > General > Java Heap Memory.
3 Move the slider to increase the heap size, and then click OK.
4 Restart MATLAB.

Caution When your project is under source control, do not manage files in the Current
Folder browser because it does not perform the corresponding source control actions. To
ensure that your project handles source control operations, move, rename, copy, or delete
files in Simulink Project.

Related Examples
• “Set Up SVN Source Control” on page 18-10
• “Set Up Git Source Control” on page 18-18
• “Get File Locks” on page 18-40
• “Work with Project Files” on page 16-6
• “Tag and Retrieve Versions of Project Files” on page 18-31
• “Refresh Status of Project Files” on page 18-33

18 Simulink Project Source Control

18-30

• “Check for Modifications” on page 18-37
• “Update Revisions of Project Files” on page 18-38
• “View Modified Files” on page 18-43
• “Commit Modified Files to Source Control” on page 18-49

More About
• “About Source Control with Projects” on page 18-2

 Tag and Retrieve Versions of Project Files

18-31

Tag and Retrieve Versions of Project Files

With SVN, you can use tags to identify specific revisions of all project files. Not every
source control has the concept of tags. To use tags with SVN, you need the standard
folder structure in your repository and you need to check out your files from trunk. See
“Standard Repository Structure” on page 18-17.

1 In the SVN pane, click Tag.
2 Specify the tag text and click OK. The tag is added to every project file.

Errors appear if you do not have a tags folder in your repository.

Note: You can retrieve a tagged version of your project files from source control, but you
cannot tag them again with a new tag. You must check out from trunk to create new
tags.

To retrieve the tagged version of your project files from source control:

1 On the Simulink Project tab, select New > From Source Control.
2 Click Change to select the Repository Path that you want to retrieve files from.

The Specify Repository URL dialog box opens.

a Select a recent repository from the Repository URL list, or click the Generate

URL from folder button to browse for the repository location.
b Click Validate to show the repository browser.
c Expand the tags folder in the repository tree, and select the tag version

you want. Verify there is a .SimulinkProject folder under the chosen tag
subfolder.

d Click OK to continue and return to the Project Retriever.
3 Select the sandbox folder to receive the tagged files. You must use an empty sandbox

folder. (If you try to retrieve tagged files into an existing sandbox, an error appears.)
4 Click Retrieve.

Alternatively, you can use labels to apply any metadata to files and manage
configurations. You can group and sort by labels; label folders for adding to the path

18 Simulink Project Source Control

18-32

using shortcut functions; create batch jobs to export files by label. For example, to
manage files with the label "Diesel". See “Add Labels to Files” on page 16-19.

With Git, you can switch branches. See “Branch and Merge Files with Git” on page
18-53.

 Refresh Status of Project Files

18-33

Refresh Status of Project Files

In Simulink Project, to check the status of individual files, right-click files in any view
and select the Refresh command for the source control system you are using. For
example, if you are using SVN, select Refresh SVN status. With Git, select Refresh
Git status. Refresh queries the local sandbox state and checks for changes made with
another tool.

Note: For SVN, Refresh does not contact the repository. To check the repository for later
revisions, use Check for Modifications instead. To get the latest revisions, use Update
instead. See “Check for Modifications” on page 18-37 and “Update Revisions of Project
Files” on page 18-38.

18 Simulink Project Source Control

18-34

To check source control status of all project files, click Refresh in the source control
pane. The source control pane title depends on your source control, for example, Built-

 Refresh Status of Project Files

18-35

In SVN Integration. The source control pane reports source control messages, and the
buttons in the pane apply to the whole project.

Refresh refreshes the view of the source control status for all files under projectroot.
Clicking Refresh updates the information shown in the Revision column and the source
control status column (for example, SVN, Git, or Modifications column). Hover over
the Modifications row to see the tooltip showing the source control status of a file, e.g.,
Modified (Checked Out).

18 Simulink Project Source Control

18-36

Related Examples
• “Check for Modifications” on page 18-37
• “Update Revisions of Project Files” on page 18-38
• “Revert Changes” on page 18-51

 Check for Modifications

18-37

Check for Modifications

To check the status of individual files for modifications, right-click files in Simulink
Project and select Check for Modifications.

With SVN, this option contacts the repository to check for external modifications. With
Git, it checks the local repository. Simulink Project compares the revision numbers of
the local file and the repository version. If the revision number in the repository is larger
than that in the local sandbox folder, then Simulink Project displays (not latest) next
to the revision number of the local file.

To check for locally modified files, use Refresh instead. See “Refresh Status of Project
Files” on page 18-33.

To get the latest revisions from the repository, use Update. See “Update Revisions of
Project Files” on page 18-38.

See also “Compare Revisions” on page 18-45

Related Examples
• “Refresh Status of Project Files” on page 18-33
• “Update Revisions of Project Files” on page 18-38
• “Compare Revisions” on page 18-45
• “Revert Changes” on page 18-51

18 Simulink Project Source Control

18-38

Update Revisions of Project Files

In this section...

“Update Revisions with SVN” on page 18-38
“Update Revisions with Git” on page 18-39
“Update Selected Files” on page 18-39

Update Revisions with SVN

In Simulink Project, to get the latest revisions of all project files from the source control
repository, click Update in the source control pane.

Use Update to get other people’s changes from the repository and find out about any
conflicts. If you want to back out local changes, use Revert instead. See “Revert Local
Changes” on page 18-51.

When your project uses SVN source control, Update calls svn update to bring changes
from the repository into your working copy. If there are other people’s changes in your
modified files, SVN adds conflict markers to the file. SVN preserves your modifications.

Caution Ensure you have registered SLX files as binary with SVN before using Update.
If you do not, SVN conflict markers can corrupt your SLX file. Simulink Project warns
you about this when you first click Update to ensure you protect your model files. See
“Register Model Files with Subversion” on page 18-12.

You must resolve any conflicts before you can commit. See “Resolve Conflicts” on page
18-60.

 Update Revisions of Project Files

18-39

Update Revisions with Git

If you are using Git source control, click Fetch in the source control pane.

Caution Ensure you have registered SLX files as binary with Git before using Fetch. If
you do not, conflict markers can corrupt your SLX file. See “Set Up Git Source Control”
on page 18-18.

After clicking Fetch, you need to merge in the origin changes to your local branches. For
next steps, see “Push and Fetch Files with Git” on page 18-57.

Update Selected Files

To update selected files, right-click and select the Update command for the source
control system you are using. For example, if you are using SVN, select Update from
SVN to get fresh local copies of the selected files from the repository.

Related Examples
• “Register Model Files with Source Control Tools” on page 18-9
• “Resolve Conflicts” on page 18-60
• “Revert Local Changes” on page 18-51

18 Simulink Project Source Control

18-40

Get File Locks

1 In Simulink Project, in any Files view, select the files you want to check out.
2 Right-click the selected files and select Get File Lock.

The menu wording for source control items is specific to your selected source control.
For example, Get File Lock is for SVN. This option does not modify the file in your
local sandbox. Git does not have locks.

A lock symbol appears in the source control column (e.g., SVN). Other users cannot
see the lock symbol in their sandboxes, but they cannot get a file lock or check in a
change when you have the lock.

 Get File Locks

18-41

Note: To get a fresh local copy of the file from the repository, select Update from SVN.

18 Simulink Project Source Control

18-42

In the Simulink Editor, if an open model belongs to a project under SVN, you can get a
lock by selecting File > Simulink Project > Get File Lock.

To ensure users remember to get a lock on model files before editing, you can configure
SVN to make model files read only. See “Enforce SVN Locking Model Files Before
Editing” on page 18-16.

Related Examples
• “Work with Project Files” on page 16-6
• “Enforce SVN Locking Model Files Before Editing” on page 18-16
• “View Modified Files” on page 18-43
• “Commit Modified Files to Source Control” on page 18-49

More About
• “About Source Control with Projects” on page 18-2

 View Modified Files

18-43

View Modified Files
In Simulink Project, select the Modified Files view. The Modified Files node is visible
only if you are using source control integration with your project.

If you need to update the modified files list, click Refresh in the source control pane.

Use the Modified Files view to review, analyze, label, and commit modified files. Lists of
modified files are sometimes called changesets. You can perform the same operations in
the Modified Files view as you can in other file views.

Tip In the Modified Files view, it can be useful to switch to List view by clicking the List

button

You can identify modified or conflicted folder contents using the source control summary
status. In the Files views, folders display rolled-up source control status. This makes

18 Simulink Project Source Control

18-44

it easier to locate changes in files, particularly conflicted files. You can hover over
the source control status (e.g., the SVN or Git column) for a folder to view a tooltip
displaying how many files inside are modified, conflicted, added or deleted.

Project Definition Files

The files in .SimulinkProject are project definition files generated by your changes.
The project definition files allow you to add metadata to files without checking them
out, for example, by creating shortcuts, adding labels, and adding a project description.
Project definition files also define the files that are added to your project.

Any changes you make to your project (for example, to shortcuts, labels, categories, or
files in the project) generate changes in the .SimulinkProject folder. These files store
the definition of your project in XML files whose format is subject to change.

You do not need to view project definition files directly, except when the source control
tool requires a merge. The files are shown so that you know about all the files being
committed to the source control system. See “Resolve Conflicts” on page 18-60.

If you want to change project definition file from the type selected when the project was
created, see export.

Related Examples
• “Compare Revisions” on page 18-45
• “Precommit Actions” on page 18-47
• “Refresh Status of Project Files” on page 18-33
• “Check for Modifications” on page 18-37
• “Resolve Conflicts” on page 18-60
• “Revert Local Changes” on page 18-51
• “Commit Modified Files to Source Control” on page 18-49

More About
• “About Source Control with Projects” on page 18-2

 Compare Revisions

18-45

Compare Revisions

To review changes in modified files in Simulink Project, select the Modified Files view.

If you need to update the modified files list, click Refresh in the source control pane.

To review changes in modified files, right-click selected files in any view in Simulink
Project and:

• Select Show Revisions to open the File Revisions dialog box and browse the history
of a file. You can view SVN information about who previously committed the file,
when they committed it, and the log messages.

• Select Compare to Revision to open a dialog box where you can select the revisions
you want to compare and view a comparison report. You can either:

• Select a revision and click Compare to Local.
• Select two revisions and click Compare Selected.

18 Simulink Project Source Control

18-46

• Select Compare to Ancestor to run a comparison with the last checked-out version
in the sandbox (SVN) or against the local repository (Git). The Comparison Tool
displays a report.

Note: In the Simulink Editor, if an open model, library, or chart belongs to a project
under source control, you can view changes by selecting File > Simulink Project >
Compare to Ancestor or Compare to Revision.

When you compare to a revision or ancestor, the MATLAB Comparison Tool opens a
report comparing the modified version of the file in your sandbox with the selected
revision or against its ancestor stored in the version control tool.

Comparison type depends on the file you select. If you select a Simulink model, and
you have Simulink Report Generator installed, this command runs a Simulink XML
comparison.

When reviewing changes, you can merge Simulink models from the Comparison Tool
report (requires Simulink Report Generator). See “Merge Text Files” on page 18-62
and “Merge Models” on page 18-63.

To examine the dependencies of modified files, see “Perform Impact Analysis” on page
17-7.

Related Examples
• “Resolve Conflicts” on page 18-60
• “Precommit Actions” on page 18-47
• “Perform Impact Analysis” on page 17-7
• “Commit Modified Files to Source Control” on page 18-49
• “Revert Changes” on page 18-51

More About
• “About Source Control with Projects” on page 18-2

 Precommit Actions

18-47

Precommit Actions

In Simulink Project, the Precommit actions pane in the Modified Files view contains tools
to use before committing your changes to source control.

• Click Check Project to check the integrity of the project. For example, is everything
under source control in the project? Are all project files under source control? A dialog
box reports results. You can click for details and follow prompts to fix problems.

For an example showing how the checks can help you, see “Upgrade Model Files to
SLX and Preserve Revision History” on page 16-13.

This command is also in the Simulink Project tab (Check Project) so you can run
the checks from any project view.

For more information on problems the checks can fix, see “Work with Derived Files in
Projects” on page 18-65.

• If you want to check for required files, click Dependency Analysis to open the
Dependency Analysis view. The modified files are automatically selected for analysis.
(You can select more or fewer files to analyze by selecting and clearing the check
boxes in the Include column.) Click Analyze when you are ready to run the analysis.

You can use the dependency tools to analyze the structure of your project. See “What
Is Dependency Analysis?” on page 17-2.

Note: The files in .SimulinkProject are project definition files generated by your
changes, and these files are not labeled. See “Project Definition Files” on page 18-44.

Related Examples
• “Commit Modified Files to Source Control” on page 18-49

18 Simulink Project Source Control

18-48

More About
• “About Source Control with Projects” on page 18-2

 Commit Modified Files to Source Control

18-49

Commit Modified Files to Source Control

Before you commit modified files, review changes and consider precommit actions. See
“Compare Revisions” on page 18-45 and “Precommit Actions” on page 18-47.

1 In Simulink Project, select the Modified Files view.

If you need to update the modified files list, click Refresh in the source control pane.
2 Click Commit Modified Files to check in all files in the modified files list.

18 Simulink Project Source Control

18-50

If you are using SVN source control, this commits changes to your repository.

If you are using Git source control, this commits to your local repository. To commit
to the remote repository, see “Push and Fetch Files with Git” on page 18-57.

3 Enter comments in the dialog box if you want, and click Submit.
4 A message appears if you cannot commit because the repository has moved ahead.

Before you can commit the file, you must update its revision up to the current HEAD
revision. If you are using SVN source control, click Update. If you are using Git
source control, click Fetch. Resolve any conflicts before you commit.

Related Examples
• “Refresh Status of Project Files” on page 18-33
• “View Modified Files” on page 18-43
• “Precommit Actions” on page 18-47
• “Update Revisions of Project Files” on page 18-38
• “Push and Fetch Files with Git” on page 18-57
• “Resolve Conflicts” on page 18-60
• “Revert Changes” on page 18-51

More About
• “About Source Control with Projects” on page 18-2

 Revert Changes

18-51

Revert Changes
In this section...

“Revert Local Changes” on page 18-51
“Revert a File to a Specified Revision” on page 18-51
“Revert the Project to a Specified Revision” on page 18-52

Revert Local Changes

With SVN, if you want to roll back local changes in a particular file, in Simulink Project,
right-click the file and select Revert Local Changes and Release Locks to release
locks and revert to the version in the last sandbox update (that is, the last version you
synchronized or retrieved from the repository).

In the Simulink Editor, if an open model belongs to a project under source control, you
can revert changes by selecting File > Simulink Project > Revert Local Changes.

To abandon all local changes, in Simulink Project select all the files in the Modified Files
list, then right-click and select Revert Local Changes and Release Locks.

With Git, right-click a file and select Revert Local Changes. Git does not have locks. To
remove all local changes, click Manage Branches in the Git pane and click Revert to
Head.

Revert a File to a Specified Revision

1 Right-click a file and select Revert using SVN or Revert using Git.
2 Choose a revision to revert to in the Revert Files dialog box. Select a revision to view

information about the change such as the author, date, log message, and the list of
modified files also in the change set.

3 Click Revert.

Simulink Project reverts the selected file.
4 If you revert a file to an earlier revision and then make changes, you cannot commit

the file until you resolve the conflict with the repository history.

With SVN, if you try to commit the file, you see a message that it is out of date.
Before you can commit the file, you must update its revision up to the current HEAD
revision. click Update in the SVN source control pane.

18 Simulink Project Source Control

18-52

The project marks the file as conflicted because you have made changes to an earlier
version of the file than the version in the repository.

5 With either SVN or Git, examine conflicts as described in “Resolve Conflicts” on page
18-60.

Decide how to resolve the conflict or to keep your changes to the reverted file.
6 Right-click the file and select Mark Conflict Resolved.
7 Select the Modified Files view and click Commit Modified Files.

Revert the Project to a Specified Revision

With SVN, inspect the project revision information by clicking Log in the Built-In
SVN Integration pane. In the Log dialog box, each revision in the list is a change set of
modified files. Select a revision to view information about the change such as the author,
date, log message and the list of modified files.

To revert the project:

1 Click Revert Project in the Built-In SVN Integration pane.
2 In the Revert Files dialog box, choose a revision to revert to.

Each revision in the list is a change set of modified files. Select a revision to view
information about the change such as the author, date, log message and the list of
modified files.

3 Click Revert.

Simulink Project displays progress messages in the SVN pane as it restores the
project to the state it was in when the selected revision was committed. Depending
on the change set you selected, all files do not necessarily have a particular
revision number or matching revision numbers. For example, if you revert a project
to revision 20, all files will show their revision numbers when revision 20 was
committed (20 or lower).

With Git, you can switch branches. See “Branch and Merge Files with Git” on page
18-53.

Related Examples
• “Resolve Conflicts” on page 18-60

 Branch and Merge Files with Git

18-53

Branch and Merge Files with Git

In this section...

“Create a Branch” on page 18-53
“Switch Branch” on page 18-55
“Merge Branches” on page 18-55
“Revert to Head” on page 18-56
“Delete Branches” on page 18-56

Create a Branch

1 In Simulink Project, click Manage Branches in the Git pane. The Manage
Branches dialog box appears, where you can view, switch, create, and merge
branches.

Tip You can inspect information about each commit node. Select a node in the
Branch Browser diagram to view the author, date, commit message, and changed
files.

The Branches pane in this figure shows an example branch history.

18 Simulink Project Source Control

18-54

2 Select a source for the new branch. Click a node in the Branch Browser diagram, or
enter a unique identifier in the Source text box. You can enter a tag, branch name,
or a unique prefix of the SHA1 hash (for example, 73c637 to identify a specific
commit). Leave the default to create a branch from the head of the current branch.

3 Enter a name in the Branch name text box and click Create.
4 To work on the files on your new branch, switch your project to the branch.

In the Branches drop-down list, select the branch you want to switch to and click
Switch.

 Branch and Merge Files with Git

18-55

5 Close the Manage Branches dialog box to return to Simulink Project and work on the
files on your branch.

For next steps, see “Push and Fetch Files with Git” on page 18-57.

Switch Branch

1 In Simulink Project, click Manage Branches in the Git pane.
2 In the Manage Branches dialog box, select the branch you want to switch to in the

Branches list and click Switch.
3 Close the Manage Branches dialog box to return to Simulink Project and work on the

files on the selected branch.

Merge Branches

Before you can merge branches, you must install command-line Git on your system path
and register model files as binary to prevent Git from inserting conflict markers. See
“Install Command-Line Git Client” on page 18-20.

1 In Simulink Project, click Manage Branches in the Git pane.
2 In the Manage Branches dialog box, from the Branches drop-down list, select a

branch you want to merge into the current branch, and click Merge.
3 Close the Manage Branches dialog box to return to Simulink Project and work on the

files on the current branch.

If the branch merge causes a conflict that Git cannot resolve automatically, an error
dialog box reports that automatic merge failed. The Branch status in the Git pane
displays MERGING. Resolve the conflicts before proceeding.

Caution Do not move or delete files outside of MATLAB or in the Current Folder browser
because this can cause errors on merge. Do not manage files in the Current Folder
browser because it does not perform the corresponding source control actions. To ensure
that your project handles source control operations, move, rename, copy, or delete files in
Simulink Project.

18 Simulink Project Source Control

18-56

Keep Your Version

1 To keep your version of the file, right-click the file and select Mark Conflict
Resolved. The Branch status in Git pane displays MERGE_RESOLVED. The Modified
Files list is empty, because you have not changed any file contents. The local
repository index version and your branch version are identical.

2 Click Commit Modified Files to commit your change that marks the conflict
resolved.

Compare Branch Versions

If you merge a branch and there is a conflict in a model file, Git marks the file as
conflicted and does not modify the contents. Right-click the file and select View
Conflicts. Simulink Project opens a comparison report showing the differences between
the file on your branch and the branch you want to merge into. Decide how to resolve the
conflict. See “Resolve Conflicts” on page 18-60.

Revert to Head

To remove all local changes, in the Manage Branches dialog box, click Revert to Head.

Delete Branches

1 In the Manage Branches dialog box, from the Branches drop-down list, select a
branch you want to delete. You cannot delete the current branch.

2 On the far right, click the down arrow and select Delete Branch.

Caution You cannot undo deleting a branch.

Related Examples
• “Set Up Git Source Control” on page 18-18
• “Push and Fetch Files with Git” on page 18-57
• “Resolve Conflicts” on page 18-60

More About
• “About Source Control with Projects” on page 18-2

 Push and Fetch Files with Git

18-57

Push and Fetch Files with Git

In this section...

“Push” on page 18-57
“Fetch” on page 18-58
“Push Empty Folders” on page 18-58

Push

Use this workflow to work with a Git project connected to a remote repository. With
Git, there is a two-step workflow: commit local changes, and then push to the remote
repository. In Simulink Project, the only access to the remote repository is through the
Push and Fetch buttons. All other actions use the local repository (such as Check for
Modifications, Compare to Ancestor, and Commit). This diagram represents the Git
workflow.

1 Click Manage Branches in the Git pane. Create branches to work on using the
Manage Branches dialog box, as described in “Branch and Merge Files with Git” on
page 18-53.

2 When you want to commit changes, select the Modified Files view and click Commit
Modified Files. The changes are committed to your current branch in your local
repository. The Git pane displays the current branch.

18 Simulink Project Source Control

18-58

3 To send your local commits to the remote repository, click Push in the Git pane.
4 A message appears if you cannot push your changes directly because the repository

has moved on. Click Fetch in the Git pane to fetch changes from the remote
repository. Merge branches and resolve conflicts, and then you can push your
changes. See “Branch and Merge Files with Git” on page 18-53 and “Resolve
Conflicts” on page 18-60.

Fetch

To fetch changes from the remote repository, click Fetch in the Git pane.

Fetch updates all of the origin branches in the local repository. Your sandbox files are not
changed. You need to merge in the origin changes to your local branches.

For example, if you are on the master branch and want to get changes from the master
branch in the remote repository:

1 Click Fetch in the Git source control pane.
2 Click Manage Branches.
3 In the Manage Branches dialog box, select origin/master in the Branches list, and

click Merge. This merges the origin branch changes into the master branch in your
sandbox.

Push Empty Folders

Using Git, you cannot add empty folders to source control, so you cannot select Push and
then clone an empty folder. You can create an empty folder in Simulink Project, but if
you push changes and then sync a new sandbox, then the empty folder does not appear in
the new sandbox. You can instead run Check Project which creates the empty folder for
you.

Alternatively, to push empty folders to the repository for other users to sync, create a
gitignore file in the folder and then push your changes.

Related Examples
• “Set Up Git Source Control” on page 18-18
• “Branch and Merge Files with Git” on page 18-53
• “Resolve Conflicts” on page 18-60

 Push and Fetch Files with Git

18-59

More About
• “About Source Control with Projects” on page 18-2

18 Simulink Project Source Control

18-60

Resolve Conflicts

In this section...

“Resolve Conflicts” on page 18-60
“Merge Text Files” on page 18-62
“Merge Models” on page 18-63
“Extract Conflict Markers” on page 18-63

Resolve Conflicts

If you and another user change the same file in different sandboxes or on different
branches, a conflict message appears when you try to commit your modified files. Extract
conflict markers if necessary, compare the differences causing the conflict, and resolve
the conflict.

1 Look for conflicted files in the Modified Files view.

Identify conflicted folder contents using source control summary status. Folders
display rolled-up source control status. This makes it easier to locate changes in files,
particularly conflicted files. You can hover over the source control status for a folder
to view a tooltip displaying how many files inside are modified, conflicted, added or
deleted.

Tip Use the List view to view files without needing to expand folders.

2 Check the source control status column (SVN or Git) for files with a red warning
symbol, which indicates a conflict.

 Resolve Conflicts

18-61

3 Right-click the conflicted file and select View Conflicts to compare versions.

If the file contains conflict markers, the View Conflicts dialog box reports that you
need to extract the conflict markers before you can compare the conflicts.

4 If you need to extract conflict markers, leave the default option to copy the “mine”
revision over the conflicted file. Leave the Compare extracted files check box
selected. Click Extract.

5 Examine the conflict. Simulink Project opens a comparison report showing the
differences between the conflicted files.

• For SVN, the comparison shows the differences between the file and the version
of the file in conflict.

• For Git, the comparison shows the differences between the file on your branch
and the branch you want to merge into.

6 Use the Comparison Tool report to determine how to resolve the conflict.

To resolve conflicts you can:

• Use the Comparison Tool to merge changes between revisions.
• Decide to overwrite one set of changes with the other.
• Make changes manually from the project by editing files, changing labels, or

editing the project description.

For details on using the Comparison Tool to merge changes between revisions, see
“Merge Text Files” on page 18-62 and “Merge Models” on page 18-63.

7 When you have resolved the changes and want to commit the version in your
sandbox, in Simulink Project, right-click the file and select Mark Conflict
Resolved.

For Git, the Branch status in the Git pane changes from MERGING to SAFE.
8 Select the Modified Files view and click Commit Modified Files.

18 Simulink Project Source Control

18-62

Merge Text Files

When comparing text files, you can merge changes from one file to the other. Merging
changes is useful when resolving conflicts between different versions of files.

Conflict markers appear in a text comparison report like this:

<<<<<<< .mine

If your comparison report contains conflict markers, extract them before merging, as
described in “Extract Conflict Markers” on page 18-63.

Tip You can merge only from left to right. When comparing to another version in
source control, the right file is the version in your sandbox. The left file is either a
temporary copy of the previous version or another version causing a conflict (e.g.,
filename_theirs). Observe the file paths of the left and right file at the top of the
comparison report. Merge differences from the left (temporary copy) file to the right file
to resolve conflicts.

1 In the Comparison Tool report, select a difference in the report and click Merge. The
selected difference is copied from the left file to the right file.

Merged differences display gray row highlighting and a green merge arrow.

The merged file name at the top of the report displays the dirty flag (filename.m*)
to show you that the file contains unsaved changes.

2 Click Save Merged File to save the file on the right. Check the file path of the right
file in the comparison report. (To save to a different file, select Save Merged File >
Save Merged File As). To resolve conflicts, save the merged file over the conflicted
file.

3 If you want to inspect the files in the editor, click the line number links in the report.

 Resolve Conflicts

18-63

Note: If you make any further changes in the editor, the comparison report does not
update to reflect changes and report links can become incorrect.

4 After merging to resolve conflicts, mark the conflict resolved and commit the
changes, as described in “Resolve Conflicts” on page 18-60.

Merge Models

In the Comparison Tool report, you can merge changes between revisions. To use this
capability on models, you must have Simulink Report Generator installed. For details,
see “Merge Simulink Models from the Comparison Report” in the Simulink Report
Generator documentation.

After merging to resolve conflicts, mark the conflict resolved and commit the changes, as
described in “Resolve Conflicts” on page 18-60.

Extract Conflict Markers

• “What Are Conflict Markers?” on page 18-63
• “Extract Conflict Markers” on page 18-64

What Are Conflict Markers?

Source control tools can insert conflict markers in files that you have not registered as
binary (e.g., text files). You can use Simulink Project tools to extract the conflict markers
and compare the files causing the conflict. This process helps you to decide how to resolve
the conflict.

Caution Register model files with source control tools to prevent them from inserting
conflict markers and corrupting models. See “Register Model Files with Source Control
Tools” on page 18-9. If your model already contains conflict markers, the project tools can
help you to resolve the conflict, but only if you open the model from the project. Opening
a model that contains conflict markers from the Current Folder or from a file explorer
can fail because Simulink does not recognize conflict markers.

Conflict markers have the following form:

18 Simulink Project Source Control

18-64

<<<<<<<["mine" file descriptor]

["mine" file content]

=======

["theirs" file content]

<<<<<<<["theirs" file descriptor]

If you try to open a file containing conflict markers, the Conflict Markers Found dialog
box opens. Follow the prompts to fix the file by extracting the conflict markers. After you
extract the conflict markers, resolve the conflicts as described in “Resolve Conflicts” on
page 18-60.

To view the conflict markers, in the Conflict Markers Found dialog box, click Load File.
Do not try to load model files, because Simulink does not recognize conflict markers.
Instead, click Fix File to extract the conflict markers.

By default, the project checks only conflicted files for conflict markers. You can change
this preference to check all files or no files. Click Preferences in the Simulink Project
tab to change the setting.

Extract Conflict Markers

When you open a conflicted file or select View Conflicts, the project checks files for
conflict markers and offers to extract the conflict markers. The project checks only
conflicted files for conflict markers unless you change your preferences setting.

However, some files that are not marked conflicted can still contain conflict markers.
This can happen if you or another user marked a conflict resolved without removing the
conflict markers and then committed the file. If you see conflict markers in a file that is
not marked conflicted, you can remove the conflict markers.

1 In Simulink Project, right-click the file and select Extract Conflict Markers to
File.

2 Leave the default option to copy the “mine” revision over the conflicted file. Leave
the Compare check box selected. Click Extract.

3 Use the Comparison Tool report as usual to continue to resolve the conflict.

 Work with Derived Files in Projects

18-65

Work with Derived Files in Projects

Best practice is to omit derived and temporary files from your project or exclude them
from source control. Use Check Project in the Precommit Actions pane or the Simulink
Project tab to check the integrity of the project. If you add the slprj folder to a project,
the project checks advise you to remove this from the project and offer to make the fix.

Best practice is to exclude derived files, such as .mex*, the contents of the slprj folder,
sccprj folder, or other code generation folders from source control, because they can
cause problems. For example:

• With a source control that can do file locking, you can encounter conflicts. If slprj is
under source control and you generate code, most of the files under slprj change and
become locked. Other users cannot generate code because of file permission errors.
The slprj folder is also used for simulation via code generation (for example, with
model reference or Stateflow), so locking these files can have an impact on a team.
The same problems arise with binaries, such as .mex*.

• Deleting slprj is often required. However, deleting slprj causes problems such
as “not a working copy” errors if the folder is under some source control tools (for
example, SVN).

• If you want to check in the generated code as an artifact of the process, it is common
to copy some of the files out of the slprj cache folder and into a separate location
that is part of the project. That way, you can delete the temporary cache folder when
you need to. See packNGo to discover the list of generated code files, and use the
project API to add to the project with appropriate metadata.

• The slprj folder can contain many small files. This can affect performance with some
source control tools when each of those files is checked to see if it is up-to-date.

19

Project Reference

• “Componentization Using Referenced Projects” on page 19-2
• “Add or Remove a Reference to Another Project” on page 19-5
• “View or Run Referenced Project Files” on page 19-7
• “Open a Referenced Project” on page 19-8
• “Extract a Folder to Create a Referenced Project” on page 19-9

19 Project Reference

19-2

Componentization Using Referenced Projects

For a large modeling project, organizing the project into components facilitates:

• Component reuse
• Modular, team-based development
• Unit testing
• Independent release of components

Simulink Project supports large-scale project componentization by allowing you to
reference other projects from a parent project. A collection of parent and referenced
projects constitutes a project reference hierarchy. Project referencing provides these
benefits:

• A parent project has access to a referenced project’s project paths, entry-point
shortcuts, and source control information. For example, from a parent project, you can
use referenced project shortcuts to view and run files that belong to the referenced
project.

• Through a referenced project, your team can develop a component independent of
other components.

• In a referenced project, you can test the component separately.

This project hierarchy illustrates the use of parent and referenced projects as components
of a large project.

 Componentization Using Referenced Projects

19-3

Through the Transistor Development project, a team independently creates and tests a
library of blocks. The team makes the library available to other developers by exporting
release versions, for example, version 2.3.

Through the Radio Development project, another team develops and tests the Radio
system. This team requires:

• Version 2.3 of the Transistor component. The team sets up the Radio Development
project to reference the Transistor Release V2.3 project.

• Tools to plot signals, for example, MATLAB files that are not distributed to
customers. The team sets up the Radio Development project to reference the Plotting
Tools Development project.

19 Project Reference

19-4

When the Radio system is ready for customers, the team exports a release version, for
example, version 4.1.

Related Examples
• “Add or Remove a Reference to Another Project” on page 19-5
• “View or Run Referenced Project Files” on page 19-7
• “Open a Referenced Project” on page 19-8
• “Extract a Folder to Create a Referenced Project” on page 19-9
• Airframe Project Reference Example

More About
• “Componentization Guidelines” on page 14-28
• “Organize Large Modeling Projects” on page 15-2
• “Design Partitioning” on page 20-2

 Add or Remove a Reference to Another Project

19-5

Add or Remove a Reference to Another Project

Add new components to your project by referencing other projects. The addition of
referenced projects creates a project hierarchy. When Simulink Project loads a referenced
project in a project hierarchy, it:

• Adds project paths from the referenced project to the MATLAB search path.
• Runs startup shortcuts from the referenced project.

To reference a project:

1 On the Simulink Project tab, in the Environment section, click References.
2 In the Referenced Projects dialog box, click the Add a reference to another

project button .

• If your project hierarchy has a well-defined root relative to your project root, for
example, a folder under source control, select Add Relative Reference.

• If the project you want to reference is in a location accessible to your computers,
for example, a network drive, select Add Absolute Reference.

3 Using the Open dialog box, navigate to the project location and select the project
folder.

On the Project Shortcuts tab, the Referenced Projects section displays the newly
added project.

To remove a referenced project from your project hierarchy:

1 On the Simulink Project tab, in the Environment section, click References.
2 In the Referenced Projects dialog box, select the project that you want to remove and

click the Remove reference to selected project button .

Related Examples
• “View or Run Referenced Project Files” on page 19-7
• “Open a Referenced Project” on page 19-8
• “Extract a Folder to Create a Referenced Project” on page 19-9
• Airframe Project Reference Example

19 Project Reference

19-6

More About
• “Componentization Using Referenced Projects” on page 19-2

 View or Run Referenced Project Files

19-7

View or Run Referenced Project Files

In a Simulink Project hierarchy, from a parent project, use referenced project shortcuts to
view and run files that belong to the referenced project.

1 Within the referenced project, create shortcuts for the files that you want to view or
run from the parent project.

2 From the parent project, on the Project Shortcuts tab, in the Referenced
Projects section, click the referenced project button arrow.

3 From the list, select the file that you want to view or run.

Related Examples
• “Create Shortcuts to Frequent Tasks” on page 15-42
• “Add or Remove a Reference to Another Project” on page 19-5
• “Extract a Folder to Create a Referenced Project” on page 19-9
• Airframe Project Reference Example

More About
• “Componentization Using Referenced Projects” on page 19-2

19 Project Reference

19-8

Open a Referenced Project

In Simulink Project, you can open a referenced project from a parent project.

Note: Opening a referenced project closes the parent project.

1 On the Project Shortcuts tab, in the Referenced Projects section, click the
referenced project button arrow.

2 From the list, select Open.
3 In the Warning dialog box, click Continue.

Related Examples
• “Add or Remove a Reference to Another Project” on page 19-5
• “Extract a Folder to Create a Referenced Project” on page 19-9
• Airframe Project Reference Example

More About
• “Componentization Using Referenced Projects” on page 19-2

 Extract a Folder to Create a Referenced Project

19-9

Extract a Folder to Create a Referenced Project

In Simulink Project, you can partition a large project into components through the use of
project references.

Consider the Airframe example project. Suppose you create a folder Trial and carry out
development work within the folder. You produce:

• Shortcuts to a Simulink library, a MATLAB file, and a Readme document
• Design and source code folders
• Data files

For easier management, you want to convert the Trial folder into a separate
component. In addition, you want access to the folder contents, for example, shortcuts to
key files. To fulfill these requirements, extract the folder from the project and convert the
folder into a referenced project.

19 Project Reference

19-10

1 With Project Files View selected, right-click the Trial folder and select
Extract to Referenced Project.

2 In the Extract Folder to New Project dialog box, specify these options:

• New Project Name — For example, DataLogging.
• New Project Location – For example, C:\Work\DataLogging.
• Reference Type – The default is Relative reference. Use the default if you

specify the new project location with reference to the current project root. If you
specify the full path for the new location, which is, for example, on a network
drive, select Absolute reference.

3 Click More Options:

• If you want to disable any of the default content migration actions, clear the
corresponding check box.

• Do not change the Project definition files setting.
4 Click Extract.
5 In the Warning dialog box, click Continue.

The folder Trial and its contents are removed from the project. On the Project
Shortcuts tab, the Referenced Projects section displays a new DataLogging button.

Related Examples
• “Add or Remove a Reference to Another Project” on page 19-5
• “View or Run Referenced Project Files” on page 19-7
• “Open a Referenced Project” on page 19-8
• Airframe Project Reference Example

 Extract a Folder to Create a Referenced Project

19-11

More About
• “Componentization Using Referenced Projects” on page 19-2

20

Large-Scale Modeling

• “Design Partitioning” on page 20-2
• “Interface Design” on page 20-13
• “Configuration Management” on page 20-17

20 Large-Scale Modeling

20-2

Design Partitioning

In this section...

“When to Partition a Design” on page 20-2
“When Not to Partition a Design” on page 20-3
“Plan for Componentization in Model Design” on page 20-4
“Guidelines for Component Size and Functionality” on page 20-4
“Choose Components for Team-Based Development” on page 20-8
“Partition an Existing Design” on page 20-10
“Manage Components Using Libraries” on page 20-11

When to Partition a Design

Partition a design when it becomes too complex for one person to know all of the details.
Complexity increases with design size and team size, for example,

• Design size and complexity:

• Thousands of blocks
• Hundreds of logical decisions
• Hundreds of inputs and outputs
• Hundreds of times larger industry examples in some cases
• Multiple variant configurations of the same functionality

• Team integration:

• Multiple people working on the design
• People located in different places
• People from different companies

Partitioning your design into components helps you to work with large-scale designs.
Partitioning a design into components gives modularity to help you reduce complexity,
collaborate on development, test and reuse components, and to succeed with large-scale
model-based design. Component-based modeling helps:

• Enable efficient and robust system development.

 Design Partitioning

20-3

• Reduce overall design complexity by solving smaller problems.
• Gain performance benefits that scale.
• Reuse components across multiple projects.

• Facilitate collaboration

• Partition algorithms, physical models, and tests. Define architecture in terms of
structural and functional partitioning of the design using defined interfaces.

• Collaborate with teams across organizational boundaries on product development.
Teams can elaborate individual components independently to do plant modeling,
algorithm design, and developing of test harnesses.

• Manage design with source control tools.
• Improved iteration, elaboration, and verification workflows

• Iterate faster via more efficient testing and reuse.
• Eliminate retesting for unchanged components.
• Reuse environment models and algorithm designs in different projects.
• Create variants of designs.
• Elaborate components independently through well-defined interfaces.
• Manage design evolution with configuration management tools.

Component-based modeling requires:

• Mechanisms for partitioning models and specifying interfaces
• Tools and processes for managing data, models, and environment

Use the following techniques for component-based modeling.

When Not to Partition a Design

Componentization provides benefits for large-scale designs, but is not needed for small
designs. Partitioning your design into components requires design work and can increase
time taken to update diagrams. Use separate components only when your design is large
enough to benefit from componentization.

To decide whether your design needs partitioning, see the recommendations in
“Guidelines for Component Size and Functionality” on page 20-4.

20 Large-Scale Modeling

20-4

Plan for Componentization in Model Design

After models grow large and complex over time, it is difficult to split them into
components to allow multiple engineers to work on them in parallel. Splitting a Simulink
model into components is easier if the model is designed for componentization from
the start. Designing for componentization in the first place can help you avoid these
difficulties:

• If a single engineer develops a model from the bottom up, adding blocks and grouping
them into subsystems as the model complexity increases, it is hard to later split the
model into components. The subsystems within the model are often “virtual” and
nonatomic. When you convert these to atomic subsystems and then to model reference
components, you can introduce unwanted algebraic loops that are hard to diagnose
and solve.

• Subsystems grown over time do not always represent the best way to partition the
model. “Best” here might mean the most useful structure for reusable components in
other models, or for generating code that integrates with legacy functionality, or for
performing Hardware-in-the-Loop tests, etc.

• If you try to expand to parallel development without componentizing models, it is
difficult to share work in teams without time-consuming and error-prone merging of
subsystems.

These problems are analogous to taking a large piece of code (C, Java, or MATLAB code)
and trying to break it down into a number of separate functions. Significant effort is
required and can require extensive modifications to some parts of the code, if the code
was not designed to be modular in the first place. The same is true for Simulink models.

Lack of componentization causes common failure modes when trying to place Simulink
models into configuration management as they grow and you want more than one
engineer to work on it in parallel. The best way to avoid these issues is to design for
components from the start. You can use the following features of Simulink to design a
model suitable for componentization.

If you already have a design that you want to divide into components, see “Partition an
Existing Design” on page 20-10.

Guidelines for Component Size and Functionality

To set up your project for a team to work on, consider the following model architecture
guidelines for components. Useful components:

 Design Partitioning

20-5

• Have well-defined interface I/O boundaries.
• Perform a defined set of functions (actions), defined by requirements.
• Form part of a larger system.
• Have the “right” size:

• Large enough to be reusable
• Small enough to be tested
• Only one engineer is likely to want to edit each model at a time

The right size can depend on team size. You can have larger components if only one
person is working on each, but if you need to share components between several people,
you probably need to divide the design into smaller logical pieces. This aids two goals:
understanding the design, and reducing file contention and time spent on merging.

Recommendations:

• In most cases, if you have fewer than 100 blocks, do not divide the design into
components. Instead, use subsystems if you want to create a visual hierarchy.
For example, the example model vdp is not large enough to benefit from
componentization.

• If you have 500–1000 blocks, consider creating a model reference to contain
that component in a separate file. The cost of verification can reduce the size for
components. For example, if you have a small component of 100 blocks with high
testing costs and frequent changes, consider separating that component into a
separate file to make verification easier.

Consider dividing the model based on:

• Physical components (e.g., plant and controller, for code generation)
• Algorithm logic
• Reusability in other models
• Testability, for example, for performing Hardware-in-the-Loop tests
• Sample rate; consider grouping components that have the same sample rate
• Simulation speed; using different solvers for components with different numerical

properties can increase simulation speed
• Accessibility to other teams or others on your team.

While you cannot always plan on model size, if you expect multiple people to work on
the design, you can benefit from componentization techniques. Consider controlling

20 Large-Scale Modeling

20-6

configuration management using Simulink Project and partitioning the design using
Model Reference so that the team can work on separate files concurrently.

Component Size Recommended Componentization
Techniques

Notes

Small <500 blocks Create visual hierarchy using
subsystems.

Small designs do not benefit
from dividing into separate
files. However, larger teams
that cause file contention or
high cost of verification can
make it worth partitioning
smaller components into
separate files instead of using
subsystems.

Large >500 blocks Separate components into
separate files using Model
Reference or Libraries.

For multiple engineers or
teams working on a design,
best practice is one file
per component. To reduce
file contention, aim for
components in which only one
engineer needs to edit each
model at a time.

Small <500 blocks, but
expected to grow over
time

Use atomic subsystems for
functional block grouping
instead of virtual subsystems.
Atomic subsystems are easier
to migrate to separate file
components later.

If possible, plan your
components from the start to
avoid migration pain.

If your design or team is large enough to benefit from separating components into
separate files, this table summarizes when to apply each technique.

Component
Characteristics

Technique Benefits Costs

Small, low-
level utility
functions,
reused in

Library
model
containing
a single
reusable

• Context-dependent:
can adapt to various
interfaces with different
data types, sample
time, and dimensions,

• Cannot use
independently to
simulate or generate
code. Requires a parent
model.

 Design Partitioning

20-7

Component
Characteristics

Technique Benefits Costs

many places in
a design

atomic
subsystem

in different contexts,
without changing the
design.

• Can be reused in other
models

• Stored as a separate
file, can apply version
control, but each
instance adapts to
context of parent model,
so generated code can
differ in each instance.

• Context adaptation
not desirable for big
components in large-
scale models where
interfaces are managed
and locked down to
specific data type and
dimension. In these
cases, you might not
want code generated for
the library block to differ
in each instance.

• Requires link
management to
avoid problems with
broken, disabled, or
parameterized links. See
“Manage Components
Using Libraries” on page
20-11.

Groups of
blocks for
sharing among
users

Library for
grouping
and storing
Simulink
blocks

Library
palette of
links to
components

• Libraries are useful for
storing blocks to share
among a number of users

• To reduce file contention,
use library palettes
of links to individual
components in separate
files. Store each
component in a model
reference file or a single
subsystem in a separate
library.

• Causes file contention
if multiple components
reside in a single library
file. File contention is a
problem only if blocks
need frequent updates
or multi-user access.
Palettes can help.

• Requires link
management to
avoid problems with
broken, disabled, or
parameterized links. See
“Manage Components
Using Libraries” on page
20-11.

20 Large-Scale Modeling

20-8

Component
Characteristics

Technique Benefits Costs

Top-level
components
for large-scale
models: >500
blocks

Large
components:
starting at
~ 500–5000
blocks for
one or a few
reusable
instances,
or smaller
if many
instances

Components
at any level
of model
hierarchy
where teams
need to work
independently

Model
Referencing

• Components are
independent model files
and part of a larger
model. You can simulate
and generate code in the
component.

• Independent of context
—good for large-scale
model components where
interfaces are managed
and locked down.

• Stored as a separate
file—can apply version
control to a component
independently of the
models that use it.

• Possible to use
Accelerator mode
generated code to reduce
memory requirements
when loading models
and increase simulation
speed, compared to
subsystems or libraries.
Useful for top-level
component partitions.

Performance can reduce
slightly when updating a
model (update diagram)
because each reference
model is checked for
changes to enable
incremental builds. When
components are large
enough (>500 blocks),
update diagram is faster in
most cases.

See “Partition a Design
Using Model Reference” on
page 20-10.

Choose Components for Team-Based Development

To perform parallel development, you need component-based modeling. Best practice for
successful team-based development is to partition the models within the project so that
only one user works on each part at a time. Componentization enables you to avoid or
minimize time-consuming merging. To set up your project for work by a team, consider
the following model architecture guidelines.

 Design Partitioning

20-9

This table compares subsystems, libraries, and model referencing for team-based
development.

Modeling
Development
Process

Subsystems Libraries Model Referencing

Team-based
development

Not supported

For subsystems in
a model, Simulink
provides no direct
interface with source
control tools.

To create or change a
subsystem, you need
to open the parent
model’s file. This can
lead to file contention
when multiple people
want to work on
multiple subsystems in
a model.

Merging subsystems is
slow and errorprone,
so best avoided as
a workflow process.
However, Simulink
Report Generator
provides tools to help
you merge subsystems.
See “Merge Simulink
Models from the
Comparison Report”.

Supported, with
limitations

You can place library
files in source control
for version control
and configuration
management. You
can use Simulink
Project to interact
with source control.

You can maintain one
truth, by propagating
changes from a single
library block to all
blocks that link to
that library.

To reduce file
contention, use
one subsystem per
library.

You can link to the
same library block
from multiple models.

You can restrict write
access to library
components.

Well suited

You can place model
reference files in
source control for
version control
and configuration
management. You can
use Simulink Project
to interact with source
control.

You save a referenced
model in a separate
file from the model
that references it.
Using separate files
helps to avoid file
contention.

You can design,
create, simulate,
and test a referenced
model independently
from the model that
references it.

Simulink does not
limit access for
changing a model
reference.

Most large models use a combination of componentization techniques. No single approach
is suitable for the wide range of users of Simulink. The following advice descibes some

20 Large-Scale Modeling

20-10

typical processes to show what you can do with MathWorks tools to perform team-based
development.

One File Per Component for Parallel Development

To perform efficient parallel development, break a large model into a number of
individual files, so that team members can work independently and you can place each
file under revision control. Componentization enables you to avoid or minimize time-
consuming merging. To set up your project for work by a team, consider the advice in
“Guidelines for Component Size and Functionality” on page 20-4.

A key goal of component-based modeling is to allow parallel development, where different
engineers can work on components of a larger system in parallel. You can achieve this
if each component is a single file. You can then control and trace the changes in each
component using source control in Simulink Project. See “Configuration Management” on
page 20-17.

Partition an Existing Design

If you already have a design that you want to divide into components, first decide where
to partition the model. Existing subsystems that grow over time are not always the
best way to partition the model. Consider dividing the model based on the advice in
“Guidelines for Component Size and Functionality” on page 20-4.

Agreeing on an interface is a useful first step in deciding how to break down the
functionality of a large system into subcomponents. You can group signals and partition
data. See “Interface Design” on page 20-13.

After you decide how to partition your design, Simulink tools can help you divide an
existing model into components.

Simulink can help you partition models by converting subsystems to files. You can
convert to files using Model Reference or Libraries. See “Guidelines for Component Size
and Functionality” on page 20-4 for suggestions on when to apply each technique.

Partition a Design Using Model Reference

Use Model Reference to divide the components into separate files so that the team can
work on separate files concurrently. You can also reuse the models in other models. To
partition a model using model reference, see “Create a Model Reference” on page 8-8 or
“Convert a Subsystem to a Referenced Model” on page 8-16.

 Design Partitioning

20-11

Manage Components Using Libraries

• Use Libraries containing a single subsystem to contain a component in a single
file. Use libraries to store blocks you can reuse in models. The linked blocks inherit
attributes from the surrounding models, such as data types and sample rate. Using
this technique for componentization has the management overhead of library links,
described below.

• Use Libraries to reuse blocks in multiple models. Libraries work well for grouping and
storing Simulink blocks to share. Best practice for libraries is to use them for storing
blocks to share with multiple users, and blocks that are updated infrequently. As a
rough guideline, it is appropriate to use a Simulink library if its contents are updated
once every few months. If you update it more frequently, then the library is probably
being used to perform configuration management. In this case, take care to avoid the
common problems described in “Library Link Management” on page 20-11.

• To make library blocks available for reuse while reducing file contention and applying
revision control, use library palettes. A palette is a library containing links to other
components. If each component is a single subsystem in a separate library, or a model
reference file, you can achieve the one-file-per-component best practice for component-
based modeling. You can use separate version control for each component, and you
can also control the palette.

When you drag a block from the library palette into your model, Simulink follows
the link back to the file where the subsystem or model reference is implemented. The
models that use the component contain a link to the component and not to the palette.

Library Link Management

Library links can introduce management overhead if you use them for configuration
management. Take care to manage:

• Disabled links — Can cause merge conflicts, and failure to update all instances of the
same model component. In a hierarchy of links, you can accidentally disable all links
without being aware of it, and only restore one link while leaving others disabled.

• Broken links — Accidentally broken links are a hard problem to solve, because, by
design, you cannot detect what the broken link linked to previously.

• Parameterized link data — It can be useful to change the value of parameter
data, such as the value of a gain within a gain block, without disabling the library
link. This generates “link data” for that instance only. However for configuration
management this can cause a problem, if you assume all instances are identical, as
one now has different properties.

20 Large-Scale Modeling

20-12

Simulink tools help you manage library links to avoid problems:

• Lock links to prevent editing. See “Lock Links to Blocks in a Library” on page
36-9.

• Use diagnostic options to check library link integrity whenever you save a model.
You can set the checks to warn, error, or ignore that a model has disabled or
parameterized library links. You select these settings per model. In the Configuration
Parameters dialog box, see Diagnostics > Saving.

See the diagnostic settings “Block diagram contains disabled library links” and “Block
diagram contains parameterized library links”.

• Use Model Advisor checks to report on library link integrity. The advisor checks for
disabled and parameterized links within a model. You can use the resulting report as
an artifact to check into a configuration management system.

See the Model Advisor checks:

• “Identify disabled library links”
• “Identify parameterized library links”
• “Identify unresolved library links”

• Use the Links Tool to view and restore disabled and edited links. See “Restore
Disabled or Parameterized Links” on page 36-12.

Caution These link management tools can detect link problems but cannot prevent
editing the wrong files. If this is a problem, then use Model Reference as the partitioning
mechanism to avoid the risks associated with disabled, broken, and parameterized links.

More About
• “Interface Design” on page 20-13
• “Configuration Management” on page 20-17

 Interface Design

20-13

Interface Design

In this section...

“Why Interface Definitions Are Important” on page 20-13
“Recommendations for Interface Design” on page 20-13
“Partitioning Data” on page 20-15

Why Interface Definitions Are Important

Defining the “interface” of a software component, such as a C or MATLAB code function
or a Simulink subsystem, is a key first step before others can use it, for these reasons:

• Agreeing on an interface is a useful first step in deciding how to break down the
functionality of a large system into subcomponents.

• After you define interfaces between a number of components, you can develop the
components in parallel. If the interface remains stable, then it is easy to integrate
those components into a larger system.

• Changing the interface between components is expensive. It requires changes to at
least two components (the source and any sinks) and to any test harnesses. It also
makes all previous versions of those components incompatible with the current and
future versions.

When you need to change an interface, doing so is much easier if the components are
stored under configuration management. You can track configurations of compatible
component versions to prevent incompatible combinations of components.

Recommendations for Interface Design

Suggestions for defining the interfaces of components for a new project:

• Base the boundaries of the components upon those of the corresponding real systems.
This is especially useful when the model contains:

• Both physical (plant and environment) and control systems
• Algorithms that run at different rates

• Consider future model elaboration. If you intend to add models of sensors, then put
them in from the start as an empty subsystem that passes signals straight through or
performs a unit delay and/or name conversion.

20 Large-Scale Modeling

20-14

• Consider future component reuse.
• Consider using a signal naming convention.

• Use data objects for :

• Defining component interfaces
• Precise control over data attributes

• Simplify interface design by grouping signals into buses. Signal buses are well suited
for use at the high levels of models, where components often have a large number of
signals going in and out, and do not use all the signals available. Using buses can
simplify modifying the interface to a component. For example, if you need to add or
remove signals used by a component, it can be simpler to modify a bus than to add
or remove inports or outports to that component. However, using a bus that crosses
model reference boundaries requires using a bus object.

Best practices for using Simulink bus signals and bus objects:

• Make buses virtual, except for model reference component boundaries.
• Use nonvirtual buses when defining interfaces between components. However, this

requires associating the bus with a bus object. Bus objects completely define the
properties of the signals on a bus, giving an unambiguous interface definition.

Include bus objects in a data dictionary, or save bus objects as a .mat or .m file, in
order to place them under revision control.

• Pass only required signals to each component to reduce costly passing of
unnecessary data. Signal buses allow the full set of input and output signals to be
defined, but not necessarily used or created.

• Make sure that the interface specifies exactly what the component uses.
• Use a rigorous naming convention for bus objects. Unless you use a data

dictionary, bus objects are stored in the base workspace.
• At the lower levels of a model, consider using inports and outports for each signal.

At lower levels of a model, where components typically implement algorithms
rather than serve as containers for other components, it can increase readability
if you use individual inports and outports for components, instead of using signal
buses. However, creating interfaces in this way has a greater risk of connection
problems, because it is difficult to check the validity of connections, other than
their data type, size, etc.

 Interface Design

20-15

Partitioning Data

Explicitly control the scope of data for your components. Some techniques:

• Global parameters — A common approach in the automotive world is to completely
separate the problem of parameter storage from model storage. The parameters for a
model come from a database of calibration data, and the specific calibration file used
becomes part of the configuration. The calibration data is treated as global data, and
resides in the base MATLAB workspace. You can migrate base workspace data to a
data dictionary for more control.

• Nonglobal parameters — Combining a number of components that somehow store
their own parameter data has the risk of parameter name collisions. If you do not
use a naming convention for parameters or, alternatively, a list of unique parameter
names and definitions, then there is the risk that two components use a parameter
with the same name but with different meanings.

Methods for storing local parameter data include:

• Partition data into reference dictionaries for each component.
• With Model Reference, you can use model workspaces.
• Use parameter files (.m or .mat) and callbacks of the individual Simulink models

(e.g., preload function).

You can also automatically load required data using Simulink Project shortcuts.
• Mask workspaces, with or without the use of mask initialization functions.
• For subsystems, you can control the scope of data for a subsystem using the

Subsystem Parameters, Permit Hierarchical Resolution dialog box.

Related Examples
• “Map Bus Objects to Models” on page 61-49
• “Composite Signals”
• “Migrate Single Model to Use Dictionary” on page 59-17
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20
• “Partition Data Dictionary” on page 59-35
• “Variables”

20 Large-Scale Modeling

20-16

More About
• “What Is a Data Dictionary?” on page 59-2
• “Composite Signals” on page 61-3
• “Buses” on page 61-5
• “Bus Objects” on page 61-23
• “Design Partitioning” on page 20-2
• “Configuration Management” on page 20-17

 Configuration Management

20-17

Configuration Management

In this section...

“Manage Designs Using Source Control” on page 20-17
“Determine the Files Used by a Component” on page 20-18
“Manage Model Versions” on page 20-18
“Create Configurations” on page 20-19

Manage Designs Using Source Control

Simulink projects can help you work with configuration management tools for team
collaboration. You can use projects to help you manage all the models and associated files
for model-based design.

You can control and trace the changes in each component using source control in
Simulink Project. Using source control directly from Simulink Project provides these
benefits:

• Engineers do not have to remember to use two separate tools, avoiding the common
mistake of beginning work in Simulink without checking out the required files first.

• You can perform analysis within MATLAB and Simulink to determine the
dependencies of files upon each other. Third-party tools are unlikely to understand
such dependencies.

• You can compare revisions and use tools to merge models (requires Simulink Report
Generator).

If each component is a single file, you can achieve efficient parallel development, where
different engineers can work on the different components of a larger system in parallel.
Componentization enables you to avoid or minimize time-consuming merging. See “One
File Per Component for Parallel Development” on page 20-10. One file per component
is not strictly necessary to perform configuration management, but it makes parallel
development much easier.

If you break down a model into a number of components, it is easier to reuse those
components in different projects. If the components are kept under revision control and
configuration management, then you can reuse components in a number of projects
simultaneously.

20 Large-Scale Modeling

20-18

To find out about source control support in Simulink, see “Source Control in Simulink
Project”.

Determine the Files Used by a Component

You can use Simulink Project to determine the set of files you need to place under
configuration management. You can analyze the set of files that are required for
the model to run, such as model references, library links, block and model callbacks
(preload functions, init functions, etc.), S-functions, From Workspace blocks, etc. Any
MATLAB code found is also analyzed to determine additional file dependencies. You can
use the Simulink manifest tools to report which toolboxes are required by a model, which
can be a useful artifact to store.

You can also perform a file dependency analysis of a model programmatically from
MATLAB using dependencies.fileDependencyAnalysis to get a cell array of paths
to required files.

For more information, see “Dependency Analysis”.

Manage Model Versions

Simulink can help you to manage multiple versions of a model.

• Use Simulink Projects to manage your project files, connect to source control, review
modified files, and compare revisions. See “Project Management ”.

• Simulink notifies you if a model has changed on disk when updating, simulating,
editing, or saving the model. Models can change on disk, for example, with source
control operations and multiple users. Control this notification with the Model File
Change Notification preference. See “Model File Change Notification” on page 4-101.

• As you edit a model, Simulink generates version information about the model,
including a version number, who created and last updated the model, and an optional
comments history log. Simulink saves these version properties with the model.

• Use the Model Properties dialog box to view and edit some of the version
information stored in the model and specify history logging.

• The Model Info block lets you display version information as an annotation block
in a model diagram.

• Use Simulink.MDLInfo class to extract information from a model file without loading
the block diagram into memory. You can use MDLInfo to query model version and

 Configuration Management

20-19

Simulink version, find the names of referenced models without loading the model into
memory, and attach arbitrary metadata to your model file.

Create Configurations

You can use Simulink Project to work with the revision control parts of the workflow:
retrieving files, adding files to source control, checking out files, and committing edited
files to source control.

To define configurations of files, you can label a number of files as a new mutually
consistent configuration. Other users can get this set of files from the revision control
system.

Configurations are different from revisions. Individual components can have revisions
that work together only in particular configurations.

Tools for creating configurations in Simulink:

• Variant modeling. See “Variant Systems”.
• Tools in Simulink Project:

• Label — Label project files. Use labels to apply metadata to files. You can group
and sort by labels, label folders for adding to the path using shortcut functions,
or create batch jobs to export files by label, for example, to manage files with the
label Diesel. You cannot retrieve from source control by label, and labels persist
across revisions.

• Revision Log — Use Revert Project to choose a revision to revert to (SVN source
control only).

• Branch — Create branches of file versions, and switch to any branch in the
repository (Git source control only).

• Tag — You can tag all project files (SVN source control only) to identify a
particular configuration of a project, and retrieve tagged versions from source
control. However, continued development is limited. That is, you cannot tag again,
and you must check out from trunk to apply tags.

• Archive — Package all project files in a Zip file that you can create a new project
from. However, this packaging removes all source control information, because
archiving is for exporting, sharing, and changing to another source control. You
can commit the new Zip file to source control.

20 Large-Scale Modeling

20-20

More About
• “What Are Simulink Projects?” on page 15-3
• “Design Partitioning” on page 20-2
• “Interface Design” on page 20-13

21

Power Window Example

21 Power Window Example

21-2

Power Window

In this section...

“Study Power Windows” on page 21-2
“MathWorks Software Used in This Example” on page 21-3
“Quantitative Requirements” on page 21-4
“Simulink Power Window Controller in Simulink Project” on page 21-13
“Simulink Power Window Controller” on page 21-15
“Create Model Using Model-Based Design” on page 21-34
“Automatic Code Generation for Control Subsystem” on page 21-56
“References” on page 21-57

Study Power Windows

Automobiles use electronics for control operations such as:

• Opening and closing windows and sunroof
• Adjusting mirrors and headlights
• Locking and unlocking doors

These systems are subject to stringent operation constraints. Failures can cause
dangerous and possibly life-threatening situations. As a result, careful design and
analysis are needed before deployment.

This example focuses on the design of a power window system of an automobile, in
particular, the passenger-side window. A critical aspect of this system is that it cannot
exert a force of more than 100 N on an object when the window closes. When the system
detects such an object, it must lower the window by about 10 cm.

 Power Window

21-3

As part of the design process, the example considers:

• Quantitative requirements for the window control system, such as timing and force
requirements

• System requirements, captured in activity diagrams
• Data definitions for the signals used in activity diagrams

Other aspects of the design process that this example contains are:

• Managing the components of the system
• Building the model
• Validating the results of system simulation
• Generating code

MathWorks Software Used in This Example

In addition to Simulink, this example uses these additional MathWorks products:

• DSP System Toolbox
• Fixed-Point Designer
• SimMechanics
• SimPowerSystems™

21 Power Window Example

21-4

• Simscape
• Simulink 3D Animation
• Simulink Real-Time
• Simulink Verification and Validation
• Stateflow

Quantitative Requirements

Quantitative requirements for the control are:

• The window must fully open and fully close within 4 s.
• If the up is issued for between 200 ms and 1 s, the window must fully open. If the

down command is issued for between 200 ms and 1 s, the window must fully close.
• The window must start moving 200 ms after the command is issued.
• The force to detect when an object is present is less than 100 N.
• When closing the window, if an object is in the way, stop closing the window and

lower the window by approximately 10 cm.

Capturing Requirements in Activity and Context Diagrams

Activity diagrams help you graphically capture the specification and understand how
the system operates. A hierarchical structure helps with analyzing even large systems.
At the top level, a context diagram describes the system environment and its interaction
with the system under study in terms of data exchange and control operations. Then
you can decompose the system into an activity diagram with processes and control
specifications (CSPEC).

The processes guide the hierarchical decomposition. You specify each process using
another activity diagram or a primitive specification (PSPEC). You can specify a
PSPEC in a number of representations with a formal semantic, such as a Simulink
block diagram. In addition, context diagrams graphically capture the context of system
operation.

Context Diagram: Power Window System

The figure represents the context diagram of a power window system. The square boxes
capture the environment, in this case, the driver, passenger, and window. Both the driver
and passenger can send commands to the window to move it up and down. The controller
infers the correct command to send to the window actuator (e.g., the driver command has

 Power Window

21-5

priority over the passenger command). In addition, diagram monitors the state of the
window system to establish when the window is fully opened and closed and to detect if
there is an object between the window and frame.

The circle (also known as a bubble) represents the power window controller. The circle
is the graphical notation for a process. Processes capture the transformation of input
data into output data. Primitive process might also generate. CSPECs typically consist of
combinational or sequential logic to infer output control signals from input control.

For implementation in the Simulink environment, see “Implementation of Context
Diagram: Power Window System” on page 21-35.

Activity Diagram: Power Window Control

The power window control consists of three processes and a CSPEC. Two processes
validate the driver and passenger input to ensure that their input is meaningful given
the state of the system. For example, if the window is completely opened, the MOVE
DOWN command does not make sense. The remaining process detects if the window is
completely opened or completely closed and if an object is present. The CSPEC takes the
control signals and infers whether to move the window up or down (e.g., if an object is
present, the window moves down for about one second or until it reaches an endstop).

21 Power Window Example

21-6

For implementation in the Simulink environment, see “Implementation of Activity
Diagram: Power Window Control” on page 21-15.

Activity Diagram: Validate Driver

Each process in the VALIDATE DRIVER activity chart is primitive and specified by
the following PSPEC. In the MAKE EXCLUSIVE PSPEC, for safety reasons the DOWN
command takes precedence over the UP command.

 Power Window

21-7

PSPEC 1.1.1: CHECK DOWN

 CHECKED_DOWN = DOWN and not RESET

PSPEC 1.1.2: CHECK UP

 CHECKED_UP = UP and not RESET

PSPEC 1.1.3: MAKE EXCLUSIVE

 VALIDATED_DOWN = CHECKED_DOWN

 VALIDATED_UP = CHECKED_UP and not CHECKED_DOWN

 VALIDATED_NEUTRAL = (NEUTRAL and not (CHECKED_UP and not CHECKED_DOWN))

 or not (CHECKED_UP or CHECKED_DOWN)

21 Power Window Example

21-8

For implementation in the Simulink environment, see “Implementation of Activity
Diagram: Validate” on page 21-36.

Activity Diagram: Validate Passenger

The internals of the VALIDATE PASSENGER process are the same as the VALIDATE
DRIVER process. The only difference is the different input and output.

PSPEC 1.2.1: CHECK DOWN

 CHECKED_DOWN = DOWN and not RESET

 Power Window

21-9

PSPEC 1.2.2: CHECK UP

 CHECKED_UP = UP and not RESET

PSPEC 1.2.3: MAKE EXCLUSIVE

 VALIDATED_DOWN = CHECKED_DOWN

 VALIDATED_UP = CHECKED_UP and not CHECKED_DOWN

 VALIDATED_NEUTRAL = (NEUTRAL and not (CHECKED_UP and not CHECKED_DOWN))

 or not (CHECKED_UP or CHECKED_DOWN)

For implementation in the Simulink environment, see “Activity Diagram: Validate
Passenger” on page 21-8.

Activity Diagram: Detect Obstacle Endstop

The third process in the POWER WINDOW CONTROL activity diagram detects the
presence of an obstacle or when the window reaches its top or bottom (ENDSTOP). The
detection mechanism is based on the armature current of the window actuator. During
normal operation, this current is within certain bounds. When the window reaches its
top or bottom, the electromotor draws a large current (more than 15 A or less than –15 A)
to try and sustain its angular velocity. Similarly, during normal operation the current is
about 2 A or –2 A (depending on whether the window is opening or closing). When there
is an object, there is a slight deviation from this value. To keep the window force on the
object less than 100 N, the control switches to its emergency operation when it detects
a current that is less than –2.5 A. This operations is necessary only when the window is
rolling up, which corresponds to a negative current in the particular wiring of this model.
The DETECT OBSTACLE ENDSTOP activity diagram embodies this functionality.

21 Power Window Example

21-10

CSPEC 1.3: DETECT OBSTACLE ENDSTOP

 RESET = OBSTACLE or ENDSTOP

PSPEC 1.3.1: DETECT ENDSTOP

 ENDSTOP = WINDOW_POSITION > ENDSTOP_MAX

PSPEC 1.3.2: DETECT OBSTACLE

 OBSTACLE = (WINDOW_POSITION > OBSTACLE_MAX) and MOVE_UP for 500 ms

For implementation in the Simulink environment, see “Activity Diagram: Detect
Obstacle Endstop” on page 21-9.

 Power Window

21-11

Data Definitions

The functional decomposition unambiguously specifies each process by its decomposition
or primitive specification (PSPEC). In addition, it must also formally specify the signals
in the activity diagrams. Use data definitions for these specifications.

The following tables are data definitions for the signals used in the activity diagrams.

For the associated activity diagram, see “Context Diagram: Power Window System” on
page 21-4.

Context Diagram: Power Window System Data Definitions

Signal Information Type Continuous/
Discrete

Data Type Values

DRIVER_COMMAND Data Discrete Aggregate Neutral, up,
down

PASSENGER_COMMAND Data Discrete Aggregate Neutral, up,
down

WINDOW_POSITION Data Continuous Real 0 to 0.4 m
MOVE_UP Control Discrete Boolean 'True',

'False'

MOVE_DOWN Control Discrete Boolean 'True',
'False'

For the associated activity diagram, see “Activity Diagram: Power Window Control” on
page 21-5.

Activity Diagram: Power Window Control Data Definitions

Signal Information Type Continuous/
Discrete

Data Type Values

DRIVER_COMMAND Data Discrete Aggregate Neutral, up,
down

PASSENGER_COMMAND Data Discrete Aggregate Neutral, up,
down

WINDOW_POSITION Data Continuous Real 0 to 0.4 m
MOVE_UP Control Discrete Boolean 'True',

'False'

21 Power Window Example

21-12

Signal Information Type Continuous/
Discrete

Data Type Values

MOVE_DOWN Control Discrete Boolean 'True',
'False'

For the associated activity diagram, see “Activity Diagram: Validate Driver” on page
21-6.

Activity Diagram: Validate Driver Data Definitions

Signal Information Type Continuous/
Discrete

Data Type Values

DRIVER_COMMAND Data Discrete Aggregate Neutral, up,
down

PASSENGER_COMMAND Data Discrete Aggregate Neutral, up,
down

WINDOW_POSITION Data Continuous Real 0 to 0.4 m
MOVE_UP Control Discrete Boolean 'True',

'False'

MOVE_DOWN Control Discrete Boolean 'True',
'False'

For the associated activity diagram, see “Activity Diagram: Validate Passenger” on page
21-8.

Activity Diagram: Validate Passenger Data Definitions

Signal Information Type Continuous/
Discrete

Data Type Values

NEUTRAL Data Discrete Boolean 'True',
'False'

UP Data Discrete Boolean 'True',
'False'

DOWN Data Discrete Boolean 'True',
'False'

CHECKED_UP Data Discrete Boolean 'True',
'False'

 Power Window

21-13

Signal Information Type Continuous/
Discrete

Data Type Values

CHECKED_DOWN Data Discrete Boolean 'True',
'False'

For the associated activity diagram, see “Activity Diagram: Detect Obstacle Endstop” on
page 21-9.

Activity Diagram: Detect Obstacle Endstop Data Definitions

Signal Information Type Continuous/
Discrete

Data Type Values

ENDSTOP_MIN Data Constant Real 0.0 m
ENDSTOP_MAX Data Constant Real 0.4 m
OBSTACLE_MAX Data Constant Real 0.3 m

The model design iterates as we examine more detailed implementations. For
information about how the model design iterates as you introduce more detail, see
“Iterate on the Design” on page 21-46.

Simulink Power Window Controller in Simulink Project

MATLAB and Simulink support Model-Based Design for embedded control design, from
initial specification to code generation. To organize large projects and share your work
with others, use Simulink Projects.

The Power Window Control Project example shows how you can use MathWorks tools
and the Model-Based Design process to go from concept through implementation for an
automobile power window system. It uses Simulink Projects to organize the files and
other model components.

In addition, this example shows how to link models to system documentation.

Explore the Power Window Controller Project

1 To open the Power Window Controller project, in the MATLAB Command Window,
type:

slexPowerWindowStart

21 Power Window Example

21-14

2 Explore the project folders. In particular, note the task folders. This folder contains
scripts that run frequent tasks for a model. For the Power Window Controller
Project, these scripts:

• Set up the model to control window movement on a controller area network
(CAN).

• Set up the model to use the Stateflow and Simulink software to model discrete-
event reactive behavior and continuous time behavior, with a low-order plant
model.

• Set up the model with a more detailed plant model that includes power effects
in the electrical and mechanical domains. The plant model validates the force
exerted by the window on a trapped object.

• Set up the model with a model that includes other effects that may change the
model, such as quantization of the measurements.

Note: These scripts also simulate the model. To only configure the model, see the
scripts in the configureModel folder.

• Use the increase coverage model to generate the model coverage report.
3 The Shortcut Management section contains quick-access commands that you can

double-click to perform common tasks such as:

• Set up and clean up projects.
• Add projects to MATLAB paths.
• Perform interactive testing.
• Validate model testing with model coverage.

 Power Window

21-15

• Open the main model.
• Simulate the model with various configurations.
• Generate a model coverage report for increased coverage of the model.
• Open the model used for increasing model coverage.

Simulink Power Window Controller

• “Implementation of Activity Diagram: Power Window Control” on page 21-15
• “Interactive Testing” on page 21-17
• “Experimental Results from Interactive Testing” on page 21-20
• “Model Coverage” on page 21-29

Implementation of Activity Diagram: Power Window Control

This topic describes the high-level discrete-event control specification for a power window
control.

You can model the discrete-event control of the window with a Stateflow chart. A
Stateflow chart is a finite state machine with hierarchy and parallelism. This state
machine contains the basic states of the power window system: up, auto-up, down,
auto-down, rest, and emergency. It models the state transitions and accounts for
the precedence of driver commands over the passenger commands. It also includes
emergency behavior that activates when the software detects an object between the
window and the frame while moving up.

The initial Simulink model for the power window control, slexPowerWindowControl, is
a discrete-event controller that runs at a given sample rate.

In this implementation, open the power window control subsystem and observe that
the Stateflow chart with the discrete-event control forms the CSPEC, represented by
the tilted thick bar in the bottom right corner. The detect_obstacle_endstop subsystem
encapsulate the threshold detection mechanisms.

21 Power Window Example

21-16

The discrete-event control is a Stateflow model that extends the state transition diagram
notion with hierarchy and parallelism. State changes because of passenger commands
are encapsulated in a super state that does not correspond to an active driver command.

Consider the control of the passenger window. The passenger or driver can move this
window up and down.

This state machine contains the basic states of the power window system: up, auto-up,
down, auto-down, rest, and emergency.

 Power Window

21-17

Interactive Testing

Control Input

The slexPowerWindowCntlInteract model includes this control input as switches.
Double-click these switches to manually operate them.

21 Power Window Example

21-18

Test the state machine that controls a power window by running the input test vectors
and checking that it reaches the desired internal state and generates output. The power
window has the following external inputs:

• Passenger input
• Driver input
• Window up or down
• Obstacle in window

Each input consists of a vector with these inputs.

 Power Window

21-19

Passenger Input

Element Description

neutral Passenger control switch is not depressed.
up Passenger control switch generates the up

signal.
down Passenger control switch generates the

down signal.

Driver Input

Element Description

neutral Driver control switch is not depressed.
up Driver control switch generates the up

signal.
down Driver control switch generates the down

signal.

Window Up or Down

Element Description

0 Window moves freely between top or
bottom.

1 Window is stuck at the top or bottom
because of physical limitations.

Obstacle in Window

Element Description

0 Window moves freely between top or
bottom.

1 Window has obstacle in the frame.

Generate the passenger and driver input signals by mapping the up and down signals
according to this table:

21 Power Window Example

21-20

Inputs Outputs

up down up down neutral

0 0 0 0 1

0 1 0 1 0

1 0 1 0 0

1 1 0 0 1

The inputs explicitly generate the neutral event from the up and down events,
generated by pressing a power window control switch. The inputs are entered as a truth
table in the passenger neutral, up, down map and the driver neutral, up, down map.

Experimental Results from Interactive Testing

Case 1: Window Up

To observe the state machine behavior:

1 Open the slexPowerWindowCntlInteract model.
2 Run the simulation and then double-click the passenger up switch.

 Power Window

21-21

If you press the physical window switch for more than one second, the window moves
up until the up switch is released (or the top of the window frame is reached and the
endstop event is generated).

3 Double-click the selected passenger up switch to release it.

21 Power Window Example

21-22

4 Simulate the model.

Setting the endstop switch generates the endstop event.

 Power Window

21-23

Case 2: Window Auto-Up

If you press the physical passenger window up switch for a short period of time (less than
a second), the software activates auto-up behavior and the window continues to move up.

1 Press the physical passenger window up switch for a short period of time (less than a
second).

Ultimately, the window reaches the top of the frame and the software generates the
endstop event. This event moves the state machine back to its neutral state.

21 Power Window Example

21-24

2 Simulate the model.

Case 3: Driver-Side Precedence

The driver switch for the passenger window takes precedence over the driver commands.
To observe the state machine behavior in this case:

1 Run the simulation, and then move the system to the passenger up state by
double-clicking the passenger window up switch.

 Power Window

21-25

2 Double-click the driver down switch.

21 Power Window Example

21-26

3 Simulate the model.
4 Notice how the state machine moves to the driver control part to generate the

window down output instead of the window up output.
5 Double-click the driver control to driver up. Double-click the driver down switch.

The driver window up state is reached, which generates the window up output again,
i.e., windowUp = 1.

 Power Window

21-27

6 To observe state behavior when an object is between the window and the frame,
double-click the obstacle switch.

21 Power Window Example

21-28

7 Simulate the model.

On the next sample time, the state machine moves to its emergencyDown state to
lower the window a few inches. How far the software lowers the window depends on
how long the state machine is in the emergencyDown state. This behavior is part of
the next analysis phase.

If a driver or passenger window switch is still active, the state machine moves into
the up or down states upon the next sample time after leaving the emergency state.

 Power Window

21-29

If the obstacle switch is also still active, the software again activates the emergency
state at the next sample time.

Model Coverage

Validation of the Control Subsystem

Validate the discrete-event control of the window using the model coverage tool. This
tool helps you determine the extent to which a model test case exercises the conditional
branches of the controller. It helps evaluate whether all transitions in the discrete-event
control are taken, given the test case, and whether all clauses in a condition that enables
a particular transition have become true. Multiple clauses can enable one transition,
e.g., the transition from emergency back to neutral occurs when either 100 ticks have
occurred or if the endstop is reached.

To achieve full coverage, each clause evaluates to true and false for the test cases used.
The percentage of transitions that a test case exercises is called its model coverage. Model
coverage is a measure of how thoroughly a test exercises a model.

Using Simulink Verification and Validation software, you can apply the following test to
the power window controller.

StepPosition

0 1 2 3 4 5 6

Passenger up 0 0 0 0 0 0 0
Passenger down 0 0 0 1 0 1 1
Driver up 0 0 1 0 1 0 1
Driver down 0 1 0 0 1 1 0

With this test, all switches are inactive at time 0. At regular 1 s steps, the state of one or
more switches changes. For example, after 1 s, the driver down switch becomes active.
To automatically run these input vectors, replace the manual switches by prescribed
sequences of input. To see the preconstructed model:

1 In the MATLAB Command Window, type:

slexPowerWindowCntlCoverage

21 Power Window Example

21-30

2 Simulate the model to generate the Simulink Verification and Validation coverage
report.

For the slexPowerWindowCntrlCoverage model, the report reveals that this test
handles 100% of the decision outcomes from the driver neutral, up, down map block.
However, the test achieves only 50% coverage for the passenger neutral, up, down map
block. This coverage means the overall coverage for slexPowerWindowCntrlCoverage
is 45% while the overall coverage for the slexPowerWindowControl model is 42%. A
few of the contributing factors for the coverage levels are:

• Passenger up block does not change.

 Power Window

21-31

• Endstop and obstacle blocks do not change.

Increase Model Coverage

To increase total coverage to 100%, you need to take into account all possible
combinations of driver, passenger, obstacle, and endstop settings. When you are
satisfied with the control behavior, you can create the power window system. For more
information, see “Create Model Using Model-Based Design” on page 21-34.

This example increases the model coverage for the validation of the discrete-event control
of the window. To start, the example uses inputs from slexPowerWindowCntlCoverage
as a baseline for the model coverage. Next, to further exercise the discrete-
event control of the window, it creates more input sets. The spreadsheet file,
inputCntlCoverageIncrease.xlsx, contains these input sets using one input set per
sheet.

In the example, the slexPowerWindowSpreadsheetGeneration utility
function, which creates a spreadsheet template from the controller model,
slexPowerWindowControl, creates the inputCntlCoverageIncrease.xlsx.
In inputCntlCoverageIncrease.xlsx, the function uses the block names in the
controller model as signal names. slexPowerWindowSpreadsheetGeneration defines
the sheet names. The slexWindowSpreadsheetAddInput utility function populates
inputCntlCoverageIncrease.xlsx with signal data.

The sheet names of these input sets and their descriptions are:

Sheet Name Description

Logged Inputs logged from slexPowerWindowCntlCoverage
LoggedObstacleOffEndStopOn Inputs logged from slexPowerWindowCntlCoverage

with ability to hit endstop
LoggedObstacleOnEndStopOff Inputs logged from slexPowerWindowCntlCoverage

with obstacle in window
LoggedObstacleOnEndStopOn Inputs logged from slexPowerWindowCntlCoverage

with obstacle in window and ability to hit endstop
DriverLoggedPassengerNeutral Inputs logged from slexPowerWindowCntlCoverage

for driver only and passenger takes no action
DriverDownPassengerNeutral Driver is putting down window and passenger takes no

action

21 Power Window Example

21-32

Sheet Name Description

DriverUpPassengerNeutral Driver is putting up window and passenger takes no
action

DriverAutoDownPassengerNeutral Driver is putting down window for one second (auto-
down) and passenger takes no action

DriverAutoUpPassengerNeutral Driver is putting up window for one second (auto-up)
and passenger takes no action

PassengerAutoDownDriverNeutral Passenger is putting down window for one second (auto-
down) and driver takes no action

PassengerAutoUpDriverNeutral Passenger is putting up window for one second (auto-up)
and driver takes no action

To automatically run these input vectors, replace the inputs to the
discrete-event control with the From Spreadsheet block using the file,
inputCntlCoverageIncrease.xlsx. This file contains the multiple input sets. To see
the preconstructed model:

1 In the MATLAB Command Window, type:

slexPowerWindowCntlCoverageIncrease

 Power Window

21-33

2 To generate the Simulink Verification and Validation coverage report for multiple
input set, double click the Run Coverage subsystem in the model.

For the slexPowerWindowCntrlCoverageIncrease model, the report reveals
that using multiple input sets has successfully raised the overall coverage for the
slexPowerWindowControl model from 42% to 78%. Coverage levels are less than
100% because of missing input sets for:

• Passenger up state
• Driver up and down states

21 Power Window Example

21-34

• Passenger automatic down and automatic up states

Create Model Using Model-Based Design

• “Why Use Model-Based Design?” on page 21-34
• “Implementation of Context Diagram: Power Window System” on page 21-35
• “Implement Power Window Control System” on page 21-36
• “Implementation of Activity Diagram: Validate” on page 21-36
• “Implementation of Activity Diagram: Detect Obstacle Endstop” on page 21-38
• “Hybrid Dynamic System: Combine Discrete-Event Control and Continuous Plant” on

page 21-39
• “Detailed Modeling of Power Effects” on page 21-43
• “Control Law Evaluation” on page 21-49
• “Visualization of the System in Motion” on page 21-50
• “Realistic Armature Measurement” on page 21-53
• “Communication Protocols” on page 21-55

Why Use Model-Based Design?

In Model-Based Design, a system model is at the center of the development process, from
requirements development, through design, implementation, and testing. Use Model-
Based Design to:

• Use a common design environment across project teams.
• Link designs directly to requirements.
• Integrate testing with design to continuously identify and correct errors.
• Refine algorithms through multidomain simulation.
• Automatically generate embedded software code.
• Develop and reuse test suites.
• Automatically generate documentation for the model.
• Reuse designs to deploy systems across multiple processors and hardware targets.

For more information, see “Model-Based Design”.

 Power Window

21-35

Implementation of Context Diagram: Power Window System

For requirements presented as a context diagram, see “Context Diagram: Power Window
System” on page 21-4.

Create a Simulink model to resemble the context diagram.

1 Place the plant behavior into one subsystem.
2 Create two subsystems that contain the driver and passenger switches.
3 Add a control mechanism to conveniently switch between the presence and absence

of the object.
4 Put the control in one subsystem.
5 Connect the new subsystems.
6 To see an implementation of this model, in the MATLAB Command Window, type:

slexPowerWindowStart

You can use the power window control activity diagram (“Activity Diagram: Power
Window Control” on page 21-5) to decompose the power window controller of the

21 Power Window Example

21-36

context diagram into parts. This diagram shows the input and output signals present in
the context diagram for easier tracing to their origins.

Implement Power Window Control System

To satisfy full requirements, the power window control must work with the validation of
the driver and passenger inputs and detect the endstop.

For requirements presented as an activity diagram, see “Activity Diagram: Power
Window Control” on page 21-5.

Double-click the slexPowerWindowExample/power_window_control_system block to open
the following subsystem:

Implementation of Activity Diagram: Validate

For requirements presented as activity diagrams, see “Activity Diagram: Validate
Driver” on page 21-6 and “Activity Diagram: Validate Passenger” on page 21-8.

 Power Window

21-37

The activity diagram adds data validation functionality for the driver and passenger
commands to ensure correct operation. For example, when the window reaches the top,
the software blocks the up command. The implementation decomposes each validation
process in new subsystems. Consider the validation of the driver commands (validation
of the passenger commands is similar). Check if the model can execute the up or down
commands, according to the following:

• The model allows the down command only when the window is not completely opened.
• The model allows the up command only when the window is not completely closed and

no object is detected.

The third activity diagram process checks that the software sends only one of the three
commands (neutral, up, down) to the controller. In an actual implementation, both up
and down can be simultaneously true (for example, because of switch bouncing effects).

From the power_window_control_system subsystem, this is the validate_driver_state
subsystem:

From the power_window_control_system subsystem, this is the validate_passenger_state
subsystem:

21 Power Window Example

21-38

Implementation of Activity Diagram: Detect Obstacle Endstop

For requirements presented as an activity diagram, see “Activity Diagram: Detect
Obstacle Endstop” on page 21-9.

In the slexPowerWindowExample model, the power_window_control_system/
detect_obstacle_endstop block implements this activity diagram in the continuous
variant of the Variant Subsystem block. During design iterations, you can add additional
variants.

Double-click the slexPowerWindowExample model power_window_control_system/
detect_obstacle_endstop/Continuous/verify_position block:

 Power Window

21-39

Hybrid Dynamic System: Combine Discrete-Event Control and Continuous Plant

After you have designed and verified the discrete-event control, integrate it with the
continuous-time plant behavior. This step is the first iteration of the design with the
simplest version of the plant.

In Simulink Project, navigate to Files and click Project Files. In the configureModel
folder, run the slexPowerWindowContinuous utility to open and initialize the model.

21 Power Window Example

21-40

The window_system block uses the Variant Subsystem block to allow for
varying levels of fidelity in the plant modeling. Double-click the window_system/
Continuous/2nd_order_window_system block to see the continuous variant.

 Power Window

21-41

The plant is modeled as a second-order differential equation with step-wise changes in its
input:

• When the Stateflow chart generates windowUp, the input is 1.
• When the Stateflow chart generates windowDown, the input is –1.
• Otherwise, the input is 0.

This phase allows analysis of the interaction between the discrete-event state behavior,
its sample rate, and the continuous behavior of the window movement. There are
threshold values to generate the window frame top and bottom:

• endStop

• Event when an obstacle is present, that is, obstacle
• Other events

Double-click the slexPowerWindowExample model power_window_control_system/-
detect_obstacle_endstop/Continuous/verify_position block to see the continuous variant.

When you run the slexPowerWindowContinuous configureModel utility, the model
uses the continuous time solver ode23 (Bogacki-Shampine).

A structure analysis of a system results in:

• A functional decomposition of the system
• Data definitions with the specifics of the system signals

21 Power Window Example

21-42

• Timing constraints

A structure analysis can also include the implementation architecture (outside the scope
of this discussion).

The implementation also adds a control mechanism to conveniently switch between the
presence and absence of the object.

Expected Controller Response

To view the window movement, in Simulink Project in the Shortcut Management
section, right-click SimHybridPlantLowOrder, and select Run. Alternatively, you can
run the task slexPowerWindowContinuousSim.

 Power Window

21-43

The position scope shows the expected result from the controller. After 30 cm, the model
generates the obstacle event and the Stateflow chart moves into its emergencyDown
state. In this state, windowDown is output until the window lowers by about 10 cm.
Because the passenger window up switch is still on, the window starts moving up again
and this process repeats. Stop the simulation and open the position scope to observe the
oscillating process. In case of an emergency, the discrete-event control rolls down the
window approximately 10 cm.

Detailed Modeling of Power Effects

After an initial analysis of the discrete-event control and continuous dynamics, you can
use a detailed plant model to evaluate performance in a more realistic situation. It is best
to design models at such a level of detail in the power domain, in other words, as energy
flows. Several domain-specific MathWorks blocksets can help with this.

To take into account energy flows, add a more detailed variant consisting of power
electronics and a multibody system to the window_system variant subsystem.

To open the model and explore the more detailed plant variant, in Simulink Project, run
configureModel slexPowerWindowPowerEffects.

Double-click the slexPowerWindowExample model window_system/Power Effects -
Visualization/detailed_window_system block.

21 Power Window Example

21-44

Power Electronics Subsystem

The model must amplify the control signals generated by the discrete-event controller to
be powerful enough to drive the DC motor that moves the window.

The amplification modules model this behavior. They show that a switch either connects
the DC motor to the battery voltage or ground. By connecting the battery in reverse, the
system generates a negative voltage and the window can move up, down, or remain still.
The window is always driven at maximum power. In other words, no DC motor controller
applies a prescribed velocity.

To see the implementation, double-click the slexPowerWindowExample model
window_system/Power Effects - Visualization/detailed_window_system/amplification_up
block.

 Power Window

21-45

Multibody System

This implementation models the window using SimMechanics multibody blocks.

To see the actuator implementation, double-click the slexPowerWindowExample model
window_system/Power Effects - Visualization/detailed_window_system/actuator block.

To see the window implementation, double-click the slexPowerWindowExample model
window_system/Power Effects - Visualization/detailed_window_system/plant block.

21 Power Window Example

21-46

This implementation uses SimMechanics multibody blocks for bodies, joints, and
actuators. The window model consists of:

• A worm gear
• A lever to move the window holder in the vertical direction

The figure shows how the mechanical parts move.

Iterate on the Design

An important effect of the more detailed implementation is that there is no window
position measurement available. Instead, the model measures the DC motor current and
uses it to detect the endstops and to see if an obstacle is present. The next stage of the

 Power Window

21-47

system design analyzes the control to make sure that it does not cause excessive force
when an obstacle is present.

In the original system, the design removes the obstacle and endstop detection based
on the window position and replaces it with a current-based implementation. It also
connects the process to the controller and position and force measurements. To reflect
the different signals used, you must modify the data definition. In addition, observe that,
because of power effects, the units are now amps.

PSPEC 1.3.1: DETECT ENDSTOP

 ENDSTOP = ARMATURE_CURRENT > ENDSTOP_MAX

PSPEC 1.3.2: DETECT OBSTACLE

 OBSTACLE = (ARMATURE_CURRENT > OBSTACLE_MAX) and MOVE_UP for 500 ms

PSPEC 1.3.3: ABSOLUTE VALUE

 ABSOLUTE_ARMATURE_CURRENT = abs(ARMATURE_CURRENT)

This table lists the additional signal for the Context Diagram: Power Window System
data definitions.

Context Diagram: Power Window System Data Definition Changes

Signal Information Type Continuous/
Discrete

Data Type Values

ARMATURE_CURRENT Data Continuous Real –20 to 20 A

This table lists the changed signals for the Activity Diagram: Detect Obstacle Endstop
data definitions.

Activity Diagram: Detect Obstacle Endstop Data Definition Changes

Signal Information Type Continuous/
Constant

Data Type Values

ABSOLUTE_ARMATURE_-
CURRENT

Data Continuous Real 0 to 20 A

ENDSTOP_MAX Data Constant Real 15 A
OBSTACLE_MAX Data Constant Real 2.5 A

To see the window subsystem, double-click the slexPowerWindowExample model
window_system/Power Effects - Visualization/detailed_window_system/plant/window
block.

21 Power Window Example

21-48

The implementation uses a lookup table and adds noise to allow evaluation of the
control robustness. To see the implementation of the friction subsystem, double-click
the slexPowerWindowExample model window_system/Power Effects - Visualization/
detailed_window_system/plant/window/friction block.

 Power Window

21-49

Control Law Evaluation

The idealized continuous plant allows access to the window position for endStop and
obstacle event generation. In the more realistic implementation, the model must
generate these events from accessible physical variables. For power window systems, this
physical variable is typically the armature current, Ia, of the DC motor that drives the
worm gear.

When the window is moving, this current has an approximate value of 2 A. When you
switch the window on, the model draws a transient current that can reach a value

21 Power Window Example

21-50

of approximately 10 A. When the current exceeds 15 A, the model activates endstop
detection. The model draws this current when the angular velocity of the motor is kept at
almost 0 despite a positive or negative input voltage.

Detecting the presence of an object is more difficult in this setup. Because safety concerns
restrict the window force to no more than 100 N, an armature current much less than
10 A should detect an object. However, this behavior conflicts with the transient values
achieved during normal operation.

Implement a control law that disables object detection during achieved transient values.
Now, when the system detects an armature current more than 2 A, it considers an object
to be present and enters the emergencyDown state of the discrete-event control. Open
the force scope window (measurements are in newtons) to check that the force exerted
remains less than 100 N when an object is present and the window reverses its velocity.

In reality, far more sophisticated control laws are possible and implemented. For
example, you can implement neural-network-based learning feedforward control
techniques to emulate the friction characteristic of each individual vehicle and changes
over time.

Visualization of the System in Motion

If you have Simulink 3D Animation software installed, you can view the geometrics of
the system in motion via a virtual reality world. If the VR Sink block is not yet open, in
the slexPowerWindowExample/window_world/Simulink_3D_Animation View
model, double-click the VR Sink block.

 Power Window

21-51

To simulate the model with a stiff solver:

1 In Simulink Project, run the task, slexPowerWindowPowerEffectsSim. This batch
job sets the solver to ode23tb (stiff/TR-BDF2).

2 In the slexPowerWindowExample model passenger_switch/Normal block, set the
passenger up switch to on.

3 In the slexPowerWindowExample model driver_switch/Normal block, set the driver
up switch to off.

4 Simulate the model.
5 Between 10 ms and 1 s in simulation time, switch off the slexPowerWindowExample/

passenger_switch/Normal block passenger up switch to initiate the auto-up behavior.

21 Power Window Example

21-52

6 Observe how the window holder starts to move vertically to close the window. When
the model encounters the object, it rolls the window down.

7 Double-click the slexPowerWindowExample model passenger_switch/Normal block
driver down switch to roll down the window completely and then simulate the model.
In this block, at less than one second simulation time, switch off the driver down
switch to initiate the auto-down behavior.

 Power Window

21-53

8 When the window reaches the bottom of the frame, stop the simulation.
9 Look at the position measurement (in meters) and at the armature current (Ia)

measurement (in amps).

Note: The absolute value of the armature current transient during normal behavior
does not exceed 10 A. The model detects the obstacle when the absolute value of the
armature current required to move the window up exceeds 2.5 A (in fact, it is less
than –2.5 A). During normal operation, this is about 2 A. You might have to zoom
into the scope to see this measurement. The model detects the window endstop when
the absolute value of the armature current exceeds 15 A.

Variation in the armature current during normal operation is due to friction that
is included by sensing joint velocities and positions and applying window specific
coefficients.

Realistic Armature Measurement

The armature current as used in the power window control is an ideal value that is
accessible because of the use of an actuator model. In a more realistic situation, data
acquisition components must measure this current value.

21 Power Window Example

21-54

To include data acquisition components, add the more realistic measurement variant
to the window_system variant subsystem. This realistic measurement variant
contains a signal conditioning block in which the current is derived based on a voltage
measurement.

To open a model and configure the realistic measurement, in Simulink Project, run the
configureModel task slexPowerWindowRealisticArmature.

To view the contents of the Realistic Armature - Communications Protocol block, double-
click the SlexPowerWindowExample model window_system/Realistic Armature -
Communications Protocol/detailed_window_system_with_DAQ.

The measurement voltage is within the range of an analog-to-digital converter (ADC)
that discretizes based on a given number of bits. You must scale the resulting value
based on the value of the resistor and the range of the ADC.

Include these operations as fixed-point computations. To achieve the necessary resolution
with the given range, 16 bits are required instead of 8.

Study the same scenario:

1 In the slexPowerWindowExample/passenger_switch/Normal block, set the passenger
up switch.

 Power Window

21-55

2 Run the simulation.
3 After some time, in the slexPowerWindowExample/passenger_switch/Normal block,

switch off the passenger up switch.
4 When the window has been rolled down, click the slexPowerWindowExample/

passenger_switch/Normal block driver down switch.
5 After some time, switch off the slexPowerWindowExample/passenger_switch/Normal

block driver down switch.
6 When the window reaches the bottom of the frame, stop the simulation.
7 Zoom into the armature_current scope window and notice the discretized

appearance.

Communication Protocols

Similar to the power window output control, hardware must generate the input events.
In this case, the hardware is the window control switches in the door and center control
panels. Local processors generate these events and then communicate them to the
window controller via a CAN bus.

To include these events, add a variant containing input from a CAN bus and
switch components that generate the events delivered on the CAN bus to the
driver switch and passenger switch variant subsystems. To open the model
and configure the CAN communication protocols, run the configureModel task,
slexPowerWindowCommunicationProtocolSim.

To see the implementation of the switch subsystem, double-click the
slexPowerWindowExample/driver_switch/Communication Protocol/driver window control
switch block.

Observe a structure that is very similar to the window control system. This structure
contains a:

• Plant model that represents the control switch

21 Power Window Example

21-56

• Data acquisition subsystem that includes, among other things, signal conditioning
components

• Control module to map the commands from the physical switch to logical commands
• CAN module to post the events to the vehicle data bus

You can add communication effects, such as other systems using the CAN bus, and more
realism similar to the described phases. Each phase allows analysis of the discrete-event
controller in an increasingly realistic situation. When you have enough detail, you can
automatically generate controller code for any specific target platform.

Automatic Code Generation for Control Subsystem

You can generate code for the designed control model, slexPowerWindowExample.

1 Display the sample rates of the controller. In the Simulink Editor, select Display >
Sample Time > Colors. Observe that the controller runs at a uniform sample rate.

 Power Window

21-57

2 Right-click the power_window_control_system block and select C/C++ Code > Build
This Subsystem.

References

Mosterman, Pieter J., Janos Sztipanovits, and Sebastian Engell, “Computer-Automated
Multiparadigm Modeling in Control Systems Technology,” IEEE Transactions on Control
Systems Technology, Vol. 12, Number 2, 2004, pp. 223–234.

Simulating Dynamic Systems

22

Running Simulations

• “Simulate a Model Interactively” on page 22-2
• “Specify Simulation Start and Stop Time” on page 22-6
• “Solvers” on page 22-7
• “Choose a Solver” on page 22-9
• “Use Auto Solver to Select a Solver” on page 22-34
• “Save and Restore Simulation State as SimState” on page 22-36
• “View Diagnostics” on page 22-44
• “Systematic Diagnosis of Errors and Warnings” on page 22-47
• “Customize Diagnostic Messages” on page 22-51
• “Report Diagnostic Messages Programmatically” on page 22-54

22 Running Simulations

22-2

Simulate a Model Interactively

Simulation Basics

You can simulate a model in the Simulink Editor using Simulation > Run or the Run
button on the toolbar. The Run button also appears in tools within the Simulink
Editor. You can simulate from any tool that includes the button, such as the Scope
viewer.

Before you start a simulation, you can specify options like simulation start time, stop
time, and the solver for solving the model. (See “Solvers” on page 22-7) You specify
these options in the Configuration Parameters dialog box, which you can open from the
Simulation menu or using the Model Configuration Parameters button on the
toolbar. These settings are saved with the model in a configuration set. You can create
multiple configuration sets for each model and switch between them to see the effects of
different settings. See “Configuration Reuse”.

After you set your model configuration parameters, you can start the simulation. You can
pause, resume, and stop simulation using toolbar controls. You can also simulate more
than one model at a time, so you can start another simulation while one is running.

During simulation, you cannot make changes to the structure of the model, such as
adding or deleting lines or blocks. However, you can make these changes while a
simulation is running:

• Modify some configuration parameters, including the stop time and the maximum
step size.

• Modify the parameters of a block, as long as you do not cause a change in:

• Number of states, inputs, or outputs
• Sample time
• Number of zero crossings
• Vector length of any block parameters
• Length of the internal block work vectors
• Dimension of any signals

You can also examine the model visually as it simulates. For example, you can click a
line to see the signal carried on that line on a Floating Scope or Display block. You can

 Simulate a Model Interactively

22-3

also display port values as a model simulates. See “Display Port Values for Debugging”
on page 31-18.

Run, Pause, and Stop a Simulation

To start simulating your model, click the Run button . You can pause, resume, or stop
a simulation using the corresponding controls on the toolbar.

The model starts simulating at the specified start time and runs until the specified end
time. While the simulation is running, information at the bottom of the editor shows the
percentage of simulation completed and the current simulation time.

• If an error occurs, simulation stops and a message appears. If a warning condition
occurs, simulation completes. In both cases, click the diagnostics link at the bottom of
the editor to see the message, which helps you to locate errors.

• Pausing takes effect after the current time step finishes executing. Resuming a
paused simulation occurs at the next time step.

• If you stop a simulation, the current time step completes, and then simulation stops.
• If the model outputs to a file or to the workspace, stopping or pausing simulation

writes the data.

Use Blocks to Stop or Pause a Simulation

Stop Simulation Using Stop Simulation Blocks

You can use the Stop Simulation block to stop a simulation when the input to the
block is nonzero. If the block input is a vector, any nonzero element stops the simulation.

1 Add a Stop Simulation block to your model.
2 Connect the Stop Simulation block to a signal whose value becomes nonzero at the

specified stop time.

For example, this model stops the simulation when the simulation time reaches 10.

22 Running Simulations

22-4

Pause Simulation Using Assertion Blocks

You can use an Assertion block to pause the simulation when the input signal to the
block is zero. The Assertion block uses the set_param command to pause the simulation.
See “Control Simulation Using the set_param Command” on page 23-7 for more
information on using the set_param command to control the execution of a Simulink
model.

1 Add an Assertion block to your model.
2 Connect the Assertion block to a signal whose value becomes zero at the desired

pause time.
3 In the Assertion block dialog box, clear the Stop simulation when assertion

fails check box. Enter this command as the value of Simulation callback when
assertion fails:

set_param(bdroot,'SimulationCommand','pause'),

disp(sprintf('\nSimulation paused.'))

This model uses an Assertion block with these settings to pause the simulation when the
simulation time reaches 5.

 Simulate a Model Interactively

22-5

When the simulation pauses, a message appears that shows the time the block paused
the simulation.

You can resume the simulation using Continue as you can for any paused simulation.

See Also
Assertion | sim | Stop Simulation

Related Examples
• “Systematic Diagnosis of Errors and Warnings” on page 22-47
• “Specify Simulation Start and Stop Time” on page 22-6

More About
• “Programmatic Simulation”
• “Solvers” on page 22-7

22 Running Simulations

22-6

Specify Simulation Start and Stop Time

By default, simulations start at 0.0 s and end at 10.0 s.

Note: In the Simulink software, time and all related parameters (such as sample times)
are implicitly in seconds. If you choose to use a different time unit, scale all parameters
accordingly.

The Solver configuration pane allows you to specify other start and stop times for the
currently selected simulation configuration. See “Solver Pane” for more information. On
computers running the Microsoft Windows operating system, you can also specify the
simulation stop time in the Simulation menu.

Note Simulation time and actual clock time are not the same. For example, if running a
simulation for 10 s usually does not take 10 s as measured on a clock. The amount of time
it actually takes to run a simulation depends on many factors including the complexity of
the model, the step sizes, and the computer speed.

 Solvers

22-7

Solvers

You simulate a dynamic system by computing its states at successive time steps over
a specified time span. This computation uses information provided by a model of the
system. The time steps are time intervals when the computation happens. The size of
this time interval is called the step size. The process of computing the states of a model in
this manner is known as solving the model. No single method of solving a model applies
to all systems. Simulink provides a set of programs called solvers. Each solver embodies a
particular approach to solving a model.

A solver applies a numerical method to solve the set of ordinary differential equations
that represent the model. Through this computation, it determines the time of the next
simulation step. In the process of solving this initial value problem, the solver also
satisfies the accuracy requirements that you specify.

Solvers are broadly classified using these criteria:

• The type of step size used in the computation

• Fixed-step solvers solve the model at step sizes from the beginning to the end
of the simulation. You can specify the step size or let the solver choose the step
size. Generally, decreasing the step size increases the accuracy of the results and
increases the time required to simulate the system.

• Variable-step solvers vary the step size during the simulation. They reduce
the step size to increase accuracy when the states of a model change rapidly
and during zero-crossing events. They increase the step size to avoid taking
unnecessary steps when the states of a model change slowly. Computing the step
size adds to the computational overhead at each step. However, it can reduce
the total number of steps, and hence the simulation time required to maintain
a specified level of accuracy for models with piecewise continuous or rapidly
changing states.

• The nature of states in the model

• Continuous solvers use numerical integration to compute continuous states of
a model at the current time step based on the states at previous time steps and
the state derivatives. Continuous solvers rely on individual blocks to compute the
values of the discrete states of the model at each time step.

• Discrete solvers are primarily for solving purely discrete models. They compute
only the next simulation time step for a model. When they perform this

22 Running Simulations

22-8

computation, they rely on each block in the model to update its individual discrete
state. They do not compute continuous states.

When you choose a solver for simulating a model, consider:

• The dynamics of the system
• The stability of the solution
• The speed of computation
• The robustness of the solver

A solver might not completely satisfy all of your requirements, so use an iterative
approach when choosing one. Compare simulation results from several solvers and select
one that offers the best performance with minimal tradeoffs.

There are two ways to select a solver for your model:

• Use auto solver. New models have their solver selection set to auto solver by default.
Auto solver recommends a fixed-step or variable-step solver for your model as well as
maximum step size.

• If you are not satisfied with simulation results using auto solver, select a solver in the
Solver pane in the model configuration parameters.

Related Examples
• “Use Auto Solver to Select a Solver” on page 22-34

More About
• “Choose a Solver” on page 22-9

 Choose a Solver

22-9

Choose a Solver

In this section...

“Solver Classification Criteria” on page 22-12
“Choose a Fixed-Step Solver” on page 22-16
“Choose a Variable-Step Solver” on page 22-20
“Choose a Jacobian Method for an Implicit Solver” on page 22-27

The Simulink library of solvers has two main types—fixed-step and variable-step solvers.
You can see the solvers under each type in the Solver pane of model configuration
parameters.

When you build and simulate a model, you can choose either type of solver based on
the dynamics of the model. A model that contains several switches, like an inverter
power system, needs a fixed-step solver. A variable-step solver is better suited for purely
continuous models, like the dynamics of a mass spring damper system.

22 Running Simulations

22-10

When you deploy a model as generated code, you can use only a fixed-step solver. If you
selected a variable-step solver during simulation, use it to calculate the step size required
for thefixed-step solver that you need at deployment.

This chart provides a broad classification of solvers in the Simulink library.

Auto solver selects a solver for you. Auto solver can pick a fixed-step or variable-
step solver for your model and also suggest the maximum step size to use. This chart
describes the heuristics of auto solver.

 Choose a Solver

22-11

For SimPowerSystems models, auto solver selects ode23tb. These systems can have
circuits with nonlinear models, especially circuit breakers and power electronics. Such
nonlinear models require a stiff solver.

For more information, see “Use Auto Solver to Select a Solver” on page 22-34.

To tailor the selected solver to your model, see “Check and Improve Simulation Accuracy”
on page 27-11.

Ideally, the solver you select should:

• Solve the model successfully.
• Provide a solution within the tolerance limits you specify.
• Solve the model in a reasonable duration.

A single solver might not meet all of these requirements. Try simulating with several
solvers before making a selection.

22 Running Simulations

22-12

Solver Classification Criteria

The Simulink library provides several solvers, all of which can work with the algebraic
loop solver.

 Discrete Continuous Variable-Order

Explicit Not Applicable “Fixed-Step Continuous
Explicit Solvers” on
page 22-18

Not ApplicableFixed-Step

Implicit Not Applicable “Fixed-Step Continuous
Implicit Solvers” on
page 22-19

Not Applicable

Explicit “Choose a Variable-
Step Solver” on page
22-20

“Variable-Step
Continuous Explicit
Solvers” on page
22-21

“Single-Order Versus
Variable-Order
Continuous Solvers” on
page 22-16

Variable-Step

Implicit “Variable-Step
Continuous Implicit
Solvers” on page
22-22

“Single-Order Versus
Variable-Order
Continuous Solvers” on
page 22-16

In the Solver pane of model configuration parameters, the Simulink library of solvers
is divided into two major types. See “Fixed-Step Versus Variable-Step Solvers” on page
22-12.

You can further categorize the solvers of each type:

• “Discrete Versus Continuous Solvers” on page 22-14
• “Explicit Versus Implicit Continuous Solvers” on page 22-14
• “One-Step Versus Multistep Continuous Solvers” on page 22-15
• “Single-Order Versus Variable-Order Continuous Solvers” on page 22-16

Fixed-Step Versus Variable-Step Solvers

Fixed-step and variable-step solvers compute the next simulation time as the sum of
the current simulation time and a quantity known as the step size. The Type control
on the Solver configuration pane allows you to select the type of solver. With a fixed-
step solver, the step size remains constant throughout the simulation. With a variable-
step solver, the step size can vary from step to step, depending on the model dynamics.

 Choose a Solver

22-13

In particular, a variable-step solver increases or reduces the step size to meet the error
tolerances that you specify.

The choice between these types depends on how you plan to deploy your model and the
model dynamics. If you plan to generate code from your model and run the code on a real-
time computer system, choose a fixed-step solver to simulate the model. You cannot map
the variable-step size to the real-time clock.

If you do not plan to deploy your model as generated code, the choice between a variable-
step and a fixed-step solver depends on the dynamics of your model. A variable-step
solver might shorten the simulation time of your model significantly. A variable-step
solver allows this saving because, for a given level of accuracy, the solver can dynamically
adjust the step size as necessary. This approach reduces the number of steps required.
The fixed-step solver must use a single step size throughout the simulation, based on the
accuracy requirements. To satisfy these requirements throughout the simulation, the
fixed-step solver typically requires a small step.

This model shows how a variable-step solver can shorten simulation time for a multirate
discrete model.

The model generates outputs at two different rates: every 0.5 s and every 0.75 s. To
capture both outputs, the fixed-step solver must take a time step every 0.25 s (the
fundamental sample time for the model).

[0.0 0.25 0.5 0.75 1.0 1.25 1.5 ...]

By contrast, the variable-step solver has to take a step only when the model generates an
output.

[0.0 0.5 0.75 1.0 1.5 ...]

This scheme significantly reduces the number of time steps required to simulate the
model.

22 Running Simulations

22-14

Discrete Versus Continuous Solvers

When you select a solver type, you can also select a specific solver. Both sets of solvers
include two types: discrete and continuous. Discrete and continuous solvers rely on
the model blocks to compute the values of any discrete states. Blocks that define
discrete states are responsible for computing the values of those states at each time
step. However, unlike discrete solvers, continuous solvers use numerical integration to
compute the continuous states that the blocks define. When choosing a solver, determine
first whether to use a discrete solver or a continuous solver.

If your model has no continuous states, then Simulink switches to either the fixed-step
discrete solver or the variable-step discrete solver. If your model has only continuous
states or a mix of continuous and discrete states, choose a continuous solver from the
remaining solver choices based on the dynamics of your model. Otherwise, an error
occurs.

The solver library contains two discrete solvers—a fixed-step discrete solver and a
variable-step discrete solver. The fixed-step solver by default chooses a step size and
simulation rate fast enough to track state changes in the fastest block in your model. The
variable-step solver adjusts the simulation step size to keep pace with the actual rate of
discrete state changes in your model. This adjustment can avoid unnecessary steps and
shorten simulation time for multirate models (see “Sample Times in Systems” on page
7-25 for more information.)

Note: The fixed-step discrete solvers do not solve for discrete states. Each block
calculates its discrete states independent of the solver.

Explicit Versus Implicit Continuous Solvers

You represent an explicit system by the system of equation

&x f x= ()

. For any given value of x , you can compute &x by substituting x in f x() and evaluating
the equation.

Equations of the form

F x x(,)& = 0

 Choose a Solver

22-15

are considered to be implicit. For any given value of x , you must solve this equation to
calculate &x .

A linearly implicit system can be represented by the equation

M x x f x(). ()& =

. M x() is called the mass matrix and f x() is the forcing function. A system becomes
linearly implicit when you use physical modeling blocks in the model.

While you can apply an implicit or explicit continuous solver to solve all these systems,
implicit solvers are designed specifically for solving stiff problems. Explicit solvers
solve nonstiff problems. An ordinary differential equation problem is said to be stiff if
the desired solution varies slowly, but there are closer solutions that vary rapidly. The
numerical method must then take small time steps to solve the system. Stiffness is an
efficiency issue. The more stiff a system, the longer it takes to for the explicit solver to
perform a computation. A stiff system has both slowly and quickly varying continuous
dynamics.

When compared to explicit solvers, implicit solvers provide greater stability for
oscillatory behavior. However, implicit solvers are also computationally more expensive.
They generate the Jacobian matrix and solve the set of algebraic equations at every time
step using a Newton-like method. To reduce this extra cost, the implicit solvers offer
a Solver Jacobian method parameter that allows you to improve the simulation
performance of implicit solvers. See “Choose a Jacobian Method for an Implicit Solver”
on page 22-27 for more information. Implicit solvers are more efficient than explicit
solvers when you solve a linearly implicit system.

One-Step Versus Multistep Continuous Solvers

The Simulink solver library provides both one-step and multistep solvers. The one-
step solvers estimate y(tn) using the solution at the immediately preceding time point,
y(tn-1), and the values of the derivative at multiple points between tn and tn-1. These
points are minor steps.

The multistep solvers use the results at several preceding time steps to compute the
current solution. Simulink provides one explicit multistep solver, ode113, and one
implicit multistep solver, ode15s. Both are variable-step solvers.

22 Running Simulations

22-16

Single-Order Versus Variable-Order Continuous Solvers

This distinction is based on the number of orders that the solver uses to solve the system
of equation. Two variable-order solvers, ode15s and ode113, are part of the solver
library. They use multiple orders to solve the system of equations. Specifically, the
implicit, variable-step ode15s solver uses first-order through fifth-order equations while
the explicit, variable-step ode113 solver uses first-order through thirteenth-order. For
ode15s, you can limit the highest order applied via the Maximum Order parameter. For
more information, see “Maximum Order” on page 22-23.

Choose a Fixed-Step Solver

The Fixed-Step Discrete Solver

The fixed-step discrete solver computes the time of the next simulation step by adding a
fixed step size to the current time. The accuracy and the length of time of the resulting
simulation depends on the size of the steps taken by the simulation: the smaller the step
size, the more accurate the results are but the longer the simulation takes. By default,
Simulink chooses the step size or you can choose the step size yourself. If you choose
the default setting of auto, and if the model has discrete sample times, then Simulink
sets the step size to the fundamental sample time of the model. Otherwise, if no discrete
rates exist, Simulink sets the size to the result of dividing the difference between the
simulation start and stop times by 50.

Note If you try to use the fixed-step discrete solver to update or simulate a model that
has continuous states, an error message appears. Thus, selecting a fixed-step solver and
then updating or simulating a model is a quick way to determine whether the model has
continuous states.

Fixed-Step Continuous Solvers

The fixed-step continuous solvers, like the fixed-step discrete solver, compute the next
simulation time by adding a fixed-size time step to the current time. For each of these
steps, the continuous solvers use numerical integration to compute the values of the
continuous states for the model. These values are calculated using the continuous states
at the previous time step and the state derivatives at intermediate points (minor steps)
between the current and the previous time step. The fixed-step continuous solvers can,
therefore, handle models that contain both continuous and discrete states.

 Choose a Solver

22-17

Note In theory, a fixed-step continuous solver can handle models that contain no
continuous states. However, that would impose an unnecessary computational burden
on the simulation. Consequently, Simulink uses the fixed-step discrete solver for a model
that contains no states or only discrete states, even if you specify a fixed-step continuous
solver for the model.

Simulink provides two types of fixed-step continuous solvers — explicit and implicit.

The difference between these two types lies in the speed and the stability. An implicit
solver requires more computation per step than an explicit solver but is more stable.
Therefore, the implicit fixed-step solver that Simulink provides is more adept at solving

22 Running Simulations

22-18

a stiff system than the fixed-step explicit solvers. For more information, see “Explicit
Versus Implicit Continuous Solvers” on page 22-14.
Fixed-Step Continuous Explicit Solvers

Explicit solvers compute the value of a state at the next time step as an explicit function
of the current values of both the state and the state derivative. A fixed-step explicit
solver is expressed mathematically as:

x n x n h Dx n() () ()+ = + *1

where x is the state, Dx is a solver-dependent function that estimates the state
derivative, h is the step size, and n indicates the current time step.

Simulink provides a set of fixed-step continuous explicit solvers. The solvers differ in the
specific numerical integration technique that they use to compute the state derivatives
of the model. This table lists each solver and the integration technique it uses. The table
lists the solvers in order of the computational complexity of the integration methods they
use, from the least complex (ode1) to the most complex (ode8).

Solver Integration Technique Order of Accuracy

ode1 Euler's Method First
ode2 Heun's Method Second
ode3 Bogacki-Shampine Formula Third
ode4 Fourth-Order Runge-Kutta (RK4)

Formula
Fourth

ode5 Dormand-Prince (RK5) Formula Fifth
ode8 Dormand-Prince RK8(7) Formula Eighth

None of these solvers has an error control mechanism. Therefore, the accuracy and the
duration of a simulation depend directly on the size of the steps taken by the solver. As
you decrease the step size, the results become more accurate, but the simulation takes
longer. Also, for any given step size, the more computationally complex the solver is, the
more accurate are the simulation results.

If you specify a fixed-step solver type for a model, then by default, Simulink selects the
FixedStepAuto solver. Auto solver then selects an appropriate fixed-step solver that
can handle both continuous and discrete states with moderate computational effort. As
with the discrete solver, if the model has discrete rates (sample times), then Simulink
sets the step size to the fundamental sample time of the model by default. If the model

 Choose a Solver

22-19

has no discrete rates, Simulink automatically uses the result of dividing the simulation
total duration by 50. Consequently, the solver takes a step at each simulation time at
which Simulink must update the discrete states of the model at its specified sample
rates. However, it does not guarantee that the default solver accurately computes
the continuous states of a model. Therefore, you may need to choose another solver,
a different fixed step size, or both to achieve acceptable accuracy and an acceptable
simulation time.
Fixed-Step Continuous Implicit Solvers

An implicit solver computes the state at the next time step as an implicit function of the
state at the current time step and the state derivative at the next time step. In other
words:

x n x n h Dx n() () ()+ - - * + =1 1 0

Simulink provides one fixed-step implicit solver: ode14x. This solver uses a combination
of Newton's method and extrapolation from the current value to compute the value of a
state at the next time step. You can specify the number of Newton's method iterations
and the extrapolation order that the solver uses to compute the next value of a model
state (see “Fixed-step size (fundamental sample time)”). The more iterations and the
higher the extrapolation order that you select, the greater the accuracy you obtain.
However, you simultaneously create a greater computational burden per step size.

How to Choose a Fixed-Step Continuous Solver

Any of the fixed-step continuous solvers in the Simulink product can simulate a model
to any desired level of accuracy, given a small enough step size. Unfortunately, it is not
possible or practical to decide without trial, the combination of solver and step size that
will yield acceptable results for the continuous states in the shortest time. Determining
the best solver for a particular model generally requires experimentation.

To select a fixed-step continuous solver,

1 Choose error tolerances. For more information, see “Error Tolerances for Variable-
Step Solvers” on page 22-25.

2 Use one of the variable-step solvers to simulate your model to the level of accuracy
that you want. Start with ode45. If your model runs slowly, your problem may be
stiff and need an implicit solver. The results of this step give a good approximation of
the correct simulation results and the appropriate fixed step size.

3 Use ode1 to simulate your model at the default step size for your model. Compare
the simulation results for ode1 with the simulation for the variable-step solver.

22 Running Simulations

22-20

If the results are the same for the specified level of accuracy, you have found the
best fixed-step solver for your model, namely ode1. You arrive at this conclusion
because ode1 is the simplest of the fixed-step solvers and hence yields the shortest
simulation time for the current step size.

4 If ode1 does not give satisfactory results, repeat the preceding steps with the
other fixed-step solvers until you find one that gives accurate results with the least
computational effort. The most efficient way to perform this task is to use a binary
search technique:

a Try ode3.
b If ode3 gives accurate results, try ode2. If ode2 gives accurate results, it is the

best solver for your model; otherwise, ode3 is the best.
c If ode3 does not give accurate results, try ode5. If ode5 gives accurate results,

try ode4. If ode4 gives accurate results, select it as the solver for your model;
otherwise, select ode5.

d If ode5 does not give accurate results, reduce the simulation step size and
repeat the preceding process. Continue in this way until you find a solver that
solves your model accurately with the least computational effort.

Choose a Variable-Step Solver

When you set the Type control of the Solver configuration pane to Variable-step,
the Solver control allows you to choose one of the variable-step solvers. As with fixed-
step solvers, the set of variable-step solvers comprises a discrete solver and a subset
of continuous solvers. However, unlike the fixed-step solvers, the step size varies
dynamically based on the local error.

The choice between the two types of variable-step solvers depends on whether the blocks
in your model define states and, if so, the type of states that they define. If your model
defines no states or defines only discrete states, select the discrete solver. If a model has
no states or only discrete states, Simulink uses the discrete solver to simulate the model
even if you specify a continuous solver. If the model has continuous states, the continuous
solvers use numerical integration to compute the values of the continuous states at the
next time step.

Variable-Step Continuous Solvers

Variable-step solvers dynamically vary the step size during the simulation. Each of
these solvers increases or reduces the step size using its local error control to achieve

 Choose a Solver

22-21

the tolerances that you specify. Computing the step size at each time step adds to the
computational overhead. However, it can reduce the total number of steps, and the
simulation time required to maintain a specified level of accuracy.

You can further categorize the variable-step continuous solvers as: one-step or multistep,
single-order or variable-order, and explicit or implicit. (See “Solver Classification
Criteria” on page 22-12 for more information.)

Variable-Step Continuous Explicit Solvers

The variable-step explicit solvers are designed for nonstiff problems. Simulink provides
three such solvers:

22 Running Simulations

22-22

• ode45

• ode23

• ode113

ODE Solver One-Step
Method

Multistep
Method

Order of
Accuracy

Method

ode45 X Medium Runge-Kutta, Dormand-Prince
(4,5) pair

ode23 X Low Runge-Kutta (2,3) pair of Bogacki
& Shampine

ode113 X Variable,
Low to High

PECE Implementation of Adams-
Bashforth-Moutlon

ODE Solver Tips on When to Use

ode45 In general, the ode45 solver is the best to apply as a first try for most
problems. For this reason, ode45 is the default solver for models with
continuous states. This Runge-Kutta (4,5) solver is a fifth-order method that
performs a fourth-order estimate of the error. This solver also uses a fourth-
order “free” interpolant, which allows for event location and smoother plots.

The ode45 is more accurate and faster than ode23. If the ode45 is
computationally slow, your problem may be stiff and thus in need of an
implicit solver.

ode23 The ode23 can be more efficient than the ode45 solver at crude error
tolerances and in the presence of mild stiffness. This solver provides
accurate solutions for “free” by applying a cubic Hermite interpolation to the
values and slopes computed at the ends of a step.

ode113 For problems with stringent error tolerances or for computationally
intensive problems, the Adams-Bashforth-Moulton PECE solver can be more
efficient than ode45.

Variable-Step Continuous Implicit Solvers

If your problem is stiff, try using one of the variable-step implicit solvers:

• ode15s

• ode23s

 Choose a Solver

22-23

• ode23t

• ode23tb

ODE
Solver

One-Step
Method

Multistep
Method

Order of
Accuracy

Solver
Reset

Method

Max.
Order

Method

ode15s X Variable,
Low to

Medium

X X Numerical Differentiation
Formulas (NDFs)

ode23s X Low Second-order, modified
Rosenbrock formula

ode23t X Low X Trapezoidal rule using a
“free” interpolant

ode23tb X Low X TR-BDF2

Solver Reset Method

For three of the stiff solvers — ode15s, ode23t, and ode23tb— a drop-down menu for
the Solver reset method appears on the Solver Configuration pane. This parameter
controls how the solver treats a reset caused, for example, by a zero-crossing detection.
The options allowed are Fast and Robust. Fast specifies that the solver does not
recompute the Jacobian for a solver reset, whereas Robust specifies that the solver does.
Consequently, the Fast setting is computationally faster but it may use a small step size
in certain cases. To test for such cases, run the simulation with each setting and compare
the results. If there is no difference, you can safely use the Fast setting and save time. If
the results differ significantly, try reducing the step size for the fast simulation.

Maximum Order

For the ode15s solver, you can choose the maximum order of the numerical
differentiation formulas (NDFs) that the solver applies. Since the ode15s uses first-
through fifth-order formulas, the Maximum order parameter allows you to choose 1
through 5. For a stiff problem, you may want to start with order 2.

Tips for Choosing a Variable-Step Implicit Solver

The following table provides tips relating to the application of variable-step implicit
solvers. For an example comparing the behavior of these solvers, see sldemo_solvers.

22 Running Simulations

22-24

ODE Solver Tips on When to Use

ode15s ode15s is a variable-order solver based on the numerical differentiation
formulas (NDFs). NDFs are related to, but are more efficient than the
backward differentiation formulas (BDFs), which are also known as Gear's
method. The ode15s solver numerically generates the Jacobian matrices.
If you suspect that a problem is stiff, or if ode45 failed or was highly
inefficient, try ode15s. As a rule, start by limiting the maximum order of
the NDFs to 2.

ode23s ode23s is based on a modified Rosenbrock formula of order 2. Because it is
a one-step solver, it can be more efficient than ode15s at crude tolerances.
Like ode15s, ode23s numerically generates the Jacobian matrix for you.
However, it can solve certain kinds of stiff problems for which ode15s is not
effective.

ode23t The ode23t solver is an implementation of the trapezoidal rule using a
“free” interpolant. Use this solver if your model is only moderately stiff and
you need a solution without numerical damping. (Energy is not dissipated
when you model oscillatory motion.)

ode23tb ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with two stages. The first stage is a trapezoidal rule step while
the second stage uses a backward differentiation formula of order 2. By
construction, the method uses the same iteration matrix in evaluating both
stages. Like ode23s, this solver can be more efficient than ode15s at crude
tolerances.

Note For a stiff problem, solutions can change on a time scale that is very small as
compared to the interval of integration, while the solution of interest changes on a much
longer time scale. Methods that are not designed for stiff problems are ineffective on
intervals where the solution changes slowly because these methods use time steps small
enough to resolve the fastest possible change. For more information, see Shampine, L. F.,
Numerical Solution of Ordinary Differential Equations, Chapman & Hall, 1994.

Support for Zero-Crossing Detection

The variable-step discrete and continuous solvers use zero-crossing detection (see “Zero-
Crossing Detection” on page 3-23) to handle continuous signals.

 Choose a Solver

22-25

Error Tolerances for Variable-Step Solvers

Local Error

The variable-step solvers use standard control techniques to monitor the local error at
each time step. During each time step, the solvers compute the state values at the end
of the step and determine the local error—the estimated error of these state values.
They then compare the local error to the acceptable error, which is a function of both the
relative tolerance (rtol) and the absolute tolerance (atol). If the local error is greater than
the acceptable error for any one state, the solver reduces the step size and tries again.

• The Relative tolerance measures the error relative to the size of each state. The
relative tolerance represents a percentage of the state value. The default, 1e-3, means
that the computed state is accurate to within 0.1%.

• Absolute tolerance is a threshold error value. This tolerance represents the acceptable
error as the value of the measured state approaches zero.

The solvers require the error for the ith state, ei, to satisfy:

e rtol x atol
i i i

£ ¥max(,).

The following figure shows a plot of a state and the regions in which the relative
tolerance and the absolute tolerance determine the acceptable error.

Absolute Tolerances

Your model has a global absolute tolerance that you can set on the Solver pane of
the Configuration Parameters dialog box. This tolerance applies to all states in the
model. You can specify auto or a real scalar. If you specify auto (the default), Simulink
initially sets the absolute tolerance for each state to 1e-6. As the simulation progresses,
the absolute tolerance for each state resets to the maximum value that the state has
assumed so far, times the relative tolerance for that state. Thus, if a state changes from 0

22 Running Simulations

22-26

to 1 and reltol is 1e-3, then by the end of the simulation, abstol becomes 1e-3 also. If
a state goes from 0 to 1000, then abstol changes to 1.

If the computed setting is not suitable, you can determine an appropriate setting
yourself. You might have to run a simulation more than once to determine an
appropriate value for the absolute tolerance.

Several blocks allow you to specify absolute tolerance values for solving the model states
that they compute or that determine their output:

• Integrator

• Second-Order Integrator, Second-Order Integrator Limited
• Variable Transport Delay

• Transfer Fcn

• State-Space

• Zero-Pole

The absolute tolerance values that you specify for these blocks override the global
settings in the Configuration Parameters dialog box. You might want to override the
global setting if, for example, the global setting does not provide sufficient error control
for all of your model states because they vary widely in magnitude. You can set the block
absolute tolerance to:

• auto

• –1 (same as auto)
• positive scalar

• real vector (having a dimension equal to the number of corresponding continuous
states in the block)

Tips

If you do choose to set the absolute tolerance, keep in mind that too low of a value causes
the solver to take too many steps in the vicinity of near-zero state values. As a result, the
simulation is slower.

On the other hand, if you set the absolute tolerance too high, your results can be
inaccurate as one or more continuous states in your model approach zero.

Once the simulation is complete, you can verify the accuracy of your results by reducing
the absolute tolerance and running the simulation again. If the results of these two
simulations are satisfactorily close, then you can feel confident about their accuracy.

 Choose a Solver

22-27

Choose a Jacobian Method for an Implicit Solver

The Solver Jacobian

For implicit solvers, Simulink must compute the solver Jacobian, which is a submatrix of
the Jacobian matrix associated with the continuous representation of a Simulink model.
In general, this continuous representation is of the form:

&x f x t u

y g x t u

=

=

(, ,)

(, ,).

The Jacobian, J, formed from this system of equations is:

J

f

x

f

u

g

x

g

u

A B

C D
=

∂
∂

∂
∂

∂
∂

∂
∂

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

=
Ê

Ë
Á

ˆ

¯
˜.

In turn, the solver Jacobian is the submatrix, J
x .

J A
f

x
x = =

∂

∂
.

Sparsity of Jacobian

For many physical systems, the solver Jacobian Jx is sparse, meaning that many of the
elements of Jx are zero.

Consider the following system of equations:

&

&

&

x f x x

x f x

x f x

1 1 1 3

2 2 2

3 3 2

=

=

=

(,)

()

().

From this system, you can derive a sparsity pattern that reflects the structure of the
equations. The pattern, a Boolean matrix, has a 1 for each x

i that appears explicitly on
the right-hand side of an equation. Therefore, you attain:

22 Running Simulations

22-28

Jx pattern, =
Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

1 0 1

0 1 0

0 1 0

As discussed in “Full and Sparse Perturbation Methods” on page 22-31 and “Full
and Sparse Analytical Methods” on page 22-32 respectively, the Sparse Perturbation
Method and the Sparse Analytical Method may be able to take advantage of this sparsity
pattern to reduce the number of computations necessary and improve performance.

Solver Jacobian Methods

When you choose an implicit solver from the Solver pane of the configuration
parameters dialog box, a parameter called Solver Jacobian method and a drop-down
menu appear. This menu has five options for computing the solver Jacobian:

• auto
• Sparse perturbation
• Full perturbation
• Sparse analytical
• Full analytical

 Choose a Solver

22-29

Note: If you set Automatic solver parameter selection to warning or error in the
Solver Diagnostics pane, and you choose a different solver method than Simulink, you
may receive a warning or an error.

Limitations

The solver Jacobian methods have the following limitations associated with them.

• If you select an analytical Jacobian method, but one or more blocks in the model do
not have an analytical Jacobian, then Simulink applies a perturbation method.

22 Running Simulations

22-30

• If you select sparse perturbation and your model contains data store blocks, Simulink
applies the full perturbation method.

Heuristic 'auto' Method

The default setting for the Solver Jacobian method is auto. Selecting this choice
causes Simulink to perform a heuristic to determine which of the remaining four methods
best suits your model. This algorithm is depicted in the following flow chart.

Because sparse methods are beneficial for models having a large number of states, if 50
or more states exist in your model, the heuristic chooses a sparse method. The logic also

 Choose a Solver

22-31

leads to a sparse method if you specify ode23s because, unlike other implicit solvers,
ode23s generates a new Jacobian at every time step. A sparse analytical or a sparse
perturbation method is, therefore, highly advantageous. The heuristic also ensures
that the analytical methods are used only if every block in your model can generate an
analytical Jacobian.

Full and Sparse Perturbation Methods

The full perturbation method was the standard numerical method that Simulink
used to solve a system. For this method, Simulink solves the full set of perturbation
equations and uses LAPACK for linear algebraic operations. This method is costly from
a computational standpoint, but it remains the recommended method for establishing
baseline results.

The sparse perturbation method attempts to improve the run-time performance by
taking mathematical advantage of the sparse Jacobian pattern. Returning to the sample
system of three equations and three states,

&

&

&

x f x x

x f x

x f x

1 1 1 3

2 2 2

3 3 2

=

=

=

(,)

()

().

The solver Jacobian is:

J

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

x =

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

Ê 1

1

1

2

1

3

2

1

2

2

2

3

3

1

3

2

3

3ËË

Á
Á
Á
Á
Á
Á
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜̃

=

+ D -
D

+ Df x x x x f

x

f x x x x1 1 1 2 3 1

1

1 1 2 2 3(, ,) (, ,)) (, ,)

(, ,) (,

-
D

+ D -
D

+ D -
D

f

x

f x x x x f

x

f x x x x f

x

f x

1

2

1 1 2 3 3 1

3

2 1 1 2 3 2

1

2 1 xx x x f

x

f x x x x f

x

f x x x x f

2 2 3 2

2

2 1 2 3 3 2

3

3 1 1 2 3 3

+ D -
D

+ D -
D

+ D -

,) (, ,)

(, ,)

DD
+ D -
D

+ D -
D

Ê

Ë

Á
Á
Á
Á
Á
Á
ÁÁ x

f x x x x f

x

f x x x x f

x1

3 1 2 2 3 3

2

3 1 2 3 3 3

3

(, ,) (, ,)

ˆ̂

¯

˜
˜
˜
˜
˜
˜
˜̃

22 Running Simulations

22-32

It is, therefore, necessary to perturb each of the three states three times and to evaluate
the derivative function three times. For a system with n states, this method perturbs the
states n times.

By applying the sparsity pattern and perturbing states x1 and x 2 together, this matrix
reduces to:

J

f x x x x x f

x

f x x x x f

x

f x
x =

+ D + D -
D

+ D -
D

1 1 1 2 2 3 1

1

1 1 2 3 3 1

3

2 1

0

0

(, ,) (, ,)

(++ D + D -
D

+ D + D -
D

Ê

Ë

Á
Á
Á
Á
Á

x x x x f

x

f x x x x x f

x

1 2 2 3 2

2

3 1 1 2 2 3 3

2

0

0 0

, ,)

(, ,)ÁÁ
ÁÁ

ˆ

¯

˜
˜
˜
˜
˜
˜
˜̃

The solver can now solve columns 1 and 2 in one sweep. While the sparse perturbation
method saves significant computation, it also adds overhead to compilation. It might
even slow down the simulation if the system does not have a large number of continuous
states. A tipping point exists for which you obtain increased performance by applying
this method. In general, systems having a large number of continuous states are usually
sparse and benefit from the sparse method.

The sparse perturbation method, like the sparse analytical method, uses UMFPACK to
perform linear algebraic operations. Also, the sparse perturbation method supports both
RSim and Rapid Accelerator mode.

Full and Sparse Analytical Methods

The full and sparse analytical methods attempt to improve performance by calculating
the Jacobian using analytical equations rather than the perturbation equations. The
sparse analytical method, also uses the sparsity information to accelerate the linear
algebraic operations required to solve the ordinary differential equations.

Sparsity Pattern

For details on how to access and interpret the sparsity pattern in MATLAB, see
sldemo_metro.

 Choose a Solver

22-33

Support for Code Generation

While the sparse perturbation method supports RSim, the sparse analytical method does
not. Consequently, regardless of which sparse method you select, any generated code
uses the sparse perturbation method. This limitation applies to Rapid Accelerator mode
as well.

22 Running Simulations

22-34

Use Auto Solver to Select a Solver

When you want Simulink to select a solver for simulating the model, use auto solver.
Auto solver chooses a suitable solver and sets the maximum step size of the simulation.

For new models, Simulink selects auto solver and sets the type to variable-step by
default. For an existing model, you can use auto solver to select a solver.

Use Auto Solver with vdp Model

1 Open vdp and click the solver link in the lower-right corner. The Solver
information pane opens.

2 In the pane, click the View solver settings button to open the Solver pane of
the model configuration parameters.

 Use Auto Solver to Select a Solver

22-35

3 Under Solver options, set Type to fixed or variable-step according to your
preference and set Solver to auto.

4 When you simulate the model, auto solver selects a fixed-step or variable-step solver
according to your preference and calculates the maximum step size it recommends.
To see the results, open the Solver information pane.

5 Click the Accept suggested settings button to apply the recommendations of
auto solver. To select different settings, click the View solver settings button and
make changes in the configuration parameters Solver pane.

To learn more about the heuristics of auto solver, see “Choose a Solver” on page 22-9.

22 Running Simulations

22-36

Save and Restore Simulation State as SimState
In this section...

“SimState and Repetitive Simulations” on page 22-36
“Information Saved in a SimState” on page 22-37
“Benefits of Using SimState” on page 22-37
“When You Can Save a SimState” on page 22-38
“Save SimState” on page 22-38
“Restore SimState” on page 22-39
“Change the States of a Block Within SimState” on page 22-40
“S-Functions” on page 22-40
“Model Changes and SimState” on page 22-40
“Limitations of SimState” on page 22-41

SimState and Repetitive Simulations

When designing a system, you simulate a model repeatedly to analyze the behavior of
a system for different inputs, boundary conditions, or operating conditions. In many
applications, a startup phase with significant dynamic behavior is common to multiple
simulations. For example, the cold start takeoff of a gas turbine engine occurs before each
set of aircraft maneuvers. Ideally, you:

1 Simulate the startup phase once.
2 Save the simulation state at the end of the start-up phase.
3 Use this state as the initial state for each set of conditions or maneuvers.

In this type of situation, use SimState to save the state of a simulation. For future
simulations, you can restore the SimState and use it to set initial conditions for
simulations going forward.

A SimState includes both the logged and internal states of every block (e.g., continuous
states, discrete states, work vectors, zero-crossing states) and the internal state of the
Simulink engine (e.g., the data of the ODE solver).

Note: You can also use the Final states option in the Configuration Parameters Data
Import/Export pane to save a simulation state. However, this option saves only logged

 Save and Restore Simulation State as SimState

22-37

states—the continuous and discrete states of blocks. These states are only subsets of the
complete simulation state of the model. They do not include information about hidden
states of certain blocks — information that is not included in logged states but is still
required for the proper execution of the block. Hence you cannot use Final states to
save and restore the complete simulation state as the initial state of a new simulation.

Information Saved in a SimState

A SimState contains information about:

• Logged states
• State of the solver and execution engine
• Zero-crossing signals for blocks that register zero crossings
• Output values of certain blocks in the model

Simulink analyzes block connections and other information to determine whether it is
using the output values effectively as state information.

SimState also stores the hidden states of these blocks:

• Transport Delay
• Variable Transport Delay
• From Workspace
• For Each subsystem
• Conditionally executed subsystems
• Stateflow
• MATLAB System
• SimMechanics Second Generation

By storing this information, SimState ensures that the result of a simulation that
starts from SimState is the same as a simulation that runs from the beginning.

Benefits of Using SimState

• When SimState saves the state of a simulation, it saves information in addition to
the logged states in the model. You need to restore all of this information to ensure

22 Running Simulations

22-38

that the simulation matches the uninterrupted simulation. For example, if solver
information affected the simulation, then changing the state of a block without using
SimState can produce different results.

• You can save several SimStates during a simulation. You can then resume a
simulation from any of those states.

• SimState can help to restore the state of blocks such as the Transport Delay block,
which is typically difficult to restore to a particular state. The state of the Transport
Delay block is not saved in the structure format or the array format when you log
data using the Final states configuration parameter without using Simstate. The
blocks with hidden states are particularly difficult to restore, and SimState enables
you to do so.

When You Can Save a SimState

You can save a SimState:

• At the final Stop time
• When you interrupt a simulation with the Pause or Stop button
• When you use get_param or a block, like the Stop block, to stop a simulation

Save SimState

Save a SimState at the beginning of the final step using one of these options.

Interactive

1 In the Configuration Parameters dialog box, in the Data Import/Export pane,
select the Final states check box. The Save complete SimState in final state
check box becomes available.

2 Select the Save complete SimState in final state check box.
3 In the Final states text box, enter a variable name for the SimState.
4 Simulate the model.

From the MATLAB Command Prompt

Use the sim command with set_param. Set the SaveCompleteFinalSimState
parameter to on.

 Save and Restore Simulation State as SimState

22-39

set_param(mdl,'SaveFinalState,'on','FinalStateName,...

 [mdl 'SimState'],'SaveCompleteFinalSimState','on')

simOut = sim(mdl,'StopTime',tstop)

set_param(mdl,'SaveFinalState','off')

Restore SimState

The Start time does not change from the value in the simulation that generated
SimState. It is a reference value for all time and time-dependent variables in both
the original and the current simulation. For example, a block can save and restore
the number of sample time hits that occurred since the beginning of simulation as its
SimState.

Consider a model that you ran from 0–100 s and that you now want to run from 100–
200 s. The Start time is 0 s for both the original simulation (0–100 s) and for the current
simulation (100–200 s). The initial time of the current simulation is 100 s. Also, if the
block had 10 sample time hits during the original simulation, Simulink recognizes that
the next sample time hit is the 11th, relative to 0, not 100 s.

Note: If you change Start time before restoring a SimState, Simulink overwrites the
Start time with the value saved in the SimState.

Restore a SimState using one of these options.

Interactive

1 In the Configuration Parameters dialog box, in the Data Import/Export pane,
under Load from workspace, select the Initial state check box. The text box
becomes available.

2 Enter the name of the variable containing the SimState in the text box.
3 Set Stop time to a value greater than the time at which the SimState was saved.

From the MATLAB Command Prompt

Use set_param to specify the initial condition as the SimState.

set_param(mdl,'LoadInitialState','on','InitialState',...

[mdl 'xFinal']);

simOut = sim(mdl,'StopTime',tstop)

22 Running Simulations

22-40

Restore SimState Saved in an Earlier Version of Simulink

You can use SimState objects saved in releases starting with R2010a to restore the
SimState of a model. However, this option restores only the logged states of the model.
To see the version of Simulink used to save the SimState, examine the version
parameter of the SimState object.

Simulink detects if the SimState object you provided as the initial state was saved in
the current release. By default, Simulink displays an error message if the SimState was
not saved in the current release. You can configure the diagnostic to allow Simulink to
display the message as a warning and try to restore as many of the values as possible.

To enable this best-effort restoration, in the Configuration Parameters dialog box, in
the Diagnostics pane, set the message for SimState object from earlier release to
warning.

Change the States of a Block Within SimState

• Use loggedStates to get or set the states of blocks. If xout is the state log that
Simulink exports to the workspace, then the loggedStates field has the same
structure as xout.signals.

• You cannot change the states that are not logged. Simulink does not allow this
modification as it could cause the state to be inconsistent with the simulation.

S-Functions

You can use APIs for C and Level-2 MATLAB S-functions to enable S-functions to work
with SimState. For information on how to implement these APIs within S-functions, see
“S-Function Compliance with the SimState”.

S-functions that have P-work vectors but do not declare their SimState compliance
level or declare it to be unknown or disallowed do not support SimState. For more
information, see “S-Function Compliance with the SimState”.

Model Changes and SimState

• You cannot make any structural changes to the model between the time you save the
SimState and the time you restore the simulation using the SimState. For example,
you cannot add or remove a block after saving the SimState without repeating the
simulation and saving the new SimState.

 Save and Restore Simulation State as SimState

22-41

• The SimState interface checksum is primarily based on the configuration settings
in a model. You can make some nonstructural changes to the model between saving
and restoring a SimState. In the Configuration Parameters dialog box, in the
Diagnostics pane, use the SimState interface checksum mismatch diagnostic
to track such changes. You can then find out if the interface checksum of the restored
SimState matches the current interface checksum.

Mismatches can occur when you try to simulate using a solver that is different from
the one that generated the saved SimState. Simulink permits solver changes.
For example, you can use the ode15s solver to solve the initial stiff portion of a
simulation and save the final SimState. You can then continue the simulation with
the restored SimState using ode45. In other words, this diagnostic helps you see the
solver changes but does not signal a problem with the simulation.

• When you use a variable-step solver with the maximum step size set to auto,
Simulink uses the maximum step size from the restored SimState for the new
simulation. To ensure that the concatenated SimState trajectory of two simulations
matches that of an uninterrupted simulation, specify a value for the maximum step
size.

Limitations of SimState

Note: In some cases, saving partial state information avoids some of the limitations of
using SimState. For a comparison of the two ways to save state data, see “Comparison
of SimState and Final State Logging” on page 57-145.

Block Support

The following blocks do not support SimState:

• In the Stack and Queue blocks, the default setting for the Push full stack option
is Dynamic reallocation. This default setting does not support SimState. Other
settings (Ignore, Warning and Error) support SimState.

• SimMechanics First Generation blocks
• SimEvents blocks

Simulink tries to save the output of a block as part of a SimState. For S-functions, this
happens even if the functions declare that no SimState is required. If the block output

22 Running Simulations

22-42

is of custom type, Simulink cannot save the SimState and displays an error. For more
information about SimState use with S-functions, see “S-Functions” on page 22-40.

Model reference offers partial support for SimState. For details, see “Model Referencing”
on page 22-42.

Simulation

• You can save SimState only at the final stop time or at the execution time at which
you pause or stop the simulation.

• You can use only the Normal or the Accelerator simulation mode.
• You cannot save SimState in Normal mode and restore it in Accelerator mode, or

vice versa.
• You cannot change the states of certain blocks that are not logged. For more

information, see “Change the States of a Block Within SimState” on page 22-40.

Code Generation

The SimState feature does not support Simulink Coder or Embedded Coder code
generation.

Model Referencing

• You cannot modify logged states of blocks that are inside a referenced model in
Accelerator mode.

• The following blocks do not support SimState when included in a model referenced in
Accelerator mode:

• Level 2 MATLAB S-Function
• MATLAB System
• n-D Lookup Table
• S-Function (with custom SimState or PWork vectors)
• To File
• Waveform Generator
• Simscape blocks

• For additional information, see “State Information for Referenced Models” on page
57-148.

 Save and Restore Simulation State as SimState

22-43

Model Function

You cannot input the SimState to the model function.

22 Running Simulations

22-44

View Diagnostics
You can view and diagnose errors and warnings generated by your model using the
Diagnostic Viewer. The Diagnostic Viewer displays three types of diagnostic
messages: errors, warnings, and information. A model generates these messages during a
runtime operation, like model load, simulation, or update diagram.

The diagnostic viewer window is divided into:

• Toolbar menu: Offers various commands to help you manage the diagnostic messages.
For more information, see “Toolbar” on page 22-44.

• Diagnostic Message pane: Displays the error, warning, and information messages. For
more information, see “Diagnostic Message Pane” on page 22-45.

Toolbar

To manage the diagnostic messages, use the Diagnostic Viewer toolbar.

 View Diagnostics

22-45

Button Action

Expand or collapse messages

Save all or latest messages in a log file

Copy all or latest messages

Clear all or all but latest messages

Filter out errors, warning, and information
messages
Group similar type of messages

Search messages for specific keywords and
navigate between messages
Set maximum number of models to display
in tabbed panes and the maximum number
of events to display per model

Diagnostic Message Pane

The diagnostic message pane displays the error, warning, and information messages in a
tabbed format. These messages are color-coded for distinction and are hierarchical.

A new stage is generated for each successive event, you can save or clear stage. Each
stage represents a single event such as model load, update diagram, or simulation.

Different types of diagnostic messages are:

• Information message: Displays the information related to a model load. Information

messages are marked as .
• High priority warning: Displays the errors encountered during model load as a

high priority warning. Any subsequent operation, like update on the model without
rectifying the high priority warning messages are marked as errors. High priority

warnings are marked as .

22 Running Simulations

22-46

• Warning: Displays the warnings associated during an operation on a model. Warnings

are marked as .
• Error: Displays the errors associated during an operation on a model. Errors are

marked as .

Tip To locate the source of error, click the hyperlink in the message. The source of
error in the model is highlighted.

 Systematic Diagnosis of Errors and Warnings

22-47

Systematic Diagnosis of Errors and Warnings

This example shows how to use the Diagnostic Viewer to identify and locate simulation
errors and warnings systematically.

1 Open your model.

If your model contains errors related to callback functions, the Diagnostic Viewer
opens and displays the following errors in Model Load stage.

Tip To open the Diagnostic Viewer window, click View > Diagnostic Viewer or
click View warnings in the Simulink Editor.

22 Running Simulations

22-48

2 In the Simulink Editor, click File > Model Properties > Model Properties, and
examine the callback error.

 Systematic Diagnosis of Errors and Warnings

22-49

3 After fixing any callback errors, simulate the model to diagnose simulation errors
and warnings.

Diagnostic Viewer lists errors and warnings in stages. Each stage in Diagnostic
Viewer represents a single event such as model load, update diagram, simulation, or
build.

22 Running Simulations

22-50

4 Filter out warnings by clicking so that you can address errors first.
5 To locate the source of the error, click the hyperlink in the message. The model in the

source is highlighted. If a block has multiple ports, you can hover over each port to
see the port number.

6 After fixing all errors, simulate your model again and view the Diagnostic Viewer
to identify remaining problems.

 Customize Diagnostic Messages

22-51

Customize Diagnostic Messages

In this section...

“Display Custom Text” on page 22-51
“Create Hyperlinks to Files, Folders, or Blocks” on page 22-52
“Create Programmatic Hyperlinks” on page 22-52

The Diagnostic Viewer displays the output of MATLAB error functions executed
during simulation.

You can customize simulation error messages in the following ways by using MATLAB
error functions in callbacks, S-functions, or MATLAB Function blocks.

Display Custom Text

This example shows how to can customize the MATLAB function check_signal to
display the text Signal is negative.

1 Open the MATLAB Function for editing.

2 In the MATLAB Editor, create a function to display custom text.

function y = check_signal(x)

 if x < 0

 error('Signal is negative');

 else

 y = x;

 end

3 Simulate the model.

A runtime error appears and you are prompted to start the debugger. Click OK.
4 To view the following error in Diagnostic Viewer, close the debugger.

22 Running Simulations

22-52

Create Hyperlinks to Files, Folders, or Blocks

To create hyperlinks to files, folders, or blocks in an error message, include the path to
these items within customized text.

Example error message Hyperlink

error ('Error reading data from

"C:/Work/designData.mat"')

Opens designData.data in the MATLAB
Editor.

error ('Could not find data in

folder "C:/Work"')

Opens a Command Window and sets C:
\Work as the working folder.

error ('Error evaluating

parameter in block "myModel/Mu"')

Displays the block Mu in model myModel.

Create Programmatic Hyperlinks

This example shows how to can customize the MATLAB function check_signal to
display a hyperlink to the documentation for find_system.

1 Open the MATLAB Function for editing.

2 In the MATLAB Editor, create a function to display custom text.

function y = check_signal(x)

 if x < 0

 Customize Diagnostic Messages

22-53

 error('See help for find_system');

 else

 y = x;

 end

3 Simulate the model.

A runtime error appears and you are prompted to start the debugger. Click OK.
4 To view the following error in Diagnostic Viewer, close the debugger.

22 Running Simulations

22-54

Report Diagnostic Messages Programmatically

The sldiagviewer functions enable you to generate, display, and log diagnostic
messages in the Diagnostic Viewer.

You can use these functions to report the diagnostic messages programmatically:

• Function to create a stage: sldiagviewer.createStage
• Functions to report diagnostic messages:

• sldiagviewer.reportError

• sldiagviewer.reportWarning

• sldiagviewer.reportInfo

• Function to log the diagnostics: sldiagviewer.diary

Create Diagnostic Stages

In the Diagnostic Viewer, errors, warnings, and information messages are displayed in
groups based on the operation, such as model load, simulation, and build. These groups
are called stages. The sldiagviewer.createStage function enables you to create
stages. You can also create child stages for a stage object. A parent stage object must be
active to create a child stage. When you create a stage object, Simulink initializes a stage.
When you close the stage object, Simulink ends the stage. If you delete a parent stage
object, the corresponding parent and its child stage close in the Diagnostic Viewer. The
syntax for creating a stage is:

stageObject =

sldiagviewer.createStage(StageName,'ModelName',ModelNameValue)

In this syntax,

• StageName specifies the name of a stage and is a required argument. The value type
is string, for example, 'Analysis'.

• Use the 'ModelName', ModelNameValue pair to specify the model name of a stage.
All the child stages inherit the model name from their parent. The value type is
string, for example, 'vdp'.

Example to Create Stage

my_stage = sldiagviewer.createStage('Analysis','ModelName','vdp');

 Report Diagnostic Messages Programmatically

22-55

Report Diagnostic Messages

You can use the sldiagviewer functions to report error, warning, or information
messages in the Diagnostic Viewer. The syntaxes for reporting diagnostic messages are:

• sldiagviewer.reportError(Message): Reports the error messages.
• sldiagviewer.reportWarning(Message): Reports the warnings.
• sldiagviewer.reportInfo(Message): Reports the information messages.

Message describes the error, warning, or build information and is a required argument.
Message can have values in these formats:

• String
• MSLException or MException object

Optionally, you can use the 'Component' argument and its corresponding value in the
syntax to specify the component or product that generates the message. The value type is
string, for example, 'Simulink' and 'Stateflow'.

Example to Report Diagnostics

% Create a Stage to display all the messages

my_stage = sldiagviewer.createStage('Analysis', 'ModelName', '‘vdp');

% Catch the error introduced in vdp as an exception.

try

sim('vdp');

catch error

end

% Report the caught exception as warning

sldiagviewer.reportWarning(error);

% Report a custom info message to Diagnostic Viewer

sldiagviewer.reportInfo('My Info message');

22 Running Simulations

22-56

Log Diagnostic Messages

You can use the sldiagviewer.diary function to log the simulation warning, error,
and build information to a file. The syntaxes for generating log files are:

• sldiagviewer.diary: Intercepts the build information, warnings, and errors
transmitted to the Command Window or the Diagnostic Viewer and logs them to a
text file diary.txt in the current directory.

• sldiagviewer.diary(filename): Toggles the logging state of the text file
specified by filename.

• sldiagviewer.diary(toggle): Toggles the logging ability. Valid values are 'on'
and 'off’. If you have not specified a log file name, the toggle setting applies to the
last file name that you specified for logging or to the diary.txt file.

• sldiagviewer.diary(filename,'UTF-8'): Specifies the character encoding for
the log file.

In this syntax,

• filename specifies the file to log the data to. The values type is string.
• toggle specifies the logging state 'on' or 'off'.

Example to Log Diagnostic Messages

% Log messages using sldiagviewer.diary

sldiagviewer.diary

open_system('vdp')

rtwbuild('vdp')

% Open diary.txt to view logs.

Starting build procedure for model: vdp

Build procedure for model: 'vdp' aborted due to an error.

...

% Log messages using sldiagviewer.diary(filename)

sldiagviewer.diary('C:\MyLogs\log1.txt')

% Log messages using sldiagviewer.diary(toggle)

sldiagviewer.diary('C:\MyLogs\log1.txt') % Start logging

open_system('vdp')

 Report Diagnostic Messages Programmatically

22-57

rtwbuild('vdp')

sldiagviewer.diary('off') % Switch off logging

open_system('sldemo_fuelsys')

rtwbuild('sldemo_fuelsys')

sldiagviewer.diary('on') % Resume logging

% Log messages using sldiagviewer.diary(filename,'UTF-8')

sldiagviewer.diary('C:\MyLogs\log1.txt','UTF-8')

More About
• “View Diagnostics” on page 22-44
• “Systematic Diagnosis of Errors and Warnings” on page 22-47

23

Running a Simulation
Programmatically

• “About Programmatic Simulation” on page 23-2
• “Run Simulation Using the sim Command” on page 23-3
• “Control Simulation Using the set_param Command” on page 23-7
• “Run Parallel Simulations” on page 23-10
• “Error Handling in Simulink Using MSLException” on page 23-25

23 Running a Simulation Programmatically

23-2

About Programmatic Simulation

Entering simulation commands in the MATLAB Command Window or from a MATLAB
file enables you to run unattended simulations. You can perform Monte Carlo analysis
by changing the parameters randomly and executing simulations in a loop. You
can use either the sim command or the set_param command to run a simulation
programmatically. To run simulations simultaneously, you can call sim from within a
parfor loop under specific conditions.

 Run Simulation Using the sim Command

23-3

Run Simulation Using the sim Command

In this section...

“Single-Output Syntax for the sim Command” on page 23-3
“Examples of Implementing the sim Command” on page 23-4
“Calling sim from Within parfor” on page 23-5
“Backwards Compatible Syntax” on page 23-5

Single-Output Syntax for the sim Command

The general form of the command syntax for running a simulation is:

SimOut = sim('model', Parameters)

where model is the name of the block diagram and Parameters can be
a list of parameter name-value pairs, a structure containing parameter
settings, or a configuration set. The sim command returns, SimOut, a single
Simulink.SimulationOutput object that contains all of the simulation outputs (logged
time, states, and signals). This syntax is the “single-output format” of the sim command.

SimOut = sim('model', 'Param1', Value1, 'Param2', Value2...);

SimOut = sim('model', ParameterStruct);

SimOut = sim('model', ConfigSet);

Note: The output of the sim command will always be returned to SimOut, the single
simulation output object and not to the workspace.

During simulation, the specified parameters override the values in the block diagram
configuration set. The original configuration values are restored at the end of simulation.
If you wish to simulate the model without overriding any parameters, and you want the
simulation results returned in the single-output format, then you must do one of the
following:

• Select Save simulation output as single object on the Data Import/Export pane
of the Configuration Parameters dialog box. This selection overrides the Dataset
selection for Signal logging format in the same pane.

23 Running a Simulation Programmatically

23-4

• Specify the ReturnWorkspaceOutputs parameter value as 'on' in the sim
command:

SimOut = sim('model', 'ReturnWorkspaceOutputs', 'on');

To log the model time, states, or outputs, use the Configuration Parameters Data Import/
Export dialog box. To specify the time span for a simulation, you must specify the
StartTime and StopTime parameters. To log signals, either use a block such as the
To Workspace block or the Scope block, or use the Signal and Scope Manager to log
results directly.

To stop a simulation in progress, press Ctrl+C. The sim command does not allow you to
pause a simulation in progress.

For complete details of the sim command syntax, see the sim reference page.

Examples of Implementing the sim Command

Following are examples that show the application of each of the three formats for
specifying parameter values using the single-output format of the sim command.

Specifying Parameter Name-Value Pairs

In the following example, the sim syntax specifies the model name, vdp, followed by
consecutive pairs of parameter name and parameter value. For example, the value of the
SimulationMode parameter is rapid.

simOut = sim('vdp','SimulationMode','rapid','AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew');

simOutVars = simOut.who;

yout = simOut.get('youtNew');

Specifying a Parameter Structure

The following example shows how to specify parameter name-value pairs as a structure
to the sim command.

paramNameValStruct.SimulationMode = 'rapid';

paramNameValStruct.AbsTol = '1e-5';

paramNameValStruct.SaveState = 'on';

paramNameValStruct.StateSaveName = 'xoutNew';

paramNameValStruct.SaveOutput = 'on';

 Run Simulation Using the sim Command

23-5

paramNameValStruct.OutputSaveName = 'youtNew';

simOut = sim('vdp',paramNameValStruct);

Specifying a Configuration Set

The following example shows how to create a configuration set and use it with the sim
syntax.

model = 'vdp';

load_system(model)

simMode = get_param(model, 'SimulationMode');

set_param(model, 'SimulationMode', 'rapid')

cs = getActiveConfigSet(model);

model_cs = cs.copy;

set_param(model_cs,'AbsTol','1e-5',...

 'SaveState','on','StateSaveName','xoutNew',...

 'SaveOutput','on','OutputSaveName','youtNew')

simOut = sim(model, model_cs);

set_param(model, 'SimulationMode', simMode)

The block diagram parameter, SimulationMode, is not part of the configuration set, but
is associated with the model. Therefore, the set_param command saves and restores the
original simulation mode by passing the model rather than the configuration set.

Calling sim from Within parfor

For information on how to run simultaneous simulations by calling sim from within
parfor, see “Run Parallel Simulations” on page 23-10.

Backwards Compatible Syntax

Use this syntax only for backwards compatibility with Simulink Versions 7.3 or earlier
releases.

[T,X,Y] =sim('model',Timespan, Options, UT)

[T,X,Y1,...,Yn] =sim('model',Timespan, Options, UT)

If only one right-hand side argument exists, then Simulink automatically saves the time,
the state and the output to the specified left-hand side arguments. You can explicitly
switch to the single-output format by changing the setting for Data Import/Export >
Save options > Save simulation output as a single object in Model Configuration
Parameters.

23 Running a Simulation Programmatically

23-6

If you do not specify any left-hand side arguments, then Simulink determines what
data to log based on the settings for Data Import/Export > Save to workspace in
Model Configuration Parameters. Simulink stores the simulation output either in
the current workspace or in the variable ans, based on the setting for Save simulation
output as a single object in the Data Import/Export pane.

T The time vector returned.
X The state returned in matrix or structure format. The state matrix

contains continuous states followed by discrete states.
Y The output returned in matrix or structure format. For block

diagram models, this variable contains all root-level blocks.
Y1,...,Yn The outports, which can only be specified for diagram models.

Here n must be the number of root-level blocks. Each outport will
be returned in the Y1,...,Yn variables.

'model' The name of a block diagram model.
Timespan The timespan can be one of the following: TFinal, [TStart

TFinal], or [TStart OutputTimes TFinal]. Output times are time
points which will be returned in T, but in general T will include
additional time points.

Options Optional simulation parameters created in a structure by the
simset command using name-value pairs.

UT Optional external inputs. For supported expressions, see “Enable
Data Import” on page 57-88.

Simulink only requires the first parameter. Simulink takes all defaults from the block
diagram, including unspecified options. If you specify any optional arguments, your
specified settings override the settings in the block diagram.

Specifying the right-hand side argument of sim as the empty matrix, [], causes Simulink
to use the default for the argument.

To specify the single-output format for sim('model', Timespan, Options, UT), set the
'ReturnWorkspaceOutputs' option of the options structure to 'on'.

 Control Simulation Using the set_param Command

23-7

Control Simulation Using the set_param Command

How Using set_param to Control Simulation Works

You can use the set_param command to

• Start a simulation,
• pause, stop or continue a simulation
• Update a block diagram.
• Write all data logging variables to the base workspace.

Keep the following in mind when using set_param to control a simulation:

• When you use set_param to start, pause, continue or stop a simulation, these
commands are requests for such actions and do not get executed immediately.
Simulink first completes uninterruptable work, such as solver steps and other
commands that preceded the set_param command in the script the set_param
command is a part of. Then simulation starts, pauses, continues or stops as specified
by the set_param command.

• If you use matlab -nodisplay to start a session, you cannot use set_param to run
your simulation. The -nodisplay mode does not support menu simulation.

• When you start a simulation using the set_param command and 'start' argument,
you must use the set_param command and 'stop’ argument to stop it.

• You can also use the sim command to start a simulation. However, you cannot pause
a simulation started with sim.

set_param Syntax

Use this syntax to control simulation using the set_param command:

set_param('sys','SimulationCommand','cmd')

• 'sys' is the name of the system you want to simulate
• 'cmd' is the command to control simulation. Possible values are:

• 'start'

• 'stop'

23 Running a Simulation Programmatically

23-8

• 'pause'

• 'continue'

• 'connect' (to a target)
• 'update'

• 'WriteDataLogs'

For example, to start a simulation on the systemvdp, use the following command:

set_param('vdp', 'SimulationCommand', 'start')

Update Workspace Variables Dynamically During Simulation

You can update work space variables dynamically when a simulation is running. To do
this, type:

set_param(bdroot,’SimulationCommand’,’update’)

Check Status of Simulation

You can also use the get_param command to check the status of a simulation. The
format of the get_param function for this use is

get_param('sys','SimulationStatus')

The software returns 'stopped', 'initializing', 'running', 'paused',
'updating', 'terminating', or 'external' (used with the Simulink Coder product).

Control Simulation Using Block Callbacks

A callback executes when you perform various actions on your model, such as clicking on
a block or starting a simulation. You can use callbacks to execute a MATLAB script or
other MATLAB commands.

Provide code for the appropriate block callback parameter to specify actions that occur at
one of these times:

• At the start of model simulation
• After the simulation pauses

 Control Simulation Using the set_param Command

23-9

• When the simulation continues
• When the simulation stops

For details, see “Callbacks for Customized Model Behavior” on page 4-68 and “Block
Callback Parameters” on page 4-75.

Execute MATLAB Code Before Starting Simulation

You can use the StartFcn callback to automatically execute MATLAB code before the
simulation starts.

% openscopes.m

% Brings scopes to forefront at beginning of simulation.

blocks = find_system(bdroot,'BlockType','Scope');

% Finds all of the scope blocks on the top level of your

 % model to find scopes in subsystems, give the subsystem

 % names. Type help find_system for more on this command.

for i = 1:length(blocks)

 set_param(blocks{i},'Open','on')

end

% Loops through all of the scope blocks and brings them

 % to the forefront

After you create this MATLAB script, set the StartFcn parameter for the model to call
the script. For example,

set_param('mymodel','StartFcn','openscopes')

Now every time you run the model, all of the Scope blocks automatically open in the
forefront.

23 Running a Simulation Programmatically

23-10

Run Parallel Simulations

In this section...

“Overview of Calling sim from Within parfor” on page 23-10
“Simulink and Parallel Computing Toolbox Software” on page 23-14
“Simulink and MATLAB Distributed Computing Server Software” on page 23-15
“sim in parfor with Normal Mode” on page 23-15
“sim in parfor with Normal Mode and MATLAB Distributed Computing Server
Software” on page 23-17
“sim in parfor with Rapid Accelerator Mode” on page 23-18
“Workspace Access Issues” on page 23-19
“Resolving Workspace Access Issues” on page 23-20
“Data Concurrency Issues” on page 23-21
“Resolving Data Concurrency Issues” on page 23-22

Overview of Calling sim from Within parfor

The parfor command allows you to run parallel (simultaneous) Simulink simulations
of your model (design). In this context, parallel runs mean multiple model simulations
at the same time on different workers. Calling sim from within a parfor loop often
helps for performing multiple simulation runs of the same model for different inputs or
for different parameter settings. For example, you can save simulation time performing
parameter sweeps and Monte Carlo analyses by running them in parallel. Note that
running parallel simulations using parfor does not currently support decomposing your
model into smaller connected pieces and running the individual pieces simultaneously on
multiple workers.

Normal, Accelerator, and Rapid Accelerator simulation modes are supported by sim in
parfor. (See “Choosing a Simulation Mode” on page 30-11 for details on selecting a
simulation mode and “Design Your Model for Effective Acceleration” on page 30-17
for optimizing simulation run times.) For other simulation modes, you need to address
any workspace access issues and data concurrency issues to produce useful results.
Specifically, the simulations need to create separately named output files and workspace
variables. Otherwise, each simulation overwrites the same workspace variables and files,
or can have collisions trying to write variables and files simultaneously.

 Run Parallel Simulations

23-11

For information on code regeneration and parameter handling in Rapid Accelerator
mode, see “Parameter Tuning in Rapid Accelerator Mode” on page 30-8.

Also, see parfor.

Note: If you open models inside a parfor statement, close them again using bdclose
all to avoid leaving temporary files behind.

The following examples show how to use sim in parfor using the sldemo_suspn_3dof
model. To access these examples, from Simulink Documentation Center, click Examples
> Modeling Features and navigate to Simulation Performance:

• Parallel Simulations Using Parfor: Test-Case Sweep
• Parallel Simulations Using Parfor: Parameter Sweep in Normal Mode
• Parallel Simulations Using Parfor: Parameter Sweep in Rapid Accelerator Mode

Computationally Intensive Simulations

To further improve the performance of multiple simulations of the same model, you can
use:

• Multiple designated workers (MATLAB computational engines) using the Parallel
Computing Toolbox software

23 Running a Simulation Programmatically

23-12

• Multiple computer clusters, clouds, and grids using the MATLAB Distributed
Computing Server software

 Run Parallel Simulations

23-13

To take advantage of these environments, you can:

1 Simulate your model on a single computer.
2 When satisfied with single simulation, run multiple simulations in parallel on

multiple designated workers on a local multicore desktop.
3 When satisfied with multiple simulations on local multicore desktop, run simulations

in parallel remotely on computer clusters, clouds, and grids.

23 Running a Simulation Programmatically

23-14

Consider the following:

Required Software*Action

MATLAB Simulink Parallel Computing
Toolbox

MATLAB Distributed
Computing Server

Run a single
simulation.

Run multiple
simulations
simultaneously on
your computer.

Run multiple
simulations
remotely on a
server.

* And other required and optional software

Simulink and Parallel Computing Toolbox Software

Before you run simulations in the Parallel Computing Toolbox environment, see “Parallel
Computing Toolbox”. You can use the Parallel Computing Toolbox software to run
simulations on a local multicore computer or on multiple remote computers.

1 Have a Parallel Computing Toolbox license.
2 Run sim in parfor for your model.

For an example of using sim in parfor using Normal mode, see “sim in parfor with
Normal Mode” on page 23-15.

For an example of using sim in parfor using Rapid Accelerator, see “sim in parfor with
Rapid Accelerator Mode” on page 23-18.

Note: Code generation operations for the same model overwrite each other. If you want
each worker to generate its own copy of code, attach and distribute the folder to each
worker.

 Run Parallel Simulations

23-15

You can also use Parallel Computing Toolbox software to run simulations on multiple
remote computers or in a nonhomogeneous environment. For these cases, you can use the
Parallel Computing Toolbox software with the MATLAB Distributed Computing Server
software.

Simulink and MATLAB Distributed Computing Server Software

Before you run simulations in the MATLAB Distributed Computing Server environment,
see “MATLAB Distributed Computing Server”.

1 Have Parallel Computing Toolbox and MATLAB Distributed Computing Server
licenses.

2 Select and configure your cluster configuration.
3 Use the “Parallel Computing Toolbox” software to create, import, and select a default

parallel cluster profile.
4 Use the Parallel Computing Toolbox software to run sim in parfor for your model.

For an example of sim in parfor with Normal mode using MATLAB Distributed
Computing Server software, see “sim in parfor with Normal Mode and MATLAB
Distributed Computing Server Software” on page 23-17.

You can also use sim in parfor with Rapid Accelerator and MATLAB Distributed
Computing Server software (see “sim in parfor with Rapid Accelerator Mode” on page
23-18). In that example, you build the code once and distribute that generated code
to the other local workers. You can adapt “sim in parfor with Rapid Accelerator Mode” on
page 23-18 example for a remote cluster environment by:

• Calling parpool with a cluster name as input
• Attaching required files

For an example of how to adapt to a remote cluster environment, see “sim in parfor with
Normal Mode and MATLAB Distributed Computing Server Software” on page 23-17.

sim in parfor with Normal Mode

This code fragment shows how you can use sim and parfor in Normal mode. Save
changes to your model before simulating in parfor. The saved copy of your model is
distributed to parallel workers when simulating in parfor.

% 1) Load model and initialize the pool.

model = 'sldemo_suspn_3dof';

23 Running a Simulation Programmatically

23-16

load_system(model);

parpool;

% 2) Set up the iterations that we want to compute.

Cf = evalin('base', 'Cf');

Cf_sweep = Cf*(0.05:0.1:0.95);

iterations = length(Cf_sweep);

simout(iterations) = Simulink.SimulationOutput;

% 3) Need to switch all workers to a separate tempdir in case

% any code is generated for instance for StateFlow, or any other

% file artifacts are created by the model.

spmd

 % Setup tempdir and cd into it

 currDir = pwd;

 addpath(currDir);

 tmpDir = tempname;

 mkdir(tmpDir);

 cd(tmpDir);

 % Load the model on the worker

 load_system(model);

end

% 4) Loop over the number of iterations and perform the

% computation for different parameter values.

parfor idx=1:iterations

 set_param([model '/Road-Suspension Interaction'],'MaskValues',...

 {'Kf',num2str(Cf_sweep(idx)),'Kr','Cr'});

 simout(idx) = sim(model, 'SimulationMode', 'normal');

end

% 5) Switch all of the workers back to their original folder.

spmd

 cd(currDir);

 rmdir(tmpDir,'s');

 rmpath(currDir);

 close_system(model, 0);

end

close_system(model, 0);

delete(gcp('nocreate'));

 Run Parallel Simulations

23-17

sim in parfor with Normal Mode and MATLAB Distributed Computing
Server Software

This code fragment shows how you can use sim and parfor in Normal mode. This code
fragment is similar to the one in “sim in parfor with Normal Mode” on page 23-15.
The primary difference is:

• In item 1, the parpool function calls a cluster name.
• In item 3, you need to attach files to the model and other required files for

distribution to cluster workers on remote machines.
• If you do not have a MATLAB Distributed Computing Server cluster, use your local

cluster. For more information, see “Clusters and Cluster Profiles”.

Start your cluster before running the code.

% 1) Load model and initialize the pool.

model = 'sldemo_suspn_3dof';

load_system(model);

parpool;

% 2) Set up the iterations that we want to compute.

Cf = evalin('base', 'Cf');

Cf_sweep = Cf*(0.05:0.1:0.95);

iterations = length(Cf_sweep);

simout(iterations) = Simulink.SimulationOutput;

% 3) Need to switch all workers to a separate tempdir in case

% any code is generated for instance for StateFlow, or any other

% file artifacts are created by the model.

spmd

 % Setup tempdir and cd into it

 addpath(pwd);

 currDir = pwd;

 addpath(currDir);

 tmpDir = tempname;

 mkdir(tmpDir);

 cd(tmpDir);

 % Load the model on the worker

 load_system(model);

end

% 4) Loop over the number of iterations and perform the

% computation for different parameter values.

23 Running a Simulation Programmatically

23-18

parfor idx=1:iterations

 set_param([model '/Road-Suspension Interaction'],'MaskValues',...

 {'Kf',num2str(Cf_sweep(idx)),'Kr','Cr'});

 simout(idx) = sim(model, 'SimulationMode', 'normal');

end

% 5) Switch all of the workers back to their original folder.

spmd

 cd(currDir);

 rmdir(tmpDir,'s');

 rmpath(currDir);

 close_system(model, 0);

end

close_system(model, 0);

delete(gcp('nocreate'));

sim in parfor with Rapid Accelerator Mode

Running Rapid Accelerator simulations in parfor combines speed with automatic
distribution of a prebuilt executable to the parfor workers. As a result, this mode
eliminates duplication of the update diagram phase.

To run parallel simulations in Rapid Accelerator simulation mode using the sim and
parfor commands:

• Configure the model to run in Rapid Accelerator simulation mode.
• Save changes to your model before simulating in parfor. The saved copy of your

model is distributed to parallel workers when simulating in parfor.
• Ensure that the Rapid Accelerator target is already built and up to date.
• Disable the Rapid Accelerator target up-to-date check by setting the sim command

option RapidAcceleratorUpToDateCheck to 'off'.

To satisfy the second condition, you can change parameters only between simulations
that do not require a model rebuild. In other words, the structural checksum of the model
must remain the same. Hence, you can change only tunable block diagram parameters
and tunable run-time block parameters between simulations. For a discussion on
tunable parameters that do not require a rebuild subsequent to their modifications, see
“Determine If the Simulation Will Rebuild” on page 30-8.

To disable the Rapid Accelerator target up-to-date check, use the sim command, as
shown in this sample.

 Run Parallel Simulations

23-19

parpool;

% Load the model and set parameters

model = 'vdp';

load_system(model);

% Build the Rapid Accelerator target

rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(model);

% Run parallel simulations

parfor i=1:4

 simOut{i} = sim(model,'SimulationMode', 'rapid',...

 'RapidAcceleratorUpToDateCheck', 'off',...

 'SaveTime', 'on',...

 'StopTime', num2str(10*i));

 close_system(model, 0);

end

close_system(model, 0);

delete(gcp('nocreate'));

In this example, the call to the buildRapidAcceleratorTarget function generates
code once. Subsequent calls to sim with the RapidAcceleratorUpToDateCheck option
off guarantees that code is not regenerated. Data concurrency issues are thus resolved.

For a detailed example of this method of running parallel simulations, refer to the Rapid
Accelerator Simulations Using PARFOR.

Workspace Access Issues

Workspace Access for MATLAB worker sessions

By default, to run sim in parfor, a parallel pool opens automatically, enabling the
code to run in parallel. Alternatively, you can also first open MATLAB workers using
the parpool command. The parfor command then runs the code within the parfor
loop in these MATLAB worker sessions. The MATLAB workers, however, do not
have access to the workspace of the MATLAB client session where the model and its
associated workspace variables have been loaded. Hence, if you load a model and define
its associated workspace variables outside of and before a parfor loop, then neither
is the model loaded, nor are the workspace variables defined in the MATLAB worker
sessions where the parfor iterations are executed. This is typically the case when you
define model parameters or external inputs in the base workspace of the client session.
These scenarios constitute workspace access issues.

23 Running a Simulation Programmatically

23-20

Transparency Violation

When you run sim in parfor with srcWorkspace set to current, Simulink uses
the parfor workspace, which is a transparent workspace. Simulink then displays an
error for transparency violation. For more information on transparent workspaces, see
“Variables in parfor-Loops”.

Resolving Workspace Access Issues

When a Simulink model is loaded into memory in a MATLAB client session, it is only
visible and accessible in that MATLAB session; it is not accessible in the memory of the
MATLAB worker sessions. Similarly, the workspace variables associated with a model
that are defined in a MATLAB client session (such as parameters and external inputs)
are not automatically available in the worker sessions. You must therefore ensure that
the model is loaded and that the workspace variables referenced in the model are defined
in the MATLAB worker session by using the following two methods.

• In the parfor loop, use the sim command to load the model and to set parameters
that change with each iteration. (Alternative: load the model and then use the
g(s)et_param command(s) to set the parameters in the parfor loop)

• In the parfor loop, use the MATLAB evalin and assignin commands to assign
data values to variables.

Alternatively, you can simplify the management of workspace variables by defining them
in the model workspace. These variables will then be automatically loaded when the
model is loaded into the worker sessions. There are, however, limitations to this method.
For example, you cannot store parameter objects that use a storage class other than Auto
in a model workspace. For a detailed discussion on the model workspace, see “Model
Workspaces” on page 4-84.

Specifying Parameter Values Using the sim Command

Use the sim command in the parfor loop to set parameters that change with each
iteration.

%Specifying Parameter Values Using the sim Command

model = 'vdp';

load_system(model)

%Specifying parameter values.

 Run Parallel Simulations

23-21

paramName = 'StopTime';

paramValue = {'10', '20', '30', '40'};

% Run parallel simulations

parfor i=1:4

 simOut{i} = sim(model, ...

 paramName, paramValue{i}, ...

 'SaveTime', 'on'); %#ok

end

close_system(model, 0);

An equivalent method is to load the model and then use the set_param command to set
the paramName in the parfor loop.

Specifying Variable Values Using the assignin Command

You can pass the values of model or simulation variables to the MATLAB workers by
using the assignin or the evalin command. The following example illustrates how to
use this method to load variable values into the appropriate workspace of the MATLAB
workers.

parfor i = 1:4

 assignin('base', 'extInp', paramValue{i})%#ok

 % 'extInp' is the name of the variable in the base

 % workspace which contains the External Input data

 simOut{i} = sim(model, 'ExternalInput', 'extInp'); %#ok

end

For further details, see the Rapid Accelerator Simulations Using PARFOR example.

Data Concurrency Issues

Data concurrency issues refer to scenarios for which software makes simultaneous
attempts to access the same file for data input or output. In Simulink, they primarily
occur as a result of the nonsequential nature of the parfor loop during simultaneous
execution of Simulink models. The most common incidences arise when code is generated
or updated for a simulation target of a Stateflow, Model block or MATLAB Function
block during parallel computing. The cause, in this case, is that Simulink tries to
concurrently access target data from multiple worker sessions. Similarly, To File blocks
may simultaneously attempt to log data to the same files during parallel simulations and
thus cause I/O errors. Or a third-party blockset or user-written S-function may cause a
data concurrency issue while simultaneously generating code or files.

23 Running a Simulation Programmatically

23-22

A secondary cause of data concurrency is due to the unprotected access of network ports.
This type of error occurs, for example, when a Simulink product provides blocks that
communicate via TCP/IP with other applications during simulation. One such product is
the HDL Verifier™ for use with the Mentor Graphics® ModelSim® HDL simulator.

Resolving Data Concurrency Issues

The core requirement of parfor is the independence of the different iterations of the
parfor body. This restriction is not compatible with the core requirement of simulation
via incremental code generation, for which the simulation target from a prior simulation
is reused or updated for the current simulation. Hence during the parallel simulation of
a model that involves code generation (such as Accelerator mode simulation), Simulink
makes concurrent attempts to access (update) the simulation target . However, you can
avoid such data concurrency issues by creating a temporary folder within the parfor
loop and then adding several lines of MATLAB code to the loop to perform the following
steps:

1 Change the current folder to the temporary, writable folder.
2 In the temporary folder, load the model, set parameters and input vectors, and

simulate the model.
3 Return to the original, current folder.
4 Remove the temporary folder and temporary path.

In this manner, you avoid concurrency issues by loading and simulating the model within
a separate temporary folder. Following are examples that use this method to resolve
common concurrency issues.

A Model with Stateflow, MATLAB Function Block, or Model Block

In this example, either the model is configured to simulate in Accelerator mode or
it contains a Stateflow, a MATLAB Function block, or a Model block (for example,
sf_bounce, sldemo_autotrans, or sldemo_mdlref_basic). For these cases,
Simulink generates code during the initialization phase of simulation. Simulating
such a model in parfor would cause code to be generated to the same files, while the
initialization phase is running on the worker sessions. As illustrated below, you can
avoid such data concurrency issues by running each iteration of the parfor body in a
different temporary folder.

parfor i=1:4

 Run Parallel Simulations

23-23

 cwd = pwd;

 addpath(cwd)

 tmpdir = tempname;

 mkdir(tmpdir)

 cd(tmpdir)

 load_system(model)

 % set the block parameters, e.g., filename of To File block

 set_param(someBlkInMdl, blkParamName, blkParamValue{i})

 % set the model parameters by passing them to the sim command

 out{i} = sim(model, mdlParamName, mdlParamValue{i});

 close_system(model,0);

 cd(cwd)

 rmdir(tmpdir,'s')

 rmpath(cwd)

end

Note the following:

• You can also avoid other concurrency issues due to file I/O errors by using a
temporary folder for each iteration of the parfor body.

• On Windows platforms, consider inserting the clear mex; command before
rmdir(tmpdir, 's'). This sequence closes MEX-files first before calling rmdir to
remove tmpdir.

clear mex;

rmdir(tmpdir, 's')

A Model with To File Blocks

If you simulate a model with To File blocks from inside of a parfor loop, the
nonsequential nature of the loop may cause file I/O errors. To avoid such errors during
parallel simulations, you can either use the temporary folder idea above or use the sim
command in Rapid Accelerator mode with the option to append a suffix to the file names
specified in the model To File blocks. By providing a unique suffix for each iteration of
the parfor body, you can avoid the concurrency issue.

rtp = Simulink.BlockDiagram.buildRapidAcceleratorTarget(model);

 parfor idx=1:4

 sim(model, ...

 'ConcurrencyResolvingToFileSuffix', num2str(idx),...

 'SimulationMode', 'rapid',...

 'RapidAcceleratorUpToDateCheck', 'off');

 end

23 Running a Simulation Programmatically

23-24

Related Examples
• “Sweep Data Dictionary Parameter Using Parallel Simulation” on page 59-59

 Error Handling in Simulink Using MSLException

23-25

Error Handling in Simulink Using MSLException

Error Reporting in a Simulink Application

Simulink allows you to report an error by throwing an exception using the
MSLException object , which is a subclass of the MATLAB MException class. As with
the MATLAB MException object, you can use a try-catch block with a MSLException
object construct to capture information about the error. The primary distinction between
the MSLException and the MException objects is that the MSLException object
has the additional property of handles. These handles allow you to identify the object
associated with the error.

The MSLException Class

The MSLException class has five properties: identifier, message, stack, cause,
and handles. The first four of these properties are identical to those of MException.
For detailed information about them, see “ Properties of the MException Class”. The fifth
property, handles, is a cell array with elements that are double array. These elements
contain the handles to the Simulink objects (blocks or block diagrams) associated with
the error.

Methods of the MSLException Class

The methods for the MSLException class are identical to those of the MException
class. For details of these methods, see MException.

Capturing Information about the Error

The structure of the Simulink try-catch block for capturing an exception is:

try

 Perform one or more operations

catch E

 if isa(E, 'MSLException')

...

end

If an operation within the try statement causes an error, the catch statement catches
the exception (E). Next, an if isa conditional statement tests to determine if the

23 Running a Simulation Programmatically

23-26

exception is Simulink specific, i.e., an MSLException. In other words, an MSLException
is a type of MException.

The following code example shows how to get the handles associated with an error.

errHndls = [];

try

 sim('ModelName', ParamStruct);

catch e

 if isa(e,'MSLException')

 errHndls = e.handles{1}

 end

end

You can see the results by examining e. They will be similar to the following output:

e =

 MSLException

 Properties:

 handles: {[7.0010]}

 identifier: 'Simulink:Parameters:BlkParamUndefined'

 message: [1x87 char]

 cause: {0x1 cell}

 stack: [0x1 struct]

 Methods, Superclasses

To identify the name of the block that threw the error, use the getfullname command.
For the present example, enter the following command at the MATLAB command line:

getfullname(errHndls)

If a block named Mu threw an error from a model named vdp, MATLAB would respond
to the getfullname command with:

ans =

vdp/Mu

24

Visualizing and Comparing
Simulation Results

• “Scope Blocks and Scope Viewer Overview” on page 24-2
• “Scope Trigger Panel” on page 24-8
• “Scope Measurement Panels” on page 24-26
• “Scope Tasks” on page 24-47
• “Floating Scope and Scope Viewer Tasks” on page 24-48
• “Signal Generator Tasks” on page 24-56
• “Signal and Scope Manager” on page 24-57
• “Signal Selector” on page 24-59
• “Control Scopes Programmatically” on page 24-63

24 Visualizing and Comparing Simulation Results

24-2

Scope Blocks and Scope Viewer Overview

In this section...

“Overview of Methods” on page 24-2
“Simulink Scope Versus Floating Scope” on page 24-3
“Simulink Floating Scope Versus Scope Viewer” on page 24-4
“Simulink Scope Versus DSP System Toolbox Time Scope” on page 24-5

Overview of Methods

Simulink scopes provide several methods for displaying simulation data and capturing
the data for later analysis. Symbols on your block diagram represent the various data
display and data capture methods.

For more information about these methods:

• Scope and Floating Scope blocks — Scope, Floating Scope, “Scope Tasks” on page
24-47, “Floating Scope and Scope Viewer Tasks” on page 24-48.

• Scope Viewer — “Signal and Scope Manager” on page 24-57, “Floating Scope and
Scope Viewer Tasks” on page 24-48.

 Scope Blocks and Scope Viewer Overview

24-3

• Signal Logging — “Save Simulation Data Using a Scope” on page 24-52.
• Signal Test Point — “Test Points” on page 60-57.

Simulink Scope Versus Floating Scope

Scope blocks and Floating Scope blocks both display simulation results, but they differ in
how you attach signals and save data. Also, you can add signals to a floating scope and
remove them during a simulation.

Capability Simulink Scope Simulink Floating Scope

Attaching signals Connect signal lines to a
Scope block using input
ports.

Attach signals using the
Signal Selector. See “Signal
Selector” on page 24-59.

Attach signals interactively
from the model before and
during a simulation. See
“Quick Method for Viewing
Signals with Floating Scope”
on page 24-54.

Access to signals Because signals lines are
connected to a Scope block,
access signals at different
levels of a model hierarchy
using GoTo blocks.

Because signals are attached
without signal lines, you do
not have to route lines to a
Floating Scope block.

You can access most signals
inside the model hierarchy,
including referenced models
and Stateflow charts. You
cannot access optimized
signals.

Data logging Save data to a MATLAB
variable as an array,
structure, or object.

Save data to a MATLAB
variable as an object.

Simulation control Run, forward, and back
toolbar buttons.

Run and forward toolbar
buttons.

A Floating Scope does not
have a toolbar Back button.

24 Visualizing and Comparing Simulation Results

24-4

Capability Simulink Scope Simulink Floating Scope

If you use the Back button
from your model, stepping
back appears to work due to
the data buffer, but it does
not work in all cases.

Scale axes after simulation Toolbar buttons for Scale X-
axis and Y-axis limits, and
Axes scaling set to Auto
for the X-axis and Y-axis.

Toolbar button for only Scale
Y-axis limits, and Axes
scaling set to Auto for only
the Y-axis.

Simulink Floating Scope Versus Scope Viewer

Simulation behavior for a Floating Scope and Scope Viewer is identical, but you manage
them differently in your model. Also, you can add and remove signals from a floating
scope during a simulation.

Capability Simulink Floating Scope Simulink Scope Viewer

Add to model Add block from Simulink
sinks library.

Add using Signal & Scope
Manager. See “Signal and
Scope Manager” on page
24-57.

Attach signals Attach signals using the
Signal Selector. See “Signal
Selector” on page 24-59.

Attach signals interactively
in the model before and
during a simulation. See
“Quick Method for Viewing
Signals with Floating
Scope” on page 24-54.

Attache signals using the
Signal Selector or signal line
context menu.

Visual indication in model Floating Scope block not
attached to any signal lines.

Viewer icons located above
signal lines for all attached
signals.

Manage scopes centrally No. Use the Signal & Scope
Manager ton add or delete

 Scope Blocks and Scope Viewer Overview

24-5

Capability Simulink Floating Scope Simulink Scope Viewer

viewers, and attach or
remove signals.

Manage scopes locally Attach signals from the
Floating Scope window.

Add viewers and attach
signals within a model
hierarchy using the context
menus.

Simulink Report Generator
support

Yes. No.

Connecting Constant block
with Sample time set to
inf (constant sample time)

Plots all data values. Plots the data value at the
first time step and anytime
you tune a parameter.

Simulink Scope Versus DSP System Toolbox Time Scope

If you have Simulink and a DSP System Toolbox license, you can use either the Simulink
Scope or DSP System Toolbox Time Scope. Choose the scope based on your application
requirements, how the blocks work, and the default values of each block.

If you have a DSP System Toolbox license and you have been using Time Scopes,
continue to do so in your applications. Using the Time Scope block requires a DSP
System Toolbox license.

Feature Scope Time Scope

Location in block library Simulink Sinks library DSP System Toolbox Sinks
library

Trigger and measurement
panels

With Simulink only:

• Trigger
• Cursor Measurement

With DSP System Toolbox
or Simscape license:

• Signal Statistics
• Bilevel Measurements
• Peak Finder

• Trigger
• Cursor Measurements
• Signal Statistics
• Bilevel Measurements
• Peak Finder

24 Visualizing and Comparing Simulation Results

24-6

Feature Scope Time Scope

Simulation mode support
for block-based sample
times

For block-based sample
times, all the inputs of the
block run at the same rate.

• Normal
• Accelerator
• Rapid-Accelerator
• External

• Rapid-Accelerator
• External

Simulation mode support
for port-based sample times

For port-based sample
times, the input ports can
run at different rates.

No. • Normal
• Accelerator

Frame processing of signals Included in Scope block
with DSP System Toolbox
license.

Included in Time Scope
block.

Sample time propagation If the different ports have
different sample rates, the
scope uses the greatest
common divisor of the rates.

When using port-based
sample times, the different
ports of the Scope block
inherit the different rates
and plots the signals
according to those rates.

Save model to previous
Simulink release

If saving to a release before
R2015a, the Scope block is
converted to a scope with
the features available in
that release.

No change in features.

This table lists the differences in Configuration Property default values between the
Scope and Time Scope blocks.

Property Scope Time Scope

Open at start of simulation Cleared Selected
Input processing Elements as channels

(sample based)
Columns as channels
(framed based)

Maximize Axes Off Auto

 Scope Blocks and Scope Viewer Overview

24-7

Property Scope Time Scope

Time Units None Metric (based on Time Span)
Time-axis labels Bottom displays only All
Show time-axis label Cleared Selected
Plot Type Auto Line
Title %<Signal Label> No title
Y label No label Amplitude

See Also
Floating Scope | Scope | Scope Viewer

Related Examples
• “Scope Tasks” on page 24-47
• “Floating Scope and Scope Viewer Tasks” on page 24-48

24 Visualizing and Comparing Simulation Results

24-8

Scope Trigger Panel

In this section...

“What Is the Trigger Panel?” on page 24-8
“Main Pane” on page 24-9
“Type Pane” on page 24-10
“Timing Pane” on page 24-21
“Holdoff Pane” on page 24-25

What Is the Trigger Panel?

Pause the display when certain events occur. You can use the Triggers panel when you
want to align or search for events. You can configure triggers to both select and align
specific regions of interest in the display area of the scope. Triggers work across multiple
displays.

To open the Triggers panel:

• From the menu, select Tools > Triggers.
• On the toolbar, click the Triggers button ().

 Scope Trigger Panel

24-9

When the Triggers panel is displayed, triangle pointers appear at the top and right side
of the axes on each display. These markers indicate the time position () and level ()
at the event. The color of the markers corresponds to the color of the source signal.

Note: The scope does not display an event until at least one time span of data is viewable
inside the display. To prevent data from being shown twice in the display, the scope
suppresses the alignment of recurring events until a full-time span has elapsed since the
previous update.

Main Pane

Choose how often the display updates and the position of the trigger indicator.

Mode — Define how often the display updates.

24 Visualizing and Comparing Simulation Results

24-10

• Auto — The scope aligns and displays data from the latest trigger event. If no event
is found after a time span has elapsed, then the scope displays the last available data.
Use this mode to see your data and have it align whenever a trigger event occurs.

• Normal — The scope aligns and displays data only from the latest trigger event. Use
this mode to search for infrequently occurring events in your data.

• Once — The scope displays data on the next encountered trigger event and freezes
the display. The scope ignores subsequent data until you press the Rearm button.

• Off — The scope does not make acquisitions. Triggering is disabled. This setting is
equivalent to hiding the Triggers panel. You can use panning only if Mode is set to
Off.

If mode is set to either Normal or Once and the Triggers panel does not encounter any
event, the display remains blank. Set Mode to Auto if you want the scope to display
signal data regularly, in addition to trigger events.

Position (%) — Specify, as a percentage of the total time span within the active display,
the horizontal position in which the trigger indicator appears. A position value of 0
corresponds to the minimum time-axis value at the far-left side of the display. A position
value of 100 corresponds to the maximum time-axis value at the far-right side of the
display. Drag the trigger position indicator to the left or right to adjust its position.

Type Pane

The Source / Type pane lets you choose the source of the trigger and the type of events
on which to stop.

Source — Assign the trigger source to a particular channel. If you are viewing a
magnitude/phase plot, you can trigger off the magnitude or the phase. If you are not
viewing the magnitude/phase plot, you can trigger off the real or imaginary data. If the
input signal has multiple channels, the scope assigns an index number to identify each
channel of that signal.

Type — Select the type of trigger to use.

• Edge — Trigger when the scope crosses a level threshold. For a rising edge, the scope
enables the trigger event when the signal value becomes less than the level threshold
minus hysteresis. The scope disables the trigger event when the signal becomes
greater than the level threshold for the first time. The scope uses linear interpolation
to generate a trigger event at the time when the signal crosses the level threshold, as
shown in the following figure.

 Scope Trigger Panel

24-11

In the case of a falling edge, the scope enables the trigger event when the signal value
becomes greater than the level threshold plus hysteresis. The scope disables the
trigger event when the signal becomes less than the level threshold for the first time.
The scope uses linear interpolation to generate a trigger event at the time when the
signal crosses the level threshold, as shown in the following figure.

24 Visualizing and Comparing Simulation Results

24-12

• Pulse Width — Trigger when the scope encounters a pulse whose width falls inside
or outside specified time limits. You specify the range of valid time limits in the
Levels / Timing pane. For a positive-polarity pulse, the scope encounters a trigger
event when the signal crosses the low threshold for the second time. The scope
measures the pulse width as the time between the first and second crossings of the
middle threshold, located halfway between the high and low thresholds, as shown in
the following figure.

 Scope Trigger Panel

24-13

Note: A Glitch-type trigger looks for a pulse or spike whose duration is less than a
specified amount. You can implement a Glitch type trigger by using a Pulse Width
type trigger and manually setting the Max Width parameter.

• Transition — Trigger on a rising or falling edge that crosses two levels, high
and low, inside or outside a specified time interval. You specify the range of valid
transition times in the Levels / Timing pane. For a rising transition, the scope
encounters the trigger event when the signal crosses the high threshold. The
transition time is when the signal crosses the middle threshold, located halfway
between the high and low thresholds, as shown in the following figure.

24 Visualizing and Comparing Simulation Results

24-14

• Runt — Trigger on a runt pulse, which crosses one threshold, high or low, but not
both. For a positive-polarity runt pulse, the scope encounters a trigger event when
the signal crosses the low threshold the second time, without ever crossing the high
threshold. The scope measures the runt width as the time between the first and
second crossings of the low threshold, as shown in the following figure. The runt
width is the Max Width – Min Width. Any runt pulse width that is less than the
minimum width or greater than the maximum width does not generate a trigger
event.

 Scope Trigger Panel

24-15

Note: You can also replicate a Runt-type trigger by using a Window-type trigger and
setting Polarity to Inside.

• Window — Trigger when the input signal stays within or outside the region defined
by the high and low thresholds for a time interval. In the case of an inside window,
the scope encounters a trigger event when the signal enters and exits the inside
region, as shown in the following figure.

24 Visualizing and Comparing Simulation Results

24-16

In the case of an outside window, the scope encounters a trigger event when the signal
enters and exits the outside region, as shown in the following figure.

 Scope Trigger Panel

24-17

The scope encounters a trigger event when the signal crosses either the high or low
threshold the second time.

• Timeout — Trigger when the input signal stays above or below a voltage threshold
longer than a specified time. In the case of a timeout trigger with polarity set to
Either and a timeout duration of 7.50 seconds, the scope can encounter the trigger
event 7.50 seconds after the signal crosses the level threshold the last time, as shown
in the following figure.

24 Visualizing and Comparing Simulation Results

24-18

Alternatively, the scope can encounter the trigger event when the signal stays within
the boundaries defined by the hysteresis for 7.50 seconds after the signal crosses the
level threshold, as shown in the following figure.

 Scope Trigger Panel

24-19

• Polarity — Select the polarity of the trigger type. The option you choose for Type
directly affects the options available for Polarity, as shown in the following table.

Trigger Type Polarity Options

Edge Rising, Falling, Either
Pulse Width Positive, Negative, Either
Transition Rise Time, Fall Time, Either
Runt Positive, Negative, Either
Window Inside, Outside, Either
Timeout Rising, Falling, Either

When you set Type to Edge, the polarity options are:

• Rising — Trigger on a rising edge, a transition from a low-state level to a high-
state level.

24 Visualizing and Comparing Simulation Results

24-20

• Falling — Trigger on a falling edge, transition from a high-state level to a low-
state level.

• Either — Trigger on both rising edges and falling edges.

When you set Type to Pulse Width or Runt, the polarity options are:

• Positive — Trigger on a positive-polarity pulse, as shown in the following figure.

• Negative — Trigger on a negative-polarity pulse, as shown in the following figure.

 Scope Trigger Panel

24-21

• Either — Trigger on both positive-polarity and negative-polarity pulses.

When you set Type to Transition, the polarity options are:

• Rise Time — Trigger based on how long the signal takes to transition from the
low threshold to the high threshold.

• Fall Time — Trigger based on how long the signal takes to transition from the
high threshold to the low threshold.

• Either — Trigger based on how long it takes to make either a rising or falling
transition.

When you set Type to Window, the polarity options are:

• Inside — Trigger when the signal stays within the low and high levels for a
specified time duration.

• Outside — Trigger when the signal stays outside of the low and high levels for a
specified time duration.

• Either — Trigger on both inside and outside windows.

When you set Type to Timeout, the polarity options are:

• Rising — Trigger when the signal does not cross the reference level from below.
• Falling — Trigger when the signal does not cross the reference level from above.
• Either — Trigger when the signal does not cross the reference level from either

direction.

Timing Pane

The Levels / Timing pane enables you to set the trigger level and hysteresis value.
The option you choose for Type directly affects which level and timing parameters are
available, as shown in the following table.

Trigger Type Level Parameters Auto-Level Setting Timing Parameters

Edge Level, Hysteresis Level = 50% n/a
Pulse Width High, Low High = 90%, Low =

10%
Min Width, Max Width

Transition High, Low High = 90%, Low =
10%

Min Time, Max Time

24 Visualizing and Comparing Simulation Results

24-22

Trigger Type Level Parameters Auto-Level Setting Timing Parameters

Runt High, Low High = 90%, Low =
10%

Min Width, Max Width

Window High, Low High = 90%, Low =
10%

Min Time, Max Time

Timeout Level, Hysteresis n/a Timeout

• Auto level — Sets the level parameters. If you set the trigger type to Edge, this
option sets the Level parameter to 50% of the range of the source signal. If you set
the trigger type to Timeout, the Triggers panel does not show this option. Setting the
trigger type to other menu choices results in High and Low parameter adjustment.
Auto level sets the High parameter to 90% of the range of the source signal and the
Low parameter to 10% of the range of the source signal.

• Level (V) — Specify, in volts, the trigger level. This parameter is visible when you set
Type to Edge or Timeout.

• Hysteresis (V) — Specify the hysteresis, or noise reject value. This parameter is
visible when you set Type to Edge or Timeout. If the signal jitters inside this range
and briefly crosses the trigger level, the scope does not register an event. In the case
of an edge trigger with rising polarity, the scope ignores any times that the signal
crosses the trigger level within the hysteresis region, as shown in the following figure.

 Scope Trigger Panel

24-23

You can reduce the hysteresis region size by decreasing the hysteresis value. If you
set the hysteresis value to 0.07 in this example, then the scope also considers the
second rising edge to be a trigger event, as shown in the following figure.

24 Visualizing and Comparing Simulation Results

24-24

• High (V) — Specify, in volts, the value that denotes a positive polarity, or high-state
level. This parameter is visible when you set Type to Pulse Width, Transition,
Runt, or Window.

• Low (V) — Specify, in volts, the value that denotes a negative polarity, or low-state
level. This parameter is visible when you set Type to Pulse Width, Transition,
Runt, or Window.

• Min Width (s) — Specify, in seconds, the minimum pulse width. This parameter is
visible when you set Type to Pulse Width or Runt.

• Max Width (s) — Specify, in seconds, the maximum pulse width. This parameter is
visible when you set Type to Pulse Width or Runt.

• Min Time (s) — Specify, in seconds, the minimum duration. This parameter is visible
when you set Type to Transition or Window.

• Max Time (s) — Specify, in seconds, the maximum duration. This parameter is
visible when you set Type to Transition or Window.

• Timeout (s) — Specify, in seconds, the timeout duration. This parameter is visible
when you set Type to Timeout.

 Scope Trigger Panel

24-25

Holdoff Pane

Offset the trigger position by a fixed delay or set the minimum possible time between
trigger events.

• Delay (s) — Specify, in seconds, the fixed delay time by which to offset the trigger
position. This parameter controls the amount of time the scope waits after a trigger
event occurs before displaying a signal.

• Holdoff (s) — Specify, in seconds, the minimum possible time between trigger
events. This amount of time is used to suppress data acquisition after a valid trigger
event is encountered. A trigger holdoff prevents repeated occurrences of a trigger from
occurring during the portion of a burst that is of interest.

See Also
Floating Scope | Scope

Related Examples
• “Scope Measurement Panels” on page 24-26

24 Visualizing and Comparing Simulation Results

24-26

Scope Measurement Panels

In this section...

“What Are Measurement Panels?” on page 24-26
“Trace Selection Panel” on page 24-26
“Cursor Measurement Panel” on page 24-26
“Signal Statistics Panel” on page 24-28
“Bilevel Measurements Panel” on page 24-30
“Peak Finder Panel” on page 24-43

What Are Measurement Panels?

Display signal characteristics.

Trace Selection Panel

Select signals for a measurement panel. To open the Trace Selection panel:

• From the menu, select Tools > Measurements > Trace Selection.
• Open a measurement panel.

Cursor Measurement Panel

Display screen cursors with signal times and values. To open the Cursor measurements
panel:

• From the menu, select Tools > Measurements > Cursor Measurements.
• On the toolbar, click the Cursor Measurements button.

 Scope Measurement Panels

24-27

Settings Pane

Select screen or waveform cursors for calculating measurements.

• Screen Cursors — Select cursors not attached to input signals.
• Horizontal — Display horizontal screen cursor.
• Vertical — Display vertical screen cursors.
• Waveform Cursors — Select vertical cursors attached to input signals.
• 1 — From the drop-down list, select an input signal for first waveform cursor.
• 2 — From the drop-down list, select an input signal for second waveform cursor.
• Lock Cursor Spacing — Lock the time and value difference between the two

cursors.
• Snap to Data — Position waveform cursors on signal data points.

24 Visualizing and Comparing Simulation Results

24-28

Measurements Pane

Display time and value measurements.

• 1 |— Shows or enables you to modify the time or value at cursor number one, or both.
• 2 :— Shows or enables you to modify the time or value at cursor number two, or both.
• Δt— Shows the absolute value of the difference in the times between cursor number

one and cursor number two.
• ΔV— Shows the absolute value of the difference in signal amplitudes between cursor

number one and cursor number two.
• 1/Δt— Shows the rate, the reciprocal of the absolute value of the difference in the

times between cursor number one and cursor number two.
• ΔV/Δt— Shows the scope, the ratio of the absolute value of the difference in signal

amplitudes between cursors to the absolute value of the difference in the times
between cursors.

Signal Statistics Panel

Note: The Signal Statistics panel requires a DSP System Toolbox or Simscape license.

Display signal statistics for the signal selected in the Trace Selection panel. To open
the Signal Statistics panel:

 Scope Measurement Panels

24-29

• From the menu, select Tools > Measurements > Signal Statistics.
• On the toolbar, click the Signal Statistics button.

The statistics shown are:

• Max — Shows the maximum or largest value within the displayed portion of the
input signal.

• Min — Shows the minimum or smallest value within the displayed portion of the
input signal.

• Peak to Peak — Shows the difference between the maximum and minimum values
within the displayed portion of the input signal.

• Mean — Shows the average or mean of all the values within the displayed portion of
the input signal.

• Median — Shows the median value within the displayed portion of the input signal.
• RMS — Shows the difference between the maximum and minimum values within the

displayed portion of the input signal.

When you use the zoom options in the Scope, the Signal Statistics measurements
automatically adjust to the time range shown in the display. In the Scope toolbar, click
the Zoom In or Zoom X button to constrict the x-axis range of the display, and the
statistics shown reflect this time range. For example, you can zoom in on one pulse to
make the Signal Statistics panel display information about only that particular pulse.

The Signal Statistics measurements are valid for any units of the input signal. The
letter after the value associated with each measurement represents the appropriate
International System of Units (SI) prefix, such as m for milli-. For example, if the input
signal is measured in volts, an m next to a measurement value indicates that this value
is in units of millivolts. The SI prefixes are shown in the following table:

24 Visualizing and Comparing Simulation Results

24-30

Bilevel Measurements Panel

Note: The Bilevel Measurements panel requires a DSP System Toolbox or Simscape
license.

Display information about signal transitions, overshoots, undershoots, and cycles. To
open the Bilevel Measurements panel:

• From the menu, select Tools > Measurements > Bilevel Measurements.
• On the toolbar, click the Bilevel Measurements button.

Settings Pane

The Settings pane enables you to modify the properties used to calculate various
measurements involving transitions, overshoots, undershoots, and cycles. You can modify
the high-state level, low-state level, state-level tolerance, upper-reference level, mid-
reference level, and lower-reference level.

• Auto State Level — When this check box is selected, the Bilevel measurements
panel autodetects the high- and low- state levels of a bilevel waveform. When this

 Scope Measurement Panels

24-31

check box is cleared, you can enter in values for the high- and low- state levels
manually.

• High — Used to specify manually the value that denotes a positive polarity, or
high-state level, as shown in the following figure.

• Low — Used to specify manually the value that denotes a negative polarity, or
low-state level, as shown in the following figure.

24 Visualizing and Comparing Simulation Results

24-32

• State Level Tolerance — Tolerance within which the initial and final levels of each
transition must be within their respective state levels. This value is expressed as a
percentage of the difference between the high- and low-state levels.

• Upper Ref Level — Used to compute the end of the rise-time measurement or the
start of the fall time measurement. This value is expressed as a percentage of the
difference between the high- and low-state levels.

• Mid Ref Level — Used to determine when a transition occurs. This value is
expressed as a percentage of the difference between the high- and low- state levels.
In the following figure, the mid-reference level is shown as the horizontal line, and its
corresponding mid-reference level instant is shown as the vertical line.

• Lower Ref Level — Used to compute the end of the fall-time measurement or the
start of the rise-time measurement. This value is expressed as a percentage of the
difference between the high- and low-state levels.

• Settle Seek — The duration after the mid-reference level instant when each
transition occurs used for computing a valid settling time. This value is equivalent to
the input parameter, D, which you can set when you run the settlingtime function.
The settling time is displayed in the Overshoots/Undershoots pane.

 Scope Measurement Panels

24-33

Transitions Pane

Display calculated measurements associated with the input signal changing between its
two possible state level values, high and low.

A positive-going transition, or rising edge, in a bilevel waveform is a transition from
the low-state level to the high-state level. A positive-going transition has a slope value
greater than zero. The following figure shows a positive-going transition.

24 Visualizing and Comparing Simulation Results

24-34

Whenever there is a plus sign (+) next to a text label, this symbol refers to measurement
associated with a rising edge, a transition from a low-state level to a high-state level.

A negative-going transition, or falling edge, in a bilevel waveform is a transition from the
high-state level to the low-state level. A negative-going transition has a slope value less
than zero. The following figure shows a negative-going transition.

 Scope Measurement Panels

24-35

Whenever there is a minus sign (–) next to a text label, this symbol refers to
measurement associated with a falling edge, a transition from a high-state level to a low-
state level.

The Transition measurements assume that the amplitude of the input signal is in units
of volts. You must convert all input signals to volts for the Transition measurements to
be valid.

• High — The high-amplitude state level of the input signal over the duration of the
Time Span parameter. You can set Time Span in the Main pane of the Visuals—
Time Domain Properties dialog box.

• Low — The low-amplitude state level of the input signal over the duration of the
Time Span parameter. You can set Time Span in the Main pane of the Visuals—
Time Domain Properties dialog box.

• Amplitude — Difference in amplitude between the high-state level and the low-state
level.

• + Edges — Total number of positive-polarity, or rising, edges counted within the
displayed portion of the input signal.

• + Rise Time — Average amount of time required for each rising edge to cross from
the lower-reference level to the upper-reference level.

• + Slew Rate — Average slope of each rising-edge transition line within the upper-
and lower-percent reference levels in the displayed portion of the input signal. The
region in which the slew rate is calculated appears in gray in the following figure.

24 Visualizing and Comparing Simulation Results

24-36

• – Edges — Total number of negative-polarity or falling edges counted within the
displayed portion of the input signal.

• – Fall Time — Average amount of time required for each falling edge to cross from
the upper-reference level to the lower-reference level.

• – Slew Rate — Average slope of each falling edge transition line within the upper-
and lower-percent reference levels in the displayed portion of the input signal.

Overshoots / Undershoots Pane

The Overshoots/Undershoots pane displays calculated measurements involving the
distortion and damping of the input signal. Overshoot and undershoot refer to the amount
that a signal respectively exceeds and falls below its final steady-state value. Preshoot
refers to the amount before a transition that a signal varies from its initial steady-state
value.

 Scope Measurement Panels

24-37

This figure shows preshoot, overshoot, and undershoot for a rising-edge transition.

24 Visualizing and Comparing Simulation Results

24-38

The next figure shows preshoot, overshoot, and undershoot for a falling-edge transition.

 Scope Measurement Panels

24-39

• + Preshoot — Average lowest aberration in the region immediately preceding each
rising transition.

• + Overshoot — Average highest aberration in the region immediately following each
rising transition.

• + Undershoot — Average lowest aberration in the region immediately following each
rising transition.

• + Settling Time — Average time required for each rising edge to enter and remain
within the tolerance of the high-state level for the remainder of the settle seek
duration. The settling time is the time after the mid-reference level instant when the
signal crosses into and remains in the tolerance region around the high-state level.
This crossing is illustrated in the following figure.

24 Visualizing and Comparing Simulation Results

24-40

You can modify the settle seek duration parameter in the Settings pane.
• – Preshoot — Average highest aberration in the region immediately preceding each

falling transition.
• – Overshoot — Average highest aberration in the region immediately following each

falling transition.
• – Undershoot — Average lowest aberration in the region immediately following each

falling transition.
• – Settling Time — Average time required for each falling edge to enter and remain

within the tolerance of the low-state level for the remainder of the settle seek
duration. The settling time is the time after the mid-reference level instant when the
signal crosses into and remains in the tolerance region around the low-state level. You
can modify the settle seek duration parameter in the Settings pane.

Bilevel Measurements Panel > Cycles Pane

The Cycles pane displays calculated measurements pertaining to repetitions or trends in
the displayed portion of the input signal.

 Scope Measurement Panels

24-41

Properties to set:

• Period — Average duration between adjacent edges of identical polarity within the
displayed portion of the input signal. The Bilevel measurements panel calculates
period as follows. It takes the difference between the mid-reference level instants
of the initial transition of each positive-polarity pulse and the next positive-going
transition. These mid-reference level instants appear as red dots in the following
figure.

24 Visualizing and Comparing Simulation Results

24-42

• Frequency — Reciprocal of the average period. Whereas period is typically measured
in some metric form of seconds, or seconds per cycle, frequency is typically measured
in hertz or cycles per second.

• + Pulses — Number of positive-polarity pulses counted.
• + Width — Average duration between rising and falling edges of each positive-

polarity pulse within the displayed portion of the input signal.
• + Duty Cycle — Average ratio of pulse width to pulse period for each positive-

polarity pulse within the displayed portion of the input signal.
• – Pulses — Number of negative-polarity pulses counted.
• – Width — Average duration between rising and falling edges of each negative-

polarity pulse within the displayed portion of the input signal.
• – Duty Cycle — Average ratio of pulse width to pulse period for each negative-

polarity pulse within the displayed portion of the input signal.

When you use the zoom options in the Scope, the bilevel measurements automatically
adjust to the time range shown in the display. In the Scope toolbar, click the Zoom In
or Zoom X button to constrict the x-axis range of the display, and the statistics shown
reflect this time range. For example, you can zoom in on one rising edge to make the

 Scope Measurement Panels

24-43

Bilevel Measurements panel display information about only that particular rising
edge. However, this feature does not apply to the High and Low measurements.

Peak Finder Panel

Note: The Peak Finder panel requires a DSP System Toolbox or Simscape license.

The Peak Finder panel displays the maxima, showing the x-axis values at which they
occur. This panel allows you to modify the settings for peak threshold, maximum number
of peaks, and peak excursion.

• From the menu, select Tools > Measurements > Peak Finder.
• On the toolbar, click the Peak Finder button.

Settings Pane

The Settings pane enables you to modify the parameters used to calculate the peak
values within the displayed portion of the input signal.

Properties to set:

• Peak Threshold — The level above which peaks are detected. This setting is
equivalent to the MINPEAKHEIGHT parameter, which you can set when you run the
findpeaks function.

• Max Num of Peaks — The maximum number of peaks to show. The value you enter
must be a scalar integer from 1 through 99. This setting is equivalent to the NPEAKS
parameter, which you can set when you run the findpeaks function.

24 Visualizing and Comparing Simulation Results

24-44

• Min Peaks Distance — The minimum number of samples between adjacent peaks.
This setting is equivalent to the MINPEAKDISTANCE parameter, which you can set
when you run the findpeaks function.

• Peak Excursion — The minimum height difference between a peak and its
neighboring samples. Peak excursion is illustrated alongside peak threshold in the
following figure.

The peak threshold is a minimum value necessary for a sample value to be a peak.
The peak excursion is the minimum difference between a peak sample and the
samples to its left and right in the time domain. In the figure, the green vertical
line illustrates the lesser of the two height differences between the labeled peak
and its neighboring samples. This height difference must be greater than the Peak
Excursion value for the labeled peak to be classified as a peak. Compare this setting
to peak threshold, which is illustrated by the red horizontal line. The amplitude must
be above this horizontal line for the labeled peak to be classified as a peak.

The peak excursion setting is equivalent to the THRESHOLD parameter, which you can
set when you run the findpeaks function.

• Label Format — The coordinates to display next to the calculated peak values on the
plot. To see peak values, you must first expand the Peaks pane and select the check

 Scope Measurement Panels

24-45

boxes associated with individual peaks of interest. By default, both x-axis and y-axis
values are displayed on the plot. Select which axes values you want to display next to
each peak symbol on the display.

• X+Y — Display both x-axis and y-axis values.
• X — Display only x-axis values.
• Y — Display only y-axis values.

Peal Finder Panel > Peaks Pane

The Peaks pane displays all of the largest calculated peak values. It also shows the
coordinates at which the peaks occur, using the parameters you define in the Settings
pane. You set the Max Num of Peaks parameter to specify the number of peaks shown
in the list.

The numerical values displayed in the Value column are equivalent to the pks output
argument returned when you run the findpeaks function. The numerical values
displayed in the second column are similar to the locs output argument returned when
you run the findpeaks function.

The Peak Finder displays the peak values in the Peaks pane. By default, the Peak
Finder panel displays the largest calculated peak values in the Peaks pane in
decreasing order of peak height. Use the sort descending button () to rearrange the
category and order by which Peak Finder displays peak values. Click this button again to
sort the peaks in ascending order instead. When you do so, the arrow changes direction to
become the sort ascending button (). A filled sort button indicates that the peak values
are currently sorted in the direction of the button arrow. If the sort button is not filled

(), then the peak values are sorted in the opposite direction of the button arrow. The
Max Num of Peaks parameter still controls the number of peaks listed.

24 Visualizing and Comparing Simulation Results

24-46

Use the check boxes to control which peak values are shown on the display. By default,
all check boxes are cleared and the Peak Finder panel hides all the peak values. To
show all the peak values on the display, select the check box in the top-left corner of the
Peaks pane. To hide all the peak values on the display, clear this check box. To show an
individual peak, select the check box directly to the left of its Value listing. To hide an
individual peak, clear the check box directly to the left of its Value listing.

The Peaks are valid for any units of the input signal. The letter after the value associated
with each measurement indicates the abbreviation for the appropriate International
System of Units (SI) prefix, such as m for milli-. For example, if the input signal is
measured in volts, an m next to a measurement value indicates that this value is in units
of millivolts.

Abbreviation Name Multiplier

a atto 10^–18
f femto 10^–15
p pico 10^–12
n nano 10^–9
u micro 10^–6
m milli 10^–3
 10^0
k kilo 10^3
M mega 10^6
G giga 10^9
T tera 10^12
P peta 10^15
E exa 10^18

See Also
Floating Scope | Scope

Related Examples
• “Scope Trigger Panel” on page 24-8

 Scope Tasks

24-47

Scope Tasks

In this section...

“Add Scope Block to Model” on page 24-47
“Open Scope Configuration Properties Dialog Box” on page 24-47

Add Scope Block to Model

Add a Scope block from the Simulink block library.

1 From the Simulink Editor menu, select View > Library Browser, or on the toolbar,

click the Library Browser button .
2 From the Simulink Sinks library, drag a copy of the Scope block to the Simulink

Editor.

Add a Scope block by searching from the model diagram.

1 In the Simulink Editor, click the model diagram.
2 Start typing Scope, and then from the list, select Scope Simulink/Sinks.

Open Scope Configuration Properties Dialog Box

Use the Scope Configuration properties dialog box to specify how a scope displays and
captures simulation data.

1 Open a Scope window.
2 From the Scope menu, select View > Configuration Properties, or on the toolbar,

click the Configuration Properties button.

See Also
Floating Scope | Scope | Scope Viewer

Related Examples
• “Scope Blocks and Scope Viewer Overview” on page 24-2
• “Floating Scope and Scope Viewer Tasks” on page 24-48

24 Visualizing and Comparing Simulation Results

24-48

Floating Scope and Scope Viewer Tasks

In this section...

“Add Floating Scope Block to Model” on page 24-48
“Add Scope Viewer to Model” on page 24-48
“Connect Signals to Scope” on page 24-51
“Save Simulation Data Using a Scope” on page 24-52
“Run Simulation from Scope” on page 24-53
“Delete Scope Viewer” on page 24-54
“Quick Method for Viewing Signals with Floating Scope” on page 24-54
“Quick Method for Connecting Scope Viewers” on page 24-55

Add Floating Scope Block to Model

Add a Floating Scope block from the Simulink block library.

1 From the Simulink Editor menu, select View > Library Browser, or on the toolbar,

click the Library Browser button .
2 From the Simulink Sinks library, drag a copy of the Floating Scope block to the

Simulink Editor.

Add a Floating Scope block by searching from the model diagram.

1 In the Simulink Editor, click the model diagram.
2 Start typing Floating Scope, and then from the list, select Floating Scope

Simulink/Sinks.

Add Scope Viewer to Model

Use the Signal & Scope Manager to add (attach) Scope viewers to your model.

1 From the Simulink Editor menu, select Diagram > Signals & Ports > Signal &
Scope Manager.

2 In the Signal & Scope Manager, in the Types pane and under the Viewers node,
expand a product node to show the available viewers.

 Floating Scope and Scope Viewer Tasks

24-49

3 Select a Scope, and then click Attach to model.

24 Visualizing and Comparing Simulation Results

24-50

The viewer is added to a table on the Viewers tab in the Generators/Viewers in
model pane.

 Floating Scope and Scope Viewer Tasks

24-51

Connect Signals to Scope

Use the Signal Selector to connect signals to a Floating Scope block or Scope viewer.

1 From a Simulink model, open:

• Floating Scope. Double-click a Floating Scope block.
• Scope & Signal Manager. From the menu, select Diagram > Signals & Ports >

Signal & Scope Manager.
2 Open the Signal Selector from a

• Floating Scope. From the menu, select Simulation > Signal Selector, or on the
toolbar, click the Signal Selector button .

• Scope & Signal Manager. On the right side of the Generators/Viewers pane, click
the Signal Selector button .

3 In the Signal Selector dialog box, select the check boxes for the signals you want to
display.

24 Visualizing and Comparing Simulation Results

24-52

4 Click Close.

For a Scope Viewer, a viewer symbol is attached to the selected signal lines.
5 Run a simulation to update the title, signals, and legend.

Save Simulation Data Using a Scope

Save (log) simulation data to a variable in the MATLAB Workspace. This procedure uses
the model vdp as an example.

1 Add a Floating Scope or Scope Viewer to your model. See “Add Floating Scope Block
to Model” on page 24-48or “Add Scope Viewer to Model” on page 24-48.

2 Connect signals using the Signal Selector. See “Connect Signals to Scope” on page
24-51.

 Floating Scope and Scope Viewer Tasks

24-53

3 Open a Floating Scope or Scope Viewer window. From the toolbar, click the

Parameters button .
4 Click the Logging tab, and then select the Log/Unlog Viewed Signals to

Workspace button.

This selection also sets the Log signal data parameter check box for the connected
signals. Logging symbols are placed on the signals.

5 Open the Configuration Parameters dialog box. From the Simulink editor menu,
select Simulation > Model Configuration Parameters > Data Import/Export.

6 In the right pane, select the Signal logging check box. From the Signal logging
format list, select Dataset. Use the default object name logsout or enter your own
variable name. Click OK.

7 Run a simulation.

Simulink saves data to the MATLAB variable logsout.
8 At the MATLAB command prompt, enter the commands to view the logged data from

logsout, where x1 is the name of the signal.

x1_data = logsout.get('x1').Values.Data

x1_time = logsout.get('x1').Values.Time

plot(x1_time,x1_data)

For information about the Dataset object, see Simulink.SimulationData.Dataset.

Run Simulation from Scope

Control a simulation from a Floating Scope or Scope Viewer window.

1 From a Simulink model, open:

• Floating Scope. Double-click a Floating Scope block.
• Scope Viewer. Click viewer symbol attached to a signal line.

2 Click the Run button .

For information on using toolbar buttons to control a simulation, see <link to run
simulation using toolbar buttons>

24 Visualizing and Comparing Simulation Results

24-54

Delete Scope Viewer

1 Open the Signal & Scope Manager. From the menu, select Diagram > Signals &
Ports > Signal & Scope Manager.

2 In the Viewers pane, select a viewer.
3

On the right side, click the Delete button .

The selected viewer is deleted from the table.

Alternatively,

1 Right-click any signal line with a viewer attached or click the viewer symbol
attached to a signal line.

2 Select Delete Viewer, and then select a viewer name.

Quick Method for Viewing Signals with Floating Scope

Select signals to view on a Floating Scope without using the Signal Selector.

1 Open a Floating Scope window.
2

On the toolbar, click the Lock button which changes to Unlocked .

Unlocking a Floating Scope removes any signals that you connected to this scope
using the Signal Selector.

3 On the model, click a signal line to select and highlight the signal line. To select
multiple signals, hold down the Shift key while selecting signals.

4 Run a simulation.

 Floating Scope and Scope Viewer Tasks

24-55

Quick Method for Connecting Scope Viewers

Add a Scope Viewer and connect a signal without using the Signal Selector.

1 Right-click a signal line.
2 Select Create & Connect Viewer > Simulink > Scope.

The selected signal is connected to the Scope Viewer. A viewer symbol is added to
the signal line.

Connect additional signals using the Signal Selector. See .

See Also
Floating Scope | Scope | Scope Viewer

Related Examples
• “Scope Blocks and Scope Viewer Overview” on page 24-2
• “Scope Tasks” on page 24-47
• “Connect Signals to Scope” on page 24-51
• “Floating Scope and Scope Viewer Tasks” on page 24-48

24 Visualizing and Comparing Simulation Results

24-56

Signal Generator Tasks

In this section...

“Attach Signal Generator” on page 24-56
“Attach and Remove Signal Generator” on page 24-56

Attach Signal Generator

Using the Context Menu

1 In the Simulink Editor, right-click the input to a block.
2 From the context menu, select Create & Connect Generator, the product, and

then the generator you want as input to the block.

The name of the generator you choose appears in a box connected to the block input.
3 Right-click the generator name and select Generator Parameters. In the

Generator Parameters dialog box, enter values for parameters that are specific to
this generator.

Using the Signal and Scope Manager

1 Right-click the input to a block and select Signal & Scope Manager.
2 In the Types pane and under the Generators node, expand a product node to show

the available generators.
3 Select a generator and click Attach to model.

The generator is added to a table in the Generators tab in the Generators/
Viewers in model section. The table lists the generators in your model.

Attach and Remove Signal Generator

1 Right-click a generator icon on a signal line.
2 From the context menu, select Disconnect Generator.

 Signal and Scope Manager

24-57

Signal and Scope Manager

In this section...

“About the Signal & Scope Manager” on page 24-57
“Change Scope Viewer Parameters” on page 24-57
“Viewing Test Point Data” on page 24-58

About the Signal & Scope Manager

Using the Signal & Scope Manager you can manage viewers and generators from a
central point.

Note: The Signal and Scope Manager requires that you have Java enabled when you
start MATLAB.

Viewer and Generator

Symbols identify a viewer attached to a signal line and signal names identify generators.
Manage viewers and generators using the Signal & Scope Manager.

Viewers and generators are not blocks. Blocks are dragged from the Library browser and
managed with block dialog boxes.

Change Scope Viewer Parameters

24 Visualizing and Comparing Simulation Results

24-58

1 Open the Signal & Scope Manager.

2 To the right side of the Generators and Viewers pane, click the Parameters button

.

• For a generator, the Generator Parameters dialog box opens.
• For a viewer, a Viewer opens. From the viewer toolbar, select the parameters

button . The Viewer parameters dialog box opens.
3 Review and change parameters.

Viewing Test Point Data

Use a Scope viewer available from the Signal and Scope Manager to view any signal
that is defined as a test point in a referenced model. A test point is a signal that you can
always see when using a Scope viewer in a model.

Note: With some viewers (for example, XY Graph, To Video Display, Matrix Viewer,
Spectrum Scope, and Vector Scope), you cannot use the Signal Selector to select signals
with test points in referenced models.

For more information, see “Test Points” on page 60-57.

 Signal Selector

24-59

Signal Selector

In this section...

“About the Signal Selector” on page 24-59
“Select Signals” on page 24-60
“Model Hierarchy” on page 24-60
“Inputs/Signals List” on page 24-60

About the Signal Selector

Use the Signal Selector add signals to a Floating Scope or Scope viewer. See “Add Scope
Viewer to Model” on page 24-48 . To open the Signal Selector,

• Open a Floating Scope. From the menu, select Simulation > Signal Selector, or on
the toolbar, click the Signal Selector button .

• Open a model. From the menu, select Diagram > Signal & Ports > Signal & Scope
Manager. On the right side of the Signal & Scope Manager, click the Signal Selector
button .

The Signal Selector that appears when you click the Edit signal selection button
applies only to the currently selected generator or viewer. If you want to connect blocks
to another generator or viewer object, you must select the object in the Signal & Scope
Manager and open another instance of the Signal Selector.

24 Visualizing and Comparing Simulation Results

24-60

Select Signals

This list box allows you to select the owner output port (in the case of signal generators)
or display axis (in the case of viewers) to which you want to connect blocks in your model.

The list box is enabled only if the signal generator has multiple outputs or the viewer has
multiple axes.

Model Hierarchy

This tree-structured list lets you select any subsystem in your model.

Selecting a subsystem causes the adjacent port list to display the ports available for
connection in the selected subsystem. To display subsystems included as library links in
your model, click the Follow links button at the top of the Model hierarchy control.
To display subsystems contained by masked subsystems, click the Look under masks
button at the top of the panel.

Inputs/Signals List

The contents of this panel displays input ports available for connection to the Signal
Selector owner if the owner is a signal generator or signals available for connection to the
owner if the owner is a viewer.

If the Signal Selector owner is a signal generator, the inputs/signals list by default
lists each input port in the system selected in the model hierarchy tree that is either
unconnected or connected to a signal generator.

 Signal Selector

24-61

The label for each entry indicates the name of the block of which the port is an input. If
the block has more than one input, the label indicates the number of the displayed port.
A greyed label indicates that the port is connected to a signal generator other than the
Signal Selector owner. Selecting the check box next to a port entry in the list connects the
Signal Selector owner to the port, replacing, if necessary, the signal generator previously
connected to the port.

To display more information on each signal, click the Detailed view button at the top of
the pane. The detailed view shows the path and data type of each signal and whether the
signal is a test point. The controls at the top and bottom of the panel let you restrict the
amount of information shown in the ports list.

• To show named signals only, select Named signals only from the List contents
control at the top of the pane.

• To show only signals selected in the Signal Selector, select Selected signals only
from the List contents control.

• To show test point signals only, select Testpointed/Logged signals only from
the List contents control.

• To show only signals whose signals match a specified string of characters, enter the
characters in the Show signals matching control at the bottom of the Signals pane
and press the Enter key.

24 Visualizing and Comparing Simulation Results

24-62

• To show the selected types of signals for all subsystems below the currently selected
subsystem in the model hierarchy, click the Current and Below button at the top of
the Signals pane.

To select or clear a signal in the Signals pane, click its entry or use the arrow keys to
move the selection highlight to the signal entry and press the Enter key. You can also
move the selection highlight to a signal entry by typing the first few characters of its
name (enough to identify it uniquely).

Note You can continue to select and clear signals on the block diagram with the
Signal Selector open. For example, shift-clicking a line in the block diagram adds the
corresponding signal to the set of signals that you previously selected with the Signal
Selector. If the Signal Selector owner is a Floating Scope block and a simulation is
running when you open the Signal Selector, Simulink updates the Signal Selector to
reflect signal selection changes you have made on the block diagram. However, the
changes do not appear until you select the Signal Selector window itself. You can also use
the Signal Selector before running a model. If no simulation is running, selecting a signal
in the model does not change the Signal Selector.

 Control Scopes Programmatically

24-63

Control Scopes Programmatically

In this section...

“Use Simulink Configuration Object” on page 24-63
“Scope Configuration Properties” on page 24-65

Use Simulink Configuration Object

Use a Scope Configuration object for programmatic access to scope parameters.

• Modify the title, axis labels, and axis limits
• Turn on or off the legend or grid
• Control the number of inputs
• Change the number of displays and which display is active

In this example, the variable myConfiguration stores the mask object obtained using
get_param. The example also shows how to change the value of a Scope parameter.

Create a New Model

mdl='myModel';

new_system(mdl);

Add Scope and Time Scope Blocks to Model

add_block('Simulink/Sinks/Scope', [mdl '/myScope']);

add_block('dspsnks4/Time Scope', [mdl '/myTimeScope']);

Get a Scope Configuration Object

Many of the scope configuration properties correspond to Scope block parameters.

myConfiguration = get_param([mdl '/myScope'],'ScopeConfiguration')

myConfiguration =

 Scope Configuration with properties:

 Name: 'myScope'

 Position: [680 390 560 420]

24 Visualizing and Comparing Simulation Results

24-64

 Visible: 0

 OpenAtSimulationStart: 0

 NumInputPorts: '1'

 LayoutDimensions: [1 1]

 SampleTime: '-1'

 MaximizeAxes: 'Off'

 MinimizeControls:0

 AxesScaling: 'Manual'

 TimeSpan: 'Auto'

 TimeSpanOverrunAction: 'Wrap'

 TimeUnits: 'none'

 TimeDisplayOffset: '0'

 TimeAxisLabels: 'Bottom'

 ShowTimeAxisLabel:0

 ActiveDisplay: 1

 Title: '%<SignalLabel>'

 ShowLegend: 0

 ShowGrid: 1

 PlotAsMagnitudePhase: 0

 YLimits: [-10 10]

 YLabel: ''

 DataLogging: 0

 DataLoggingVariableName: 'ScopeData'

 DataLoggingLimitDataPoints: 0

 DataLoggingMaxPoints: '5000'

 DataLoggingDecimateData: 0

 DataLoggingDecimation: '1'

 DataLoggingSaveFormat: 'Dataset'

Set a Property

myConfiguration.DataLoggingMaxPoints ='10000';

Find Scope and Time Scope Blocks

find_system(mdl,'LookUnderMasks','on','IncludeCommented','on', 'AllBlocks','on','BlockType','Scope')

ans =

 'myModel/myScope'

 'myModel/myTimeScope'

Find Only Simulink Scope Blocks

find_system(mdl,'LookUnderMasks','on','IncludeCommented','on', 'AllBlocks','on','BlockType','Scope','DefaultConfigurationName','Simulink.scopes.TimeScopeBlockCfg')

 Control Scopes Programmatically

24-65

ans =

 'myModel/myScope'

Find Only DSP System Toolbox Time Scope Blocks

find_system(mdl,'LookUnderMasks','on','IncludeCommented','on', 'AllBlocks','on','BlockType','Scope','DefaultConfigurationName','spbscopes.TimeScopeBlockCfg')

ans =

 'myModel/myScope'

Scope Configuration Properties

See Scope Configuration

See Also
Floating Scope | Scope

25

Inspecting and Comparing Logged
Signal Data

• “Inspect Signal Data with Simulation Data Inspector” on page 25-2
• “Open the Simulation Data Inspector” on page 25-4
• “Stream Data to the Simulation Data Inspector” on page 25-6
• “Requirements for Recording Data” on page 25-10
• “Record Logged Simulation Data” on page 25-11
• “Import Signal Data” on page 25-14
• “Save and Load Simulation Data Inspector Sessions” on page 25-17
• “Inspect Signal Data” on page 25-18
• “Compare Signal Data from Multiple Simulations” on page 25-28
• “Create Simulation Data Inspector Report” on page 25-33
• “Export Results from the Simulation Data Inspector” on page 25-35
• “How the Simulation Data Inspector Compares Time Series Data” on page 25-37
• “Run Management Configuration” on page 25-40
• “Customize the Simulation Data Inspector Interface” on page 25-42
• “Limitations of the Simulation Data Inspector” on page 25-54
• “Inspect and Compare Signal Data Programmatically” on page 25-55
• “Keyboard Shortcuts for the Simulation Data Inspector” on page 25-62
• “Tune and Visualize Your Model with Dashboard Blocks” on page 25-64

25 Inspecting and Comparing Logged Signal Data

25-2

Inspect Signal Data with Simulation Data Inspector

The Simulation Data Inspector software provides the capability to inspect and compare
time series data at several stages of your workflow:

• Model design: Inspect and compare simulation data after making changes to the
model diagram or its configuration

• Testing your model: Compare simulation data with different input data
• Code generation: Compare simulation data and generated code output of your model

You can compare variable-step data, fixed-step solver data from Simulink and Simulink
Coder, and fixed-step output with external data. “How the Simulation Data Inspector
Compares Time Series Data” on page 25-37 describes how aligned signal data are
compared. “How the Simulation Data Inspector Aligns Signals” on page 25-38
describes how signals are aligned between compared runs.

A typical workflow for inspecting and comparing signal data is:

1 Set up your model to send data to the Simulation Data Inspector, as in “Stream Data
to the Simulation Data Inspector” on page 25-6 or “Record Logged Simulation

 Inspect Signal Data with Simulation Data Inspector

25-3

Data” on page 25-11. If you are sending logged data, configure your model to log
signals as in “Export Signal Data Using Signal Logging” on page 57-36.

2 Open the Simulation Data Inspector, as described in “Open the Simulation Data
Inspector” on page 25-4.

3 Simulate your model or import signal data from the base workspace or a MAT-file, as
described in and “Import Signal Data” on page 25-14.

4 Configure the runs appearance and specify how you want to plot the data, as
described in “Customize the Simulation Data Inspector Interface” on page 25-42.

5 Inspect signals using data cursors to quickly determine if the run satisfies
requirements, as described in “Inspect Signal Data” on page 25-18.

6 If the run is unsatisfactory, delete it. Repeat steps 3 and 4 to collect the desired
simulation runs for comparing data.

7 Compare two signals or all of the signal data from multiple runs, as described in
“Compare Signal Data from Multiple Simulations” on page 25-28.

8 Optionally assign tolerances to signals and graphically inspect the applied
tolerances.

9 Determine which signals have discrepancies within the specified tolerances. Plot and
analyze the discrepancies of any two signals.

10 Save the signal data and comparison results, as described in “Export Results from
the Simulation Data Inspector” on page 25-35.

The Simulation Data Inspector software provides a command-line interface. For
more information, see “Inspect and Compare Signal Data Programmatically” on page
25-55.

25 Inspecting and Comparing Logged Signal Data

25-4

Open the Simulation Data Inspector

To launch the Simulation Data Inspector, choose one of the following methods:

• Simulink Editor: Click the Simulation Data Inspector button.

• Simulink Editor: Click the Simulation Data Inspector button arrow, and select
Simulation Data Inspector from the menu.

• Right-click the badge above a signal marked for streaming and select Open Data
Inspector.

• MATLAB Command Window: Enter

Simulink.sdi.view

Why Is the Simulation Data Inspector Empty?

There are several methods for populating the Simulation Data Inspector with data.

• “Stream Data to the Simulation Data Inspector” on page 25-6
• “Record Logged Simulation Data” on page 25-11. If you want to view logged data,

you must configure your model to log signals. For more information, see:

• “Export Simulation Data” on page 57-4

 Open the Simulation Data Inspector

25-5

• “Export Signal Data Using Signal Logging” on page 57-36
• “Import Signal Data” on page 25-14 to view signal data stored in the base

workspace or a MAT-file.

For a list of Simulink data export formats that are not supported in the Simulation Data
Inspector, see “Limitations of the Simulation Data Inspector” on page 25-54.

Related Examples
• “Inspect Signal Data” on page 25-18

25 Inspecting and Comparing Logged Signal Data

25-6

Stream Data to the Simulation Data Inspector

You can stream data from your model into the Simulation Data Inspector during
simulation. This is useful for iteratively debugging and optimizing a model. Streaming
does not store data in memory, and thus reduces the demand on computer memory. You
can stream signals from the top model or within reference models only if the simulation
mode is set to Normal.

If you have a model with logged signals, then you can convert the logged signals to
streamed signals using the Simulink.sdi.changeLoggedToStreamed function.

1 Select one or more signals in the model.
2 On the Simulink Editor toolbar, click the Simulation Data Inspector button arrow

and select Stream Selected Signals to Data Inspector to mark the signal for
streaming.

The streaming badge shows above signals in the model marked for streaming.
3 Click the Simulation Data Inspector button to open the Simulation Data

Inspector.
4 Simulate the model.

A new simulation run appears in the Runs pane of the Simulation Data Inspector.
During simulation, the Simulation Data Inspector button appears highlighted to
indicate that new simulation output is available in the Simulation Data Inspector.

 Stream Data to the Simulation Data Inspector

25-7

5 In the Simulation Data Inspector Runs pane, expand the new run and select the
check box next to the signal you want to stream in the plot. The figure shows the plot
for the signal ego from the sldemo_fuelsys model.

If you also set the Simulation Data Inspector to send logged signals from the
workspace to the Simulation Data Inspector, then the logged signals also appear in
the Runs pane when the simulation is paused or has finished.

Use Signal Streaming to Iterate Model Design

You can use the Simulation Data Inspector to stream data from your model during
simulation, which helps you quickly optimize model parameters. The run overwrite mode
replaces a run at the start of a new simulation and reduces the accumulation of runs in
the Runs pane.

25 Inspecting and Comparing Logged Signal Data

25-8

1 To enable overwrite mode for a run in the Runs pane, highlight the run and click
Overwrite on the Visualize tab on the Simulation Data Inspector toolstrip.

An overwrite symbol appears next to the run to indicate that overwrite mode is on
for that run.

2 Simulate the model.

The new run replaces the existing run in the Runs pane, and the new run remains
in overwrite mode. Signals selected for plotting are plotted again when the new run
starts simulating.

3 To inspect a signal value at a point in time, add a data cursor to the plot during
simulation, while the simulation is paused, or after the simulation has finished. On
the Visualize tab, click Data Cursors.

4 Drag the data cursor to the point you want to inspect.

 Stream Data to the Simulation Data Inspector

25-9

5 To turn off overwrite mode, select the overwritten run in the Runs pane and click
the Overwrite button.

Related Examples
• “Inspect Signal Data” on page 25-18
• “Record Logged Simulation Data” on page 25-11

25 Inspecting and Comparing Logged Signal Data

25-10

Requirements for Recording Data

The Simulation Data Inspector records the following data configured on the “Data
Import/Export Pane” of the Configuration Parameters dialog:

• States and Output, if Format is Structure with time, or if Format is Array or
Structure and Time is logged.

• Signal logging
• Data stores

The Simulation Data Inspector supports the following data imported from MAT-files and
the MATLAB base workspace:

• Simulink.Timeseries and MATLAB timeseries objects
• Simulink.SimulationData.Dataset or Simulink.ModelDataLogs objects
• Data in Structure with time format

The Simulation Data Inspector supports output from the following blocks:

• Scope (Structure with time and Array format)
• To File (Timeseries format)
• To Workspace (Timeseries or Structure With Time format)

Related Examples
• “Stream Data to the Simulation Data Inspector” on page 25-6
• “Record Logged Simulation Data” on page 25-11

 Record Logged Simulation Data

25-11

Record Logged Simulation Data

You can configure your model and the Simulation Data Inspector to record logged signal
data from a simulation run. Logged signals are marked with a logging badge in the
model.

Configure Model for Recording Logged Data

1 Set up your model to log signal data, as in “Export Signal Data Using Signal
Logging” on page 57-36.

2 On the Simulink Editor toolbar, click the Simulation Data Inspector button arrow
and select Configure Logging and Streaming to open the Data Import/Export
pane of the Configuration Parameters dialog.

3 In the Data Import/Export pane:

• Select the Signal logging check box.
• Select the Record logged workspace data in Simulation Data Inspector

check box.

Note: Alternatively, you can turn record on in the Simulation Data Inspector
menu. Click the Simulation Data Inspector button arrow and select Send
Logged Workspace Data to Data Inspector to turn record on.

4 Click OK.

25 Inspecting and Comparing Logged Signal Data

25-12

5 To log a particular signal, select the signal in the model, click the Simulation Data
Inspector button arrow, and then select Log Selected Signals to Workspace.
The signal logging badge appears on the signal marked for logging.

Simulate Model and Record a Run

1 Click the Simulation Data Inspector button on the Simulink Editor toolbar to
open the Simulation Data Inspector.

2 To send logged data to the Simulation Data Inspector, simulate the model.

Note: If recording is off, logged data is not sent to the Simulation Data Inspector.
To turn recording on, see “Configure Model for Recording Logged Data” on page
25-11.

3 When the simulation is done, the Simulation Data Inspector button appears
highlighted to indicate that new simulation output is available in the Simulation
Data Inspector.

The logged data appears in the Runs pane of the Simulation Data Inspector.
4 To record another simulation run, simulate the model again. When the simulation is

done, the data appears as a new run.

To configure the Simulation Data Inspector to overwrite a run, see “Overwrite a
Run” on page 25-41.

5 When you are done importing logged data for your simulations, click the Simulation
Data Inspector button arrow and select Send Logged Workspace Data to Data
Inspector to turn recording off.

Related Examples
• “Inspect Signal Data” on page 25-18

 Record Logged Simulation Data

25-13

• “Export Results from the Simulation Data Inspector” on page 25-35
• “Overwrite a Run” on page 25-41

25 Inspecting and Comparing Logged Signal Data

25-14

Import Signal Data

To import data into the Simulation Data Inspector, you must have timeseries or logged
signal data in the base workspace or in a MAT-file. For information on how to log signal
data to the base workspace, see “Export Signal Data Using Signal Logging” on page
57-36. If you have a Simulink Design Verifier license, then you can also import test
cases.

Import Signal Data from the Base Workspace

You can import data from the base workspace into the Simulation Data Inspector.

1 Click Import on the Visualize tab to open the Import dialog.
2 Select Base workspace. Data from the base workspace populates the Data to

import table.

 Import Signal Data

25-15

3 Select the corresponding signal check box in the Data to import table to import a
signal. Clear the signal check box for signals that you do not want to import.

4 For Import to, select New run or Existing run. If you select Existing run, select
a run from the list.

5 Click Import.

The imported signals appear in the Runs pane.

25 Inspecting and Comparing Logged Signal Data

25-16

Import Signal Data from a MAT-File

You can select a subset of signals from a MAT-file to import into the Simulation Data
Inspector.

1 Click Import on the Visualize tab to open the Import dialog.
2 For Import from, select MAT-file.

3 Click the Browse button and select the MAT-file you want to import from.

The data from the MAT-file populates the Data to import table.
4 For Import to, select New run or Existing run. If you select Existing run, select

a run from the list.
5 Select the corresponding signal check box in the Data to import table to import a

signal. Clear the signal check box for signals that you do not want to import.
6 Click Import.

The imported signals appear in the Runs pane.

Related Examples
• “Inspect Signal Data” on page 25-18
• “Export Results from the Simulation Data Inspector” on page 25-35

 Save and Load Simulation Data Inspector Sessions

25-17

Save and Load Simulation Data Inspector Sessions

If you have signal data in the Simulation Data Inspector and you want to archive or
share the data to view in the Simulation Data Inspector later, save the Simulation Data
Inspector session. When you save a Simulation Data Inspector session, the MAT-file
contains:

• All runs, signal data, and properties from the Runs and Comparisons panes
• Check box selection state for signals in the Runs pane (loading the session file does

not restore the subplot layout, see “Load a Saved Simulation Data Inspector Session”
on page 25-17)

Save a Session to a MAT-File

1 On the Visualize tab, click Save.
2 Browse to where you want to save the MAT-file to, name the file, and click Save.

Load a Saved Simulation Data Inspector Session

1 On the Visualize tab, click Open.
2 Browse, select the MAT-file saved from the Simulation Data Inspector, and click

Open.

Data stored in the MAT-file appears in the Runs pane of the Simulation Data
Inspector.

3 If signal data in the session is plotted on multiple subplots, on the Format tab, click
Subplots and select the subplot layout.

Related Examples
• “Export Results from the Simulation Data Inspector” on page 25-35

25 Inspecting and Comparing Logged Signal Data

25-18

Inspect Signal Data

Using the Simulation Data Inspector, you can view and inspect signal data from
simulations or from imported data. The Simulation Data Inspector allows you to group
data from multiple simulations on multiple plots, which gives you a comprehensive view
of your data. You can also use data cursors in the plots for close examination of signal
values.

These examples show you how to view and inspect signal data using the Simulation Data
Inspector with the slexAircraftExample model.

• “View Signal Data” on page 25-18
• “Explore Signal Data” on page 25-20
• “View Signals on Multiple Plots” on page 25-22
• “Filter Runs and Signals” on page 25-25

View Signal Data

This example uses signal streaming to send data to the Simulation Data Inspector. You
can also “Record Logged Simulation Data” on page 25-11 or you can “Import Signal Data”
on page 25-14 from the base workspace or a MAT-file.

1 In the MATLAB Command Window, enter slexAircraftExample to open the
model.

2 To stream signals q, rad/sec, Stick, and alpha, rad from the model to the
Simulation Data Inspector, select each signal, click the Simulation Data Inspector
button arrow, and select Stream Selected Signals to Data Inspector.

 Inspect Signal Data

25-19

The streaming badge appears above each signal marked for streaming.
3 Double-click the Pilot signal generator block. Set Wave form to sine, and click OK.
4 In the Simulink Editor, click the Simulation Data Inspector button to open the

Simulation Data Inspector.
5 Simulate the model. A new run appears in the Simulation Data Inspector.

By default, the Runs pane contains a row for each signal, organized by simulation
runs. You can expand or collapse any of the runs to view the signals in a run. For
more information on signal grouping, see “Customize the Simulation Data Inspector
Interface” on page 25-42.

6 To plot the signals, select the check box next to the q, rad/sec, Stick, and
alpha, rad signals. The signal data appears in the plot.

25 Inspecting and Comparing Logged Signal Data

25-20

Explore Signal Data

In the Simulation Data Inspector, you can inspect signal values at any point of the
simulation using data cursors.

1 On the Visualize tab, click Data Cursors to add one data cursor to the plot.

 Inspect Signal Data

25-21

2 Drag the data cursor left or right to a point of interest, or you can use the arrow keys
to move the data cursor.

3 You can move a data cursor to a specific point without dragging it. Click the data
cursor time field and enter the time value 40.33.

25 Inspecting and Comparing Logged Signal Data

25-22

If the signal was not sampled at a point of interest, then the Simulation Data
Inspector linearly interpolates the value. An asterisk appears in the data cursor
label if the value is interpolated.

4
Click the Data Cursors arrow and select Hide.

View Signals on Multiple Plots

You can use subplot layouts to group signals on different subplots. For example, you can
group the same signal from different simulation runs, group signals with a similar range
of values, or normalize a subset of your signal data.

1 In the model, double-click the Pilot signal generator block. Set Wave form to
square, and click OK.

2 Simulate the model.

A new run appears in the Simulation Data Inspector.
3 In the Simulation Data Inspector, on the Format tab, click Subplots and select

3x1.
4 Click the middle subplot. In the Runs pane, from Run 2, select the q, rad/sec,

Stick, and alpha, rad signal check boxes.

The signal check boxes show the signals that are plotted in the selected subplot,
which is outlined in blue.

 Inspect Signal Data

25-23

Move Signals Between Plots in a View

1 Select the signal you want to move.
2 Drag the signal to the plot you want to move it to.

25 Inspecting and Comparing Logged Signal Data

25-24

For more information on working with plots, see “Modify a Plot in the Simulation Data
Inspector” on page 25-52.

Linked Subplots

Subplots are linked together by default so that plots stay in sync when you pan and
zoom. These operations synchronize across linked plots:

• Pan by clicking on the plot and dragging
• Zoom in, zoom out, zoom on the time axis, and zoom on the Y-axis
• Fit data to view

To pan and zoom independently in a subplot, unlink the subplot.

1 Select the subplot you want to unlink.
2 On the Format tab, click the Unlink a Subplot button on.

The broken link symbol appears on the unlinked subplot.

 Inspect Signal Data

25-25

Filter Runs and Signals

To help search through a large amount of data in the Runs and Comparisons panes,
you can filter runs and signals. The filter criteria can be any string that is contained in
the run or signal name and properties. The properties are also found in the Runs and
Comparisons pane columns.

1 To show signals only with the name alpha, type alpha into the Filter Signals text
box. The matched strings are highlighted in the filter results.

2 To filter for a signal or run property, you can use colons. For example, port:1 filters
for signals that use port 1 in the model. Since the column is not visible in the Runs
pane, the result is not highlighted.

25 Inspecting and Comparing Logged Signal Data

25-26

3 To save multiple filter terms to a filter name, open the Advanced section of the
filter dialog box.

4 Select a column filter criteria, and enter the filter value. This example uses the Run
and Block Name columns as filter criteria.

Note: The filter matches strings. If you want to filter for tolerance values, then
match the value as a string. For instance, if you want to filter for absolute tolerance
values of 0.1, then a filter of 00.1 will not return any filter results.

5 To save the filter, enter a name in the Save Search As box. Click Save.

 Inspect Signal Data

25-27

The saved filter shows in the filter list.

Related Examples
• “Compare Signal Data from Multiple Simulations” on page 25-28
• “Export Results from the Simulation Data Inspector” on page 25-35
• “Overwrite a Run” on page 25-41

25 Inspecting and Comparing Logged Signal Data

25-28

Compare Signal Data from Multiple Simulations

In this section...

“Compare Two Signals” on page 25-28
“Compare Two Runs” on page 25-29

In the Simulation Data Inspector, you can use the Compare tab to compare two signals
or all signal data from two different simulation runs. This example is a continuation of
“Inspect Signal Data” on page 25-18.

Compare Two Signals

1 In the Runs pane, right-click a baseline signal and select Compare Signals > Set
as Baseline.

2 Right-click another signal that you want to compare to that baseline and select
Compare Signals > Set as Compare To.

3 In the Compare tab, click Compare.

Here, the alpha, rad and Stick signals are compared from Run 1. In this
example, the comparison fails because the signals do not match within the default
relative and absolute tolerance.

 Compare Signal Data from Multiple Simulations

25-29

Compare Two Runs

1 Click the Compare tab.
2 Select the Runs option button.

3 From the Baseline and Compare To lists, select two different runs. These runs
correspond to runs located in the Runs pane.

4 Click Compare. The Comparisons pane lists all signals from each run with a
result. In this example, the comparison results of the aligned signals do not match
because the signal differences are not within the absolute tolerance or relative
tolerance.

25 Inspecting and Comparing Logged Signal Data

25-30

Note: The Simulation Data Inspector only compares signals from Baseline that
are aligned with a signal from Compare To. If a signal from Baseline does not

align with a signal from Compare To, then the signal is listed with a warning .
For more information on signal alignment, see “How the Simulation Data Inspector
Aligns Signals” on page 25-38.

5 To plot a comparison, in the Plot column select the option button for a signal, in the
example it is q, rad/sec. The top plot shows the q, rad/sec signals from the
Baseline and Compare To runs. The bottom plot shows the difference between the
signals and the tolerance. For information on manipulating the plot, see “Customize
the Simulation Data Inspector Interface” on page 25-42.

 Compare Signal Data from Multiple Simulations

25-31

Note: Even though relative and absolute tolerances can be specified, the only
tolerance that shows in the Difference and Tolerance plot is the more lenient
tolerance. For more information on tolerances, see “How the Simulation Data
Inspector Applies Tolerances” on page 25-37.

6 To modify the relative tolerance or absolute tolerance, double-click the Abs Tol or
Rel Tol field for a signal and type in a value. In this example, the signal comparison
of q, rad/sec passes using an absolute tolerance of 1.5.

25 Inspecting and Comparing Logged Signal Data

25-32

7 To create a report of the comparison results, see “Create Simulation Data Inspector
Report” on page 25-33.

Related Examples
• “Inspect Signal Data” on page 25-18
• “Create Simulation Data Inspector Report” on page 25-33

 Create Simulation Data Inspector Report

25-33

Create Simulation Data Inspector Report

You can create a Simulation Data Inspector report that shows the plots in the Runs or
Comparisons panes.

1 In the Simulation Data Inspector, on the Visualize or Compare tab, click Create
Report.

2 Under Include in report, specify the plots to include in the report. Select Inspect
Signals to include the plots from the Runs pane. Select Compare Runs to include
the plots from the Comparisons pane. If you select Compare Runs, you can select
Report only mismatched signals, which show only signal comparisons that are
not within the specified tolerances. Or you can select Report all signals to include
all signal comparisons.

3 Specify the File name and Folder.

25 Inspecting and Comparing Logged Signal Data

25-34

4 Select the file and block naming options you want, and then click Create Report.

The report opens when it is completed.

Related Examples
• “Save and Load Simulation Data Inspector Sessions” on page 25-17

 Export Results from the Simulation Data Inspector

25-35

Export Results from the Simulation Data Inspector

You can use the Simulation Data Inspector to export data from the Runs or
Comparisons pane to the base workspace or a MAT-file. When you export data from the
Simulation Data Inspector, the MAT-file contains:

• Signal data
• Signal names
• Units of measure (supported by Simscape)
• Interpolation method
• Block path (when you export multiple signals)
• Port index (when you export multiple signals)

Only highlighted runs and signals from the Runs or Comparisons panes are exported.
For example, in the figure, only x1 from Run 1 and Run 2 are exported because they are
both highlighted. The check box selection does not affect whether signal data is exported.

Export Data to the Base Workspace

1 Highlight the signals or runs you want to export from the Runs or Comparisons
panes. Use Ctrl+Click to select more than one item.

2 On the Visualize tab, click Export.
3 Select Export data to base workspace, and specify the variable name.

25 Inspecting and Comparing Logged Signal Data

25-36

4 Click Export.

Export Data to a MAT-File

1 Highlight the signals or runs you want to export from the Runs or Comparisons
panes. Use Ctrl+Click to select more than one item.

2 On the Visualize tab, click Export.
3 Select Export data to MAT-file.

4 Browse to a file location, specify the file name, and click Save.
5 Click Export.

Related Examples
• “Save and Load Simulation Data Inspector Sessions” on page 25-17

 How the Simulation Data Inspector Compares Time Series Data

25-37

How the Simulation Data Inspector Compares Time Series Data

To compare time series data, the Simulation Data Inspector:

1 Converts Simulink time series data to MATLAB time series data.
2 Aligns the time vectors using the default synchronization method union. (You can

change the synchronization method for a signal: add the Sync Method column to
the Navigation pane table and choose a method.)

3 Aligns the data vectors using the default interpolation method, zoh (zero-order
hold). (You can change the interpolation method for a signal: add the Interpolation
Method column to the Navigation pane table and choose a method.)

4 Differences the data.
5 Applies the specified tolerances for plotting the difference. For more information, see

“How the Simulation Data Inspector Applies Tolerances” on page 25-37.

After it aligns signals from Baseline with signals from Compare To, the Simulation
Data Inspector compares only the aligned signals. The Comparisons pane displays the
results of all signal comparisons using these symbols.

Status Comparison Result

• Signal aligns.
• Signal data from two runs matches

within the tolerance.
• Signal aligns.
• Signal data from two runs does not

match within the tolerance.
Signal from Baseline does not align with a
signal from Compare To.

How the Simulation Data Inspector Applies Tolerances

The default value for the relative tolerance and absolute tolerance for a signal is zero. If
you specify tolerances, then the Simulation Data Inspector calculates the tolerances as
follows:

tolerance = max(absoluteTolerance,relativeTolerance*abs(baselineData));

25 Inspecting and Comparing Logged Signal Data

25-38

If you want to change the relative tolerance or absolute tolerance, select the Rel Tol or
Abs Tol columns in the Comparisons pane and type a value.

How the Simulation Data Inspector Aligns Signals

When the Simulation Data Inspector aligns signals across simulation runs, it attempts
to match signals between runs using signal properties. On the Compare tab, click
Comparison Options. In the dialog box, you can specify the signal properties to use to
align signals, as shown in the table.

Property Description

Data Source Path of the variable in the MATLAB
workspace (streamed signals do not have a
data source because they do not come from
the workspace)

Path Block path of the source signal that
produced the data

SID “Simulink Identifier”, which is consistent
even when the block is renamed or moved

Signal Name Name of the signal in the model

By default, the Simulation Data Inspector is configured to first align signals by data
source, then by path, then by SID, and then by signal name. For more information on
how to change alignment settings, see “Modify Signal Alignment for Comparisons” on
page 25-50.

An instance where a comparison of signals does not align is if a signal name is different
between two runs and the Comparison Options alignment properties are set to align by
signal name only. In this case, the signal comparison does not align.

 How the Simulation Data Inspector Compares Time Series Data

25-39

Related Examples
• “Compare Signal Data from Multiple Simulations” on page 25-28

25 Inspecting and Comparing Logged Signal Data

25-40

Run Management Configuration

The Simulation Data Inspector loads new simulation runs into the Runs pane. You can
configure how new runs are loaded into the Simulation Data Inspector.

• “Append New Runs” on page 25-40
• “Specify a Run Naming Rule” on page 25-40
• “Overwrite a Run” on page 25-41

Append New Runs

You can specify whether to add new runs in the Runs pane at the top or bottom of the
runs list. From the Visualize tab, click Run Options to open the Run Options dialog.

In the Run Options dialog box, the default is set to add new runs to the bottom of the
runs list.

To append new runs at the top of the list, click Add new runs at top.

Specify a Run Naming Rule

To specify run naming rules, click Run Options on the Visualize tab. In the Run
Options dialog box, the default value for the Run naming rule is Run <run_index>:
<model_name>.

 Run Management Configuration

25-41

To change the run name, enter available tokens from the list and any other regular
characters. For example, to include all four tokens, enter the following in the Run
naming rule box:

Run <run_index>: <model_name>: <time_stamp>: <sim_mode>

For model slexAircraftExample, the run name appears as follows:

Run 1: slexAircraftExample: 31-May-2014 10:50:18: normal

Overwrite a Run

You can overwrite an existing run in the Runs pane with the next simulation run.

1 In the Runs pane, click the run name you want to overwrite.
2 From the Visualize tab, click Overwrite to toggle overwrite for that run.

The overwrite symbol appears on the run to be overwritten.

3 Simulate the model.

The data for the selected run is replaced with the new simulation run.

See “Use Signal Streaming to Iterate Model Design” on page 25-7 for more information
on how run overwrite can be used in combination with signal streaming.

25 Inspecting and Comparing Logged Signal Data

25-42

Customize the Simulation Data Inspector Interface

You can customize the information displayed in the Runs and Comparisons panes by
performing the following tasks:

• “Add or Remove a Column in the Runs or Comparisons Pane” on page 25-42
• “Rename a Run” on page 25-47
• “Modify Grouping in Runs Pane” on page 25-47
• “View Signal and Run Properties” on page 25-45
• “Modify Signal Alignment for Comparisons” on page 25-50

You can also modify how signals appear in a plot by performing the following tasks:

• “Specify the Line Color and Style” on page 25-51
• “Modify Streamed Signal Properties” on page 25-51
• “Modify a Plot in the Simulation Data Inspector” on page 25-52

Add or Remove a Column in the Runs or Comparisons Pane

Columns in the Runs and Comparisons panes display plot configuration and signal
properties. To add or remove a column, click the column selector button. From the list,
select the columns that you want to display in the pane and click OK. After you select a
column, the new column is added to the table in the order that it appears in the column
selection list.

 Customize the Simulation Data Inspector Interface

25-43

Column Options for Runs Pane

Column Option Value

Line Signal line style and color
Units Signal measurement units
Data Type Signal data type
Model Model name for the signal data
Block Name Name of the source block
Block Path Path to the source block for the signal
Port Index of the signal output port
Dimensions Number of dimensions of the signal
Channel Channel of matrix data
Run Name of a simulation run
Absolute Tolerance Positive number (user-specified)
Relative Tolerance Positive number (user-specified)
Interp Method Interpolation method to plot data: zoh,

linear (user-specified)

25 Inspecting and Comparing Logged Signal Data

25-44

Column Option Value

Sync Method Synchronization method to align time
vector: union, intersection, uniform
(user-specified)

Time Series Root String signifying the name of the
Simulink.Timeseries object

Time Source String signifying the array containing the
time data

Data Source String identifying the path of the variable
in the MATLAB workspace (streamed
signals do not have a data source because
they do not come from the workspace)

Each column in the Comparisons pane has a Baseline and Compare To component
corresponding to the Baseline or Compare To run selected on the Compare tab.

Column Options for Comparisons Pane

Column Option Value

Line Signal line style and color
Absolute Tolerance Positive number (user-specified)
Relative Tolerance Positive number (user-specified)
Name Name of Compare To signal (Baseline

signal name is displayed by default)
Units Signal measurement units
Data Type Signal data type
Run Name of the simulation run
Align By Signal alignment specified in Comparison

Options
Model Model name
Block Name Name of the source block
Block Path Path to the source block for the signal
Port Index of the signal output port
Dimensions Dimensionality of the signal

 Customize the Simulation Data Inspector Interface

25-45

Column Option Value

Channel Channel of matrix data
Interp Method Interpolation method to plot data: zoh,

linear (user-specified)
Sync Method Synchronization method to align time

vector: union, intersection, uniform
(user-specified)

Time Series Root String signifying the name of the
Simulink.Timeseries object

Time Source String signifying the array containing the
time data

Data Source String identifying the path of the variable
in the MATLAB workspace (streamed
signals do not have a data source because
they do not come from the workspace)

View Signal and Run Properties

To view the properties of a signal, highlight a signal in the Runs or Comparisons pane.
The properties pane displays the signal information.

25 Inspecting and Comparing Logged Signal Data

25-46

To view the properties of a run, highlight the run in the Runs or Comparisons pane.
The properties pane displays the run information.

 Customize the Simulation Data Inspector Interface

25-47

Rename a Run

To rename a run name, you can:

• Double-click the run row, type the new run name, and press Enter.
• Click the Name row in the properties pane, type the new run name, and press Enter.

To specify a new run naming rule for subsequent simulation runs, see “Specify a Run
Naming Rule” on page 25-40.

Modify Grouping in Runs Pane

You can customize the organizational hierarchy of your data in the Runs pane. The data
is first grouped by run name. The first Group By hierarchy cannot be modified. You
can then group your data by model hierarchy, data hierarchy, or without a hierarchy.
Changes to signal grouping apply only to the Runs pane, not the Comparisons pane.

25 Inspecting and Comparing Logged Signal Data

25-48

If your model contains referenced models to view, you can group your data by model
hierarchy and then by data hierarchy. As an example, change the grouping in the Runs
pane to group by run name, then by model hierarchy, and then by data hierarchy.

1 On the Visualize tab, click Group Signals.
2 In the Group Signals dialog box, in the first Then By list, select Model Hierarchy.
3 In the second Then By list, select Data Hierarchy.

4 Click OK. The Runs pane groups the signal data by run name, then by model, and
then by the data.

 Customize the Simulation Data Inspector Interface

25-49

To remove the hierarchy and display a simple list of signals, select None from both Group
Signals dialog box lists, and click OK.

25 Inspecting and Comparing Logged Signal Data

25-50

Modify Signal Alignment for Comparisons

When the Simulation Data Inspector aligns signals across simulation runs, it attempts
to match signals between runs using signal properties. For more information on the
properties used for alignment, see “How the Simulation Data Inspector Aligns Signals”
on page 25-38. To modify how signals are aligned for run comparisons:

1 On the Compare tab, select Comparison Options.

 Customize the Simulation Data Inspector Interface

25-51

2 Select the Align By and Then By signal properties, and click OK.
3 Click Compare to align the signal data and compare the aligned signal data.

The default alignment options are by Data Source, then by Path, then by SID, and
then by Signal Name.

Specify the Line Color and Style

To specify the line style and color, click in the Line column of a signal. If the line column
is not shown, add the column using the column selector button . Select a color from the
palette and a line style.

Modify Streamed Signal Properties

You can modify the line color, line style, and the subplot arrangement of a streaming
signal from the model. Changes you make in this dialog are applied to the next run in the
Simulation Data Inspector at the start of simulation.

1 In the model, right-click the streaming badge and select Properties to open the
properties dialog box.

2 To specify the line style and color, select the Custom style and color check box,
and then select the style and color.

25 Inspecting and Comparing Logged Signal Data

25-52

3 To specify where a streamed signal is plotted at the start of simulation, enter a
subplot number in the Subplots for signal display box. The number refers to the
subplot number in column-major order.

4 Click OK, and save the model.

For information on how to stream signals, see “Stream Data to the Simulation Data
Inspector” on page 25-6.

Modify a Plot in the Simulation Data Inspector

Goal Action

Normalize the data for each signal from 0
to 1 along the y-axis of a plot.

On the Format tab, select Normalize Y
Axis.

Show markers at each sample point on a
signal.

On the Format tab, select Show
Markers.

Set the plot axes minimum and maximum
values.

On the Format tab, enter the axes limit
values.

 Customize the Simulation Data Inspector Interface

25-53

Goal Action

Zoom and pan to inspect the data. On the Visualize tab, select one of the
zoom actions.

Send a plot to a separate MATLAB figure
window.

On the Visualize or Compare tab, click
Send to Figure.

For more information on plotting and
customizing your MATLAB data plots,
see “Common Graphics Functions in
MATLAB”.

Set the interpolation method used for
plotting a signal to zero-order-hold or
linear.

Select a signal in the Runs or
Comparisons pane. In the properties
table, select an interpolation method from
the Interp Method list.

Unlink or link a subplot. Select a subplot. On the Format tab, select
Unlink a Subplot.

For more details, see “Linked Subplots” on
page 25-24.

25 Inspecting and Comparing Logged Signal Data

25-54

Limitations of the Simulation Data Inspector

• The following Simulink data export formats are not supported if the time is not
logged:

• Structure: If the structure format does not contain sample time informations,
then structure format signals in the Simulation Data Inspector display using ZOH
interpolation.

• Array
• When you simulate and stream data from the Simulink Editor or send logged

data from the base workspace, after you open the Simulation Data Inspector, the
simulation data appears in the Runs pane. However, when you simulate a model at
the command line using sim, you must use the Simulink.sdi.createRun function
to view the simulation data in the Simulation Data Inspector. For more information,
see “Create a Run in the Simulation Data Inspector” on page 25-57.

 Inspect and Compare Signal Data Programmatically

25-55

Inspect and Compare Signal Data Programmatically

Overview

Using the Simulation Data Inspector API, you can plot signal data, compare
two signals, and compare data from two simulation runs. You can use the
Simulink.sdi.createRun function to add simulation output data to the Simulation
Data Inspector. Once the Simulation Data Inspector contains signal data, you can
perform the following tasks:

Goal Use

View signal data, open the Simulation Data
Inspector

Simulink.sdi.view

Compare the data of two signals Simulink.sdi.compareSignals

Compare the output of two simulation runs Simulink.sdi.compareRuns

Run Management

Simulation Data Inspector software creates and manages a list of simulation runs. Each
run is an instance of a Simulink.sdi.Run object. This object contains all of the simulation
data and metadata for that simulation run.

Goal Use

Get the number of runs currently in the
Simulation Data Inspector

Simulink.sdi.getRunCount

Get the run ID from the list of simulation
runs in the Simulation Data Inspector

Simulink.sdi.getRunIDByIndex

Determine if a run ID corresponds to a run
currently in the Simulation Data Inspector

Simulink.sdi.isValidRunID

Add more data to a run currently in the
Simulation Data Inspector

Simulink.sdi.addToRun

Make a copy of a run currently in the
Simulation Data Inspector

Simulink.sdi.copyRun

Delete a run from the Simulation Data
Inspector

Simulink.sdi.deleteRun

25 Inspecting and Comparing Logged Signal Data

25-56

Goal Use

Get simulation data for a run in the
Simulation Data Inspector

Simulink.sdi.getRun

Specify a run naming rule using tokens and
regular characters as a template

Simulink.sdi.setRunNamingRule

Mark a run in the Simulation Data
Inspector for overwriting on the next
simulation

Simulink.sdi.setRunOverwrite

Manage output signal data and metadata
of a simulation run

Simulink.sdi.Run class

Get the Simulink.sdi.Signal object
corresponding to the given signal ID

Simulink.sdi.Run.getSignal method

Get the Simulink.sdi.Signal object
corresponding to the index into the array
signals in the run

Simulink.sdi.Run.getSignalByIndex
method

Get the signal ID corresponding to the
index into the array signals in the run

Simulink.sdi.Run.getSignalIDByIndex
method

Determine if a signal ID corresponds to a
signal currently in the run

Simulink.sdi.Run.isValidSignalID method

Signal Management

Each Simulink.sdi.Run object contains a Simulink.sdi.Signal object for each output
signal data. This object contains all of the simulation data for the signal and its
metadata.

Goal Use

Get the simulation data and metadata for a
signal from one simulation run.

Simulink.sdi.getSignal

Manages a signal’s time series data and
metadata for one simulation run.

Simulink.sdi.Signal class

Turn streaming on or off for a signal Simulink.sdi.markSignalForStreaming

Change signals marked for logging to
streaming

Simulink.sdi.changeLoggedToStreamed

 Inspect and Compare Signal Data Programmatically

25-57

Goal Use

Change signals marked for streaming to
logging

Simulink.sdi.changeStreamedToLogged

Import/Export Data

Goal Use

Save signal data currently in the
Simulation Data Inspector

Simulink.sdi.save

Load previously saved Simulation Data
Inspector session

Simulink.sdi.load

Clear all data from the Simulation Data
Inspector

Simulink.sdi.clear

Close the Simulation Data Inspector and
save data

Simulink.sdi.close

Generate report from Simulation Data
Inspector

Simulink.sdi.report

Comparison Results

Goal Use

Manage the results of comparing two runs
(Simulink.sdi.compareRuns creates the
Simulink.sdi.DiffRunResult object)

Simulink.sdi.DiffRunResult class

Manage the results of comparing two
signals (Simulink.sdi.compareSignals
creates the Simulink.sdi.DiffSignalResult
object)

Simulink.sdi.DiffSignalResult class

Create a Run in the Simulation Data Inspector

To populate the Simulation Data Inspector with runs of simulation data, you must first
simulate your model and then call Simulink.sdi.createRun. When using the API, the
Simulation Data Inspector does not automatically record simulation data. To create a run
of simulation data, you can use the following code:

25 Inspecting and Comparing Logged Signal Data

25-58

% Open the model 'slexAircraftExample'

load_system('slexAircraftExample');

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run

[runID,runIndex,signalIDs] = Simulink.sdi.createRun('My Run',...

 'namevalue',{'MyData'},{simOut});

Compare Signal Data

To compare the simulation data for two signals, you can use the following code:

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs','on');

% Create a Simulation Data Inspector run and get signal IDs

[~, ~, signalIDs] = Simulink.sdi.createRun('My Run', ...

 'namevalue', {'MyData'}, {simOut});

sig1 = signalIDs(1);

sig2 = signalIDs(2);

% Compare two signals, which returns the results in an instance

% of Simulink.sdi.diffSignalResult

diff = Simulink.sdi.compareSignals(sig1, sig2);

% Find if the signal data match

match = diff.match;

% Get the tolerance used in Simulink.sdi.compareSignals

tolerance = diff.tol;

Compare Runs of Simulation Data

To compare the signal data between two simulation runs, you can use the following code:

% Configure model "slexAircraftExample" for logging and simulate

set_param('slexAircraftExample/Pilot','WaveForm','square');

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 Inspect and Compare Signal Data Programmatically

25-59

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run, Simulink.sdi.Run, from

% simOut in the base workspace

runID1 = Simulink.sdi.createRun('First Run','namevalue', ...

 {'simOut'},{simOut});

% Simulate again

set_param('slexAircraftExample/Pilot','WaveForm','sawtooth');

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create another Simulation Data Inspector run

runID2 = Simulink.sdi.createRun('Second Run','namevalue', ...

 {'simOut'},{simOut});

% Compare two runs, the result is stored in a

% Simulink.sdi.DiffRunResult object

difference = Simulink.sdi.compareRuns(runID1, runID2);

% Number of comparisons in result

numComparisons = difference.count;

% Iterate through each result element

for i = 1:numComparisons

 % Get signal result at index i

 signalResult = difference.getResultByIndex(i);

 % Get signal IDs for each comparison result

 sig1 = signalResult.signalID1;

 sig2 = signalResult.signalID2;

 % Display if signals match or not

 displayStr = 'Signals with IDs %d and %d %s \n';

 if signalResult.match

 fprintf(displayStr, sig1, sig2, 'match');

 else

 fprintf(displayStr, sig1, sig2, 'do not match');

 end

end

25 Inspecting and Comparing Logged Signal Data

25-60

Specify Signal Tolerances

To control relative and absolute signal tolerances, you can use the following code:

% Configure model "slexAircraftExample" for logging and simulate

simOut = sim('slexAircraftExample', 'SaveOutput','on', ...

 'SaveFormat', 'StructureWithTime', ...

 'ReturnWorkspaceOutputs', 'on');

% Create a Simulation Data Inspector run

[runID,runIndex,signalIDs] = Simulink.sdi.createRun('My Run', ...

 'base',{'simOut'});

% Get the Simulink.sdi.Run object corresponding to the new run ID

runObj = Simulink.sdi.getRun(runID);

% Get the number of signals in the run

numSignals = runObj.signalCount;

% Get the Simulink.sdi.Signal objects for each signal in the run

% Specify the absolute and relative tolerance for each signal

for i = 1:numSignals

 signalObjs(i) = runObj.getSignal(signalIDs(i));

 signalObjs(i).absTol = 0.5;

 signalObjs(i).relTol = 0.005;

end

Record Data During Parallel Simulations

This example shows how to run parallel simulations using a parfor loop and record each
run in the Simulation Data Inspector.

Open the Simulation Data Inspector.

Simulink.sdi.view;

Load the model.

mdl = 'sldemo_absbrake';

load_system(mdl);

Log signals to the Simulation Data Inspector.

set_param(mdl,'InspectSignalLogs','on');

 Inspect and Compare Signal Data Programmatically

25-61

Start a parallel pool with 4 workers.

myPool = parpool(4);

Run the simulation in a parfor loop.

parfor i=1:4

 % Run the simulation

 simOut = sim(mdl,'SaveOutput','on',...

 'SaveFormat','StructureWithTime',...

 'ReturnWorkspaceOutputs','on');

 % Create a simulation run in the Simulation Data Inspector

 Simulink.sdi.createRun(['Run' num2str(i)],'namevalue',...

 {'simout'},{simOut});

end

Delete the current parallel pool and close all of the models.

delete(myPool);

bdclose all;

Refresh the Simulation Data Inspector.

Simulink.sdi.refresh();

See Also
parfor

25 Inspecting and Comparing Logged Signal Data

25-62

Keyboard Shortcuts for the Simulation Data Inspector

In the table, if the shortcut is called Ctrl+N, for example, it means to hold down the Ctrl
key and press the N key.

General Actions

Task Shortcut

Start a new session Ctrl+N
Open a session Ctrl+O
Save a session Ctrl+S
Compare Ctrl+E
Link/Unlink a subplot Ctrl+U
Delete a run or signal Delete

Plot Zooming

Task Shortcut

Zoom in T (time) Ctrl+Shift+T
Zoom in Y Ctrl+Shift+Y
Zoom in T and Y Ctrl++
Zoom out Ctrl+-
Fit to view Spacebar
Cancel out of zoom operation or signal
dragging

Esc

Data Cursors

Task Shortcut

Show a data cursor Ctrl+I
Hide all data cursors Shift+Del

 Keyboard Shortcuts for the Simulation Data Inspector

25-63

Task Shortcut

Move a selected data cursor to next data
point

Right arrow

Move a selected data cursor to previous
data point

Left arrow

Activate first (left) cursor Ctrl+1
Activate second (right) cursor Ctrl+2

25 Inspecting and Comparing Logged Signal Data

25-64

Tune and Visualize Your Model with Dashboard Blocks

In this section...

“Dashboard Blocks” on page 25-64
“Open the Model and Dashboard Library” on page 25-64
“Connect Parameter to a Knob” on page 25-64
“View Signal Data” on page 25-65
“Tune Parameters During Simulation” on page 25-66

Dashboard Blocks

The blocks in the Dashboard library help you to control and visualize your Simulink
model during simulation or while the simulation is paused. The Dashboard blocks are
located in the Dashboard block library under Simulink > Dashboard. The types of
blocks available in the library are:

• Knobs
• Gauges
• Switches
• Lamp
• Dashboard scope

Open the Model and Dashboard Library

This example uses the Fault-Tolerant Fuel Control System model.

1 To open the model, enter sldemo_fuelsys into the MATLAB command window.
2 Open the Simulink Library Browser.
3 Select Simulink > Dashboard in the library browser to view the Dashboard library.

Connect Parameter to a Knob

You can adjust model parameters and tunable variables after you connect them to knobs
and switches from the Dashboard block library. You can change the parameters and

 Tune and Visualize Your Model with Dashboard Blocks

25-65

tunable variables before simulation, during simulation, and while simulation is paused
by using these blocks.

1 Add a Knob block from the Dashboard library to the model.
2 Double-click the Knob block to open the block dialog box.
3 In the model, select the Nominal Speed block. Nominal Speed is a Constant block

whose Constant value parameter you can tune with the Knobblock.

When you select Nominal Speed, the name of the block and the parameter you can
tune appear in the connections table in the Knob block dialog box.

4 Select the option button next to Nominal Speed:Value in the connections table.
5 After you have connected the parameter you want to tune with the knob, you can

set the tick range for the knob to values that make sense for your simulation. In this
example, set Minimum to 75, Maximum to 750, and Tick Interval to 75.

6 Click OK to connect the Nominal Speed:Value parameter to the knob.

View Signal Data

You can view signal data using gauges, lamps, or strip charts from the Dashboard block
library. In this example, connect a gauge so you can view the value of the air_fuel_ratio
signal, which changes according to the value of the Nominal Speed block controlled by
the knob.

1 Add a Gauge block from the Dashboard library to the model.
2 Double-click the Gauge block to open the block dialog box.
3 In the model, select the air_fuel_ratio signal. The signal name appears in the

connections table in the Gauge block dialog box.
4 Select the option button next to air_fuel_ratio in the connections table.

25 Inspecting and Comparing Logged Signal Data

25-66

5 To better see the results on the gauge, enter 50 for the Maximum tick mark value.
6 Click OK to connect the air_fuel_ratio signal to the Gauge block.

Note: If you turn off streaming for a signal connected to any dashboard gauge, then
the connection shows as broken. Signal data does not stream to the block. To view
signal data again, double-click the gauge and reconnect the signal.

Tune Parameters During Simulation

Simulate the model and tune the parameter.

1 Start the simulation.
2 As the simulation runs, drag the knob pointer to adjust the value of the parameter.

Notice as you use the knob to adjust the value of the Nominal Speed block between
75 and 750, the air_fuel_ratio value displayed on the gauge changes.

26

Analyzing Simulation Results

• “Decide How to Visualize Simulation Data” on page 26-2
• “Linearizing Models” on page 26-9
• “Finding Steady-State Points” on page 26-14

26 Analyzing Simulation Results

26-2

Decide How to Visualize Simulation Data

In this section...

“Visualizing Simulation Data” on page 26-2
“Port Value Displays” on page 26-3
“Scope Blocks and Scope Viewers” on page 26-3
“Simulation Data Inspector” on page 26-5
“Dashboard Scope and Gauges” on page 26-6
“Outport Block” on page 26-7
“To Workspace Block” on page 26-7
“Signal Logging Without Blocks” on page 26-8

Visualizing Simulation Data

During the modeling process, you run simulations to learn about the behavior of
your model. To observe that behavior, view and plot signal values during and after a
simulation. Some common modeling tasks that use simulations are:

• Prototype — Quickly model a design and compare design alternatives.
• Validate — Compare simulated data with functional requirements to validate that

you built your model correctly.
• Optimize — Compare simulated data between simulations to check if changes to your

model are within a specified design tolerance.
• Verify — Compare simulated data from a model with measured data from the

modeled system to verify that your model gives the correct answer.

In Simulink you can view simulation data using several approaches. Some approaches
display signal data during a simulation. Other approaches save signal data to the
MATLAB workspace where you can post process the data. Learn about each of these
approaches so you can choose one suitable for your model.

For information about exporting simulation data, see “Export Simulation Data” on page
57-4.

 Decide How to Visualize Simulation Data

26-3

Port Value Displays

When debugging a model to isolate a particular issue, a common task is to observe a
signal or set of signals while stepping through a simulation. To observe a signal value,
right-click on a signal line, and then select Show Value Label of Selected Port.

Displaying port values for a bus signal allows you to monitor the signal values at each
time step during a simulation.

Scope Blocks and Scope Viewers

Scope blocks and scope viewers offer a quick way to visualize your simulation data. If you
are prototyping a model design, you can simulate your model with a scope block to test
and validate your design. Use the oscilloscope-like tools available with a scope to debug
your model.

A scope block or scope viewer opens to a scope interface where you can display and
evaluate simulation data. In the scope interface, you can:

• Select signals — Connect signal lines to a Scope block using input ports. Attach
signals to a Floating Scope block using a signal selector tool that hierarchically
displays all signals in a model.

26 Analyzing Simulation Results

26-4

• View signals — Compare selected signals by grouping them on multiple displays.
• Prototype and debug — Set triggers to capture events, control simulations, use

interactive cursors, and step through simulations to validate a design.
• Save signal data — Save signal data to the MATLAB workspace using a dataset

object, array, or structure formats.
• Supported data types — All data types supported by Simulink including variable-size,

fixed-point, sample-based, and frame-based signals.

For more information, see “Scope Blocks and Scope Viewer Overview” on page 24-2.

 Decide How to Visualize Simulation Data

26-5

Simulation Data Inspector

If you run your simulation more than once and want to inspect or compare signal data
between simulations, then you can use the Simulation Data Inspector. You can stream
and store signal data from the model and compare data between multiple simulations,
for example, to check that the difference between two signals is within a certain design
tolerance. In the Simulation Data Inspector, you can:

• View signals — Inspect signal data while your model is simulating.
• Import data — Import time series data from MAT-files or the base workspace.
• Compare signal data — Compare multiple simulations to check the difference

between runs.
• Export data and generate reports — Export plots and comparison data to share or

archive results.

26 Analyzing Simulation Results

26-6

For more information, see “Inspect Signal Data with Simulation Data Inspector” on page
25-2.

Dashboard Scope and Gauges

You can create an interactive display of signal and parameter data in your model using
Dashboard blocks. By using blocks such as a dashboard scope, knobs, buttons, and
gauges, you can control your model and visualize the output during a simulation. For
more information about Dashboard blocks, see “Tune and Visualize Your Model with
Dashboard Blocks” on page 25-64.

 Decide How to Visualize Simulation Data

26-7

Outport Block

Use Outport blocks to save simulation data from the top level interface of your model
to the MATLAB workspace. Select and define the variables for saving data in the Data
Import/Export pane of the Configuration Parameters dialog box. For example, select
the Time and Output check boxes. This model shows this use:

After running a simulation, you can use MATLAB plotting commands to display the
simulation results. The variables tout and yout are the default variables returned by
the solver after a simulation.

plot(tout,yout)

For more information, see “Data Import/Export Pane”.

To Workspace Block

Use To Workspace blocks to save simulation data from anywhere in your model to
the MATLAB workspace. During a simulation, the block writes data to an internal
buffer. When you pause the simulation or it reaches the end time, data is written to the
workspace. This model shows this use:

26 Analyzing Simulation Results

26-8

When you pause the simulation or it reaches the end time, the variables y and t are
written to the workspace.Store the time vector by feeding a Clock block into a To
Workspace block. You can also acquire the time vector by returning it using the sim
command (see “Data Import/Export Pane” for more information).

Signal Logging Without Blocks

You can save simulation data to MATLAB without using blocks.

• Select the signals for logging. Right-click a signal line, select Properties, and then
select the Log signal data check box.

• Enable signal logging during a simulation. In the Data Import/Export pane of the
Configuration Parameters dialog box, select the Signal logging check box, enter a
variable name, and select the Signal logging format.

For more information, see “Export Signal Data Using Signal Logging” on page 57-36.

See Also
Floating Scope | Outport | Scope | Scope Viewer | To Workspace

Related Examples
• “Export Simulation Data” on page 57-4
• “Inspect Signal Data with Simulation Data Inspector” on page 25-2
• “Scope Blocks and Scope Viewer Overview” on page 24-2
• “Tune and Visualize Your Model with Dashboard Blocks” on page 25-64

 Linearizing Models

26-9

Linearizing Models

In this section...

“About Linearizing Models” on page 26-9
“Linearization with Referenced Models” on page 26-11
“Linearization Using the 'v5' Algorithm” on page 26-13

About Linearizing Models

The Simulink product provides the linmod, linmod2, and dlinmod functions to extract
linear models in the form of the state-space matrices A, B, C, and D. State-space matrices
describe the linear input-output relationship as

&x Ax Bu

y Cx Du

= +

= + ,

where x, u, and y are state, input, and output vectors, respectively. For example, the
following model is called lmod.

To extract the linear model of this system, enter this command.

[A,B,C,D] = linmod('lmod')

A =

 -2 -1 -1

26 Analyzing Simulation Results

26-10

 1 0 0

 0 1 -1

B =

 1

 0

 0

C =

 0 1 0

 0 0 -1

D =

 0

 1

Inputs and outputs must be defined using Inport and Outport blocks from the Ports &
Subsystems library. Source and sink blocks do not act as inputs and outputs. Inport
blocks can be used in conjunction with source blocks, using a Sum block. Once the data
is in the state-space form or converted to an LTI object, you can apply functions in the
Control System Toolbox product for further analysis:

• Conversion to an LTI object

sys = ss(A,B,C,D);

• Bode phase and magnitude frequency plot

bode(A,B,C,D) or bode(sys)

• Linearized time response

step(A,B,C,D) or step(sys)

impulse(A,B,C,D) or impulse(sys)

lsim(A,B,C,D,u,t) or lsim(sys,u,t)

You can use other functions in the Control System Toolbox and the Robust Control
Toolbox™ products for linear control system design.

When the model is nonlinear, an operating point can be chosen at which to extract the
linearized model. Extra arguments to linmod specify the operating point.

[A,B,C,D] = linmod('sys', x, u)

For discrete systems or mixed continuous and discrete systems, use the function
dlinmod for linearization. This function has the same calling syntax as linmod except
that the second right-hand argument must contain a sample time at which to perform
the linearization.

 Linearizing Models

26-11

Linearization with Referenced Models

You can use linmod to extract a linear model from a Simulink environment that
contains Model blocks.

Note In Normal mode, the linmod command applies the block-by-block linearization
algorithm on blocks inside the referenced model. If the Model block is in Accelerator
mode, the linmod command uses numerical perturbation to linearize the referenced
model. Due to limitations on linearizing multirate Model blocks in Accelerator mode,
you should use Normal mode simulation for all models referenced by Model blocks when
linearizing with referenced models. For an explanation of the block-by-block linearization
algorithm, see the Simulink Control Design™ documentation.

For example, consider the f14 model mdlref_f14. The Aircraft Dynamics Model block
refers to the model mdlref_dynamics.

26 Analyzing Simulation Results

26-12

To linearize the mdlref_f14 model, call the linmod command on the top mdlref_f14
model as follows.

[A,B,C,D] = linmod('mdlref_f14')

The resulting state-space model corresponds to the complete f14 model, including the
referenced model.

You can call linmod with a state and input operating point for models that contain
Model blocks. When using operating points, the state vector x refers to the total state
vector for the top model and any referenced models. You must enter the state vector
using the structure format. To get the complete state vector, call

 Linearizing Models

26-13

x = Simulink.BlockDiagram.getInitialState(topModelName)

Linearization Using the 'v5' Algorithm

Calling the linmod command with the 'v5' argument invokes the perturbation
algorithm created prior to MATLAB software version 5.3. This algorithm also allows you
to specify the perturbation values used to perform the perturbation of all the states and
inputs of the model.

[A,B,C,D]=linmod('sys',x,u,para,xpert,upert,'v5')

Using linmod with the 'v5' option to linearize a model that contains Derivative or
Transport Delay blocks can be troublesome. Before linearizing, replace these blocks with
specially designed blocks that avoid the problems. These blocks are in the Simulink
Extras library in the Linearization sublibrary.

You access the Extras library by opening the Blocksets & Toolboxes icon:

• For the Derivative block, use the Switched derivative for linearization.
• For the Transport Delay block, use the Switched transport delay for linearization.

(Using this block requires that you have the Control System Toolbox product.)

When using a Derivative block, you can also try to incorporate the derivative term
in other blocks. For example, if you have a Derivative block in series with a Transfer
Fcn block, it is better implemented (although this is not always possible) with a single
Transfer Fcn block of the form

s

s a+

.

In this example, the blocks on the left of this figure can be replaced by the block on the
right.

26 Analyzing Simulation Results

26-14

Finding Steady-State Points

The Simulink trim function uses a model to determine steady-state points of a dynamic
system that satisfy input, output, and state conditions that you specify. Consider, for
example, this model, called ex_lmod.

You can use the trim function to find the values of the input and the states that set both
outputs to 1. First, make initial guesses for the state variables (x) and input values (u),
then set the desired value for the output (y).

x = [0; 0; 0];

u = 0;

y = [1; 1];

Use index variables to indicate which variables are fixed and which can vary.

ix = []; % Don't fix any of the states

iu = []; % Don't fix the input

iy = [1;2]; % Fix both output 1 and output 2

Invoking trim returns the solution. Your results might differ because of roundoff error.

[x,u,y,dx] = trim('lmod',x,u,y,ix,iu,iy)

x =

 0.0000

 1.0000

 1.0000

u =

 2

y =

 Finding Steady-State Points

26-15

 1.0000

 1.0000

dx =

 1.0e-015 *

 -0.2220

 -0.0227

 0.3331

Note that there might be no solution to equilibrium point problems. If that is the case,
trim returns a solution that minimizes the maximum deviation from the desired result
after first trying to set the derivatives to zero. For a description of the trim syntax, see
trim.

27

Improving Simulation Performance
and Accuracy

• “How Optimization Techniques Improve Performance and Accuracy” on page
27-2

• “Speed Up Simulation” on page 27-3
• “How Profiler Captures Performance Data” on page 27-5
• “Check and Improve Simulation Accuracy” on page 27-11
• “Modeling Techniques That Improve Performance” on page 27-13
• “How Parallel Simulations Reduce Simulation Time” on page 27-19
• “Use Performance Advisor to Improve Simulation Efficiency” on page 27-20

27 Improving Simulation Performance and Accuracy

27-2

How Optimization Techniques Improve Performance and Accuracy

The design of a model and choice of configuration parameters can affect simulation
performance and accuracy. Solvers handle most model simulations accurately and
efficiently with default parameter values. However, some models yield better results
when you adjust solver parameters. Information about the behavior of a model can help
you improve simulation performance, particularly when you provide this information to
the solver. Use optimization techniques to better understand the behavior of your model
and modify the model settings to improve performance and accuracy.

To optimize your model and achieve faster simulation automatically using Performance
Advisor, see “Automated Performance Optimization”.

To learn more about accelerator modes for faster simulation, see “Acceleration”.

Related Examples
• “Speed Up Simulation” on page 27-3
• “Check and Improve Simulation Accuracy” on page 27-11
• “How Profiler Captures Performance Data” on page 27-5

More About
• “Modeling Techniques That Improve Performance” on page 27-13

 Speed Up Simulation

27-3

Speed Up Simulation

Several factors can slow simulation. Check your model for some of these conditions.

• Your model includes an Interpreted MATLAB Function block. When a model includes
an Interpreted MATLAB Function block, the MATLAB execution engine is called
at each time step, drastically slowing down the simulation. Use the built-in Fcn block
or the Math Function block whenever possible.

• Your model includes a MATLAB file S-function. MATLAB file S-functions also call
the MATLAB execution engine at each time step. Consider converting the S-function
either to a subsystem or to a C-MEX file S-function.

• Your model includes a Memory block. Using a Memory block causes the variable-order
solvers (ode15s and ode113) to reset back to order 1 at each time step.

• The maximum step size is too small. If you changed the maximum step size, try
running the simulation again with the default value (auto).

• Your accuracy requirements are too high. The default relative tolerance (0.1%
accuracy) is usually sufficient. For models with states that go to zero, if the absolute
tolerance parameter is too small, the simulation can take too many steps around the
near-zero state values. See the discussion of this error in “Maximum order”“Maximum
order” in the online documentation.

• The time scale is too long. Reduce the time interval.
• The problem is stiff, but you are using a nonstiff solver. Try using ode15s. For more

information, see “Stiffness of System” on page 27-16.
• The model uses sample times that are not multiples of each other. Mixing sample

times that are not multiples of each other causes the solver to take small enough
steps to ensure sample time hits for all sample times.

• The model contains an algebraic loop. The solutions to algebraic loops are iteratively
computed at every time step. Therefore, they severely degrade performance. For more
information, see “Algebraic Loops” on page 3-37.

• Your model feeds a Random Number block into an Integrator block. For continuous
systems, use the Band-Limited White Noise block in the Sources library.

• Your model contains a scope viewer that displays too many data points. Try adjusting
the viewer property settings that can affect performance. For more information, see
Scope Viewer.

• You need to simulate your model iteratively. You change tunable parameters between
iterations but do not make structural changes to the model. Every iteration requires

27 Improving Simulation Performance and Accuracy

27-4

the model to compile again, thus increasing overall simulation time. Use fast restart
to perform iterative simulations. In this workflow, the model compiles only once
and iterative simulations are tied to a single compile phase. See “How Fast Restart
Improves Iterative Simulations” on page 66-2 for more information.

Related Examples
• “How Profiler Captures Performance Data” on page 27-5
• “Check and Improve Simulation Accuracy” on page 27-11

More About
• “How Optimization Techniques Improve Performance and Accuracy” on page 27-2
• “Modeling Techniques That Improve Performance” on page 27-13
• “How Fast Restart Improves Iterative Simulations” on page 66-2

 How Profiler Captures Performance Data

27-5

How Profiler Captures Performance Data

In this section...

“How Profiler Works” on page 27-5
“Start Profiler” on page 27-7
“Save Profiler Results” on page 27-10

How Profiler Works

Profiler captures performance data while your model simulates. It identifies the parts
of your model that require the most time to simulate. Use the profiling information to
decide where to focus your model optimization efforts.

Note: You cannot use Profiler in Rapid Accelerator mode.

Simulink stores performance data in the simulation profile report. The data shows the
time spent executing each function in your model.

The basis for Profiler is an execution model that this pseudocode summarizes.

Sim()

 ModelInitialize().

 ModelExecute()

 for t = tStart to tEnd

 Output()

 Update()

 Integrate()

 Compute states from derivs by repeatedly calling:

 MinorOutput()

 MinorDeriv()

 Locate any zero crossings by repeatedly calling:

 MinorOutput()

 MinorZeroCrossings()

 EndIntegrate

 Set time t = tNew.

 EndModelExecute

 ModelTerminate

27 Improving Simulation Performance and Accuracy

27-6

EndSim

According to this conceptual model, Simulink runs a model by invoking the following
functions zero, one, or many times, depending on the function and the model.

Function Purpose Level

sim Simulate the model. This top-level
function invokes the other functions
required to simulate the model. The
time spent in this function is the total
time required to simulate the model.

System

ModelInitialize Set up the model for simulation. System
ModelExecute Execute the model by invoking

the output, update, integrate, etc.,
functions for each block at each time
step from the start to the end of
simulation.

System

Output Compute the outputs of a block at the
current time step.

Block

Update Update the state of a block at the
current time step.

Block

Integrate Compute the continuous states of
a block by integrating the state
derivatives at the current time step.

Block

MinorOutput Compute block output at a minor time
step.

Block

MinorDeriv Compute the state derivatives of a block
at a minor time step.

Block

MinorZeroCrossings Compute zero-crossing values of a block
at a minor time step.

Block

ModelTerminate Free memory and perform any other
end-of-simulation cleanup.

System

Nonvirtual Subsystem Compute the output of a nonvirtual
subsystem at the current time step by
invoking the output, update, integrate,
etc., functions for each block that

Block

 How Profiler Captures Performance Data

27-7

Function Purpose Level

it contains. The time spent in this
function is the time required to execute
the nonvirtual subsystem.

Profiler measures the time required to execute each invocation of these functions. After
the model simulates, Profiler generates a report that describes the amount of simulation
time spent on each function.

Start Profiler

1 Open the model.
2 Select Analysis > Performance Tools > Show Profiler Report.
3 Simulate the model.

When simulation is complete, Simulink generates and displays the simulation profile for
the model in a MATLAB web browser.

27 Improving Simulation Performance and Accuracy

27-8

Summary Section

The summary file displays the following performance totals.

Item Description

Total Recorded Time Total time required to simulate the model
Number of Block Methods Total number of invocations of block-level functions

(e.g., Output())
Number of Internal Methods Total number of invocations of system-level functions

(e.g., ModelExecute)
Number of Model Methods Number of methods called by the model

 How Profiler Captures Performance Data

27-9

Item Description

Number of Nonvirtual
Subsystem Methods

Total number of invocations of nonvirtual subsystem
functions

Clock Precision Precision of the profiler's time measurement
Clock Speed Speed of the profiler's time measurement

The function list shows summary profiles for each function invoked to simulate the
model. For each function listed, the summary profile specifies this information.

Item Description

Name Name of function. This item is a hyperlink. Click it to display a
detailed profile of this function.

Time Total time spent executing all invocations of this function as an
absolute value and as a percentage of the total simulation time.

Calls Number of times this function was invoked.
Time/Call Average time required for each invocation of this function, including

the time spent in functions invoked by this function.
Self Time Total time required to execute this function, excluding time spent in

functions called by this function.
Location Specifies the block or model executed for which this function

is invoked. This item is a hyperlink. Click it to highlight the
corresponding element in the model diagram.

Detailed Profile Section

This section of the report contains detailed profiles for each function that Simulink
invoked to simulate the model. In addition to the information in the summary profile
for the function, the detailed profile displays the function (parent function) that invoked
the profiled function and the functions (child functions) invoked by the profiled function.
Click the name of the parent or a child function to see the detailed profile for that
function.

Note: Enabling Profiler on a parent model does not enable profiling for referenced
models. You must enable profiling separately for each referenced model. Profiling occurs
only if the referenced model executes in Normal mode. See “Normal Mode” on page 8-29
for more information.

27 Improving Simulation Performance and Accuracy

27-10

Save Profiler Results

You can save the Profiler report to a variable in the MATLAB workspace, and after that,
to a mat file. At a later time, you can regenerate and review the report.

Save the Profiler report for a model vdp to the variable profile1 and to the data file
report1.mat.

1 In the Simulink Profiler Report window, in the Summary section, click click
here link. Simulink saves the report data to the variable vdpProfileData.

2 Review the report. At the MATLAB command prompt, enter:

slprofreport(vdpProfileData)

3 Save the data to a variable named profile1 in the base workspace.

profile1 = vdpProfileData;

4 Save the data to a mat file named report1.

save report1 profile1

To view the report later, at the MATLAB command prompt, enter:

load report1

slprofreport(profile1);

Related Examples
• “Speed Up Simulation” on page 27-3
• “Check and Improve Simulation Accuracy” on page 27-11

More About
• “How Optimization Techniques Improve Performance and Accuracy” on page 27-2
• “Modeling Techniques That Improve Performance” on page 27-13

 Check and Improve Simulation Accuracy

27-11

Check and Improve Simulation Accuracy

Check Simulation Accuracy

1 Simulate the model over a reasonable time span.
2 Reduce either the relative tolerance to 1e-4 (the default is 1e-3) or the absolute

tolerance.
3 Simulate the model again.
4 Compare the results from both simulations.

If the results are not significantly different, the solution has converged.

If the simulation misses significant behavior at the start, reduce the initial step size to
ensure that the simulation does not step over that behavior.

Unstable Simulation Results

When simulation results become unstable over time,

• The system can be unstable.
• If you are using the ode15s solver, try restricting the maximum order to 2 (the

maximum order for which the solver is A-stable). You can also try using the ode23s
solver.

Inaccurate Simulation Results

If simulation results are not accurate:

• For a model that has states whose values approach zero, if the absolute tolerance
parameter is too large, the simulation takes too few steps around areas of near-zero
state values. Reduce this parameter value in the Solver pane of model configuration
parameters or adjust it for individual states in the function block parameters of the
Integrator block.

• If reducing the absolute tolerances does not improve simulation accuracy enough,
reduce the size of the relative tolerance parameter. This change reduces the
acceptable error and forces smaller step sizes and more steps.

Certain modeling constructs can also produce unexpected or inaccurate simulation
results.

27 Improving Simulation Performance and Accuracy

27-12

• A Source block that inherits sample time can produce different simulation results
if, for example, the sample times of the downstream blocks are modified (see “How
Propagation Affects Inherited Sample Times” on page 7-35).

• A Derivative block found in an algebraic loop can result in a loss in solver accuracy.

Related Examples
• “Speed Up Simulation” on page 27-3
• “How Profiler Captures Performance Data” on page 27-5

More About
• “How Optimization Techniques Improve Performance and Accuracy” on page 27-2
• “Modeling Techniques That Improve Performance” on page 27-13

 Modeling Techniques That Improve Performance

27-13

Modeling Techniques That Improve Performance

In this section...

“Accelerate the Initialization Phase” on page 27-13
“Reduce Model Interactivity” on page 27-14
“Reduce Model Complexity” on page 27-15
“Choose and Configure a Solver” on page 27-16
“Save the Simulation State” on page 27-18

Accelerate the Initialization Phase

Speed up a simulation by accelerating the initialization phase, using these techniques.

Simplify Graphics Using Mask Editor

Complex graphics and large images take a long time to load and render. Masked blocks
that contain such images can make your model less responsive. Where possible, remove
complex drawings and images from masked blocks.

If you want to keep the image, replace it with a smaller, low-resolution version. Use
mask editor and edit the icon drawing commands to keep the image that is loaded by the
call to image().

For more information on mask editor, see “Mask Editor Overview”.

Consolidate Function Calls

When you open or update a model, Simulink runs the mask initialization code. If your
model contains complicated mask initialization commands that contain many calls to
set_param, consolidate consecutive calls into a single call with multiple argument pairs.
Consolidating the calls can reduce the overhead associated with these function calls.

To learn more, see “Mask Code Execution” on page 34-7.

Load Data Using MAT-file

If you use MATLAB scripts to load and initialize data, you can improve performance by
loading MAT-files instead. The data in a MAT-file is in binary and can be more difficult
to work with than a script. However, the load operation typically initializes data more
quickly than the equivalent MATLAB script.

27 Improving Simulation Performance and Accuracy

27-14

For more information, see “Import/Export Data” on page 25-57.

Reduce Model Interactivity

In general, the more interactive a model is, the longer it takes to simulate. Use these
techniques to reduce the interactivity of your model.

Disable Debugging Diagnostics

Some enabled diagnostic features can slow simulations considerably. Consider disabling
them in the model configuration parameters Diagnostics pane.

Note: Running Array bounds exceeded and Solver data inconsistency can slow
down model runtime performance. For more information, see “Diagnostics Pane: Solver”.

Disable MATLAB Debugging

After verifying that your MATLAB code works correctly, disable these checks in the
model configuration parameters Simulation Target pane.

• Enable debugging/animation
• Detect wrap on overflow (with debugging)
• Echo expressions without semicolons

For more information, see “Simulation Target Pane: General”.

Use BLAS Library Support

If your simulation involves low-level MATLAB matrix operations, use the Basic Linear
Algebra Subprograms (BLAS) libraries to make use of highly optimized external linear
algebra routines.

Disable Stateflow Animations

By default, Stateflow charts highlight the current active states in a model and animate
the state transitions that take place as the model simulates. This feature is useful for
debugging, but it slows the simulation.

To accelerate simulations, either close all Stateflow charts or disable the animation.
Similarly, consider disabling animation or reducing scene fidelity when you use:

 Modeling Techniques That Improve Performance

27-15

• Simulink 3D Animation
• SimMechanics visualization
• FlightGear
• Any other 3D animation package

To learn more, see “Speed Up Simulation”.

Adjust Scope Viewer Properties

If your model contains a scope viewer that displays a high rate of logging and you cannot
remove the scope, adjust the viewer properties to trade off fidelity for rendering speed.

However, when you use decimation to reduce the number of plotted data points, you
can miss short transients and other phenomena that you can see with more data points.
To have more precise control over enabling visualizations, place viewers in enabled
subsystems.

For more information, see Scope Viewer.

Reduce Model Complexity

Use these techniques to improve simulation performance by simplifying a model without
sacrificing fidelity.

Replace Subsystems with Lower-Fidelity Alternatives

Replace a complex subsystem with one of these alternatives:

• A linear or nonlinear dynamic model that was created from measured input-output
data using the System Identification Toolbox™.

• A high-fidelity, nonlinear statistical model that was created using the Model-Based
Calibration Toolbox™.

• A linear model that was created using Simulink Control Design.
• A lookup table. For more information, see A lookup table.

You can maintain both representations of the subsystem in a library and use variant
subsystems to manage them. Depending on the model, you can make this replacement
without affecting the overall result. For more information, see “Optimize Generated Code
for Lookup Table Blocks” on page 33-40.

27 Improving Simulation Performance and Accuracy

27-16

Reduce Number of Blocks

When you reduce the number of blocks in your model, fewer blocks require updates
during simulations and simulation is faster.

• Vectorization is one way to reduce your block count. For example, if you have several
parallel signals that undergo a similar set of computations, try to combine them into a
vector using a Mux block and perform a single computation.

• You can also enable the Block Reduction parameter in the model configuration
parameters Optimization pane.

Use Frame-Based Processing

In frame-based processing, Simulink processes samples in batches instead of one at a
time. If a model includes an analog-to-digital converter, for example, you can collect
output samples in a buffer. Process the buffer in a single operation, such as a fast Fourier
transform. Processing data in chunks this way reduces the number of times that the
simulation needs to invoke blocks in your model.

In general, the scheduling overhead decreases as frame size increases. However,
larger frames consume more memory, and memory limitations can adversely affect the
performance of complex models. Experiment with different frame sizes to find one that
maximizes the performance benefit of frame-based processing without causing memory
issues.

Choose and Configure a Solver

Simulink provides a comprehensive library of solvers, including fixed-step and variable-
step solvers, to handle stiff and nonstiff systems. Each solver determines the time of the
next simulation step. A solver applies a numerical method to solve ordinary differential
equations that represent the model.

The solver you choose and the solver options you select can affect simulation speed.
Select and configure a solver that helps boost the performance of your model using these
criteria. For more information, see “Choose a Solver”.

Stiffness of System

A stiff system has continuous dynamics that vary slowly and quickly. Implicit solvers
are particularly useful for stiff problems. Explicit solvers are better suited for nonstiff

 Modeling Techniques That Improve Performance

27-17

systems. Using an explicit solver to solve a stiff system can lead to incorrect results. If a
nonstiff solver uses a very small step size to solve a model, this is a sign that your system
is stiff.

Model Step Size and Dynamics

When you are deciding between using a variable-step or fixed-step solver, keep in mind
the step size and dynamics of your model. Select a solver that uses time steps to capture
only the dynamics that are important to you. Choose a solver that performs only the
calculations needed to work out the next time step.

You use fixed-step solvers when the step size is less than or equal to the fundamental
sample time of the model. With a variable-step solver, the step size can vary because
variable-step solvers dynamically adjust the step size. As a result, the step size for some
time steps is larger than the fundamental sample time, reducing the number of steps
required to complete the simulation. In general, simulations with variable-step solvers
run faster than those that run with fixed-step solvers.

Choose a fixed-step solver when the fundamental sample time of your model is equal to
one of the sample rates. Choose a variable-step solver when the fundamental sample
time of your model is less than the fastest sample rate. You can also use variable-step
solvers to capture continuous dynamics.

Decrease Solver Order

When you decrease the solver order, you reduce the number of calculations that Simulink
performs to determine state outputs, which improves simulation speed. However, the
results become less accurate as the solver order decreases. Choose the lowest solver order
that produces results with acceptable accuracy.

Increase Solver Step Size or Error Tolerance

Increasing the solver step size or error tolerance usually increases simulation speed at
the expense of accuracy. Make these changes with care because they can cause Simulink
to miss potentially important dynamics during simulations.

Disable Zero-Crossing Detection

Variable-step solvers dynamically adjust the step size, increasing it when a variable
changes slowly and decreasing it when a variable changes rapidly. This behavior causes
the solver to take many small steps near a discontinuity because this is when a variable
changes rapidly. Accuracy improves, but often at the expense of long simulation times.

27 Improving Simulation Performance and Accuracy

27-18

To avoid the small time steps and long simulations associated with these situations,
Simulink uses zero-crossing detection to locate such discontinuities accurately. For
systems that exhibit frequent fluctuations between modes of operation—a phenomenon
known as chattering—this zero-crossing detection can have the opposite effect and thus
slow down simulations. In these situations, you can disable zero-crossing detection to
improve performance.

You can enable or disable zero-crossing detection for specific blocks in a model. To
improve performance, consider disabling zero-crossing detection for blocks that do not
affect the accuracy of the simulation.

For more information, see “When to Enable Zero-Crossing Detection”.

Save the Simulation State

In the classic workflow, a Simulink model simulates repeatedly for different inputs,
boundary conditions, and operating conditions. In many situations, these simulations
share a common startup phase in which the model transitions from the initial state to
another state. For example, you can bring an electric motor up to speed before you test
various control sequences.

Using SimState, you can save the simulation state at the end of the startup phase and
then restore it for use as the initial state for future simulations. This technique does not
improve simulation speed, but it can reduce total simulation time for consecutive runs
because the startup phase needs to be simulated only once.

See “Save and Restore Simulation State as SimState” on page 22-36 for more
information.

Related Examples
• “Speed Up Simulation” on page 27-3
• “How Profiler Captures Performance Data” on page 27-5

More About
• “How Optimization Techniques Improve Performance and Accuracy” on page 27-2
• “Check and Improve Simulation Accuracy” on page 27-11

 How Parallel Simulations Reduce Simulation Time

27-19

How Parallel Simulations Reduce Simulation Time

When you use Simulink and Parallel Computing Toolbox to distribute simulation tasks
among multiple processing cores, you reduce the total amount of time required to run
multiple independent simulations. You can further reduce overall simulation time by
using MATLAB Distributed Computing Server to run the simulations on a computer
cluster.

Common use cases for running simulations in parallel include Monte Carlo analysis
and design optimization. For example, if you have a Monte Carlo simulation in which
you vary the value of a parameter across a predetermined range, you can perform
simulations for each parameter value independently and in parallel on multiple cores.
You can parallelize many of the tasks involved in design optimization like:

• Estimating model parameters from test data
• Tuning controller gains to achieve a desired response
• Optimizing design parameters
• Performing sensitivity analysis
• Performing robustness analysis

The total simulation time decreases as the number of processors in use increases.

In many cases, you can convert a sequential algorithm to a parallel algorithm by simply
changing a for-loop to a parfor-loop. The parfor construct in Parallel Computing
Toolbox is similar to a standard for-loop. The key difference is that parfor distributes
the computations performed within the loop to worker processors.

Related Examples
• “Run Parallel Simulations” on page 23-10

More About
• “How Optimization Techniques Improve Performance and Accuracy” on page 27-2
• “Check and Improve Simulation Accuracy” on page 27-11

27 Improving Simulation Performance and Accuracy

27-20

Use Performance Advisor to Improve Simulation Efficiency

Use Performance Advisor to check for conditions and configuration settings that can
cause inefficient simulation performance. Performance Advisor analyzes a model and
produces a report with suboptimal conditions or settings that it finds. It suggests better
model configuration settings where appropriate, and provides mechanisms for fixing
issues automatically or manually.

Related Examples
• “Performance Advisor Workflow” on page 28-3
• “Get Started with Performance Advisor” on page 28-5

More About
• “How Performance Advisor Improves Simulation Performance” on page 28-2
• “How Optimization Techniques Improve Performance and Accuracy” on page 27-2

28

Performance Advisor

• “How Performance Advisor Improves Simulation Performance” on page 28-2
• “Performance Advisor Workflow” on page 28-3
• “Get Started with Performance Advisor” on page 28-5
• “Performance Advisor Window” on page 28-7
• “Prepare a Model for Performance Advisor” on page 28-9
• “Perform a Quick Scan Diagnosis” on page 28-13
• “Run Performance Advisor” on page 28-15
• “Use Performance Advisor Reports” on page 28-18
• “Operate on Performance Advisor Results” on page 28-21
• “Improve vdp Model Performance” on page 28-24

28 Performance Advisor

28-2

How Performance Advisor Improves Simulation Performance

Whatever the level of complexity of the model, you might want to improve simulation
performance. Performance Advisor checks a model for conditions and configuration
settings that can result in slower simulation of the system that the model represents. It
produces a report that lists the suboptimal conditions or settings it finds and suggests
better configuration settings where appropriate. Performance Advisor can fix some of
these suboptimal conditions automatically or you can fix them manually.

To learn about faster simulation using acceleration modes, see “Acceleration”.

To learn about faster simulation using modeling techniques, see “Manual Performance
Optimization”.

Related Examples
• “Performance Advisor Workflow” on page 28-3
• “Get Started with Performance Advisor” on page 28-5

 Performance Advisor Workflow

28-3

Performance Advisor Workflow

When the performance of a model is slower than expected, use Performance Advisor to
help identify and resolve bottlenecks.

Caution Performance Advisor does not automatically save your model after it makes
changes. When you are satisfied with the changes to the model from Performance
Advisor, save the model.

1 Create a baseline to compare measurements against.
2 Select the checks you want to run.
3 Run Performance Advisor with the selected checks and see recommended changes.
4 Make changes to the model. You can:

• Have Performance Advisor automatically apply the changes it recommends.
• Use global check settings to decide which changes to apply automatically.
• Generate advice only. Review and apply changes manually.

5 After applying changes, Performance Advisor performs a final validation of the
model to see how performance has improved.

• If the performance improves, the selected checks were successful. The
performance check is complete.

• If the performance is worse than the baseline, Performance Advisor reinstates the
previous settings of the model.

Note: Use Performance Advisor on top models. Performance Advisor does not traverse
referenced models or library links.

Related Examples
• “Get Started with Performance Advisor” on page 28-5
• “Prepare a Model for Performance Advisor” on page 28-9
• “Perform a Quick Scan Diagnosis” on page 28-13
• “Improve vdp Model Performance” on page 28-24

28 Performance Advisor

28-4

More About
• “How Performance Advisor Improves Simulation Performance” on page 28-2

 Get Started with Performance Advisor

28-5

Get Started with Performance Advisor

In this section...

“Prepare to Use Performance Advisor” on page 28-5
“Start Performance Advisor” on page 28-5

Prepare to Use Performance Advisor

Before you use Performance Advisor, complete the following steps:

• Make a backup of the model.
• Check that the model can simulate without error.
• Close all applications, including Web browsers. Leave only the MATLAB Command

Window, the model you want to analyze, and Performance Advisor running. Running
other applications can hinder the performance of model simulation and the ability of
Performance Advisor to measure accurately.

Start Performance Advisor

Start Performance Advisor using one of these methods:

• In the Simulink Editor, select Analysis > Performance Tools > Performance
Advisor.

•
From the Simulink Editor toolbar, on the list, select Performance Advisor.

• At the MATLAB Command prompt, type performanceadvisor('model_name'),
for example:

performanceadvisor('vdp')

Related Examples
• “Prepare a Model for Performance Advisor” on page 28-9
• “Performance Advisor Workflow” on page 28-3
• “Perform a Quick Scan Diagnosis” on page 28-13
• “Run Performance Advisor” on page 28-15

28 Performance Advisor

28-6

• “Improve vdp Model Performance” on page 28-24

More About
• “Performance Advisor Window” on page 28-7
• “How Performance Advisor Improves Simulation Performance” on page 28-2

 Performance Advisor Window

28-7

Performance Advisor Window

When you open Performance Advisor, it displays two panes.

In the left pane, the performance checks you can run are stored in folders. Expand the
folders to see the checks within and select checks to run. You can search for folders and
checks using Find above the pane.

Use the right pane to:

• Understand the Performance Advisor workflow
• Set up the model to run checks
• Select actions to apply generated advice and validate check results
• Learn more about each check
• Specify input parameters
• Run checks
• View and save reports
• View Performance Advisor results

After you run a check, Performance Advisor displays the results in the right pane. The
right pane changes depending on the check you have selected.

Selection Right Pane Display

Folder Analysis pane, containing:

• Run Selected Checks button — Click to run the selected
checks in the folder and its subfolders.

• Show report after run check box — Select to display an
HTML report of the check results in a separate window.

Report pane, containing:

• Link to HTML report of check results
• Save As button — Click to export the HTML report to a specific

location

Tips and Legend panes, containing brief descriptions on using the
checks.

28 Performance Advisor

28-8

Selection Right Pane Display

Check Analysis pane, containing:

• Input Parameters section — Before running checks, specify
how you want checks to run (for more information, see “Run
Performance Advisor Checks” on page 28-15).

• Result section — Display results after a check runs.

Action pane, containing:

• Modify button — After the check runs, Performance Advisor
suggests actions to take to improve performance. Click here to
accept the recommendations and modify the model.

• Result section — Display results after performing recommended
actions.

From Performance Advisor, you can also run:

• Model Advisor — Check a model or subsystem for conditions that result in
inaccurate or inefficient simulation of the system. See “Run Model Checks”.

• Upgrade Advisor — Upgrade and improve models with the current release. See
“Consult the Upgrade Advisor” on page 6-2.

• Code Generation Advisor — Configure the model to meet code generation
objectives. See “Application Objectives Using Code Generation Advisor”.

Related Examples
• “Prepare a Model for Performance Advisor” on page 28-9
• “Performance Advisor Workflow” on page 28-3
• “Improve vdp Model Performance” on page 28-24

More About
• “How Performance Advisor Improves Simulation Performance” on page 28-2

 Prepare a Model for Performance Advisor

28-9

Prepare a Model for Performance Advisor

Before running checks using Performance Advisor, complete these steps:

1 Enable data logging for the model.
2 Select how Performance Advisor applies advice.
3 Select validation actions for the advice.
4 Create a baseline measurement.

In this section...

“Enable Data Logging for the Model” on page 28-9
“Select How Performance Advisor Applies Advice” on page 28-10
“Select Validation Actions for the Advice” on page 28-10
“Create a Performance Advisor Baseline Measurement” on page 28-10

Enable Data Logging for the Model

Make sure the model configuration parameters are set to enable data logging using the
Structured with time format.

1 In the model, select Simulation > Model Configuration Parameters.
2 In the Configuration Parameters dialog box, click Data Import/Export in the left

pane.
3 Set Format to Structure with time.
4 Set up signal logging. The model must log at least one signal for Performance

Advisor to work. For example, select the States or Output check box.
5 Click Configure Signals to Log and select the signals to log.

Note: Select only the signals you are most interested in. Minimizing the number
of signals to log can help performance. Selecting too many signals can cause
Performance Advisor to run for a longer time.

6 Click OK in the Configuration Parameters dialog box.
7 Run the model once to make sure that the simulation is successful.

28 Performance Advisor

28-10

Select How Performance Advisor Applies Advice

Choose from these options to apply advice to the model:

• Use check parameters. Select the checks for which you want Performance Advisor
to automatically apply advice. You can review the remaining checks and apply advice
manually.

• Automatically for all checks. Performance Advisor automatically applies advice to
all selected checks.

• Generate advice only. Review advice for each check and apply changes manually.

Select Validation Actions for the Advice

For the checks you want to run, validate an improvement in simulation time and
accuracy by comparing against a baseline measurement. Each validation action requires
the model to simulate. Use these validation options as global settings for the checks you
select:

• Use check parameters. From the checks you want to run, select the ones for which
you want to validate an improvement in performance. Specify validation action for
fixes using individual settings for these checks.

• For all checks. Performance Advisor automatically validates an improvement in
performance for the checks you select.

• Do not validate. Performance Advisor does not validate an improvement in
performance. Instead, you can validate manually. When you select this option and
also specify for Performance Advisor to apply advice automatically, a warning appears
before Performance Advisor applies changes without validation.

These global settings for validation apply to all checks in the left pane except the
Final Validation check. The Final Validation check validates the overall performance
improvement in a model after you have applied changes. In case you do not want to
validate changes resulting from other check results, you can run the Final Validation
check to validate model changes for simulation time and accuracy.

Create a Performance Advisor Baseline Measurement

A baseline measurement is a set of simulation measurements that Performance Advisor
measures check results against.

 Prepare a Model for Performance Advisor

28-11

Note: Before creating a baseline measurement, ensure that you “Enable Data Logging for
the Model” on page 28-9.

1 In the model, select Analysis > Performance Tools > Performance Advisor to
start Performance Advisor.

2 In the left pane, in the Baseline folder, select Create Baseline.
3 In the right pane, under Input Parameters, enter a value in the Stop Time field

for the baseline.

When you enter a Stop Time value in Performance Advisor, this overrides the value
set in the model. A large stop time can create a simulation that runs longer.

If you do not enter a value, Performance Advisor uses values from the model.
Performance Advisor uses values from the model that are less than 10. Performance
Advisor rounds values from the model larger than 10 to 10.

4 Select the Check to view baseline signals and set their tolerances check box to
start the Signal Data Inspector after Performance Advisor runs a check. Using the
Signal Data Inspector, you can compare signals and adjust tolerance levels.

5 Click Run This Check.

When a baseline has been created, a message like the following appears under
Analysis:

After the baseline has been created, you are can run Performance Advisor checks.

Related Examples
• “Perform a Quick Scan Diagnosis” on page 28-13
• “Run Performance Advisor” on page 28-15
• “Improve vdp Model Performance” on page 28-24

28 Performance Advisor

28-12

More About
• “Inspect Signal Data with Simulation Data Inspector” on page 25-2
• “How Performance Advisor Improves Simulation Performance” on page 28-2

 Perform a Quick Scan Diagnosis

28-13

Perform a Quick Scan Diagnosis

Quick Scan is a fast method to diagnose settings in a model and deliver an approximate
analysis of performance. A model can compile and simulate several times during a
normal run in Performance Advisor. Quick Scan enables you to review performance
issues without compiling or changing the model or validating any fixes. In models with
long compile times, use Quick Scan to get a rapid analysis of possible improvements.

When you perform a Quick Scan diagnosis, Performance Advisor

• Does not perform a baseline measurement.
• Does not automatically apply advice to the model.
• Does not validate any changes you make to the model.

Run Quick Scan on a Model

1 Select checks to run.

Tip If you are unsure of which checks apply, you can select and run all checks. After
you see the results, clear the checks you are not interested in.

• In the left pane of Performance Advisor, expand a folder, such as Simulation or
Simulation Targets, to display checks related to specific tasks.

• In the folder, select the checks you want to run using the check boxes.
2 Select the Show report after run checkbox to display the results of the checks

after they run.
3 Click Quick Scan on the right pane.

Checks in Quick Scan Mode

• “Identify resource-intensive diagnostic settings”
• “Check optimization settings”
• “Identify inefficient lookup table blocks”
• “Check MATLAB System block simulation mode”
• “Identify Interpreted MATLAB Function blocks”

28 Performance Advisor

28-14

• “Identify simulation target settings”
• “Check model reference rebuild setting”

Related Examples
• “Run Performance Advisor” on page 28-15
• “Use Performance Advisor Reports” on page 28-18
• “Improve vdp Model Performance” on page 28-24

More About
• “Operate on Performance Advisor Results” on page 28-21
• “How Performance Advisor Improves Simulation Performance” on page 28-2

 Run Performance Advisor

28-15

Run Performance Advisor

There are two ways to run Performance Advisor on a model.

• For a quick and rough analysis of the model, see “Perform a Quick Scan Diagnosis” on
page 28-13.

• To run specific checks, fix suggestions and validate improvement, see “Run
Performance Advisor Checks” on page 28-15.

Run Performance Advisor Checks

Before running checks using Performance Advisor, make sure that you have completed
the steps in “Prepare a Model for Performance Advisor” on page 28-9.

1 After you have created a baseline measurement, select checks to run.

• In the left pane of Performance Advisor, expand a folder, such as Simulation or
Simulation Targets, to display checks related to specific tasks.

• In the folder, select the checks you want to run using the check boxes.

Tip If you are unsure of which checks apply, you can select and run all checks.
After you see the results, clear the checks you are not interested in.

2 Specify input parameters for selected checks. Use one of these methods:

• Apply global settings to all checks to take action, validate simulation time and
validate simulation accuracy.

• Alternatively, for each check, in the right pane, specify input parameters.

Input Parameter Description

Take action
based on
advice

automatically — Allow Performance Advisor to
automatically make the change for you.

manually — Review the change first. Then manually make the
change or accept Performance Advisor recommendations.

Validate
and revert
changes
if time of

Select this check box to have Performance Advisor rerun
the simulation and verify that the change made based on
the advice improves simulation time. If the change does not

28 Performance Advisor

28-16

Input Parameter Description

simulation
increases

improve simulation time, Performance Advisor reverts the
changes.

Validate
and revert
changes if
degree of
accuracy is
greater than
tolerance

Select this check box to have Performance Advisor rerun the
simulation and verify that, after the change, the model results
are still within tolerance. If the result is outside tolerance,
Performance Advisor reverts the changes.

Quick
estimation of
model build
time

Select this check box to have Performance Advisor use the
number of blocks of a referenced model to estimate model build
time.

3 To run a single check, click Run This Check from the settings for the check.
Performance Advisor displays the results in the right pane.

You can also select multiple checks from the left pane and click Run Selected
Checks from the right pane. Select Show report after run to display the results of
the checks after they run.

Performance Advisor also generates an HTML report of the current check results and
actions in a file with a name in the form model_name\report_#.html

To view this report in a separate window, click the Report link in the right pane.

Note: If you rename a system, you must restart Performance Advisor to check that
system.

Related Examples
• “Perform a Quick Scan Diagnosis” on page 28-13
• “Use Performance Advisor Reports” on page 28-18
• “Improve vdp Model Performance” on page 28-24

More About
• “Operate on Performance Advisor Results” on page 28-21

 Run Performance Advisor

28-17

• “How Performance Advisor Improves Simulation Performance” on page 28-2

28 Performance Advisor

28-18

Use Performance Advisor Reports

In this section...

“View Performance Advisor Reports” on page 28-18
“Save Performance Advisor Reports” on page 28-19

View Performance Advisor Reports

When Performance Advisor runs checks, it generates HTML reports of the results. To
view a report, select a folder in the left pane and click the link in the Report box in the
right pane.

As you run checks, Performance Advisor updates the reports with the latest information
for each check in the folder. Time stamps indicate when checks ran.

In the pane for global settings, when you select Show report after run, Performance
Advisor displays a consolidated set of check results in the report.

You can perform these actions using the Performance Advisor report:

• Use the check boxes under Filter checks to view only the checks with the status that
you are interested in viewing. For example, to see only the checks that failed or gave
warnings, clear the Passed and Not Run check boxes.

 Use Performance Advisor Reports

28-19

• Perform a keyword search using the search box under Filter checks.
• Use the tree of checks under Navigation to jump to the category of checks or a

specific check result that interests you.
• Expand and collapse content in the right pane of the report to view or hide check

results.

Some checks have input parameters that you specify in the right pane of Performance
Advisor. For example, Identify resource intensive diagnostic settings has several
input parameters. When you run checks that have input parameters, Performance
Advisor displays the values of the input parameters in the report.

Save Performance Advisor Reports

You can archive a Performance Advisor report by saving it to a new location.
Performance Advisor does not update the saved version of a report when you run checks
again. Archived reports serve as good points of comparison when you run checks again.

1 In the left pane of the Performance Advisor window, select the folder of checks for
the report you want to save.

2 In the Report box, click Save As.
3 In the Save As dialog box, navigate to where you want to save the report, and click

Save. Performance Advisor saves the report to the new location.

Related Examples
• “Run Performance Advisor” on page 28-15
• “Improve vdp Model Performance” on page 28-24

More About
• “Operate on Performance Advisor Results” on page 28-21

28 Performance Advisor

28-20

• “How Performance Advisor Improves Simulation Performance” on page 28-2

 Operate on Performance Advisor Results

28-21

Operate on Performance Advisor Results

In this section...

“View Results” on page 28-21
“Respond to Results” on page 28-22
“Review the Actions Taken” on page 28-22

View Results

After you run checks with Performance Advisor, the right pane shows the results:

To view the results of a check, in the left pane, select the check you ran. The right pane
updates with the results of the check. This pane has two sections.

28 Performance Advisor

28-22

The Analysis section contains:

• Information about the check
• Option to run the simulation
• Settings to take action based on advice from Performance Advisor
• Result of the check (Passed, Failed or Warning)

The Action section contains:

• A setting to manually accept all recommendations for the check
• Summary of actions taken based on the recommendations for the check

Respond to Results

Use the Take action based on advice parameter in the Analysis section to select how
to respond to changes that Performance Advisor suggests.

Value Response

automatically • Performance Advisor makes the change for you.
• You can evaluate the changes using the links in the summary

table.
• The Modify All button in the Action section is grayed out since

Performance Advisor has already made all recommended changes
for you.

manually • Performance Advisor does not make the change for you.
• The links in the summary table show recommendations.
• Use the Modify All button in the Action section to implement

all recommendations after reviewing them. Depending on how
you set your validation input parameters before you ran the
check, the button label can change to Modify All and Validate.

Review the Actions Taken

The Action section contains a summary of the actions that Performance Advisor took
based on the Input Parameters setting. If the tool also performed validation actions,
this section lists the results in a summary table. If performance has not improved,

 Operate on Performance Advisor Results

28-23

Performance Advisor reports that it reinstated the model to the settings it had before the
check ran.

Severity Description

The actions succeeded. The table lists the percentage of improvement.

The actions failed. For example, if Performance Advisor cannot make a
recommended change, it flags it as failed. It also flags a check as failed if
performance did not improve and reinstates the model to the settings it
had before the check ran.

Related Examples
• “Run Performance Advisor” on page 28-15
• “Use Performance Advisor Reports” on page 28-18
• “Improve vdp Model Performance” on page 28-24

More About
• “How Performance Advisor Improves Simulation Performance” on page 28-2

28 Performance Advisor

28-24

Improve vdp Model Performance

In this section...

“Enable Data Logging for the Model” on page 28-24
“Create Baseline” on page 28-24
“Select Checks and Run” on page 28-25
“Review Results” on page 28-26
“Apply Advice and Validate Manually” on page 28-28

This example shows you how to run Performance Advisor on the vdp model, review
advice, and make changes to improve performance.

Enable Data Logging for the Model

1 In the vdpmodel, select Simulation > Model Configuration Parameters.
2 In the Configuration Parameters dialog box, click Data Import/Export in the left

pane.
3 Set Format to Structure with time.
4 Set up signal logging. The model must log at least one signal for Performance

Advisor to work. For example, select the States or Output check box.
5 Click Configure Signals to Log .
6 To select signals to log, select a signal in vdp. Right click and select Properties.
7 In the Signal Properties dialog box, check the Log signal data option and click OK.
8 Click OK in the Configuration Parameters dialog box.
9 Run the model once to make sure that the simulation is successful.

Create Baseline

1 Open Performance Advisor. In the vdpmodel, select Analysis > Performance
Tools > Performance Advisor.

2 In the right pane, under Set Up, select a global setting for Take Action. To
automatically apply advice to the model, select automatically for all checks.

 Improve vdp Model Performance

28-25

3 Select global settings to validate any improvements in simulation time and
accuracy after applying advice. To select the default setting for validation, for
Validate simulation time and Validate simulation accuracy, select use check
parameters.

Note: To validate any improvements automatically, change the global settings to For
all checks. However, this can increase simulation time as validating all checks
requires more simulation runs.

4 Select Show report after run. This opens an HTML report of check results.
5 In the left pane, select the Create baseline check. Clear the other checks.
6 In the Create baseline pane, set Stop Time to 10. Click Apply.
7 Click Run This Check. The right pane updates to show that the baseline was

created successfully.

Select Checks and Run

Note: The global input parameters to take action and validate improvement apply to all
the checks you select.

28 Performance Advisor

28-26

1 In the left pane, clear the baseline check. Select these checks:

• In Simulation > Checks Occurring Before Update, select Identify
resource-intensive diagnostic settings.

• In Simulation > Checks that Require Update Diagram, select Check model
reference parallel build.

• In Simulation Targets > Check Compiler Optimization Settings, select
Select compiler optimizations on or off.

• Select Final validation.
2 For every check that you have selected in the left pane, select options in the right

pane to validate any improvements in simulation time and accuracy. Note that Take
Action based on advice is set to automatically, a result of Take Action being
set to automatically for all checks.

3 Click Run Selected Checks.

Performance Advisor runs the checks you selected and opens an HTML report with check
results.

Review Results

1 In the HTML report, filter the results to see only the checks that passed.

 Improve vdp Model Performance

28-27

All of the selected checks passed successfully.
2 Navigate to the results for a particular check, for exampleCheck model reference

parallel build. Use the navigation tree in the left pane or scroll to the results for
this check in the right pane.

3 Performance Advisor gives you information about this check, advice for performance
improvement, as well as a list of related model configuration parameters.

4 Filter the results to display warnings. See results for the Identify resource-
intensive diagnostic settings check.

28 Performance Advisor

28-28

Performance Advisor identified diagnostic settings that incur runtime overhead
during simulation. It modified values for some of these diagnostics. A table in the
report shows the diagnostics checked and whether Performance Advisor suggested a
change to the value.

If the performance of the model improved, the HTML report gives you information
about this improvement. If the performance has deteriorated, Performance Advisor
discards all changes and reinstates the original settings in the model.

5 See details for the Final Validation check.

This check validates the overall performance improvement in the model. The check
results show changes in simulation time and accuracy, depending on whether
performance improved or degraded.

Apply Advice and Validate Manually

Generate advice for a check, apply it, and validate any improvements manually.

1 In the left pane, click Performance Advisor. Select these settings and click Apply:

• Set Take Action to generate advice only.
• Set Validate simulation time to use check parameters.
• Set Validate simulation accuracy to use check parameters.

2 For every check that you have selected in the left pane, select options in the right
pane to validate any improvements in simulation time and accuracy. Note that Take

 Improve vdp Model Performance

28-29

Action based on advice is set to manually, a result of Take Action being set to
generate advice only.

3 Select Performance Advisor in the left pane. Click Run Selected Checks in the
Performance Advisor pane.

If the performance of the model has improved, the Final Validation check results
show the overall performance improvement.

4 In the results for Identify resource-intensive diagnostic settings, Performance
Advisor suggests new values for the diagnostics it checked. Review these results to
accept or reject the values it suggests.

Alternatively, click Modify all and Validate to accept all changes and validate any
improvement in performance.

Related Examples
• “Prepare a Model for Performance Advisor” on page 28-9
• “Perform a Quick Scan Diagnosis” on page 28-13
• “Run Performance Advisor” on page 28-15
• “Use Performance Advisor Reports” on page 28-18

More About
• “How Performance Advisor Improves Simulation Performance” on page 28-2

29

Simulink Debugger

• “Introduction to the Debugger” on page 29-2
• “Debugger Graphical User Interface” on page 29-3
• “Debugger Command-Line Interface” on page 29-9
• “Debugger Online Help” on page 29-11
• “Start the Simulink Debugger” on page 29-12
• “Start a Simulation” on page 29-14
• “Run a Simulation Step by Step” on page 29-16
• “Set Breakpoints” on page 29-20
• “Display Information About the Simulation” on page 29-26
• “Display Information About the Model” on page 29-31

29 Simulink Debugger

29-2

Introduction to the Debugger

With the debugger, you run your simulation method by method. You can stop after each
method to examine the execution results. In this way, you can pinpoint problems in your
model to specific blocks, parameters, or interconnections.

Note Methods are functions that the Simulink software uses to solve a model at each
time step during the simulation. Blocks are made up of multiple methods. “Block
execution” in this documentation is shorthand for “block methods execution.” Block
diagram execution is a multi-step operation that requires execution of the different block
methods in all the blocks in a diagram at various points during the process of solving a
model at each time step during simulation, as specified by the simulation loop.

The debugger has both a graphical and a command-line user interface. The graphical
interface allows you to access the most commonly used features of the debugger. The
command-line interface gives you access to all of the capabilities in the debugger. If
you can use either to perform a task, the documentation shows you first how to use the
graphical interface, “Debugger Graphical User Interface” on page 29-3, and then the
command-line interface, “Debugger Command-Line Interface” on page 29-9.

All functions such as atrace and ashow can only be used within the debugger.

 Debugger Graphical User Interface

29-3

Debugger Graphical User Interface

In this section...

“Displaying the Graphical Interface” on page 29-3
“Toolbar” on page 29-4
“Breakpoints Pane” on page 29-5
“Simulation Loop Pane” on page 29-5
“Outputs Pane” on page 29-7
“Sorted List Pane” on page 29-7
“Status Pane” on page 29-8

Displaying the Graphical Interface

Select Debug Model from a model window Simulation > Debug menu to display the
debugger graphical interface.

29 Simulink Debugger

29-4

Note: The debugger graphical user interface does not display state or solver information.
The command line interface does provide this information. See “Display System States”
on page 29-28 and “Display Solver Information” on page 29-29.

Toolbar

The debugger toolbar appears at the top of the debugger window.

From left to right, the toolbar contains the following command buttons:

Button Purpose

Step into the next method (see “Stepping Commands” on page
29-18 for more information on this command, and the following
stepping commands).
Step over the next method.

Step out of the current method.

Step to the first method at the start of next time step.

Step to the next block method.

Start or continue the simulation.

Pause the simulation.

Stop the simulation.

Break before the selected block.

 Debugger Graphical User Interface

29-5

Button Purpose

Display inputs and outputs of the selected block when executed (same
as trace gcb).

Display the current inputs and outputs of selected block (same as
probe gcb).

Display help for the debugger.

Close the debugger.

Breakpoints Pane

To display the Breakpoints pane, select the Break Points tab on the debugger window.

Breakpoint pane

The Breakpoints pane allows you to specify block methods or conditions at which to
stop a simulation. See “Set Breakpoints” on page 29-20 for more information.

Simulation Loop Pane

To display the Simulation Loop pane, select the Simulation Loop tab on the debugger
window.

29 Simulink Debugger

29-6

Simulation loop pane

The Simulation Loop pane contains three columns:

• Method
• Breakpoints
• ID

Method Column

The Method column lists the methods that have been called thus far in the simulation
as a method tree with expandable/collapsible nodes. Each node of the tree represents a
method that calls other methods. Expanding a node shows the methods that the block
method calls. Clicking a block method name highlights the corresponding block in the
model diagram.

Whenever the simulation stops, the debugger highlights the name of the method where
the simulation has stopped as well as the methods that invoked it. The highlighted
method names indicate the current state of the method call stack.

Breakpoints Column

The breakpoints column consists of check boxes. Selecting a check box sets a breakpoint
at the method whose name appears to the left of the check box. See “Setting Breakpoints
from the Simulation Loop Pane” on page 29-22 for more information.

 Debugger Graphical User Interface

29-7

ID Column

The ID column lists the IDs of the methods listed in the Methods column. See “Method
ID” on page 29-9 for more information.

Outputs Pane

To display the Outputs pane, select the Outputs tab on the debugger window.

Output pane

The Outputs pane displays the same debugger output that would appear in the MATLAB
command window if the debugger were running in command-line mode. The output
includes the debugger command prompt and the inputs, outputs, and states of the block
at whose method the simulation is currently paused (see “Block Data Output” on page
29-17). The command prompt displays current simulation time and the name and
index of the method in which the debugger is currently stopped (see “Block ID” on page
29-9).

Sorted List Pane

To display the Sorted List pane, select the Sorted List tab on the debugger window.

29 Simulink Debugger

29-8

Sorted list pane

The Sorted List pane displays the sorted lists for the model being debugged. See
“Display Model’s Sorted Lists” on page 29-31 for more information.

Status Pane

To display the Status pane, select the Status tab on the debugger window.

Status pane

The Status pane displays the values of various debugger options and other status
information.

 Debugger Command-Line Interface

29-9

Debugger Command-Line Interface

In this section...

“Controlling the Debugger” on page 29-9
“Method ID” on page 29-9
“Block ID” on page 29-9
“Accessing the MATLAB Workspace” on page 29-10

Controlling the Debugger

In command-line mode, you control the debugger by entering commands at the debugger
command line in the MATLAB Command Window. To enter commands at the debugger
command line, you must start the debugger programmatically and not through the
GUI. Use sldebug for this purpose. The debugger accepts abbreviations for debugger
commands. For more information on debugger commands, see “Simulink Debugger”.

Note: You can repeat some commands by entering an empty command (i.e., by pressing
the Enter key) at the command line.

Method ID

Some of the Simulink software commands and messages use method IDs to refer to
methods. A method ID is an integer assigned to a method the first time the method is
invoked. The debugger assigns method indexes sequentially, starting with 0.

Block ID

Some of the debugger commands and messages use block IDs to refer to blocks. Block IDs
are assigned to blocks while generating the model's sorted lists during the compilation
phase of the simulation. A block ID has the form sysIdx:blkIdx, where sysIdx is
an integer identifying the system that contains the block (either the root system or a
nonvirtual subsystem) and blkIdx is the position of the block in the system's sorted list.
For example, the block ID0:1 refers to the first block in the model's root system. The
slist command shows the block ID for each debugged block in the model.

29 Simulink Debugger

29-10

Accessing the MATLAB Workspace

You can enter any MATLAB expression at the sldebug prompt. For example, suppose
you are at a breakpoint and you are logging time and output of your model as tout and
yout. The following command creates a plot.

(sldebug ...) plot(tout, yout)

You cannot display the value of a workspace variable whose name is partially or entirely
the same as that of a debugger command by entering it at the debugger command
prompt. You can, however, use the eval command to work around this problem. For
example, use eval('s') to determine the value of s rather than s(tep) the simulation.

 Debugger Online Help

29-11

Debugger Online Help

You can get online help on using the debugger by clicking the Help button on the
debugger toolbar. Clicking the Help button displays help for the debugger in the
MATLAB product Help browser.

Help button

In command-line mode, you can get a brief description of the debugger commands by
typing help at the debug prompt.

29 Simulink Debugger

29-12

Start the Simulink Debugger

You can start the debugger from either a Simulink model window or from the MATLAB
Command Window.

In this section...

“Starting from a Model Window” on page 29-12
“Starting from the Command Window” on page 29-12

Starting from a Model Window

1 In a model window, select Simulation > Debug > Debug Model.

The debugger graphical user interface opens. See “Debugger Graphical User
Interface” on page 29-3.

2 Continue selecting toolbar buttons.

Note: When running the debugger in graphical user interface (GUI) mode, you must
explicitly start the simulation. For more information, see “Start a Simulation” on page
29-14.

Note: When starting the debugger from the GUI, you cannot enter debugger commands
in the MATLAB command window. For this, you must start the debugger from the
command window using the sim or sldebug commands.

Starting from the Command Window

1 In the MATLAB Command Window, enter either

• the sim command. For example, enter

sim('vdp', 'StopTime', '10', 'debug', 'on')

• or the sldebug command. For example, enter

sldebug 'vdp'

 Start the Simulink Debugger

29-13

In both cases, the example model vdp loads into memory, starts the simulation, and
stops the simulation at the first block in the model execution list.

2 The debugger opens and a debugger command prompt appears within the MATLAB
command window. Continue entering debugger commands at this debugger prompt.

29 Simulink Debugger

29-14

Start a Simulation

To start the simulation, click the Start/Continue button on the debugger toolbar.

Start/Continue button

The simulation starts and stops at the first simulation method that is to be executed. It
displays the name of the method in its Simulation Loop pane. At this point, you can

• Set breakpoints.
• Run the simulation step by step.
• Continue the simulation to the next breakpoint or end.
• Examine data.
• Perform other debugging tasks.

The debugger displays the name of the method in the Simulation Loop pane, as shown in
the following figure:

 Start a Simulation

29-15

The following sections explain how to use the debugger controls to perform these
debugging tasks.

Note When you start the debugger in GUI mode, the debugger command-line interface
is also active in the MATLAB Command Window. However, to prevent synchronization
errors between the graphical and command-line interfaces, you should avoid using the
command-line interface.

29 Simulink Debugger

29-16

Run a Simulation Step by Step

In this section...

“Introduction” on page 29-16
“Block Data Output” on page 29-17
“Stepping Commands” on page 29-18
“Continuing a Simulation” on page 29-19
“Running a Simulation Nonstop” on page 29-19

Introduction

The debugger provides various commands that let you advance a simulation from the
method where it is currently suspended (the next method) by various increments (see
“Stepping Commands” on page 29-18). For example, you can advance the simulation

• Into or over the next method
• Out of the current method
• To the top of the simulation loop.

After each advance, the debugger displays information that enables you to determine the
point to which the simulation has advanced and the results of advancing the simulation
to that point.

For example, in GUI mode, after each step command, the debugger highlights the
current method call stack in the Simulation Loop pane. The call stack comprises the
next method and the methods that invoked the next method either directly or indirectly.
The debugger highlights the call stack by highlighting the names of the methods that
make up the call stack in the Simulation Loop pane.

 Run a Simulation Step by Step

29-17

Next method

In command-line mode, you can use the where command to display the method call
stack.

Block Data Output

After executing a block method, the debugger prints any or all of the following block data
in the debugger Output panel (in GUI mode) or, if in command line mode, the MATLAB
Command Window:

• Un = v

where v is the current value of the block's nth input.
• Yn = v

where v is the current value of the block's nth output.
• CSTATE = v

where v is the value of the block's continuous state vector.
• DSTATE = v

29 Simulink Debugger

29-18

where v is the value of the block's discrete state vector.

The debugger also displays the current time, the ID and name of the next method to
be executed, and the name of the block to which the method applies in the MATLAB
Command Window. The following example illustrates typical debugger outputs after a
step command.

Current time Next method

Stepping Commands

Command-line mode provides the following commands for advancing a simulation
incrementally:

This command... Advances the simulation...

step [in into] Into the next method, stopping at the first method in the next
method or, if the next method does not contain any methods, at
the end of the next method

step over To the method that follows the next method, executing all
methods invoked directly or indirectly by the next method

step out To the end of the current method, executing any remaining
methods invoked by the current method

step top To the first method of the next time step (i.e., the top of the
simulation loop)

step blockmth To the next block method to be executed, executing all
intervening model- and system-level methods

 Run a Simulation Step by Step

29-19

This command... Advances the simulation...

next Same as step over

Buttons in the debugger toolbar allow you to access these commands in GUI mode.

Step
Step
out

Next block
method

Step
over

Step
top

Clicking a button has the same effect as entering the corresponding command at the
debugger command line.

Continuing a Simulation

In GUI mode, the Stop button turns red when the debugger suspends the simulation for
any reason. To continue the simulation, click the Start/Continue button. In command-
line mode, enter continue to continue the simulation. By default, the debugger runs the
simulation to the next breakpoint (see “Set Breakpoints” on page 29-20) or to the end
of the simulation, whichever comes first.

Running a Simulation Nonstop

The run command lets you run a simulation to the end of the simulation, skipping any
intervening breakpoints. At the end of the simulation, the debugger returns you to the
command line. To continue debugging a model, you must restart the debugger.

Note The GUI mode does not provide a graphical version of the run command. To run
the simulation to the end, you must first clear all breakpoints and then click the Start/
Continue button.

29 Simulink Debugger

29-20

Set Breakpoints

In this section...

“About Breakpoints” on page 29-20
“Setting Unconditional Breakpoints” on page 29-20
“Setting Conditional Breakpoints” on page 29-22

About Breakpoints

The debugger allows you to define stopping points called breakpoints in a simulation.
You can then run a simulation from breakpoint to breakpoint, using the debugger
continue command. The debugger lets you define two types of breakpoints:
unconditional and conditional. An unconditional breakpoint occurs whenever a
simulation reaches a method that you specified previously. A conditional breakpoint
occurs when a condition that you specified in advance arises in the simulation.

Breakpoints are useful when you know that a problem occurs at a certain point in your
program or when a certain condition occurs. By defining an appropriate breakpoint and
running the simulation via the continue command, you can skip immediately to the
point in the simulation where the problem occurs.

Note: When you stop a simulation at a breakpoint of a MATLAB S-function in the
debugger, to exit MATLAB, you must first quit the debugger.

Setting Unconditional Breakpoints

You can set unconditional breakpoints from the:

• Debugger toolbar
• Simulation Loop pane
• MATLAB product Command Window (command-line mode only)

Setting Breakpoints from the Debugger Toolbar

To enable the Breakpoint button,

1 Simulate the model.

 Set Breakpoints

29-21

2 Click the Step over current method button until simulationPhase is
highlighted.

3 Click the Step into current method button.

Breakpoint

The debugger displays the name of the selected block in the Break/Display points
panel of the Breakpoints pane.

Note Clicking the Breakpoint button on the toolbar sets breakpoints on the invocations
of a block's methods in major time steps.

You can temporarily disable the breakpoints on a block by deselecting the check box in
the breakpoints column of the panel. To clear the breakpoints on a block and remove its
entry from the panel,

1 Select the entry.
2 Click the Remove selected point button on the panel.

Note You cannot set a breakpoint on a virtual block. A virtual block is purely graphical:
it indicates a grouping or relationship among a model's computational blocks. The
debugger warns you if you try to set a breakpoint on a virtual block. You can get a listing

29 Simulink Debugger

29-22

of a model's nonvirtual blocks, using the slist command (see “Displaying a Model's
Nonvirtual Blocks” on page 29-32).

Setting Breakpoints from the Simulation Loop Pane

To set a breakpoint at a particular invocation of a method displayed in the Simulation
Loop pane, select the check box next to the method's name in the breakpoint column of
the pane.

Breakpoint

To clear the breakpoint, deselect the check box.

Setting Breakpoints from the Command Window

In command-line mode, use the break and bafter commands to set breakpoints before
or after a specified method, respectively. Use the clear command to clear breakpoints.

Setting Conditional Breakpoints

You can use either the Break on conditions controls group on the debugger
Breakpoints pane

 Set Breakpoints

29-23

or the following commands (in command-line mode) to set conditional breakpoints.

This command... Causes the Simulation to Stop...

tbreak [t] At a simulation time step
ebreak At a recoverable error in the model
nanbreak At the occurrence of an underflow or overflow (NaN) or infinite (Inf)

value
xbreak When the simulation reaches the state that determines the

simulation step size
zcbreak When a zero crossing occurs between simulation time steps

Setting Breakpoints at Time Steps

To set a breakpoint at a time step, enter a time in the debugger Break at time field
(GUI mode) or enter the time using the tbreak command. This causes the debugger to
stop the simulation at the Outputs.Major method of the model at the first time step
that follows the specified time. For example, starting vdp in debug mode and entering
the commands

tbreak 2

continue

causes the debugger to halt the simulation at the vdp.Outputs.Major method of time
step 2.078 as indicated by the output of the continue command.

%--%

[Tm = 2.034340153847549] vdp.Outputs.Minor

(sldebug @37):

29 Simulink Debugger

29-24

Breaking on Nonfinite Values

Selecting the debugger NaN values option or entering the nanbreak command causes
the simulation to stop when a computed value is infinite or outside the range of values
that is supported by the machine running the simulation. This option is useful for
pinpointing computational errors in a model.

Breaking on Step-Size Limiting Steps

Selecting the Step size limited by state option or entering the xbreak command
causes the debugger to stop the simulation when the model uses a variable-step solver
and the solver encounters a state that limits the size of the steps that it can take. This
command is useful in debugging models that appear to require an excessive number of
simulation time steps to solve.

Breaking at Zero Crossings

Selecting the Zero crossings option or entering the zcbreak command causes the
simulation to halt when a nonsampled zero crossing is detected in a model that includes
blocks where zero crossings can arise. After halting, the ID, type, and name of the block
in which the zero crossing was detected is displayed. The block ID (s:b:p) consists of a
system index s, block index b, and port index p separated by colons (see “Block ID” on
page 29-9).

For example, setting a zero-crossing break at the start of execution of the zeroxing
example model,

>> sldebug zeroxing

%--

%

[TM = 0] zeroxing.Simulate

(sldebug @0): >> zcbreak

Break at zero crossing events : enabled

and continuing the simulation

(sldebug @0): >> continue

results in a zero-crossing break at
Interrupting model execution before running mdlOutputs at the left post of

(major time step just before) zero crossing event detected at the following location:

 6[-0] 0:5:2 Saturate 'zeroxing/Saturation'

%--%

 Set Breakpoints

29-25

[TzL= 0.3435011087932808] zeroxing.Outputs.Major

(sldebug @16): >>

If a model does not include blocks capable of producing nonsampled zero crossings, the
command prints a message advising you of this fact.

Breaking on Solver Errors

Selecting the debugger Solver Errors option or entering the ebreak command causes
the simulation to stop if the solver detects a recoverable error in the model. If you do not
set or disable this breakpoint, the solver recovers from the error and proceeds with the
simulation without notifying you.

29 Simulink Debugger

29-26

Display Information About the Simulation

In this section...

“Display Block I/O” on page 29-26
“Display Algebraic Loop Information” on page 29-28
“Display System States” on page 29-28
“Display Solver Information” on page 29-29

Display Block I/O

The debugger allows you to display block I/O by clicking the appropriate buttons on the
debugger toolbar

Watch
block I/O

Display
block I/O

or by entering the appropriate debugger command.

This
command...

Displays a Blocks I/O...

probe Immediately
disp At every breakpoint any time execution stops
trace Whenever the block executes

Note: The two debugger toolbar buttons, Watch Block I/O () and Display Block I/O

() correspond, respectively, to trace gcb and probe gcb. The probe and disp
commands do not have a one-to-one correspondence with the debugger toolbar buttons.

 Display Information About the Simulation

29-27

Displaying I/O of a Selected Block

To display the I/O of a block, select the block and click in GUI mode or enter the
probe command in command-line mode. In the following table, the probe gcb command
has a corresponding toolbar button. The other commands do not.

Command Description

probe Enter or exit probe mode. Typing any command causes the
debugger to exit probe mode.

probe gcb
Display I/O of selected block. Same as .

probe s:b Print the I/O of the block specified by system number s and block
number b.

The debugger prints the current inputs, outputs, and states of the selected block in the
debugger Outputs pane (GUI mode) or the Command Window of the MATLAB product.

The probe command is useful when you need to examine the I/O of a block whose I/O is
not otherwise displayed. For example, suppose you are using the step command to run a
model method by method. Each time you step the simulation, the debugger displays the
inputs and outputs of the current block. The probe command lets you examine the I/O of
other blocks as well.

Displaying Block I/O Automatically at Breakpoints

The disp command causes the debugger to display a specified block's inputs and outputs
whenever it halts the simulation. You can specify a block by entering its block index
and entering gcb as the disp command argument. You can remove any block from the
debugger list of display points, using the undisp command. For example, to remove
block 0:0, enter undisp 0:0.

Note Automatic display of block I/O at breakpoints is not available in the debugger GUI
mode.

The disp command is useful when you need to monitor the I/O of a specific block or set
of blocks as you step through a simulation. Using the disp command, you can specify the
blocks you want to monitor and the debugger will then redisplay the I/O of those blocks
on every step. Note that the debugger always displays the I/O of the current block when

29 Simulink Debugger

29-28

you step through a model block by block, using the step command. You do not need to
use the disp command if you are interested in watching only the I/O of the current block.

Watching Block I/O

To watch a block, select the block and click in the debugger toolbar or enter the
trace command. In GUI mode, if a breakpoint exists on the block, you can set a watch
on it as well by selecting the check box for the block in the watch column of the
Break/Display points pane. In command-line mode, you can also specify the block
by specifying its block index in the trace command. You can remove a block from the
debugger list of trace points using the untrace command.

The debugger displays a watched block's I/O whenever the block executes. Watching a
block allows you obtain a complete record of the block's I/O without having to stop the
simulation.

Display Algebraic Loop Information

The atrace command causes the debugger to display information about a model's
algebraic loops (see “Algebraic Loops” on page 3-37) each time they are solved. The
command takes a single argument that specifies the amount of information to display.

This command... Displays for each algebraic loop...

atrace 0 No information
atrace 1 The loop variable solution, the number of iterations required to solve

the loop, and the estimated solution error
atrace 2 Same as level 1
atrace 3 Level 2 plus the Jacobian matrix used to solve the loop
atrace 4 Level 3 plus intermediate solutions of the loop variable

Display System States

The states debug command lists the current values of the system states in the
MATLAB Command Window. For example, the following sequence of commands shows
the states of the bouncing ball example (sldemo_bounce) after its first, second, and
third time steps. However, before entering the debugger, open the Configuration

 Display Information About the Simulation

29-29

Parameters dialog box, clear the Block reduction check box on the Optimization
pane, and clear the Signal storage reuse check box on the Optimization > Signals and
Parameters pane.
 sldebug sldemo_bounce

%--%

[TM = 0] simulate(sldemo_bounce)

(sldebug @0): >> step top

%--%

[TM = 0] sldemo_bounce.Outputs.Major

(sldebug @16): >> next

%--%

[TM = 0] sldemo_bounce.Update

(sldebug @23): >> states

Continuous States:

Idx Value (system:block:element Name 'BlockName')

 0 10 (0:4:0 CSTATE 'sldemo_bounce/Second-Order Integrator')

 1. 15 (0:4:1)

(sldebug @23): >> next

%--%

[Tm = 0] solverPhase

(sldebug @26): >> states

Continuous States:

Idx Value (system:block:element Name 'BlockName')

 0 10 (0:4:0 CSTATE 'sldemo_bounce/Second-Order Integrator')

 1. 15 (0:4:1)

(sldebug @26): >> next

%--%

[TM = 0.01] sldemo_bounce.Outputs.Major

(sldebug @16): >> states

Continuous States:

Idx Value (system:block:element Name 'BlockName')

 0 10.1495095 (0:4:0 CSTATE 'sldemo_bounce/Second-Order Integrator')

 1. 14.9019 (0:4:1)

Display Solver Information

The strace command allows you to pinpoint problems in solving a models differential
equations that can slow down simulation performance. Executing this command causes
the debugger to display solver-related information at the command line of the MATLAB
product when you run or step through a simulation. The information includes the sizes
of the steps taken by the solver, the estimated integration error resulting from the step
size, whether a step size succeeded (i.e., met the accuracy requirements that the model
specifies), the times at which solver resets occur, etc. If you are concerned about the time
required to simulate your model, this information can help you to decide whether the

29 Simulink Debugger

29-30

solver you have chosen is the culprit and hence whether choosing another solver might
shorten the time required to solve the model.

 Display Information About the Model

29-31

Display Information About the Model

In this section...

“Display Model’s Sorted Lists” on page 29-31
“Display a Block” on page 29-32

Display Model’s Sorted Lists

In GUI mode, the debugger Sorted List pane displays lists of blocks for a models root
system and each nonvirtual subsystem. Each list lists the blocks that the subsystems
contains sorted according to their computational dependencies, alphabetical order, and
other block sorting rules. In command-line mode, you can use the slist command to
display a model's sorted lists.

---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]

 0:0 'vdp/x1' (Integrator)

 0:1 'vdp/Out1' (Outport)

 0:2 'vdp/x2' (Integrator)

 0:3 'vdp/Out2' (Outport)

 0:4 'vdp/Scope' (Scope)

 0:5 'vdp/Fcn' (Fcn)

 0:6 'vdp/Product' (Product)

 0:7 'vdp/Mu' (Gain)

 0:8 'vdp/Sum' (Sum)

These displays include the block index for each command. You can use them to determine
the block IDs of the models blocks. Some debugger commands accept block IDs as
arguments.

Identifying Blocks in Algebraic Loops

If a block belongs to an algebraic list, the slist command displays an algebraic loop
identifier in the entry for the block in the sorted list. The identifier has the form

algId=s#n

where s is the index of the subsystem containing the algebraic loop and n is the index of
the algebraic loop in the subsystem. For example, the following entry for an Integrator
block indicates that it participates in the first algebraic loop at the root level of the
model.

29 Simulink Debugger

29-32

0:1 'test/ss/I1' (Integrator, tid=0) [algId=0#1, discontinuity]

You can use the debugger ashow command to highlight the blocks and lines that make
up an algebraic loop. See “Displaying Algebraic Loops” on page 29-33 for more
information.

Display a Block

To determine the block in a models diagram that corresponds to a particular index, enter
bshow s:b at the command prompt, where s:b is the block index. The bshow command
opens the system containing the block (if necessary) and selects the block in the systems
window.

Displaying a Model’s Nonvirtual Systems

The systems command displays a list of the nonvirtual systems in the model that you
are debugging. For example, the sldemo_clutch model contains the following systems:
open_system('sldemo_clutch')

set_param(gcs, 'OptimizeBlockIOStorage','off')

sldebug sldemo_clutch

(sldebug @0): %--%

[TM = 0] simulate(sldemo_clutch)

(sldebug @0): >> systems

 0 'sldemo_clutch'

 1 'sldemo_clutch/Locked'

 2 'sldemo_clutch/Unlocked'

Note The systems command does not list subsystems that are purely graphical. That
is, subsystems that the model diagram represents as Subsystem blocks but that are
solved as part of a parent system. are not listed. In Simulink models, the root system and
triggered or enabled subsystems are true systems. All other subsystems are virtual (that
is, graphical) and do not appear in the listing from the systems command.

Displaying a Model's Nonvirtual Blocks

The slist command displays a list of the nonvirtual blocks in a model. The listing
groups the blocks by system. For example, the following sequence of commands produces
a list of the nonvirtual blocks in the Van der Pol (vdp) example model.

sldebug vdp

%--%

[TM = 0] simulate(vdp)

 Display Information About the Model

29-33

sldebug @0): >> slist

---- Sorted list for 'vdp' [9 nonvirtual blocks, directFeed=0]

 0:0 'vdp/x1' (Integrator)

 0:1 'vdp/Out1' (Outport)

 0:2 'vdp/x2' (Integrator)

 0:3 'vdp/Out2' (Outport)

 0:4 'vdp/Scope' (Scope)

 0:5 'vdp/Fcn' (Fcn)

 0:6 'vdp/Product' (Product)

 0:7 'vdp/Mu' (Gain)

 0:8 'vdp/Sum' (Sum)

Note The slist command does not list blocks that are purely graphical. That is, blocks
that indicate relationships between or groupings among computational blocks.

Displaying Blocks with Potential Zero Crossings

The zclist command displays a list of blocks in which nonsampled zero crossings can
occur during a simulation. For example, zclist displays the following list for the clutch
sample model:
(sldebug @0): >> zclist

 0 0:4:0 F HitCross 'sldemo_clutch/Friction Mode Logic/Lockup

Detection/Velocities Match'

 1 0:4:1 F

 2 0:10:0 F Abs 'sldemo_clutch/Friction Mode Logic/Lockup

Detection/Required Friction for Lockup/Abs'

 3 0:12:0 F RelationalOperator 'sldemo_clutch/Friction Mode

Logic/Lockup Detection/Required Friction for Lockup/Relational Operator'

 4 0:19:0 F Abs 'sldemo_clutch/Friction Mode Logic/Break Apart

Detection/Abs'

 5 0:20:0 F RelationalOperator 'sldemo_clutch/Friction Mode

Logic/Break Apart Detection/Relational Operator'

 6 2:3:0 F Signum 'sldemo_clutch/Unlocked/slip direction'

Displaying Algebraic Loops

The ashow command highlights a specified algebraic loop or the algebraic loop that
contains a specified block. To highlight a specified algebraic loop, enter ashow s#n,
where s is the index of the system (see “Identifying Blocks in Algebraic Loops” on page
29-31) that contains the loop and n is the index of the loop in the system. To display
the loop that contains the currently selected block, enter ashow gcb. To show a loop that
contains a specified block, enter ashow s:b, where s:b is the block's index. To clear
algebraic-loop highlighting from the model diagram, enter ashow clear.

29 Simulink Debugger

29-34

Displaying Debugger Status

In GUI mode, the debugger displays the settings of various debug options, such as
conditional breakpoints, in its Status panel. In command-line mode, the status
command displays debugger settings. For example, the following sequence of commands
displays the initial debug settings for the vdp model:

sim('vdp', 'StopTime', '10', 'debug', 'on')

%--%

[TM = 0] simulate(vdp)

(sldebug @0): >> status

%--%

Current simulation time : 0.0 (MajorTimeStep)

Solver needs reset : no

Solver derivatives cache needs reset : no

Zero crossing signals cache needs reset : no

Default command to execute on return/enter : ""

Break at zero crossing events : disabled

Break on solver error : disabled

Break on failed integration step : disabled

Time break point : disabled

Break on non-finite (NaN,Inf) values : disabled

Break on solver reset request : disabled

Display level for disp, trace, probe : 1 (i/o, states)

Solver trace level : 0

Algebraic loop tracing level : 0

Animation Mode : off

Window reuse : not supported

Execution Mode : Normal

Display level for etrace : 0 (disabled)

Break points : none installed

Display points : none installed

Trace points : none installed

30

Accelerating Models

• “What Is Acceleration?” on page 30-2
• “How Acceleration Modes Work” on page 30-4
• “Code Regeneration in Accelerated Models” on page 30-8
• “Choosing a Simulation Mode” on page 30-11
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24
• “Interact with the Acceleration Modes Programmatically” on page 30-28
• “Run Accelerator Mode with the Simulink Debugger” on page 30-32
• “Comparing Performance” on page 30-34
• “How to Improve Performance in Acceleration Modes” on page 30-38

30 Accelerating Models

30-2

What Is Acceleration?
Acceleration is a mode of operation in the Simulink product that you can use to speed up
the execution of your model. The Simulink software includes two modes of acceleration:
Accelerator mode and the Rapid Accelerator mode. Both modes replace the normal
interpreted code with compiled target code. Using compiled code speeds up simulation of
many models, especially those where run time is long compared to the time associated
with compilation and checking to see if the target is up to date.

The Accelerator mode works with any model, but performance decreases if a model
contains blocks that do not support acceleration. The Accelerator mode supports the
Simulink debugger and profiler. These tools assist in debugging and determining relative
performance of various parts of your model. For more information, see “Run Accelerator
Mode with the Simulink Debugger” on page 30-32 and “How Profiler Captures
Performance Data” on page 27-5.

The Rapid Accelerator mode works with only those models containing blocks that support
code generation of a standalone executable. For this reason, Rapid Accelerator mode
does not support the debugger or profiler. However, this mode generally results in faster
execution than the Accelerator mode. When used with dual-core processors, the Rapid
Accelerator mode runs Simulink and the MATLAB technical computing environment
from one core while the rapid accelerator target runs as a separate process on a second
core.

For more information about the performance characteristics of the Accelerator and Rapid
Accelerator modes, and how to measure the difference in performance, see “Comparing
Performance” on page 30-34.

To optimize your model and achieve faster simulation automatically using Performance
Advisor, see “Automated Performance Optimization”.

To manually employ modeling techniques that help achieve faster simulation, see
“Manual Performance Optimization”.

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24

More About
• “How Acceleration Modes Work” on page 30-4

 What Is Acceleration?

30-3

• “Choosing a Simulation Mode” on page 30-11
• “Comparing Performance” on page 30-34

30 Accelerating Models

30-4

How Acceleration Modes Work

In this section...

“Overview” on page 30-4
“Normal Mode” on page 30-4
“Accelerator Mode” on page 30-5
“Rapid Accelerator Mode” on page 30-6

Overview

The Accelerator and Rapid Accelerator modes use portions of the Simulink Coder product
to create an executable. These modes replace the interpreted code normally used in
Simulink simulations, shortening model run time.

Although the acceleration modes use some Simulink Coder code generation technology,
you do not need the Simulink Coder software installed to accelerate your model.

Note: The code generated by the Accelerator and Rapid Accelerator modes is suitable
only for speeding the simulation of your model. You must use the Simulink Coder product
if you want to generate code for other purposes.

Normal Mode

In Normal mode, the MATLAB technical computing environment is the foundation
on which the Simulink software is built. Simulink controls the solver and model
methods used during simulation. “Model Methods” on page 3-16 include such things as
computation of model outputs. Normal mode runs in one process.

 How Acceleration Modes Work

30-5

Model

Methods

S
o

lv
e

r

Simulink

MATLAB

One Process

Accelerator Mode

The Accelerator mode generates and links code into a C-MEX S-function. Simulink uses
this acceleration target code to perform the simulation, and the code remains available for
use in later simulations.

Simulink checks that the acceleration target code is up to date before reusing it. As
explained in “Code Regeneration in Accelerated Models” on page 30-8, the target
code regenerates if it is not up to date.

In Accelerator mode, the model methods are separate from the Simulink software and
are part of the Acceleration target code. A C-MEX S-function API communicates with
the Simulink software, and a MEX API communicates with MATLAB. The target code
executes in the same process as MATLAB and Simulink.

30 Accelerating Models

30-6

S
o
lv

e
r

Simulink

MATLAB

Model
Methods

MEX API

Acceleration
target code

C-MEX
S-function
API

One Process

Rapid Accelerator Mode

The Rapid Accelerator mode creates a Rapid Accelerator standalone executable from your
model. This executable includes the solver and model methods, but it resides outside of
MATLAB and Simulink. It uses External mode (see “External Mode Communication”) to
communicate with Simulink.

 How Acceleration Modes Work

30-7

Simulink

MATLAB

Model
Methods

S
o
lv

e
r

External
Mode

One Process Second Process

Rapid Accelerator

Standalone executable

MATLAB and Simulink run in one process, and if a second processing core is available,
the standalone executable runs there.

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24

More About
• “Choosing a Simulation Mode” on page 30-11
• “Code Regeneration in Accelerated Models” on page 30-8
• “Comparing Performance” on page 30-34

30 Accelerating Models

30-8

Code Regeneration in Accelerated Models

In this section...

“Determine If the Simulation Will Rebuild” on page 30-8
“Parameter Tuning in Rapid Accelerator Mode” on page 30-8

Changing the structure of your model causes the Rapid Accelerator mode to regenerate
the standalone executable, and for the Accelerator mode to regenerate the target code
and update (overwrite) the existing MEX-file. Changing the value of a tunable parameter
does not trigger a rebuild.

Determine If the Simulation Will Rebuild

The Accelerator and Rapid Accelerator modes use a checksum to determine if the model
has changed, indicating that the code should be regenerated. The checksum is an array
of four integers computed using an MD5 checksum algorithm based on attributes of the
model and the blocks it contains.

1 Use the Simulink.BlockDiagram.getChecksum command to obtain the
checksum for your model. For example:

cs1 = Simulink.BlockDiagram.getChecksum('myModel');

2 Obtain a second checksum after you have altered your model. The code regenerates if
the new checksum does not match the previous checksum.

3 Use the information in the checksum to determine why the simulation target rebuilt.

For a detailed explanation of this procedure, see the example model
slAccelDemoWhyRebuild.

Parameter Tuning in Rapid Accelerator Mode

In model rebuilds, Rapid Accelerator Mode handles block diagram and runtime
parameters differently from other parameters.

Tuning Block Diagram Parameters

You can change some block diagram parameters during simulation without causing a
rebuild. Tune these parameters using the set_param command or using the Model
Configuration Parameters dialog box. These block diagram parameters include:

 Code Regeneration in Accelerated Models

30-9

Solver Parameters

AbsTol MaxNumMinSteps RelTol
ConsecutiveZCsStepRelTol MaxOrder SolverName
ExtrapolationOrder MaxStep StartTime
InitialStep MinStep StopTime
MaxConsecutiveMinStep OutputTimes ZCDetectionTol
MaxConsecutiveZCs Refine

Loading and Logging Parameters

ConsistencyChecking MaxConsecutiveZCsMsg SaveOutput
Decimation MaxDataPoints SaveState
FinalStateName MinStepSizeMsg SaveTime
InitialState OutputOption StateSaveName
LimitDataPoints OutputSaveName TimeSaveName
LoadExternalInput SaveFinalState
LoadInitialState SaveFormat

Tuning Runtime Parameters

To tune runtime parameters for maximum acceleration in Rapid Accelerator mode, follow
this procedure which yields better results than using set_param for the same purpose:

1 Collect the runtime parameters in a runtime parameter structure
while building a rapid accelerator target executable using the
Simulink.BlockDiagram.buildRapidAcceleratorTarget function.

2 To change the parameters, use the
Simulink.BlockDiagram.modifyTunableParameters function.

3 To specify the modified parameters to the sim command, use the
RapidAcceleratorParameterSets and RapidAcceleratorUpToDateCheck
parameters.

For more information, see “sim in parfor with Rapid Accelerator Mode” on page 23-18.

All other parameter changes can necessitate a rebuild of the model.

30 Accelerating Models

30-10

Parameter Changes: Passed Directly to sim
command

Passed Graphically via Block
Diagram or via set_param
command

Runtime Does not require rebuild Can require rebuild
Block diagram (solver and
logging parameters)

Does not require rebuild Does not require rebuild

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24
• “How to Improve Performance in Acceleration Modes” on page 30-38

More About
• “What Is Acceleration?” on page 30-2
• “Choosing a Simulation Mode” on page 30-11
• “How Acceleration Modes Work” on page 30-4
• “Comparing Performance” on page 30-34

 Choosing a Simulation Mode

30-11

Choosing a Simulation Mode

In this section...

“Simulation Mode Tradeoffs” on page 30-11
“Comparing Modes” on page 30-12
“Decision Tree” on page 30-14

Simulation Mode Tradeoffs

In general, you must trade off simulation speed against flexibility when choosing either
Accelerator mode or Rapid Accelerator mode instead of Normal mode.

Speed

F
le

x
ib

ili
ty

 Rapid
Accelerator mode

Normal
mode

Accelerator mode

. Monte Carlo

. Scopes and viewers
 (only from menu)

. Tune parameters

. C code

. Debugger

. MATLAB file support

. Scopes and viewers

. Scopes and viewers
 from command line

. Tune parameters

. C code and interpreted
 (where necessary)

. Debugger

. MATLAB file support

. Scopes and viewers

. Scopes and viewers
 from command line

. Run time diagnostics

. Tune parameters

. Interpreted code

. Algebraic loops

30 Accelerating Models

30-12

Normal mode offers the greatest flexibility for making model adjustments and displaying
results, but it runs the slowest.

Accelerator mode lies between Normal and Rapid Accelerator modes in performance and
in interaction with your model. If your model has 3-D signals, use Normal or Accelerator
mode. Accelerator mode does not support runtime diagnostics.

Rapid Accelerator mode runs the fastest, but this mode does not support the debugger
or profiler, and works only with those models for which C code is available for all of
the blocks in the model. In addition, Rapid Accelerator mode does not support 3-D
parameters and sinks.

Note: An exception to this rule occurs when you run multiple simulations, each of which
executes in less than one second in Normal mode. For example:

for i=1:100

sim(model); % executes in less than one second in Normal mode

end

For this set of conditions, you will typically obtain the best performance by simulating
the model in Normal mode.

Tip To gain additional flexibility, consider using model referencing to componentize your
model. If the top-level model uses Normal mode, then you can simulate a referenced
model in a different simulation mode than you use for other portions of a model. During
the model development process, you can choose different simulation modes for different
portions of a model. For details, see “Referenced Model Simulation Modes” on page 8-29.

Comparing Modes

The following table compares the characteristics of Normal mode, Accelerator mode, and
Rapid Accelerator mode.

Then use this mode...

If you want to...
Normal Accelerator

Rapid
Accelerator

Performance
Run your model in a separate address space

 Choosing a Simulation Mode

30-13

Then use this mode...

If you want to...
Normal Accelerator

Rapid
Accelerator

Efficiently run batch and Monte Carlo simulations

Model Adjustment
Change model parameters such as solver, stop time
without rebuilding
Change block tunable parameters such as gain

For more information on configuration set parameters which can be modified without requiring
rebuild, see “Code Regeneration in Accelerated Models” on page 30-8

Model Requirement
Accelerate your model even if C code is not used for all
blocks

Support Interpreted MATLAB Function blocks

Support Non-Inlined MATLAB language or Fortran S-
Functions

Permit algebraic loops in your model

Have your model work with the debugger or profiler

Have your model include C++ code

Data Display
Use scopes and signal viewers See

“Behavior
of Scopes

and Viewers
with Rapid
Accelerator

Mode”
on page
30-19

Use scopes and signal viewers when running your model
from the command line

30 Accelerating Models

30-14

Note: Scopes and viewers do not update if you run your model from the command line in
Rapid Accelerator mode.

Decision Tree

Use this decision tree to select between Normal, Accelerator, or Rapid Accelerator modes.

See “Comparing Performance” on page 30-34 to understand how effective the
accelerator modes will be in improving the performance of your model.

 Choosing a Simulation Mode

30-15

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17

30 Accelerating Models

30-16

• “Interact with the Acceleration Modes Programmatically” on page 30-28

More About
• “Code Regeneration in Accelerated Models” on page 30-8
• “How Acceleration Modes Work” on page 30-4

 Design Your Model for Effective Acceleration

30-17

Design Your Model for Effective Acceleration

In this section...

“Select Blocks for Accelerator Mode” on page 30-17
“Select Blocks for Rapid Accelerator Mode” on page 30-18
“Control S-Function Execution” on page 30-18
“Accelerator and Rapid Accelerator Mode Data Type Considerations” on page 30-19
“Behavior of Scopes and Viewers with Rapid Accelerator Mode” on page 30-19
“Factors Inhibiting Acceleration” on page 30-20

Select Blocks for Accelerator Mode

The Accelerator simulation mode runs the following blocks as if you were running
Normal mode because these blocks do not generate code for the accelerator build.
Consequently, if your model contains a high percentage of these blocks, the Accelerator
mode may not increase performance significantly. All of these Simulink blocks use
interpreted code.

• Display

• From File

• From Workspace

• Inport (root level only)
• Interpreted MATLAB Function

• Outport (root level only)
• Scope

• To File

• To Workspace

• XY Graph

Note: In some instances, Normal mode output might not precisely match the output from
Accelerator mode because of slight differences in the numerical precision between the
interpreted and compiled versions of a model.

30 Accelerating Models

30-18

Select Blocks for Rapid Accelerator Mode

Blocks that do not support code generation (such as SimEvents) or blocks that generate
code only for a specific target (such as vxWorks), cannot be simulated in Rapid
Accelerator mode.

Additionally, Rapid Accelerator mode does not work if your model contains any of the
following blocks:

• Interpreted MATLAB Function

• Device driver S-functions, such as blocks from the Simulink Real-Time product, or
those targeting Freescale™ MPC555

Note: In some instances, Normal mode output might not precisely match the output from
Rapid Accelerator mode because of slight differences in the numerical precision between
the interpreted and compiled versions of a model.

Control S-Function Execution

Inlining S-functions using the Target Language Compiler increases performance with the
Accelerator mode by eliminating unnecessary calls to the Simulink application program
interface (API). By default, however, the Accelerator mode ignores an inlining TLC file
for an S-function, even though the file exists. The Rapid Accelerator mode always uses
the TLC file if one is available.

A device driver S-Function block written to access specific hardware registers on an I/
O board is one example of why this behavior was chosen as the default. Because the
Simulink software runs on the host system rather than the target, it cannot access the
targets I/O registers and so would fail when attempting to do so.

To direct the Accelerator mode to use the TLC file instead of the S-function MEX-file,
specify SS_OPTION_USE_TLC_WITH_ACCELERATOR in the mdlInitializeSizes
function of the S-function, as in this example:

static void mdlInitializeSizes(SimStruct *S)

{

/* Code deleted */

ssSetOptions(S, SS_OPTION_USE_TLC_WITH_ACCELERATOR);

}

 Design Your Model for Effective Acceleration

30-19

Accelerator and Rapid Accelerator Mode Data Type Considerations

• Accelerator mode supports fixed-point signals and vectors up to 128 bits.
• Rapid Accelerator mode does not support fixed-point signals or vectors greater than

32 bits.
• Rapid Accelerator mode supports fixed-point parameters up to 128 bits.
• Rapid Accelerator mode supports fixed-point root inputs up to 32 bits
• Rapid Accelerator mode supports root inputs of Enumerated data type
• Rapid Accelerator mode does not support fixed-point data for the From Workspace

block.
• Rapid Accelerator mode ignores the selection of the Log fixed-point data as a fi

object (FixptAsFi) check box for the To Workspace block.
• Rapid Accelerator mode supports bus objects as parameters.
• The Accelerator mode and Rapid Accelerator mode store integers as compactly as

possible.
• Fixed-Point Designer does not collect min, max, or overflow data in the Accelerator or

Rapid Accelerator modes.
• Accelerator mode does not support runtime diagnostics

Behavior of Scopes and Viewers with Rapid Accelerator Mode

Running the simulation from the command line or the menu determines the behavior of
scopes and viewers in Rapid Accelerator mode.

Scope or Viewer Type Simulation Run from Menu Simulation Run from Command
Line

Simulink Scope
blocks

Same support as Normal mode • Logging is supported
• Scope window is not updated

Simulink signal
viewer scopes

Graphics are updated, but
logging is not supported

Not supported

Other signal viewer
scopes

Support limited to that available
in External mode

Not supported

Signal logging Supported, with limitations
listed in Signal Logging in Rapid
Accelerator Mode.

Supported, with limitations
listed in Signal Logging in
Rapid Accelerator Mode.

30 Accelerating Models

30-20

Scope or Viewer Type Simulation Run from Menu Simulation Run from Command
Line

Multirate signal
viewers

Not supported Not supported

Stateflow Chart
blocks

Same support for chart
animation as Normal mode

Not supported

Rapid Accelerator mode does not support multirate signal viewers such as the DSP
System Toolbox spectrum scope or the Communications System Toolbox™ scatterplot,
signal trajectory, or eye diagram scopes.

Note: Although scopes and viewers do not update when you run Rapid Accelerator mode
from the command line, they do update when you use the menu. “Run Acceleration
Mode from the User Interface” on page 30-25 shows how to run Rapid Accelerator
mode from the menu. “Interact with the Acceleration Modes Programmatically” on page
30-28 shows how to run the simulation from the command line.

Factors Inhibiting Acceleration

• You cannot use the Accelerator or Rapid Accelerator mode if your model:

• Passes array parameters to MATLAB S-functions that are not numeric, logical, or
character arrays, are sparse arrays, or that have more than two dimensions.

• Uses Fcn blocks containing trigonometric functions having complex inputs.
• In some cases, changes associated with external or custom code do not cause

Accelerator or Rapid Accelerator simulation results to change. These include:

• TLC code
• S-function source code, including rtwmakecfg.m files
• Integrated custom code
• S-Function Builder

In such cases, consider force regeneration of code for a top model. Alternatively, you
can force regeneration of top model code by deleting code generation folders, such as
slprj or the generated model code folder.

 Design Your Model for Effective Acceleration

30-21

Rapid Accelerator Mode Limitations

• Rapid Accelerator mode does not support:

• Algebraic loops.
• Targets written in C++.
• Interpreted MATLAB Function blocks.
• Noninlined MATLAB language or Fortran S-functions. You must write S-

functions in C or inline them using the Target Language Compiler (TLC). For more
information, see “Write Fully Inlined S-Functions”.

• 3-D signals.
• Debugger or Profiler.
• Run time objects for Simulink.RunTimeBlock and

Simulink.BlockCompOutputPortData blocks.
• Model parameters must be one of these data types:

• boolean

• uint8 or int8
• uint16 or int16
• uint32 or int32
• single or double
• Fixed-point
• Enumerated

• You cannot pause a simulation in Rapid Accelerator mode.
• For models that contain S-functions, ensure that the source files (.h, .c, and .cpp) for

the S-function are in the same folder as the S-function MEX-file. See Implicit Build
Support for more information. You can include additional files to an S-function or
bypass the path limitation by using the rtwmakecfg.m file. For more information, see
Use rtwmakecfg.m API to Customize Generated Makefiles.

• If a Rapid Accelerator build includes referenced models (by using Model blocks), set
up these models to use fixed-step solvers to generate code for them. The top model,
however, can use a variable-step solver as long as the blocks in the referenced models
are discrete.

• In certain cases, changing block parameters can result in structural changes to your
model that change the model checksum. An example of such a change is changing the

30 Accelerating Models

30-22

number of delays in a DSP simulation. In these cases, you must regenerate the code
for the model. See “Code Regeneration in Accelerated Models” on page 30-8 for more
information.

• For root inports, Rapid Accelerator mode supports only base as the Srcworkspace.
• For root inports, when you specify the minimum and maximum values that the

block should output, Rapid Accelerator mode does not recognize these limits during
simulation.

• In Rapid Accelerator mode, To File or To Workspace blocks inside function-call
subsystems do not generate any logging files if the function-call port is grounded or
unconnected.

Reserved Keywords

Certain words are reserved for use by the Simulink Coder code language and by
Accelerator mode and Rapid Accelerator mode. These keywords must not appear as
function or variable names on a subsystem, or as exported global signal names. Using the
reserved keywords results in the Simulink software reporting an error, and the model
cannot be compiled or run.

The keywords reserved for the Simulink Coder product are listed in “Construction of
Generated Identifiers”. Additional keywords that apply only to the Accelerator and Rapid
accelerator modes are:

muDoubleScalarAbs muDoubleScalarCos muDoubleScalarMod
muDoubleScalarAcos muDoubleScalarCosh muDoubleScalarPower
muDoubleScalarAcosh muDoubleScalarExp muDoubleScalarRound
muDoubleScalarAsin muDoubleScalarFloor muDoubleScalarSign
muDoubleScalarAsinh muDoubleScalarHypot muDoubleScalarSin
muDoubleScalarAtan, muDoubleScalarLog muDoubleScalarSinh
muDoubleScalarAtan2 muDoubleScalarLog10 muDoubleScalarSqrt
muDoubleScalarAtanh muDoubleScalarMax muDoubleScalarTan
muDoubleScalarCeil muDoubleScalarMin muDoubleScalarTanh

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24

 Design Your Model for Effective Acceleration

30-23

• “How to Improve Performance in Acceleration Modes” on page 30-38

More About
• “What Is Acceleration?” on page 30-2
• “How Acceleration Modes Work” on page 30-4
• “Choosing a Simulation Mode” on page 30-11

30 Accelerating Models

30-24

Perform Acceleration

In this section...

“Customize the Build Process” on page 30-24
“Run Acceleration Mode from the User Interface” on page 30-25
“Making Run-Time Changes” on page 30-26

Customize the Build Process

Compiler optimizations are off by default. This results in faster build times, but slower
simulation times. You can optimize the build process toward a faster simulation.

1 From the Simulation menu, select Model Configuration Parameters.
2 In the left pane of the Configuration Parameters dialog box, select Optimization,

and then from the Compiler optimization level drop-down list, select
Optimizations on (faster runs).

Code generation takes longer with this option, but the model simulation runs faster.
3 Select Verbose accelerator builds to display progress information using code

generation, and to see the compiler options in use.

Changing the Location of Generated Code

By default, the Accelerator mode places the generated code in a subfolder of the working
folder called slprj/accel/modelname (for example, slprj/accel/f14), and places a
compiled MEX-file in the current working folder. To change the name of the folder into
which the Accelerator Mode writes generated code:

1 In the Simulink editor window, select File > Simulink Preferences.

The Simulink Preferences window appears.

 Perform Acceleration

30-25

2 In the Simulink Preferences window, navigate to the Simulation cache folder
parameter.

3 Enter the absolute or relative path to your subfolder and click Apply.

Run Acceleration Mode from the User Interface

To accelerate a model, first open it, and then from the Simulation > Mode menu, select
either Accelerator or Rapid Accelerator. Then start the simulation.

The following example shows how to accelerate the already opened f14 model using the
Accelerator mode:

1 From the Simulation > Mode menu, select Accelerator.

Alternatively, you can select Accelerator from the Simulink Editor toolbar.

2 From the Simulation menu, select Run.

30 Accelerating Models

30-26

The Accelerator and Rapid Accelerator modes first check to see if code was
previously compiled for your model. If code was created previously, the Accelerator
or Rapid Accelerator mode runs the model. If code was not previously built, they first
generate and compile the C code, and then run the model.

For an explanation of why these modes rebuild your model, see “Code Regeneration
in Accelerated Models” on page 30-8.

The Accelerator mode places the generated code in a subfolder of the working folder
called slprj/accel/modelname (for example, slprj/accel/f14), and places a
compiled MEX-file in the current working folder. If you want to change this path, see
“Changing the Location of Generated Code” on page 30-24.

The Rapid Accelerator mode places the generated code in a subfolder of the working
folder called slprj/raccel/modelname (for example, slprj/raccel/f14).

Note: The warnings that blocks generate during simulation (such as divide-by-zero
and integer overflow) are not displayed when your model runs in Accelerator or Rapid
Accelerator mode.

Making Run-Time Changes

A feature of the Accelerator and Rapid Accelerator modes is that simple adjustments
(such as changing the value of a Gain or Constant block) can be made to the model while
the simulation is still running. More complex changes (for example, changing from a sin
to tan function) are not allowed during run time.

The Simulink software issues a warning if you attempt to make a change that is not
permitted. The absence of a warning indicates that the change was accepted. The
warning does not stop the current simulation, and the simulation continues with the
previous values. If you wish to alter the model in ways that are not permitted during
run time, you must first stop the simulation, make the change, and then restart the
simulation.

In general, simple model changes are more likely to result in code regeneration when in
Rapid Accelerator mode than when in Accelerator mode. For instance, changing the stop
time in Rapid Accelerator mode causes code to regenerate, but does not cause Accelerator
mode to regenerate code.

 Perform Acceleration

30-27

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Interact with the Acceleration Modes Programmatically” on page 30-28
• “Run Accelerator Mode with the Simulink Debugger” on page 30-32

More About
• “How Acceleration Modes Work” on page 30-4
• “Code Regeneration in Accelerated Models” on page 30-8
• “How Acceleration Modes Work” on page 30-4

30 Accelerating Models

30-28

Interact with the Acceleration Modes Programmatically

In this section...

“Why Interact Programmatically?” on page 30-28
“Build Accelerator Mode MEX-files” on page 30-28
“Control Simulation” on page 30-28
“Simulate Your Model” on page 30-29
“Customize the Acceleration Build Process” on page 30-30

Why Interact Programmatically?

You can build an accelerated model, select the simulation mode, and run the simulation
from the command prompt or from MATLAB script. With this flexibility, you can
create Accelerator mode MEX-files in batch mode, allowing you to build the C code
and executable before running the simulations. When you use the Accelerator mode
interactively at a later time, it will not be necessary to generate or compile MEX-files at
the start of the accelerated simulations.

Build Accelerator Mode MEX-files

With the accelbuild command, you can build the Accelerator mode MEX-file without
actually simulating the model. For example, to build an Accelerator mode simulation of
myModel:

accelbuild myModel

Control Simulation

You can control the simulation mode from the command line prompt by using the
set_param command:

set_param('modelname','SimulationMode','mode')

The simulation mode can be normal, accelerator, rapid, or external.

For example, to simulate your model with the Accelerator mode, you would use:

set_param('myModel','SimulationMode','accelerator')

 Interact with the Acceleration Modes Programmatically

30-29

However, a preferable method is to specify the simulation mode within the sim
command:

simOut = sim('myModel', 'SimulationMode', 'accelerator');

You can use bdroot to set parameters for the currently active model (that is, the active
model window) rather than modelname if you do not wish to explicitly specify the model
name.

For example, to simulate the currently opened system in the Rapid Accelerator mode, you
would use:

simOut = sim(bdroot,'SimulationMode','rapid');

Simulate Your Model

You can use set_param to configure the model parameters (such as the simulation mode
and the stop time), and use the sim command to start the simulation:

sim('modelname', 'ReturnWorkspaceOutputs', 'on');

However, the preferred method is to configure model parameters directly using the sim
command, as shown in the previous section.

You can substitute gcs for modelname if you do not want to explicitly specify the model
name.

Unless target code has already been generated, the sim command first builds the
executable and then runs the simulation. However, if the target code has already
been generated and no significant changes have been made to the model (see “Code
Regeneration in Accelerated Models” on page 30-8 for a description), the sim command
executes the generated code without regenerating the code. This process lets you run
your model after making simple changes without having to wait for the model to rebuild.

Simulation Example

The following sequence shows how to programmatically simulate myModel in Rapid
Accelerator mode for 10,000 seconds.

First open myModel, and then type the following in the Command Window:

simOut = sim('myModel', 'SimulationMode', 'rapid'...

30 Accelerating Models

30-30

'StopTime', '10000');

Use the sim command again to resimulate after making a change to your model. If the
change is minor (adjusting the gain of a gain block, for instance), the simulation runs
without regenerating code.

Customize the Acceleration Build Process

You can programmatically control the Accelerator mode and Rapid Accelerator mode
build process and the amount of information displayed during the build process. See
“Customize the Build Process” on page 30-24 for details on why doing so might be
advantageous.

Controlling the Build Process

Use SimCompilerOptimization to set the degree of optimization used by the compiler
when generating code for acceleration. The permitted values are on or off. The default is
off.

Enter the following at the command prompt to turn on compiler optimization:

set_param('myModel', 'SimCompilerOptimization', 'on')

Controlling Verbosity During Code Generation

Use the AccelVerboseBuild parameter to display progress information during code
generation. The permitted values are on or off. The default is off.

Enter the following at the command prompt to turn on verbose build:

set_param('myModel', 'AccelVerboseBuild', 'on')

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24
• “Run Accelerator Mode with the Simulink Debugger” on page 30-32

More About
• “How Acceleration Modes Work” on page 30-4

 Interact with the Acceleration Modes Programmatically

30-31

• “Choosing a Simulation Mode” on page 30-11
• “Code Regeneration in Accelerated Models” on page 30-8

30 Accelerating Models

30-32

Run Accelerator Mode with the Simulink Debugger

In this section...

“Advantages of Using Accelerator Mode with the Debugger” on page 30-32
“How to Run the Debugger” on page 30-32
“When to Switch Back to Normal Mode” on page 30-32

Advantages of Using Accelerator Mode with the Debugger

The Accelerator mode can shorten the length of your debugging sessions if you have large
and complex models. For example, you can use the Accelerator mode to simulate a large
model and quickly reach a distant break point.

For more information, see “Accelerator Mode” on page 30-5.

Note: You cannot use the Rapid Accelerator mode with the debugger.

How to Run the Debugger

To run your model in the Accelerator mode with the debugger:

1 From the Simulation > Mode menu, select Accelerator.
2 At the command prompt, enter:

sldebug modelname

3 At the debugger prompt, set a time break:

tbreak 10000

continue

4 Once you reach the breakpoint, use the debugger command emode (execution mode)
to toggle between Accelerator and Normal mode.

When to Switch Back to Normal Mode

You must switch to Normal mode to step through the simulation by blocks, and when you
want to use the following debug commands:

 Run Accelerator Mode with the Simulink Debugger

30-33

• trace

• break

• zcbreak

• nanbreak

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24
• “Interact with the Acceleration Modes Programmatically” on page 30-28

More About
• “What Is Acceleration?” on page 30-2
• “How Acceleration Modes Work” on page 30-4
• “Choosing a Simulation Mode” on page 30-11

30 Accelerating Models

30-34

Comparing Performance

In this section...

“Performance of the Simulation Modes” on page 30-34
“Measure Performance” on page 30-36

Performance of the Simulation Modes

The Accelerator and Rapid Accelerator modes give the best speed improvement compared
to Normal mode when simulation execution time exceeds the time required for code
generation. For this reason, the Accelerator and Rapid Accelerator modes generally
perform better than Normal mode when simulation execution times are several minutes
or more. However, models with a significant number of Stateflow or MATLAB Function
blocks might show only a small speed improvement over Normal mode because in Normal
mode these blocks also simulate through code generation.

Including tunable parameters in your model can also increase the simulation time.

The figure shows in general terms the performance of a hypothetical model simulated in
Normal, Accelerator, and Rapid Accelerator modes.

 Comparing Performance

30-35

Simulation Stop Time or Number of Major Time Steps

m
in

u
te

s
Normal

Accelerator

Rapid Accelerator

Normal

Accelerator

Rapid Accelerator

se
co

n
d
s all targets

up to date

all targets
out of date

E
la

p
se

d
 T

im
e

Performance When the Target Must Be Rebuilt

The solid lines in the figure show performance when the target code must be rebuilt
(“all targets out of date”). For this hypothetical model, the time scale is on the order of
minutes, but it could be longer for more complex models.

As generalized in the figure, the time required to compile the model in Normal mode is
less than the time required to build either the Accelerator target or Rapid Accelerator
executable. It is evident from the figure that for small simulation stop times Normal
mode results in quicker overall simulation times than either Accelerator mode or Rapid
Accelerator mode.

The crossover point where Accelerator mode or Rapid Accelerator mode result in faster
execution times depends on the complexity and content of your model. For instance,
those models running in Accelerator mode containing large numbers of blocks using

30 Accelerating Models

30-36

interpreted code (see “Select Blocks for Accelerator Mode” on page 30-17) might not run
much faster than they would in Normal mode unless the simulation stop time is very
large. Similarly, models with a large number of Stateflow Chart blocks or MATLAB
Function blocks might not show much speed improvement over Normal mode unless the
simulation stop times are long.

For illustration purposes, the graphic represents a model with a large number of
Stateflow Chart blocks or MATLAB Function blocks. The curve labeled “Normal” would
have much smaller initial elapsed time than shown if the model did not contain these
blocks.

Performance When the Targets Are Up to Date

As shown by the broken lines in the figure (“all targets up to date”) the time for the
Simulink software to determine if the Accelerator target or the Rapid Accelerator
executable are up to date is significantly less than the time required to generate code
(“all targets out of date”). You can take advantage of this characteristic when you wish to
test various design tradeoffs.

For instance, you can generate the Accelerator mode target code once and use it to
simulate your model with a series of gain settings. This is an especially efficient way
to use the Accelerator or Rapid Accelerator modes because this type of change does not
result in the target code being regenerated. This means the target code is generated the
first time the model runs, but on subsequent runs the Simulink code spends only the
time necessary to verify that the target is up to date. This process is much faster than
generating code, so subsequent runs can be significantly faster than the initial run.

Because checking the targets is quicker than code generation, the crossover point is
smaller when the target is up to date than when code must be generated. This means
subsequent runs of your model might simulate faster in Accelerator or Rapid Accelerator
mode when compared to Normal mode, even for short stop times.

Measure Performance

You can use the tic, toc, and sim commands to compare Accelerator mode or Rapid
Accelerator mode execution times to Normal mode.

1 Open your model.
2 From the Simulation > Mode menu, select Normal.
3 Use the tic, toc, and sim commands at the command line prompt to measure how

long the model takes to simulate in Normal mode:

 Comparing Performance

30-37

tic,[t,x,y]=sim('myModel',10000);toc

tic and toc work together to record and return the elapsed time and display a
message such as the following:

Elapsed time is 17.789364 seconds.

4 Select either Accelerator or Rapid Accelerator from the Simulation > Mode
menu, and build an executable for the model by clicking the Run button. The
acceleration modes use this executable in subsequent simulations as long as the
model remains structurally unchanged. “Code Regeneration in Accelerated Models”
on page 30-8 discusses the things that cause your model to rebuild.

5 Rerun the compiled model at the command prompt:

tic,[t,x,y]=sim('myModel',10000);toc

6 The elapsed time displayed shows the run time for the accelerated model. For
example:

Elapsed time is 12.419914 seconds.

The difference in elapsed times (5.369450 seconds in this example) shows the
improvement obtained by accelerating your model.

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Perform Acceleration” on page 30-24
• “Interact with the Acceleration Modes Programmatically” on page 30-28
• “Run Accelerator Mode with the Simulink Debugger” on page 30-32
• “How to Improve Performance in Acceleration Modes” on page 30-38

More About
• “How Acceleration Modes Work” on page 30-4
• “Choosing a Simulation Mode” on page 30-11

30 Accelerating Models

30-38

How to Improve Performance in Acceleration Modes

In this section...

“Techniques” on page 30-38
“C Compilers” on page 30-38

Techniques

To get the best performance when accelerating your models:

• Verify that the Configuration Parameters dialog box settings are as follows:

On this pane... Set... To...

Solver Diagnostics Solver data
inconsistency

none

Data Validity
Diagnostics

Array bounds exceeded none

Optimization Signal storage reuse selected
• Disable Stateflow debugging and animation.
• Inline user-written S-functions (these are TLC files that direct the Simulink Coder

software to create C code for the S-function). See “Control S-Function Execution” on
page 30-18 for a discussion on how the Accelerator mode and Rapid Accelerator mode
work with inlined S-functions.

For information on how to inline S-functions, consult “S-Functions and Code
Generation”.

• When logging large amounts of data (for instance, when using the Workspace I/O, To
Workspace, To File, or Scope blocks), use decimation or limit the output to display
only the last part of the simulation.

• Customize the code generation process to improve simulation speed. For details, see
“Customize the Build Process” on page 30-24.

C Compilers

On computers running the Microsoft Windows operating system, the Accelerator and
Rapid Accelerator modes use the default 64-bit C compiler supplied by MathWorks to

 How to Improve Performance in Acceleration Modes

30-39

compile your model. If you have a C compiler installed on your PC, you can configure the
mex command to use it instead. You might choose to do this if your C compiler produces
highly optimized code since this would further improve acceleration.

Note: For an up-to-date list of 32- and 64-bit C compilers that are compatible with
MATLAB software for all supported computing platforms, see:

http://www.mathworks.com/support/compilers/current_release/

Related Examples
• “Design Your Model for Effective Acceleration” on page 30-17
• “Interact with the Acceleration Modes Programmatically” on page 30-28
• “Run Accelerator Mode with the Simulink Debugger” on page 30-32

More About
• “How Acceleration Modes Work” on page 30-4
• “Choosing a Simulation Mode” on page 30-11
• “Comparing Performance” on page 30-34

Managing Blocks

31

Working with Blocks

• “Nonvirtual and Virtual Blocks” on page 31-2
• “Set Block Properties” on page 31-4
• “Change the Appearance of a Block” on page 31-12
• “Display Port Values for Debugging” on page 31-18
• “Control and Display the Sorted Order” on page 31-29
• “Access Block Data During Simulation” on page 31-48
• “Configure a Block for Code Generation” on page 31-51

31 Working with Blocks

31-2

Nonvirtual and Virtual Blocks

When creating models, you need to be aware that Simulink blocks fall into two basic
categories: nonvirtual blocks and virtual blocks. Nonvirtual blocks play an active role
in the simulation of a system. If you add or remove a nonvirtual block, you change the
model's behavior. Virtual blocks, by contrast, play no active role in the simulation;
they help organize a model graphically. Some Simulink blocks are virtual in some
circumstances and nonvirtual in others. Such blocks are called conditionally virtual
blocks. The table lists Simulink virtual and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual

Bus Assignment Virtual if input bus is virtual.
Bus Creator Virtual if output bus is virtual.
Bus Selector Virtual if input bus is virtual.
Demux Always virtual.
Enable Virtual unless connected directly to an Outport block.
From Always virtual.
Goto Always virtual.
Goto Tag Visibility Always virtual.
Ground Always virtual.
Inport Virtual unless the block resides in a conditionally executed or

atomic subsystem and has a direct connection to an Outport
block.

Mux Always virtual.
Outport Virtual when the block resides within any subsystem block

(conditional or not), and does not reside in the root (top-level)
Simulink window.

Selector Virtual only when Number of input dimensions specifies
1 and Index Option specifies Select all, Index vector
(dialog), or Starting index (dialog).

Signal

Specification

Always virtual.

Subsystem Virtual unless the block is conditionally executed or the
Treat as atomic unit check box is selected.

 Nonvirtual and Virtual Blocks

31-3

Block Name Condition Under Which Block Is Virtual

You can check if a block is virtual with the
IsSubsystemVirtual block property. See “Block-Specific
Parameters”.

Terminator Always virtual.
Trigger Virtual when the output port is not present.

31 Working with Blocks

31-4

Set Block Properties

For each block in a model, you can set general block properties, such as:

• A description of the block
• The block’s order of execution
• A block annotation
• Block callback functions

Block Properties Dialog Box

To set these block properties, open the Block Properties dialog box.

1 In the Simulink Editor, select the block.
2 Select Diagram > Properties. Alternatively, right-click the block and select Block

Properties.

The Block Properties dialog box opens, with the General tab open. For example:

 Set Block Properties

31-5

To open the Block Parameters dialog box for the block, in the General tab of the Block
Properties dialog box, click the Open Block link. Use the Block Parameters dialog box to
specify values for attributes that are specific each block.

Note Some blocks, such as Scope blocks, do not have a Block Parameters dialog box.

Using the Block Properties dialog box Open Block link to open the Block Parameters
dialog box works for all blocks that have parameter dialog boxes, except for Subsystem

31 Working with Blocks

31-6

and Model blocks. Use the Simulink Editor Diagram menu or the block context menu to
open the Block Parameters dialog box for Subsystem and Model blocks.

General Block Properties

Description

Enter a brief description of the purpose of the block or any other descriptive information.

Priority

Specify the execution priority of this block relative to other blocks in the model. For more
information, see “Assign Block Priorities” on page 31-43.

Tag

You can use a tag to create your own block-specific label for a block. Specify text that
Simulink assigns to the block's Tag parameter and saves with the block in the model.

Block Annotation Properties

Use the Block Annotation tab to display the values of selected block parameters in an
annotation that appears beneath the block's icon.

 Set Block Properties

31-7

Enter the text of the annotation in the text field that appears on the right side of the
pane. The text can include any of the block property tokens that appear in the list on
the left side of the pane. A block property token is simply the name of a block parameter
preceded by %< and followed by >. When displaying the annotation, Simulink replaces the
tokens with the values of the corresponding block parameters. For example, suppose that
you enter the following text and tokens for a Product block:

Multiplication = %<Multiplication>

Sample time = %<SampleTime>

In the Simulink Editor model window, the annotation appears as follows:

31 Working with Blocks

31-8

The block property token list on the left side of the pane lists all the parameters that
are valid for the currently selected block (see “Common Block Properties” and “Block-
Specific Parameters”). To add one of the listed tokens to the text field on the right side of
the pane, select the token and then click the button between the list and the text field.

You can also create block annotations programmatically. See “Create Block Annotations
Programmatically” on page 31-10.

Block Callbacks

Use the Callbacks tab to specify implementations for a block's callbacks (see “Callbacks
for Customized Model Behavior” on page 4-68).

 Set Block Properties

31-9

To specify an implementation for a callback, select the callback in the callback list on the
left side of the pane. Then enter MATLAB commands that implement the callback in the
right-hand field. Click OK or Apply to save the change. Simulink appends an asterisk to
the name of the saved callback to indicate that it has been implemented.

Modify Behavior for Opening a Block

You can use the OpenFcn callback to automatically execute MATLAB scripts when
the you double-click a block. MATLAB scripts can perform many different tasks, such

31 Working with Blocks

31-10

as defining variables for a block, making a call to MATLAB that brings up a plot of
simulated data, or generating a GUI.

The OpenFcn overrides the normal behavior which occurs when opening a block (its
parameter dialog box is displayed or a subsystem is opened).

To create block callbacks interactively, open the block's Block Properties dialog box and
use the Callbacks tab to edit callbacks (see “Callbacks for Customized Model Behavior”
on page 4-68).

To create the OpenFcn callback programmatically, click the block to which you want to
add this property, then enter the following at the MATLAB command prompt:

set_param(gcb,'OpenFcn','expression')

where expression is a valid MATLAB command or a MATLAB script that exists in
your MATLAB search path.

The following example shows how to set up the callback to execute a MATLAB script
called myfunction.m when double clicking a subsystem called mysubsystem.

set_param('mymodelname/mysubsystem','OpenFcn','myfunction')

Create Block Annotations Programmatically

You can use a block's AttributesFormatString parameter to display selected block
parameters beneath the block as an “attributes format string,” which is a string that
specifies values of the block's attributes (parameters). “Common Block Properties” and
“Block-Specific Parameters” describe the parameters that a block can have. Use the
Simulink set_param function to set this parameter to the desired attributes format
string.

The attributes format string can be any text string that has embedded parameter names.
An embedded parameter name is a parameter name preceded by %< and followed by >,
for example, %<priority>. Simulink displays the attributes format string beneath the
block's icon, replacing each parameter name with the corresponding parameter value.
You can use line-feed characters (\n) to display each parameter on a separate line. For
example, enter the following at the MATLAB command prompt:

The Gain block displays the following block annotation:

 Set Block Properties

31-11

If a parameter's value is not a string or an integer, Simulink displays N/S (not
supported) for the parameter's value. If the parameter name is invalid, Simulink displays
??? as the parameter value.

31 Working with Blocks

31-12

Change the Appearance of a Block

In this section...

“Change a Block Orientation” on page 31-12
“Resize a Block” on page 31-14
“Displaying Parameters Beneath a Block” on page 31-15
“Drop Shadows” on page 31-15
“Manipulate Block Names” on page 31-15
“Specify Block Color” on page 31-17

Change a Block Orientation

By default, a block is oriented so that its input ports are on the left, and its output ports
are on the right. You can change the orientation of a block by rotating it 90 degrees
around its center or by flipping it 180 degrees around its horizontal or vertical axis.

• “How to Rotate a Block” on page 31-12
• “How to Flip a Block” on page 31-13

How to Rotate a Block

You can rotate a block 90 degrees by selecting one of these commands from the Diagram
menu:

• Rotate & Flip > Clockwise (or Ctrl+R)
• Rotate & Flip > Counterclockwise

A rotation command effectively moves a block's ports from its sides to its top and bottom
or from its top and bottom to its size, depending on the initial orientation of the block.
The final positions of the block ports depend on the block's port rotation type.

Port Rotation Type

After rotating a block clockwise, Simulink may, depending on the block, reposition the
block's ports to maintain a left-to-right port numbering order for ports along the top
and bottom of the block and a top-to-bottom port numbering order for ports along the

 Change the Appearance of a Block

31-13

left and right sides of the block. A block whose ports are reordered after a clockwise
rotation is said to have a default port rotation type. This policy helps to maintain the
left-right and top-down block diagram orientation convention used in control system
modeling applications. All nonmasked blocks and all masked blocks by default have the
default rotation policy. The following figure shows the effect of using the Rotate & Flip
> Clockwise command on a block with the default rotation policy.

A masked block can optionally specify that its ports not be reordered after a clockwise
rotation (see “Port rotation”). Such a block is said to have a physical port rotation type.
This policy facilitates layout of diagrams in mechanical and hydraulic systems modeling
and other applications where diagrams do not have a preferred orientation. The following
figure shows the effect of clockwise rotation on a block with a physical port rotation type

How to Flip a Block

Simulink provides a set of commands that allow you to flip a block 180 degrees about its
horizontal or vertical axis. The commands effectively move a block's input and output

31 Working with Blocks

31-14

ports to opposite sides of the block or reverse the ordering of the ports, depending on the
block's port rotation type.

A block with the default rotation type has one flip command: Diagram > Rotate & Flip
> Flip Block (Ctr+I). This command effectively moves the block's input and output
ports to the side of the block opposite to the side on which they are initially located, i.e.,
from the left to the right side or from the top to the bottom side.

Resize a Block

To change the size of a block, select it, then drag any of its selection handles. While you
hold down the mouse button, a dotted rectangle shows the new block size. When you
release the mouse button, the block is resized.

For example, the following figure below shows a Signal Generator block being resized.
The lower-right handle was selected and dragged to the cursor position. When the mouse
button is released, the block takes its new size.

 Change the Appearance of a Block

31-15

Tip Use the model editor's resize blocks commands to make one block the same size as
another (see “Align, Distribute, and Resize Groups of Blocks” on page 4-18).

Displaying Parameters Beneath a Block

You can cause Simulink to display one or more of a block's parameters beneath the block.
Specify the parameters to be displayed by using one of the following approaches:

• Enter an attributes format string in the Attributes format string field of the block's
Properties dialog box (see “Set Block Properties” on page 31-4)

• Set the value of the block's AttributesFormatString property to the format string,
using set_param

Drop Shadows

By default, blocks appear with a drop shadow.

To increase the depth of a block drop shadow:

1 Select the block.
2 Select Diagram > Format > Block Shadow.

For example, in this model, the Constant1 block has the Block Shadow option
enabled, and the Constant2 block uses the default drop shadow.

To remove the default drop shadows for all blocks, select File > Simulink Preferences
> Editor Defaults > Use classic diagram theme.

Manipulate Block Names

All block names in a model must be unique and must contain at least one character. By
default, block names appear below blocks whose ports are on the sides, and to the left of
blocks whose ports are on the top and bottom, as the following figure shows:

31 Working with Blocks

31-16

Note Simulink commands interprets a forward slash (/) as a block path delimiter.
For example, the path vdp/Mu designates a block named Mu in the model named vdp.
Therefore, avoid using forward slashes (/) in block names to avoid causing Simulink to
interpret the names as paths.

Change Block Names

You can edit a block name in one of these ways:

• To replace the block name, click the block name, select the entire name, and then
enter the new name.

• To insert characters, click between two characters to position the insertion point, then
insert text.

• To replace characters, drag the mouse to select a range of text to replace, then enter
the new text.

To apply the block name edit, click the cursor anywhere else in the model, take any other
action, or press Esc. If you try to change the name of a block to a name that already
exists, Simulink displays an error message.

Note If you change the name of a library block, all links to that block become unresolved.

Change Font of Block Name

To modify the font used in a block name by selecting the block, then choosing the Font
Style menu item from the Diagram > Format menu.

1 Select the block name.
2 Select Diagram > Format > Font Style.

The Select Font dialog box opens.
3 Select a font and specify other font characteristics, such as the font size.

 Change the Appearance of a Block

31-17

Note: Changing the block name font also changes the font of any text that appears inside
the block.

This procedure also changes the font of any text that appears inside the block.

Change the Location of a Block Name

To change the location of the name of a selected block, use one of these approaches:

• Drag the block name to the opposite side of the block.
• Choose Diagram > Rotate & Flip > Flip Block Name. This command changes the

location of the block name to the opposite side of the block.

For more information about block orientation, see “How to Rotate a Block” on page
31-12.

Hide a Block Name

By default the Simulink Editor displays the names of blocks (except for a few blocks, such
as the Bus Creator block). To hide the name of a selected block, clear the Diagram >
Format > Show Block Name menu option.

Specify Block Color

See “Specify Block Diagram Colors” on page 4-4 for information on how to set the color of
a block.

31 Working with Blocks

31-18

Display Port Values for Debugging

In this section...

“Display Port Values for Easy Debugging” on page 31-18
“Display Value for a Specific Port” on page 31-22
“Display Port Values for a Model” on page 31-25
“Port Value Display Limitations” on page 31-26

Display Port Values for Easy Debugging

For many blocks whose signals carry data, Simulink can display signal values (block
output) as port value labels (similar to tool tips) on the block diagram during and after
a simulation. Port value labels display block output values when Simulink runs block
output methods. This model shows a port value label for the port on the Fcn block, an
output value of –3.03.

If the port value label appears empty, this means that no port value is currently
available. For example, toggling a port value label on a continuous block when paused
during simulation does not display any values in the label.

Port value labels are also empty when you have not yet simulated the model. This is
because the block output methods do not run when the model does not simulate.

 Display Port Values for Debugging

31-19

If you toggle or hover on a block that Simulink optimizes out of a simulation (such as a
virtual subsystem block), while you simulate, the model displays the string optimized.

Displaying port value data tips can help during interactive debugging of a model. For
example, the figure shows the output of a thermal model for a house.

These results suggest a problem with the model because:

• The heating cost is 0 at all temperatures.
• The temperature inside the house matches ambient temperature almost exactly.

In such cases, debugging the blocks in the model interactively can help isolate the error.
Port value labels provide information at the output of every block in the model. So in this
example, if you step forward using Simulation Stepper, you can see that the output of the
Heater subsystem is 0 at every time step.

31 Working with Blocks

31-20

To learn more, you can enable port value labels for blocks inside the Heater subsystem.
Using Simulation Stepper, if you step forward again to display the values, you can see
that there is an issue with the HeatGain block. The output is constant at 0.

This technique helps you isolate the issue.

 Display Port Values for Debugging

31-21

To simplify debugging, you can turn on and off port value labels during simulation.
Besides providing useful information for debugging, port value displays can help you
monitor a signal value during simulation. However, these labels are not saved with a
model.

For non-numeric data display, Simulink uses these strings:

Message Explanation

action The signal executes action subsystems.
fcn-call The signal is a function-call signal, e.g., Function Call

Generator output.
ground The signal is coming from a Ground block.
not a data signal The signal does not contain valid data, e.g., the signal is from a

block that is commented out.

In some cases:

• The port value display may not be able to acquire the value signal or
• The signal’s value cannot be easily displayed

In such cases, Simulink uses these strings:

Message Explanation

... The signal dimension exceeds the maximum number of
elements Simulink can display. For more information, see
“Display Port Values for a Model” on page 31-25.

(no message) The simulation data available is insufficient. Step forward or
press play to obtain more data.

click to add

signals

You have enabled a port value label on a bus. However, you
have not selected a signal to display. Click the label to select
bus signals.

inaccessible Simulink cannot obtain the port value. For an example, see
“Signal Storage Reuse” on page 31-26.

[m*n] This is a nonvector signal. Simulink cannot display the actual
values of the matrix. It displays the matrix dimension instead.

31 Working with Blocks

31-22

Message Explanation

no data yet This message appears when:

• The simulation data is not available. Start the simulation to
see values.

• If the model contains subsystems (e.g enabled subsystem)
and model references and they are not executed during a
simulation.

not used Simulink cannot obtain the signal value due to optimization.
removed Simulink cannot obtain the signal value due to block reduction.
optimized Simulink cannot obtain the signal value due to optimization.
unavailable The simulation data available is insufficient. For example, see

“Simulation Stepper” on page 31-27.

Note: You can force a value label to display the signal value by designating the signal as
a test point. Use the Properties dialog box to do this.

Display Value for a Specific Port

To display the value of a specific port or port values for a block, follow one of these steps:

• Right click on the signal and select Show Value Label of Selected Port.
• In Simulink Editor, select the signal and click on Display > Data Display in

Simulation > Show Value Label of Selected Port.

Note: To remove all data tips, select Display > Data Display in Simulation >
Remove All Value Labels.

For bus signals, the Show Value Label of Selected Port option opens a dialog box
where you can select from all signals in the bus. For example, in this model, you can see
the dialog box for all signals that are contained in ModelBus.

 Display Port Values for Debugging

31-23

You can search for a signal by name or filter through the hierarchy. Select a parent
signal to include all of the signals it contains. You can also filter the display to view only
those signals you have selected.

Click anywhere outside the dialog box to close it. The port value label appears. The label
is empty; it displays values when you simulate the model.

31 Working with Blocks

31-24

When you simulate the model, the port value label displays the names and values of the
signals you chose. To change the signals to display, click on the port value label to reopen
the dialog.

 Display Port Values for Debugging

31-25

Display Port Values for a Model

Specify port value display formatting and the frequency of updates. The Value Label
Display Options dialog box controls these settings on the entire model.

1 In the model whose port values you want to display, select Display > Data Display
in Simulation > Options.

2

31 Working with Blocks

31-26

3 In the Value Label Display Options dialog box, specify your preferences for:

• The display options, including font size, the refresh frequency, and the number of
elements displayed for vector signals with signal widths greater than 1

• The display mode
• Floating-point or fixed-point format

Port Value Display Limitations

Performance

Enabling the hovering option for a model or setting at least one block to Toggle Value
Labels When Clicked slows down simulation.

Accelerated Modes

Port values work in Normal and Accelerator modes only. They do not work in Rapid
Accelerator and External modes. The table shows how accelerator modes affect the
display of port values.

Accelerated Mode Port Values

Accelerator • Signals not optimized in Accelerator mode display port values as
in Normal mode. Signals optimized in Accelerator mode display
port values as optimized. For more information, see “Display Port
Values for Easy Debugging” on page 31-18.

• Model reference blocks simulated in Accelerator mode do not get
their port value displays updated.

Rapid
Accelerator

Incompatible. The limitation exists whether the model or its parent
specifies accelerated simulation. For more information, see “Rapid
Simulations”.

Signal Storage Reuse

If the output port buffer of a block is shared with another block through the optimization
of signal storage reuse, the port value displays as inaccessible. You can disable signal
storage reuse using the Configuration Parameters > Optimization > Signals and
Parameters > Signal storage reuse check box. However, disabling signal storage
reuse increases the memory used during simulation.

 Display Port Values for Debugging

31-27

Signal Data Types

• Simulink displays the port value for ports connected to most kinds of signals,
including signals with built-in data types (such as double, int32, or Boolean),
DYNAMICALLY_TYPED, and several other data types.

• Simulink shows the floating format for only noncomplex signal value displays.
• Simulink displays the port value of fixed point data types based on the converted

double value.
• Simulink does not display data for signals with some composite data types, such as

bus signals.

Subsystems

• You cannot display port values for subsystems contained in a variant subsystem
when there are no signal lines connecting to them. In such cases, during simulation,
Simulink automatically determines block connectivity based on the active variant.
However, you can display port values within the subsystems contained in the
variant subsystem. You can also display values on signal lines outside of the variant
subsystem.

• When you disable a conditionally executed subsystem, the port value display for
a signal that goes into an Outport block displays the value of the Outport block,
depending on the Output when disabled setting.

• Simulink does not display data for the ports of an enabled subsystem that is not
enabled.

Simulation Stepper

If you do not enable port value display when stepping forward, the display will not be
available when stepping back. When stepping back, if the port value is unavailable, the
unavailable label is displayed.

Refine Factor

Port value displays do not honor refine factor values (Configuration Parameters >
Data Import/Export > Refine factor) because Simulink updates port value displays
only during major time steps.

Signal Specification Block and Inport Block

When you display port values on Signal Specification and Inport blocks in a subsystem,
the value that is driving the blocks displays instead of the block values.

31 Working with Blocks

31-28

Command-Line Simulations

For efficiency, Simulink does not support port value displays during a command-line
simulation using the sim command.

Merge Block

Simulink does not display the output value of a merge block. To see this value, refer to
the source block.

Command Line Interface

You cannot specify port value displays through the command line interface.

Non-Simulink signals

You cannot place port values on non-Simulink signals, such as Simscape or SimEvents
signals. This limitation applies to conditional breakpoints as well.

 Control and Display the Sorted Order

31-29

Control and Display the Sorted Order
In this section...

“What Is Sorted Order?” on page 31-29
“Display the Sorted Order” on page 31-29
“Sorted Order Notation” on page 31-30
“How Simulink Determines the Sorted Order” on page 31-40
“Assign Block Priorities” on page 31-43
“Rules for Block Priorities” on page 31-44
“Block Priority Violations” on page 31-47

What Is Sorted Order?

During the updating phase of simulation, Simulink determines the order in which to
invoke the block methods during simulation. This block invocation ordering is the sorted
order.

You cannot set this order, but you can assign priorities to nonvirtual blocks to indicate
to Simulink their execution order relative to other blocks. Simulink tries to honor block
priority settings, unless there is a conflict with data dependencies. To confirm the results
of priorities that you have set, or to debug your model, display and review the sorted
order of your nonvirtual blocks and subsystems.

Note: For more information about block methods and execution, see:

• “Block Methods” on page 3-15
• “Conditional Execution Behavior” on page 9-52

Display the Sorted Order

To display the sorted order of the vdp model:

1 Open the van der Pol equation model:

vdp

2 In the model window, select Display > Blocks > Sorted Execution Order.

31 Working with Blocks

31-30

Simulink displays a notation in the top-right corner of each nonvirtual block and each
nonvirtual subsystem. These numbers indicate the order in which the blocks execute. The
first block to execute has a sorted order of 0.

For example, in the van der Pol equation model, the Integrator block with the sorted
order 0:0 executes first. The Out1 block, with the sorted order 0:1, executes second.
Similarly, the remaining blocks execute in numeric order from 0:2 to 0:8.

You can save the sorted order setting with your model. To display the sorted order when
you reopen the model, select Simulation > Update diagram.

Sorted Order Notation

The sorted order notation varies depending on the type of block. The following table
summarizes the different formats of sorted order notation. Each format is described in
detail in the sections that follows the table.

Block Type Sorted Order Notation Description

“Nonvirtual
Blocks” on page
31-33

s:b • s is the system index of the model or
subsystem the block resides in. For root-
level models, s is always 0.

• b specifies the block position within the
sorted order for the designated execution
context.

 Control and Display the Sorted Order

31-31

Block Type Sorted Order Notation Description

“Nonvirtual
Subsystems” on
page 31-34
(not including
function-call
and action
subsystems)

s:b • s is the system index of the model or
subsystem.

• b specifies the block position within the
sorted order for the designated execution
context.

“Virtual Blocks
and Subsystems”
on page 31-36

Not applicable Virtual blocks do not execute.

Action
Subsystems

s:b' • s is the system index of the model or
subsystem the block resides in. For root-
level models, s is always 0.

• b' is the block index of the action block
(but not of the action subsystem).

One non-grounded initiator:

s:b
i

• s is the system index of the model or
subsystem the block resides in. For root-
level models, s is always 0.

• b
i is the block index of the root initiator in

the subsystem’s hierarchy.
Two or more initiators:

• s:b
i1
, s:b

i2
, ..., s:b

in

where n is the number of
non-grounded initiators.

• s is the system index of the model or
subsystem the block resides in. For root-
level models, s is always 0.

• b
in is the block index of the n-th root

initiator in the subsystem’s hierarchy.

“Function-Call
Subsystems” on
page 31-37
and Function-
Call models

Initiators are either Ground
blocks or are unconnected:

• s:G

• s is the system index of the model or
subsystem the block resides in. For root-
level models, s is always 0.

• G indicates that all function-call initiators
are grounded.

31 Working with Blocks

31-32

Block Type Sorted Order Notation Description

“Branched
Function-Call
Signals” on page
31-39

s:b
i
[Bk] • s is the system index of the model or

subsystem the block resides in. For root-
level models, s is always 0.

• b
i is the block index of the root initiator in

the subsystem’s hierarchy.
• Bk indicates that it is a branched function-

call subsystem with branch index k.
Function-Call
Feedback Latch
Blocks

s:b
i
[Bm] • s is the system index of the model or

subsystem the block resides in. For root-
level models, s is always 0.

• b
i is the block index of the root initiator in

the subsystem’s hierarchy.
• Bm indicates that it is a branched

subsystem with branch index m.
Function-call root-level Inport
and Outport blocks: Fi

• F indicates that it is executed in a function-
call context.

• i is the function-call index.
Root-level data Inport blocks:
If they drive a function-call
subsystem, it is the function-
call index of the subsystem.

If they are part of the
model that is not driven by
asynchronous function-call
inputs, then no function-call
index is displayed.

Blocks in a
model with
asynchronous
function-call
inputs

Root-level function-call blocks:
Fi
Root-level branched function-
call blocks: Fi[Bk]

• F indicates that it is executed in a function-
call context.

• i is the function-call index.

 Control and Display the Sorted Order

31-33

Block Type Sorted Order Notation Description

Function-call root-level Inport
and Outport blocks: Fi

• F indicates that it is a function-call block.
• i is the execution order for the function-call

root-level Inport or Outport block in normal
simulation mode.

Root-level function-call
subsystems: Fi
Root-level branched function-
call subsystems: Fi[Bk]

• F indicates that it is a function-call block.
• i is the execution order for the function-

call root-level Inport block in normal
simulation mode.

• Bk indicates a branched function-call
subsystem with index k.

Merge and Data Store Memory
blocks: Fi, Fj, ...

• F indicates that it is a function-call block.
• i is the block execution index.

Blocks inside
Export Function
Models (See
“Execution Order
for Function-Call
Root-level Inport
Blocks” on page
9-8)

Root-level data Inport and
Outport blocks: Same execution
order as the function-call
subsystems they are connected
to.

“Bus-Capable
Blocks” on page
31-40

s:B • s is the system index of the model or
subsystem the block resides in. For root-
level models, s is always 0.

• B indicates a bus-capable block.

• “Nonvirtual Blocks” on page 31-33
• “Nonvirtual Subsystems” on page 31-34
• “Virtual Blocks and Subsystems” on page 31-36
• “Function-Call Subsystems” on page 31-37
• “Branched Function-Call Signals” on page 31-39
• “Bus-Capable Blocks” on page 31-40

Nonvirtual Blocks

In the van der Pol equation model, all the nonvirtual blocks in the model have a sorted
order. The system index for the top-level model is 0, and the block execution order ranges
from 0 to 8.

31 Working with Blocks

31-34

Nonvirtual Subsystems

The following model contains an atomic, nonvirtual subsystem named Discrete Cruise
Controller.

When you enable the sorted order display for the root-level system, Simulink displays the
sorted order of the blocks.

The Scope block in this model has the lowest sorted order, but its input depends on the
output of the Car Dynamics subsystem. The Car Dynamics subsystem is virtual, so
it does not have a sorted order and does not execute as an atomic unit. However, the
blocks within the subsystem execute at the root level, so the Integrator block in the Car
Dynamics subsystem executes first. The Integrator block sends its output to the Scope
block in the root-level model, which executes second.

 Control and Display the Sorted Order

31-35

The Discrete Cruise Controller subsystem has a sorted order of 0:5:

• 0 indicates that this atomic subsystem is part of the root level of the hierarchal
system comprised of the primary system and the two subsystems.

• 5 indicates that the atomic subsystem is the sixth block that Simulink executes
relative to the blocks within the root level.

The sorted order of each block inside the Discrete Cruise Controller subsystem has the
form 1:b, where:

• 1 is the system index for that subsystem.
• b is the block position in the execution order. In the Discrete Cruise Controller

subsystem, the sorted order ranges from 0 to 8.

31 Working with Blocks

31-36

Virtual Blocks and Subsystems

Virtual blocks, such as the Mux block, exist only graphically and do not execute.
Consequently, they are not part of the sorted order and do not display any sorted order
notation.

Virtual subsystems do not execute as a unit, and like a virtual block, are not part of the
sorted order. The blocks inside the virtual subsystem are part of the root-level system
sorted order, and therefore share the system index.

In the model in “Nonvirtual Subsystems” on page 31-34, the virtual subsystem Car
Dynamics does not have a sorted order. However, the blocks inside the subsystem have
a sorted order in the execution context of the root-level model. The blocks have the same
system index as the root-level model. The Integrator block inside the Car Dynamics
subsystem has a sorted order of 0:0, indicating that the Integrator block is the first block
executed in the context of the top-level model.

 Control and Display the Sorted Order

31-37

Function-Call Subsystems

Single Initiator

A function-call subsystem (or model) executes when the initiator invokes the function-
call subsystem (or model) and, therefore, does not have a sorted order independent of its
initiator. Specifically, for a subsystem that connects to one initiator, Simulink uses the
notation s:bi, where s is the index of the system that contains the initiator and bi is the
block index of the root initiator in the subsystems hierarchy.

For example, the sorted order for the subsystems f and g is 0:0, since the sorted order of
their root initiator, Chart, is 0:0.

31 Working with Blocks

31-38

Multiple Initiators

For a function-call subsystem that connects to more than one initiator, the sorted
order notation is s:bi1, s:bi2, ..., s:bin where n is the number of non-grounded
initiators, s is the system index of the model or subsystem the block resides in, and bin is
the block index of the n-th root initiator in the subsystem’s hierarchy.

For example, open the sl_subsys_fcncall6 model. The f subsystem has three
initiators from the same level in the subsystem’s hierarchy. Two are from the Stateflow
chart, Chart1, and one from the Stateflow chart, Chart.

Because Chart1 has a sorted order 0:2 and Chart has a sorted order of 0:4,the function-
call subsystem f has a sorted order notation of 0:2,0:4.

 Control and Display the Sorted Order

31-39

Branched Function-Call Signals

When a function-call signal is branched using a Function-Call Split block, Simulink
displays the order in which subsystems (or models) that connect to the branches execute
when the initiator invokes the function call. Simulink uses the notation s:bi[Bk] to
indicate this order. s is the system index of the model or subsystem the block resides in,
b
i is the block index of the root initiator in the subsystem’s hierarchy, and Bk indicates

that it is a branched function-call subsystem with branch index k.

For example, open the sl_subsys_fcncall11 model and display the sorted order. The
sorted order indicates that the subsystem f (B0) executes before the subsystem g (B1).

31 Working with Blocks

31-40

Bus-Capable Blocks

A bus-capable block does not execute as a unit and therefore does not have a unique
sorted order. Such a block displays its sorted order as s:B where B stands for bus.

For example, open the sldemo_bus_arrays model and display the sorted order. Open
the For Each Subsystem to see that the sorted order for the Bus Assignment block
appears as 1:B.

For more information, see “Bus-Capable Blocks” on page 61-21.

How Simulink Determines the Sorted Order

Direct-Feedthrough Ports Impact on Sorted Order

To ensure that the sorted order reflects data dependencies among blocks, Simulink
categorizes block input ports according to the dependency of the block outputs on the

 Control and Display the Sorted Order

31-41

block input ports. An input port whose current value determines the current value of one
of the block outputs is a direct-feedthrough port. Examples of blocks that have direct-
feedthrough ports include:

• Gain

• Product

• Sum

Examples of blocks that have non-direct-feedthrough inputs:

• Integrator — Output is a function of its state.
• Constant — Does not have an input.
• Memory — Output depends on its input from the previous time step.

Rules for Sorting Blocks

To sort blocks, Simulink uses the following rules:

• If a block drives the direct-feedthrough port of another block, the block must appear
in the sorted order ahead of the block that it drives.

This rule ensures that the direct-feedthrough inputs to blocks are valid when
Simulink invokes block methods that require current inputs.

• Blocks that do not have direct-feedthrough inputs can appear anywhere in the sorted
order as long as they precede any direct-feedthrough blocks that they drive.

Placing all blocks that do not have direct-feedthrough ports at the beginning of the
sorted order satisfies this rule. This arrangement allows Simulink to ignore these
blocks during the sorting process.

Applying these rules results in the sorted order. Blocks without direct-feedthrough ports
appear at the beginning of the list in no particular order. These blocks are followed by
blocks with direct-feedthrough ports arranged such that they can supply valid inputs to
the blocks which they drive.

The following model, from “Nonvirtual Subsystems” on page 31-34, illustrates this
result. The following blocks do not have direct-feedthrough and therefore appear at the
beginning of the sorted order of the root-level system:

• Integrator block in the Car Dynamics virtual subsystem

31 Working with Blocks

31-42

• Speed block in the root-level model

Inside the Discrete Cruise Controller subsystem, all the Gain blocks, which have direct-
feedthrough ports, run before the Sum block that they drive.

 Control and Display the Sorted Order

31-43

Assign Block Priorities

You can assign a priority to a nonvirtual block or to an entire subsystem. Higher priority
blocks appear before lower priority blocks in the sorted order. The lower the number, the
higher the priority.

• “Assigning Block Priorities Programmatically” on page 31-43
• “Assigning Block Priorities Interactively” on page 31-43

Assigning Block Priorities Programmatically

To set priorities programmatically, use the command:

set_param(b,'Priority','n')

where

• b is the block path.
• n is any valid integer. (Negative integers and 0 are valid priority values.)

Assigning Block Priorities Interactively

To set the priority of a block or subsystem interactively:

31 Working with Blocks

31-44

1 Right-click the block and select Properties.
2 On the General tab, in the Priority field, enter the priority.

Rules for Block Priorities

Simulink honors the block priorities that you specify unless they violate data
dependencies. (“Block Priority Violations” on page 31-47 describes situations that
cause block property violations.)

In assessing priority assignments, Simulink attempts to create a sorted order such that
the priorities for the individual blocks within the root-level system or within a nonvirtual
subsystem are honored relative to one another.

Three rules pertain to priorities:

• “Priorities Are Relative” on page 31-44
• “Priorities Are Hierarchical” on page 31-45
• “Lack of Priority May Not Result in Low Priority” on page 31-46

Priorities Are Relative

Priorities are relative; the priority of a block is relative to the priority of the blocks within
the same system or subsystem.

For example, suppose you set the following priorities in the Discrete Cruise Controller
subsystem in the model in “Nonvirtual Subsystems” on page 31-34.

Block Priority

Gain 3
Gain1 2
Gain2 1

After updating the diagram, the sorted order for the Gain blocks is as follows.

 Control and Display the Sorted Order

31-45

The sorted order values of the Gain, Gain1, and Gain2 blocks reflect the respective
priorities assigned: Gain2 has highest priority and executes before Gain1 and Gain;
Gain1 has second priority and executes after Gain2; and Gain executes after Gain1.
Simulink takes into account the assigned priorities relative to the other blocks in that
subsystem.

The Gain blocks are not the first, second, and third blocks to execute. Nor do they have
consecutive sorted orders. The sorted order values do not necessarily correspond to the
priority values. Simulink arranges the blocks so that their priorities are honored relative
to each other.

Priorities Are Hierarchical

In the Car Dynamics virtual subsystem, suppose you set the priorities of the Gain blocks
as follows.

Block Priority

Gain 2
Gain1 1

After updating the diagram, the sorted order for the Gain blocks is as illustrated. With
these priorities, Gain1 always executes before Gain.

31 Working with Blocks

31-46

You can set a priority of 1 to one block in each of the two subsystems because of
the hierarchal nature of the subsystems within a model. Simulink never compares
the priorities of the blocks in one subsystem to the priorities of blocks in any other
subsystem.

For example, consider this model again.

The blocks within the Car Dynamics virtual subsystem are part of the root-level system
hierarchy and are part of the root-level sorted order. The Discrete Cruise Controller
subsystem has an independent sorted order with the blocks arranged consecutively from
1:0 to 1:7.

Lack of Priority May Not Result in Low Priority

A lack of priority does not necessarily result in a low priority (higher sorting order) for a
given block. Blocks that do not have direct-feedthrough ports execute before blocks that
have direct-feedthrough ports, regardless of their priority.

If a model has two atomic subsystems, A and B, you can assign priorities of 1 and 2
respectively to A and B. This priority causes all the blocks in A to execute before any of
the blocks in B. The blocks within an atomic subsystem execute as a single unit, so the
subsystem has its own system index and its own sorted order.

 Control and Display the Sorted Order

31-47

Block Priority Violations

Simulink software honors the block priorities that you specify unless they violate
data dependencies. If Simulink is unable to honor a block priority, it displays a Block
Priority Violation diagnostic message.

As an example:

1 Open the sldemo_bounce model.

Notice that the output of the Memory block provides the input to the Coefficient of
Restitution Gain block.

2 Set the priority of the Coefficient of Restitution block to 1, and set the priority of the
Memory block to 2.

Setting these priorities specifies that the Coefficient of Restitution block execute
before the Memory block. However, the Coefficient of Restitution block depends
on the output of the Memory block, so the priorities you just set violate the data
dependencies.

3 In the model window, enable sorted order by selecting Format > Block displays >
Sorted Order.

4 Select Simulation > Update Diagram.

The block priority violation warning appears in the Diagnostic Viewer. To open
the Diagnostic Viewer window, click View > Diagnostic Viewer. The warning
includes the priority for the respective blocks:

Warning: Unable to honor user-specified priorities.

'sldemo_bounce/Memory' (pri=[2]) has to execute

before 'sldemo_bounce/Coefficient of Restitution'

 (pri=[1]) to satisfy data dependencies

5 Remove the priorities from the Coefficient of Restitution and Memory blocks and
update the diagram again to see the correct sorted order.

31 Working with Blocks

31-48

Access Block Data During Simulation

In this section...

“About Block Run-Time Objects” on page 31-48
“Access a Run-Time Object” on page 31-48
“Listen for Method Execution Events” on page 31-49
“Synchronizing Run-Time Objects and Simulink Execution” on page 31-50

About Block Run-Time Objects

Simulink provides an application programming interface, called the block run-time
interface, that enables programmatic access to block data, such as block inputs and
outputs, parameters, states, and work vectors, while a simulation is running. You
can use this interface to access block run-time data from the MATLAB command line,
the Simulink Debugger, and from Level-2 MATLAB S-functions (see “Write Level-2
MATLAB S-Functions” in the online Simulink documentation).

Note You can use this interface even when the model is paused or is running or paused
in the debugger.

The block run-time interface consists of a set of Simulink data object classes (see “Data
Objects” on page 55-38) whose instances provide data about the blocks in a running
model. In particular, the interface associates an instance of Simulink.RunTimeBlock,
called the block's run-time object, with each nonvirtual block in the running model.
A run-time object's methods and properties provide access to run-time data about the
block's I/O ports, parameters, sample times, and states.

Access a Run-Time Object

Every nonvirtual block in a running model has a RuntimeObject parameter whose value,
while the simulation is running, is a handle for the blocks' run-time object. This allows
you to use get_param to obtain a block's run-time object. For example, the following
statement

rto = get_param(gcb,'RuntimeObject');

 Access Block Data During Simulation

31-49

returns the run-time object of the currently selected block. Run-time object data is read-
only. You cannot use run-time objects to change a block’s parameters, input, output, and
state data.

Note Virtual blocks (see “Nonvirtual and Virtual Blocks” on page 31-2) do not have run-
time objects. Blocks eliminated during model compilation as an optimization also do not
have run-time objects (see “Block reduction”). A run-time object exists only while the
model containing the block is running or paused. If the model is stopped, get_param
returns an empty handle. When you stop a model, all existing handles for run-time
objects become empty.

Listen for Method Execution Events

One application for the block run-time API is to collect diagnostic data at key points
during simulation, such as the value of block states before or after blocks compute their
outputs or derivatives. The block run-time API provides an event-listener mechanism
that facilitates such applications. For more information, see the documentation for the
add_exec_event_listener command. For an example of using method execution
events, enter

sldemo_msfcn_lms

at the MATLAB command line. This Simulink model contains the S-function
adapt_lms.m, which performs a system identification to determine the coefficients of
an FIR filter. The S-function's PostPropagationSetup method initializes the block
run-time object's DWork vector such that the second vector stores the filter coefficients
calculated at each time step.

In the Simulink model, double-clicking on the annotation below the S-function
block executes its OpenFcn. This function first opens a figure for plotting the FIR
filter coefficients. It then executes the function add_adapt_coef_plot.m to add a
PostOutputs method execution event to the S-function's block run-time object using the
following lines of code.

% Add a callback for PostOutputs event

blk = 'sldemo_msfcn_lms/LMS Adaptive';

h = add_exec_event_listener(blk, ...

 'PostOutputs', @plot_adapt_coefs);

31 Working with Blocks

31-50

The function plot_adapt_coefs.m is registered as an event listener that is executed
after every call to the S-function's Outputs method. The function accesses the block run-
time object's DWork vector and plots the filter coefficients calculated in the Outputs
method. The calling syntax used in plot_adapt_coefs.m follows the standard needed
for any listener. The first input argument is the S-function's block run-time object, and
the second argument is a structure of event data, as shown below.

function plot_adapt_coefs(block, ei) %#ok<INUSD>

%

% Callback function for plotting the current adaptive filtering

% coefficients.

stemPlot = get_param(block.BlockHandle,'UserData');

est = block.Dwork(2).Data;

set(stemPlot(2),'YData',est);

drawnow('expose');

Synchronizing Run-Time Objects and Simulink Execution

You can use run-time objects to obtain the value of a block output and display in the
MATLAB Command Window by entering the following commands.

rto = get_param(gcb,'RuntimeObject')

rto.OutputPort(1).Data

However, the displayed data may not be the true block output if the run-time object is
not synchronized with the Simulink execution. Simulink only ensures the run-time object
and Simulink execution are synchronized when the run-time object is used either within
a Level-2 MATLAB S-function or in an event listener callback. When called from the
MATLAB Command Window, the run-time object can return incorrect output data if
other blocks in the model are allowed to share memory.

To ensure the Data field contains the correct block output, open the Configuration
Parameters dialog box, and then clear the Signal storage reuse check box on the
Optimization > Signals and Parameters pane (see “Signal storage reuse ”).

 Configure a Block for Code Generation

31-51

Configure a Block for Code Generation

Use the State Attributes pane of a Block Parameters dialog box to specify Simulink
Coder code generation options for blocks with discrete states. See “Discrete Block State
Naming in Generated Code” in the Simulink Coder documentation.

32

Working with Block Parameters

• “Specify Block Parameter Values” on page 32-2
• “Block Parameter Data Types” on page 32-6
• “Calibrate Block Behavior Between Simulation Runs” on page 32-9
• “Manage Variables from Block Parameter” on page 32-11
• “Check Parameter Values” on page 32-14
• “Tunable Block Parameters” on page 32-18
• “Organize Related Parameters in Structures and Arrays of Structures” on page

32-20

32 Working with Block Parameters

32-2

Specify Block Parameter Values

Many block parameters, including mathematical parameters, accept MATLAB
expression strings as values. When Simulink compiles a model, for example, at the start
of a simulation or when you update the model, Simulink sets the compiled values of the
parameters to the result of evaluating the expressions.

Access Block Parameters

• Use the set_param command. For a list of parameters for each block, see “Block-
Specific Parameters”.

• In the Simulink Editor, select View > Model Explorer.

The Model Explorer allows you to quickly find one or more blocks and set their
properties, thus facilitating global changes to a model, for example, changing the gain
of all of a model’s Gain blocks. See “Model Explorer Overview” on page 11-2.

• Open the block parameter dialog box:

• Select the block and choose Block Parameters from the Diagram menu or from
the block’s context (right-click) menu.

• Double-click the block.

Note Some blocks, such as Scope blocks, do not have a Block Parameters dialog box.

Double-clicking a block or using the Block Properties dialog box Open Block link
to open the Block Parameters dialog box works for all blocks that have parameter
dialog boxes, except for Subsystem and Model blocks. Use the Simulink Editor
Diagram menu or the block context menu to open the Block Parameters dialog box
for Subsystem and Model blocks.

Specify Parameter Values

Parameter Value Type Examples Usage Scenario

Literal value 2.3, sin(2*pi), 1/3 • The parameter value is
unlikely to change or be
reused.

 Specify Block Parameter Values

32-3

Parameter Value Type Examples Usage Scenario

• You want to rapidly
prototype your model
to understand block
behavior.

Variable At the command prompt:

myParam = 5;

In the block parameter:

myParam

• The parameter value is
used in multiple places in
the model.

• Change the parameter
value without changing
the model.

Expression with variables myParam *

myOtherparam + 3

Define the parameter value
as a relationship between
multiple variables or other
block parameters.

MATLAB structures myParam.a.SpeedVect Organize related numerical
parameters that can be
identified using structure
fields.

Data objects At the command prompt:

myParam = Simulink.Parameter(5);

In the block parameter:

myParam

Define more attributes for
the parameter value, such
as minimum, maximum, and
dimensionality.

Use Workspace Variables in Parameter Expressions

Block parameter expressions can include variables defined in the model’s mask and
model workspaces and in the MATLAB workspace. Using a workspace variable facilitates
updating a model that sets multiple block parameters to the same value, i.e., it allows
you to update multiple parameters by setting the value of a single workspace variable.
For more information, see “Symbol Resolution” on page 4-95 and “Numeric Values with
Symbols” on page 4-96.

Using a workspace variable also allows you to change the value of a parameter during
simulation without having to open a block’s parameter dialog box. For more information,
see “Tunable Block Parameters” on page 32-18.

32 Working with Block Parameters

32-4

Note: If you have a Simulink Coder license, and you plan to generate code from a
model, you can use workspace variables to specify the name, data type, scope, volatility,
tunability, and other attributes of variables used to represent the parameter in the
generated code. For more information, see “Parameter Storage in the Generated Code” in
the Simulink Coder documentation.

Resolve Variable References in Block Parameter Expressions

When evaluating a block parameter expression that contains a variable, Simulink by
default searches the workspace hierarchy. If the variable is not defined in any workspace,
Simulink halts compilation of the model and displays an error message. See “Symbol
Resolution” on page 4-95 and “Numeric Values with Symbols” on page 4-96 for more
information.

Use Parameter Objects to Specify Parameter Values

You can use Simulink.Parameter objects in parameter expressions to specify
parameter values. For example, K and 2*K are both valid parameter expressions where
K is a workspace variable that references a Simulink.Parameter object. In both cases,
Simulink uses the parameter object’s Value property as the value of K.

You cannot use arrays of Simulink.Parameter objects as block parameters.

See “Symbol Resolution” on page 4-95 and “Numeric Values with Symbols” on page 4-96
for more information.

Note: Do not use expressions of the form p.Value where p is a parameter object in
block parameter expressions. Such expressions cause evaluation errors when Simulink
compiles the model.

Convert Numeric Variable into Simulink.Parameter Object

You can convert a numeric variable into a Simulink.Parameter object as follows.

/* Define numeric variable in base workspace

myVar = 5;

/* Create data object and assign variable value

myObject = Simulink.Parameter(myVar);

 Specify Block Parameter Values

32-5

See Also
set_param

Related Examples
• “Manage Variables from Block Parameter” on page 32-11
• “Organize Related Parameters in Structures and Arrays of Structures” on page

32-20
• “Change the Appearance of a Block” on page 31-12

More About
• “Tunable Block Parameters” on page 32-18
• “Block-Specific Parameters”
• “Block Parameter Data Types” on page 32-6
• “Model Explorer Overview” on page 11-2

32 Working with Block Parameters

32-6

Block Parameter Data Types

When Simulink compiles a model, each of the model’s blocks determines a data type for
storing its parameter values that are specified using MATLAB expressions.

Most blocks use internal rules to determine the data type assigned to a specific
parameter. Exceptions include the Gain block, whose parameter dialog box allows
you to specify the data type assigned to the compiled value of its Gain parameter. You
can configure your model to check whether the data type assigned to a parameter can
accommodate the parameter value specified by the model (see “Data Validity Diagnostics
Overview”).

How Simulink Determines Parameter Data Type

Parameter Specification Example Effective Parameter Data Type

Numeric value 15.3 The block determines the
parameter data type.

Nontunable expression 1:K The block determines the
parameter data type.

Variable with double-precision
value

K = 5 The block determines the
parameter data type.

Variable with explicit data type K = int8(5) The parameter uses the
specified data type.

However, the block can require a
different data type, for example,
if you specify a type in a Gain
block dialog box. The block casts
the parameter to the required
type.

In the generated code, the
parameter uses the specified
data type if the parameter is
tunable.

Parameter object K =

Simulink.Parameter(10.23)

The parameter object first casts
the specified value, 10.23, to
the specified type, single.

 Block Parameter Data Types

32-7

Parameter Specification Example Effective Parameter Data Type

K.DataType = 'single' Then, if the block requires a
different data type, it casts the
result to the required type.

If you specify a block parameter using a mathematical expression, the block determines
the final parameter data type using a combination of MATLAB and Simulink data typing
rules.

For example, suppose that you define two parameter objects int8Param and
doubleParam, and use the objects to specify the Constant value parameter in a
Constant block.

int8Param = Simulink.Parameter(3);

int8Param.DataType = 'int8';

doubleParam = Simulink.Parameter(9.36);

doubleParam.DataType = 'double';

The Constant block determines the data type of the Constant value parameter using
these steps:

1 Each parameter object casts the specified numeric value to the specified data type.

Parameter object Data type Numeric value Result

int8Param int8 3 int8(3)

doubleParam double 9.36 double(9.36)

2 The block evaluates the specified expression, int8Param * doubleParam, using
MATLAB rules.

32 Working with Block Parameters

32-8

An expression that involves a double data type and a different type returns a
result of the different type. Therefore, the result of the expression int8(3) *
double(9.36) is int8(28).

Display Parameter Data Type

You can use get_param to find the system and block parameter values for your model.
See “Model Parameters” and “Common Block Properties” for arguments get_param
accepts.

The model’s signal attributes and parameter expressions must be evaluated before
some parameters are properly reported. This evaluation occurs during the simulation
compilation phase. Alternatively, you can compile your model without first running it,
and then obtain parameter information. For instance, to access the port width, data
types, and dimensions of the blocks in your model, enter the following at the command
prompt:

modelname([],[],[],’compile’)

q=get_param(gcb,’PortHandles’);

get_param(q.Inport,’CompiledPortDataType’)

get_param(q.Inport,’CompiledPortWidth’)

get_param(q.Inport,’CompiledPortDimensions’)

modelname([],[],[],’term’)

Related Examples
• “Specify Block Parameter Values” on page 32-2
• “Check Parameter Values” on page 32-14

More About
• “Data Validity Diagnostics Overview”
• “Tunable Block Parameters” on page 32-18

 Calibrate Block Behavior Between Simulation Runs

32-9

Calibrate Block Behavior Between Simulation Runs

This example shows how to progressively iterate on the definitions of block parameters.

Prototype Blocks Using Literal Values

Rapidly prototype your model by using literal mathematical values to tweak block
behavior.

1 Open the fuelsys model.
2 Navigate to the Fuel Calculation submodel.
3 Open the block parameter dialog for the F/A Rich block by double-clicking it.
4 Change the Constant value parameter to 1/(17.5*0.8).
5 Similarly, change the Constant value parameter of the F/A Norm block to 1/17.5.
6 Simulate the model and observe the scopes for the change in output.

Replace Literal Values with Numeric Variables

Having tweaked block behavior using literal values, replace these values with numeric
variables.

1 Replace the Constant value parameter of the F/A Rich block, 1/(17.5*0.8), with
1/(mixture*coeff).

2 Similarly, replace the Constant value parameter of the F/A Norm block with1/
mixture.

3 At the MATLAB prompt, define the variables mixture and coeff in the base
workspace.

mixture = 17.5;

coeff = 0.8;

4 Simulate the model and observe that the scope output remains unchanged.

Develop Variable Expressions for Reuse

Group numeric variables into reusable expressions that you can reuse in other models.

1 Replace the Constant value parameter of the F/A Rich block with richRatio.
2 Similarly, replace the Constant value parameter of the F/A Norm block

withnormalRatio.

32 Working with Block Parameters

32-10

3 At the MATLAB prompt, define the variables mixture and coeff and the
expressions richRatio and normalRatio in the base workspace.

mixture = 17.5;

coeff = 0.8;

richRatio = 1/(mixture*coeff);

normalRatio = 1/mixture;

4 Simulate the model and observe that the scope output remains unchanged.

Related Examples
• “Specify Block Parameter Values” on page 32-2
• “Manage Variables from Block Parameter” on page 32-11
• “Check Parameter Values” on page 32-14

More About
• “Tunable Block Parameters” on page 32-18

 Manage Variables from Block Parameter

32-11

Manage Variables from Block Parameter

In this section...

“Rename Variable” on page 32-11
“Edit Variable Value or Property” on page 32-12
“Navigate to Mask Parameter” on page 32-12
“Create Variable” on page 32-12

Rename Variable

This example shows how to rename a variable by navigating to Model Explorer from a
parameter in a block dialog box.

1 Open the model f14. The model loads data to the MATLAB base workspace.
2 Open the block dialog box for the Gain block that uses variable Mw.
3 Right-click the expression Mw in the Gain box and select Explore Variable.

Model Explorer opens with Mw as the selected variable in the base workspace.
4 In Model Explorer, right-click the variable Mw and select Rename All.
5 In the Select a system dialog box, click the name of the model f14 to select it as the

context for renaming the variable Mw.
6 Clear the Search in referenced models check box, since f14 does not reference

any models, and click OK.

With Search in referenced models selected, you can rename the target variable
everywhere it is used in a model reference hierarchy. However, renaming the target
variable in an entire hierarchy can take more time.

The Update diagram to include recent changes check box is cleared by default
to save time by avoiding unnecessary model diagram updates. Select the check box to
incorporate recent changes you made to the model by forcing a diagram update.

7 Click OK in response to the message to update the model diagram.

Since you just opened the model, you must update the model diagram at least once
before renaming a variable. You could have selected Update diagram to include
recent changes in the Select a system dialog box to force an initial diagram

32 Working with Block Parameters

32-12

update, though you typically use that option when you make changes to the model
while performing multiple variable renaming operations.

8 In the Rename All dialog box, type the new name for the variable in the New name
box and click OK.

9 In the block dialog, click OK to accept the change to the block parameter.

Edit Variable Value or Property

This example shows how to edit a variable from a parameter in a block dialog box. You
can use this procedure to edit a variable made from a built-in or custom data type or from
a class such as Simulink.Parameter.

1 Open the model f14. The model loads data to the MATLAB base workspace.
2 Open the block dialog box for the Gain block that uses the variable Mw.
3 Right-click the expression Mw in the Gain box and select Open Variable.
4 In the Data properties dialog box, type a new value for the variable in the Value

box and click OK.

Navigate to Mask Parameter

This example shows how to navigate to a mask parameter from a parameter in a block
dialog box. When you explore a model that contains multiple masked subsystems and
masked blocks, you can find the mask that defines a particular parameter.

1 Open the model masking_example.
2 Open the block dialog box for the Gain block that uses the mask parameter m.
3 Right-click the expression m in the Gain box and select Open Variable.

The mask dialog box that contains the mask parameter m appears.

Create Variable

This example shows how to create a variable from a parameter in a block dialog box.

1 Open the model sldemo_fuelsys.
2 Open the block dialog box for the Constant block that has value 300.
3 In the Constant value box, replace the expression 300 with myVar.

 Manage Variables from Block Parameter

32-13

4 Right-click the expression myVar and select Create Variable.
5 In the Create New Data dialog box, type 300 in the Value box and click Create.

In the Create New Data dialog box you can choose the workspace to define the new
variable. If a model is linked to a data dictionary, you can choose to create a variable
in the dictionary.

6 In the Data properties dialog box, click OK.

Related Examples
• “Specify Block Parameter Values” on page 32-2
• “Tunable Block Parameters” on page 32-18

32 Working with Block Parameters

32-14

Check Parameter Values

In this section...

“About Value Checking” on page 32-14
“Blocks That Perform Parameter Range Checking” on page 32-14
“Specify Ranges for Parameters” on page 32-15
“Perform Parameter Range Checking” on page 32-15

About Value Checking

Many blocks perform range checking of their mathematical parameters. Generally,
blocks that allow you to enter minimum and maximum values check to ensure that the
values of applicable parameters lie within the specified range.

Blocks That Perform Parameter Range Checking

The following blocks perform range checking for their parameters:

Block Parameters Checked

Constant Constant value
Data Store Memory Initial value
Gain Gain
Interpolation Using Prelookup Table data
1-D Lookup Table Table data
2-D Lookup Table Table data
n-D Lookup Table Table data
Relay Output when on

Output when off
Repeating Sequence Interpolated Vector of output values
Repeating Sequence Stair Vector of output values
Saturation Upper limit

 Check Parameter Values

32-15

Block Parameters Checked

Lower limit

Specify Ranges for Parameters

In general, use the Output minimum and Output maximum parameters that
appear on a block parameter dialog box to specify a range of valid values for the block
parameters. The following exceptions apply:

• For the Gain block, use the Parameter minimum and Parameter maximum fields
to specify a range for the Gain parameter.

• For the Data Store Memory block, use the Minimum and Maximum fields to specify
a range for the Initial value parameter.

When specifying minimum and maximum values that constitute a range, enter only
expressions that evaluate to a finite, scalar, real number with double data type. The
default values for the minimum and maximum are [] (unspecified). The scalar values
that you specify are subject to expansion, for example, when the block parameters that
Simulink checks are nonscalar (see “Scalar Expansion of Inputs and Parameters” on page
60-34).

Note: You cannot specify the minimum or maximum value as NaN, inf, or –inf.

Specifying Ranges for Complex Numbers

When you specify a minimum or maximum value for a parameter that is a complex
number, the specified minimum and maximum apply separately to the real part and to
the imaginary part of the complex number. If the value of either part of the number is
less than the minimum, or greater than the maximum, the complex number is outside
the specified range. No range checking occurs against any combination of the real and
imaginary parts, such as (sqrt(a^2+b^2))

Perform Parameter Range Checking

You can initiate parameter range checking in the following ways:

• When you click the OK or Apply button on a block parameter dialog box, the block
performs range checking for its parameters. However, the block checks only the

32 Working with Block Parameters

32-16

parameters that it can readily evaluate. For example, the block does not check
parameters that use an undefined workspace variable.

• In the Simulink Editor, when you start a simulation or select Simulation > Update
Diagram, Simulink performs parameter range checking for all blocks in that model.

Simulink performs parameter range checking by comparing the values of applicable block
parameters with both the specified range (see “Specify Ranges for Parameters” on page
32-15) and the block data type. That is, Simulink performs the following check:

DataTypeMin ≤ MinValue ≤ VALUE ≤ MaxValue ≤ DataTypeMax

where

• DataTypeMin is the minimum value representable by the block data type.
• MinValue is the minimum value the block should output, specified by, e.g., Output

minimum.
• VALUE is the numeric value of a block parameter.
• MaxValue is the maximum value the block should output, specified by, e.g., Output

maximum.
• DataTypeMax is the maximum value representable by the block data type.

When Simulink detects a parameter value that violates the check, it displays an error
message. For example, consider a model that contains a Constant block whose

• Constant value parameter specifies the variable const, which you have yet to
define in a workspace.

• Output minimum and Output maximum parameters are set to 2 and 8,
respectively.

• Output data type parameter is set to uint8.

In this situation, Simulink does not perform parameter range checking when you click
the OK button on the Constant block dialog box because the variable const is undefined.
But suppose you define its value by entering

const = 10

at the MATLAB prompt, and then you update the diagram (see “Update Diagram and
Run Simulation” on page 1-50). Simulink displays the following error message:

 Check Parameter Values

32-17

Related Examples
• “Specify Block Parameter Values” on page 32-2
• “Block Parameter Data Types” on page 32-6

More About
• “Tunable Block Parameters” on page 32-18
• “Design Minimum and Maximum” on page 55-71

32 Working with Block Parameters

32-18

Tunable Block Parameters

In this section...

“Tune a Block Parameter” on page 32-18
“Specify Ranges for Tunable Parameters” on page 32-18
“Block Parameter Tunability During Rapid Accelerator Simulations” on page 32-19
“Tunable Parameters in Generated Code” on page 32-19

Simulink lets you change the values of many block parameters during simulation. Such
parameters are called tunable parameters. In general, only parameters that represent
mathematical variables, such as the Gain parameter of the Gain block, are tunable.
Parameters that specify the appearance or structure of a block, e.g., the number of inputs
of a Sum block, or when it is evaluated, e.g., a block’s sample time or priority, are not
tunable.

You can determine whether a particular block parameter is tunable by examining its edit
control in the block’s dialog box or Model Explorer during simulation. If the control is
disabled, the parameter is nontunable.

Tune a Block Parameter

You can use a block dialog box or Model Explorer to modify the tunable parameters of
any block. To use the block parameter dialog box:

1 Open the block parameter dialog box.
2 Change the parameter value displayed in the dialog box.
3 Click OK or Apply.

You can also tune a parameter at the MATLAB command line, using either the
set_param command or by assigning a new value to the MATLAB workspace variable
that specifies the parameter’s value. You must update the model’s block diagram for the
change to take effect (see “Update Diagram and Run Simulation” on page 1-50).

Specify Ranges for Tunable Parameters

It is a best practice to specify the minimum and maximum values that you expect to use
while tuning a parameter.

 Tunable Block Parameters

32-19

To specify value ranges for block parameters, see “Specify Ranges for Parameters” on
page 32-15.

Block Parameter Tunability During Rapid Accelerator Simulations

If a block parameter value references workspace variables, you cannot change the block
parameter value during rapid accelerator simulation. Instead, you can tune the values of
the referenced variables.

Alternatively, use parameter sets to tune runtime parameters in between rapid
accelerator simulations. For more information, see “Tuning Runtime Parameters” on
page 30-9.

Tunable Parameters in Generated Code

Parameters that are tunable during simulation can appear as nontunable inlined
parameters in the generated code. To control parameter tunability in the generated code,
you can adjust the code generation settings for a model and for individual MATLAB
variables. For more information, see “Tunable Parameter Storage” in the Simulink Coder
documentation.

See Also
set_param

Related Examples
• “Check Parameter Values” on page 32-14
• “Manage Variables from Block Parameter” on page 32-11
• “Update Diagram and Run Simulation” on page 1-50

More About
• “Specify Block Parameter Values” on page 32-2
• “Common Block Properties”
• “Parameter Tuning in Rapid Accelerator Mode” on page 30-8
• “Data Objects” on page 55-38

32 Working with Block Parameters

32-20

Organize Related Parameters in Structures and Arrays of
Structures

In this section...

“About Structure Parameters” on page 32-20
“Define Structure Parameters” on page 32-21
“Referencing Structure Parameters” on page 32-22
“Structure Parameter Arguments” on page 32-23
“Parameter Structure Limitations” on page 32-23
“Generate Code with Structure Parameters” on page 32-24

About Structure Parameters

Separately defining all base workspace variables used in block parameter expressions
can clutter the base workspace and result in very long lists of arguments to subsystems
and referenced models. The technique provides no way to conveniently group related base
workspace variables, or to configure generated code to reflect the variables’ relationships.

To minimize the disadvantages of separately defining workspace variables used by block
parameters, you can group numeric variables by specifying their names and values as
the fields of a MATLAB structure in the base workspace. A MATLAB structure that
Simulink uses in block parameter expressions is called a structure parameter. You can
use structure parameters to:

• Simplify and modularize the base workspace by using multiple structures to group
related variables and to prevent name conflicts

• Dereference the structure in block parameter expressions to provide values from
structure fields rather than separate variables

• Pass all the fields in a structure to a subsystem or referenced model with a single
argument.

• Improve generated code to use structures rather multiple separate variables

To organize parameter structures that have similar characteristics, you can create a
single parameter whose value is an array of structures. To use the parameter in a block
dialog box, you specify an expression that references a field of one of the structures in the
array.

 Organize Related Parameters in Structures and Arrays of Structures

32-21

You can also partition the parameter in a For Each subsystem. This technique helps
you to organize workspace variables when a model executes an algorithm repeatedly, for
example, by using identical subsystems. For an example, see “Repeat an Algorithm Using
a For Each Subsystem” on page 61-98.

For information about creating and using MATLAB structures, see Structures in the
MATLAB documentation. You can use all the techniques described there to manipulate
structure parameters. This section assumes that you know those techniques, and
provides only information that is specific to Simulink.

For information on structure parameters in the context of generated code for a model, see
“Structure Parameters and Generated Code”. For an example of how to convert a model
that uses unstructured workspace variables to a model that uses structure parameters,
see sldemo_applyVarStruct.

Define Structure Parameters

Defining a structure parameter is syntactically the same as defining any MATLAB
structure, as described in Structures. Every field in a MATLAB structure that functions
as a structure parameter must have a numeric data type, even if Simulink never uses the
field. Different fields can have different numeric types.

In structure parameters, numeric types include enumerated types, by virtue of their
underlying integers. The value of a structure parameter field, can be a real or complex
scalar, vector, or multidimensional array. However, a structure that contains any
multidimensional array cannot be tuned.

To create an array of structures, you can use the same syntax that you use to
create arrays of numeric values. For example, you can define an array of structures
arrayStruct by concatenating two similar structures.

arrayStruct = [struct('gain',1.5,'offset',30),...

 struct('gain',2.1,'offset',40)]

You can also create arrayStruct by assigning values to the structure fields in the
array.

arrayStruct(1).gain = 1.5;

arrayStruct(1).offset = 30;

arrayStruct(2).gain = 2.1;

arrayStruct(2).offset = 40;

32 Working with Block Parameters

32-22

MATLAB structures, including those used as structure parameters, can have
substructures to any depth. Structures and substructures at any level behave identically,
so the following instructions refer only to structures unless substructures are specifically
the point.

Referencing Structure Parameters

You can use MATLAB syntax, as described in Structures, to dereference a structure
parameter field anywhere in a block parameter expression that a MATLAB variable
can appear. You cannot specify a structure name in a mathematical block parameter
expression, because that would pass a structure rather than a number. For example,
suppose you have defined the following parameter structure:

A /* Root structure

|__x /* Numeric field

|__y /* Numeric field

|__z /* Substructure

 |__ m /* Numeric field

 |__ n /* Numeric field

 |__ k /* Numeric field

Given this structure, you can specify an individual field, such as A.x, in a block
parameter expression, thereby passing only x to the block. The effect is exactly the same
as if x were a separate base workspace variable whose value was the same as the value of
A.x. Similarly, you could reference A.z.m, A.z.n, etc. The next figure shows an example
that uses a Gain block:

The Gain block’s Gain parameter is the value of A.x + A.z.k, a numeric expression.
You could not reference A or A.z to provide a Gain parameter value, because neither
resolves to a numeric value.

To specify a block parameter by using a field of an array of structures, use a single
expression that selects a structure in the array and references a field of that structure.
For example, suppose that you define an array of structures arrayStruct:

 Organize Related Parameters in Structures and Arrays of Structures

32-23

arrayStruct = [struct('gain',1.5,'offset',30),...

 struct('gain',2.1,'offset',40)]

To reference the field offset of the second structure in the array, use the expression
arrayStruct(2).offset. The expression returns the value of the field, 40.

Structure Parameter Arguments

You can use a parameter structure field as a masked subsystem or model reference
argument by referencing the field, as described in the previous section, in Subsystem
block mask, or Model block. For example, suppose you have defined the parameter
structure used in the previous example:

A /* Root structure

|__x /* Numeric field

|__y /* Numeric field

|__z /* Substructure

 |__ m /* Numeric field

 |__ n /* Numeric field

 |__ k /* Numeric field

You could then:

1 Use a whole structure parameter as a masked subsystem argument or a referenced
model argument by referencing the structure’s name.

2 Dereference the structure as needed in the subsystem mask code, the subsystem
itself, or the referenced model.

For example, you could pass A, providing access to everything in the root structure, or
A.z, providing access only to that substructure. The dereferencing syntax for arguments
is the same as in any other context, as described in Structures.

When you pass a structure parameter to a referenced model, the structure definitions
must be identical in the parent model and the referenced model, including any unused
fields. See “Systems and Subsystems” on page 3-10, “Block Masks”, and “Model
Arguments” on page 8-60 more information about passing and using arguments.

Parameter Structure Limitations

All of the structures in an array of structures must have the same hierarchy of fields.
Each field in the hierarchy must have the same characteristics throughout the array:

32 Working with Block Parameters

32-24

• Field name
• Numeric data type, such as single or int32
• Complexity
• Dimensions

For example, suppose that you define an array of two structures.

paramStructArray = ...

[struct('sensor1',int16(7),'sensor2',single(9.23)) ...

 struct('sensor1',int32(9),'sensor2',single(11.71))];

You cannot use any of the fields of paramStructArray in a block parameter because the
field sensor1 uses a different data type in each structure.

Generate Code with Structure Parameters

For information about generating code with structure parameters, see “Structure
Parameters and Generated Code”.

Related Examples
• “Specify Block Parameter Values” on page 32-2
• “Migration to Structure Parameters”
• Structures
• “Repeat an Algorithm Using a For Each Subsystem” on page 61-98
• “Model Arguments” on page 8-60

33

Working with Lookup Tables

• “About Lookup Table Blocks” on page 33-2
• “Anatomy of a Lookup Table” on page 33-4
• “Lookup Tables Block Library” on page 33-5
• “Guidelines for Choosing a Lookup Table” on page 33-7
• “Enter Breakpoints and Table Data” on page 33-11
• “Characteristics of Lookup Table Data” on page 33-15
• “Methods for Estimating Missing Points” on page 33-20
• “Edit Lookup Tables” on page 33-24
• “Import Lookup Table Data from MATLAB” on page 33-28
• “Import Lookup Table Data from Excel” on page 33-35
• “Create a Logarithm Lookup Table” on page 33-36
• “Prelookup and Interpolation Blocks” on page 33-39
• “Optimize Generated Code for Lookup Table Blocks” on page 33-40
• “Update Lookup Table Blocks to New Versions” on page 33-44
• “Lookup Table Glossary” on page 33-49

33 Working with Lookup Tables

33-2

About Lookup Table Blocks
A lookup table block uses an array of data to map input values to output values,
approximating a mathematical function. Given input values, Simulink performs a
“lookup” operation to retrieve the corresponding output values from the table. If the
lookup table does not define the input values, the block estimates the output values
based on nearby table values.

The following example illustrates a one-dimensional lookup table that approximates the
function y = x3. The lookup table defines its output (y) data discretely over the input (x)
range [-3, 3]. The following table and graph illustrate the input/output relationship:

An input of -2 enables the table to look up and retrieve the corresponding output value
(-8). Likewise, the lookup table outputs 27 in response to an input of 3.

When the lookup table block encounters an input that does not match any of the table's x
values, it can interpolate or extrapolate the answer. For instance, the lookup table does
not define an input value of -1.5; however, the block can linearly interpolate the nearest
data points (-2, -8) and (-1, -1) to estimate and return a value of -4.5.

Similarly, although the lookup table does not include data for x values beyond the range
of [-3, 3], the block can extrapolate values using a pair of data points at either end

 About Lookup Table Blocks

33-3

of the table. Given an input value of 4, the lookup table block linearly extrapolates the
nearest data points (2, 8) and (3, 27) to estimate an output value of 46.

Since table lookups and simple estimations can be faster than mathematical function
evaluations, using lookup table blocks might result in speed gains when simulating a
model. Consider using lookup tables in lieu of mathematical function evaluations when:

• An analytical expression is expensive to compute.
• No analytical expression exists, but the relationship has been determined empirically.

Simulink provides a broad assortment of lookup table blocks, each geared for a particular
type of application. The sections that follow outline the different offerings, suggest how to
choose the lookup table best suited to your application, and explain how to interact with
the various lookup table blocks.

33 Working with Lookup Tables

33-4

Anatomy of a Lookup Table

The following figure illustrates the anatomy of a two-dimensional lookup table. Vectors
or breakpoint data sets and an array, referred to as table data, constitute the lookup
table.

Each breakpoint data set is an index of input values for a particular dimension of the
lookup table. The array of table data serves as a sampled representation of a function
evaluated at the breakpoint values. Lookup table blocks use breakpoint data sets to
relate a table's input values to the output values that it returns.

 Lookup Tables Block Library

33-5

Lookup Tables Block Library

Several lookup table blocks appear in the Lookup Tables block library.

The following table summarizes the purpose of each block in the library.

Block Name Description

1-D Lookup Table Approximate a one-dimensional function.
2-D Lookup Table Approximate a two-dimensional function.
n-D Lookup Table Approximate an N-dimensional function.
Prelookup Compute index and fraction for Interpolation Using Prelookup block.
Interpolation

Using Prelookup

Use precalculated index and fraction values to accelerate approximation of
N-dimensional function.

Direct Lookup

Table (n-D)

Index into an N-dimensional table to retrieve the corresponding outputs.

33 Working with Lookup Tables

33-6

Block Name Description

Lookup Table

Dynamic

Approximate a one-dimensional function using a dynamically specified
table.

Sine Use a fixed-point lookup table to approximate the sine wave function.
Cosine Use a fixed-point lookup table to approximate the cosine wave function.

 Guidelines for Choosing a Lookup Table

33-7

Guidelines for Choosing a Lookup Table

In this section...

“Data Set Dimensionality” on page 33-7
“Data Set Numeric and Data Types” on page 33-7
“Data Accuracy and Smoothness” on page 33-7
“Dynamics of Table Inputs” on page 33-8
“Efficiency of Performance” on page 33-8
“Summary of Lookup Table Block Features” on page 33-9

Data Set Dimensionality

In some cases, the dimensions of your data set dictate which of the lookup table blocks
is right for your application. If you are approximating a one-dimensional function,
consider using either the 1-D Lookup Table or Lookup Table Dynamic block. If you are
approximating a two-dimensional function, consider the 2-D Lookup Table block. Blocks
such as the n-D Lookup Table and Direct Lookup Table (n-D) allow you to approximate a
function of N variables.

Data Set Numeric and Data Types

The numeric and data types of your data set influence the decision of which lookup table
block is most appropriate. Although all lookup table blocks support real numbers, the
Direct Lookup Table (n-D), 1-D Lookup Table, 2-D Lookup Table, and n-D Lookup Table
blocks also support complex table data. All lookup table blocks support integer and fixed-
point data in addition to double and single data types.

Note: For the Direct Lookup Table (n-D) block, fixed-point types are supported for the
table data, output port, and optional table input port.

Data Accuracy and Smoothness

The desired accuracy and smoothness of the data returned by a lookup table determine
which of the blocks you should use. Most blocks provide options to perform interpolation

33 Working with Lookup Tables

33-8

and extrapolation, improving the accuracy of values that fall between or outside of the
table data, respectively. For instance, the Lookup Table Dynamic block performs linear
interpolation and extrapolation, while the n-D Lookup Table block performs either linear
or cubic spline interpolation and extrapolation. In contrast, the Direct Lookup Table
(n-D) block performs table lookups without any interpolation or extrapolation. You can
achieve a mix of interpolation and extrapolation methods by using the Prelookup block
with the Interpolation Using Prelookup block.

Dynamics of Table Inputs

The dynamics of the lookup table inputs impact which of the lookup table blocks is ideal
for your application. The blocks use a variety of index search methods to relate the
lookup table inputs to the table's breakpoint data sets. Most of the lookup table blocks
offer a binary search algorithm, which performs well if the inputs change significantly
from one time step to the next. The 1-D Lookup Table, 2-D Lookup Table, n-D Lookup
Table, and Prelookup blocks offer a linear search algorithm. Using this algorithm with
the option that resumes searching from the previous result performs well if the inputs
change slowly. Some lookup table blocks also provide a search algorithm that works
best for breakpoint data sets composed of evenly spaced breakpoints. You can achieve a
mix of index search methods by using the Prelookup block with the Interpolation Using
Prelookup block.

Efficiency of Performance

When the efficiency with which lookup tables operate is important, consider using the
Prelookup block with the Interpolation Using Prelookup block. These blocks separate
the table lookup process into two components — an index search that relates inputs
to the table data, followed by an interpolation and extrapolation stage that computes
outputs. These blocks enable you to perform a single index search and then reuse the
results to look up data in multiple tables. Also, the Interpolation Using Prelookup block
can perform sub-table selection, where the block interpolates a portion of the table data
instead of the entire table. For example, if your 3-D table data constitutes a stack of 2-
D tables to be interpolated, you can specify a selection port input to select one or more
of the 2-D tables from the stack for interpolation. A full 3-D interpolation has 7 sub-
interpolations but a 2-D interpolation requires only 3 sub-interpolations. As a result,
significant speed improvements are possible when some dimensions of a table are used
for data stacking and not intended for interpolation. These features make table lookup
operations more efficient, reducing computational effort and simulation time.

 Guidelines for Choosing a Lookup Table

33-9

Summary of Lookup Table Block Features

Use the following table to identify features that correspond to particular lookup table
blocks, then select the block that best meets your requirements.

Feature
1-D Lookup
Table

2-D Lookup
Table

Lookup
Table
Dynamic

n-D Lookup
Table

Direct
Lookup
Table (n-D)

Prelookup Interp. Using
Prelookup

Interpolation Methods
Flat • • • • • • •
Linear • • • • • •
Cubic spline • • •
Extrapolation Methods
Clip • • • • • • •
Linear • • • • • •
Cubic spline • • •
Numeric & Data Type Support
Complex • • • •
Double,
Single • • • • • • •

Integer • • • • • • •
Fixed point • • • • • • •
Index Search Methods
Binary • • • • •
Linear • • • •
Evenly
spaced points • • • • •

Start at
previous
index

• • • •

Miscellaneous

33 Working with Lookup Tables

33-10

Feature
1-D Lookup
Table

2-D Lookup
Table

Lookup
Table
Dynamic

n-D Lookup
Table

Direct
Lookup
Table (n-D)

Prelookup Interp. Using
Prelookup

Sub-table
selection • •

Dynamic
breakpoint
data

 •

Dynamic
table data • • •

Input range
checking • • • • • •

 Enter Breakpoints and Table Data

33-11

Enter Breakpoints and Table Data

In this section...

“Entering Data in a Block Parameter Dialog Box” on page 33-11
“Entering Data in the Lookup Table Editor” on page 33-11
“Entering Data Using Inports of the Lookup Table Dynamic Block” on page 33-13

Entering Data in a Block Parameter Dialog Box

This example shows how to populate a 1-D Lookup Table block using the parameter
dialog box. The lookup table in this example approximates the function y = x3 over the
range [-3, 3].

1 Copy a 1-D Lookup Table block from the Lookup Tables block library to a Simulink
model.

2 In the 1-D Lookup Table block dialog box, enter the table dimensions and table data
in the specified fields of the dialog box:

• Set Number of table dimensions to 1.
• Set Table data to [-27 -8 -1 0 1 8 27].

3 Enter the breakpoint data set using either of two methods:

• To specify evenly spaced data points, set Breakpoint specification to Even
spacing. Set First point to -3 and Spacing to 1. The block calculates the
number of evenly spaced breakpoints based on the table data.

• To specify breakpoint data explicitly, set Breakpoint specification to
Explicit values and set Breakpoints 1 to [-3:3].

Entering Data in the Lookup Table Editor

Use the following procedure to populate a 2-D Lookup Table block using the Lookup
Table Editor. In this example, the lookup table approximates the function z = x2 + y2 over
the input ranges x = [0, 2] and y = [0, 2].

1 Copy a 2-D Lookup Table block from the Lookup Tables block library to a Simulink
model.

33 Working with Lookup Tables

33-12

2 Open the Lookup Table Editor by selecting Lookup Table Editor from the
Simulink Edit menu or by clicking Edit table and breakpoints on the dialog box
of the 2-D Lookup Table block.

3 Under Viewing "n-D Lookup Table" block data, enter the breakpoint data sets
and table data in the appropriate cells. To change data, click a cell, enter the new
value, and press Enter.

• In the cells associated with the Row Breakpoints, enter each of the values [0 1
2].

• In the cells associated with the Column Breakpoints, enter each of the values
[0 1 2].

• In the table data cells, enter the values in the array [0 1 4; 1 2 5; 4 5 8].

The Lookup Table Editor looks like this:

 Enter Breakpoints and Table Data

33-13

4 In the Lookup Table Editor, select File > Update Block Data to update the data in
the 2-D Lookup Table block.

5 Close the Lookup Table Editor.

Entering Data Using Inports of the Lookup Table Dynamic Block

Use the following procedure to populate a Lookup Table Dynamic block using that
block's inports. In this example, the lookup table approximates the function y = 3x2 over
the range [0, 10].

1 Copy a Lookup Table Dynamic block from the Lookup Tables block library to a
Simulink model.

2 Copy the blocks needed to implement the equation y = 3x2 to the Simulink model:

• One Constant block to define the input range, from the Sources library
• One Math Function block to square the input range, from the Math Operations

library
• One Gain block to multiply the signal by 3, also from the Math Operations

library
3 Assign the following parameter values to the Constant, Math Function, and Gain

blocks using their dialog boxes:

Block Parameter Value

Constant Constant value 0:10

Math Function Function square

Gain Gain 3

4 Input the breakpoint data set to the Lookup Table Dynamic block by connecting
the outport of the Constant block to the inport of the Lookup Table Dynamic block
labeled xdat. This signal is the input breakpoint data set for x.

5 Input the table data to the Lookup Table Dynamic block by branching the output
signal from the Constant block and connecting it to the Math Function block. Then
connect the Math Function block to the Gain block. Finally, connect the Gain block to
the inport of the Lookup Table Dynamic block labeled ydat. This signal is the table
data for y.

33 Working with Lookup Tables

33-14

 Characteristics of Lookup Table Data

33-15

Characteristics of Lookup Table Data

In this section...

“Sizes of Breakpoint Data Sets and Table Data” on page 33-15
“Monotonicity of Breakpoint Data Sets” on page 33-16
“Representation of Discontinuities in Lookup Tables” on page 33-17
“Formulation of Evenly Spaced Breakpoints” on page 33-18

Sizes of Breakpoint Data Sets and Table Data

The following constraints apply to the sizes of breakpoint data sets and table data
associated with lookup table blocks:

• The memory limitations of your system constrain the overall size of a lookup table.
• Lookup tables must use consistent dimensions so that the overall size of the table

data reflects the size of each breakpoint data set.

To illustrate the second constraint, consider the following vectors of input and output
values that create the relationship in the plot.

Vector of input values: [-3 -2 -1 0 1 2 3]

Vector of output values: [-3 -1 0 -1 0 1 3]

In this example, the input and output data are the same size (1-by-7), making the data
consistently dimensioned for a 1-D lookup table.

The following input and output values define the 2-D lookup table that is graphically
shown.

33 Working with Lookup Tables

33-16

Row index input values: [1 2 3]

Column index input values: [1 2 3 4]

Table data: [11 12 13 14; 21 22 23 24; 31 32 33 34]

In this example, the sizes of the vectors representing the row and column indices are 1-
by-3 and 1-by-4, respectively. Consequently, the output table must be of size 3-by-4 for
consistent dimensions.

Monotonicity of Breakpoint Data Sets

The first stage of a table lookup operation involves relating inputs to the breakpoint
data sets. The search algorithm requires that input breakpoint sets be monotonically
increasing, that is, each successive element is equal to or greater than its preceding
element. For example, the vector

A = [0 0.5 1 1.9 2 2 2 2.1 3]

repeats the value 2 while all other elements are increasingly larger than their
predecessors; hence, A is monotonically increasing.

For lookup tables with data types other than double or single, the search algorithm
requires an additional constraint due to quantization effects. In such cases, the input
breakpoint data sets must be strictly monotonically increasing, that is, each successive
element must be greater than its preceding element. Consider the vector

B = [0 0.5 1 1.9 2 2.1 2.17 3]

in which each successive element is greater than its preceding element, making B strictly
monotonically increasing.

Note: Although a breakpoint data set is strictly monotonic in double format, it might
not be so after conversion to a fixed-point data type.

 Characteristics of Lookup Table Data

33-17

Representation of Discontinuities in Lookup Tables

You can represent discontinuities in lookup tables that have monotonically increasing
breakpoint data sets. To create a discontinuity, repeat an input value in the breakpoint
data set with different output values in the table data. For example, these vectors
of input (x) and output (y) values associated with a 1-D lookup table create the step
transitions depicted in the plot that follows.

Vector of input values: [-2 -1 -1 0 0 1 1 2]

Vector of output values: [-1 -1 -2 -2 2 2 1 1]

This example has discontinuities at x = –1, 0, and +1.

When there are two output values for a given input value, the block chooses the output
according to these rules:

• If the input signal is less than zero, the block returns the output value associated with
the last occurrence of the input value in the breakpoint data set. In this example, if
the input is –1, y is –2, marked with a solid circle.

• If the input signal is greater than zero, the block returns the output value associated
with the first occurrence of the input value in the breakpoint data set. In this
example, if the input is 1, y is 2, marked with a solid circle.

• If the input signal is zero and there are two output values specified at the origin, the
block returns the average of those output values. In this example, if the input is 0, y is
0, the average of the two output values –2 and 2 specified at x = 0.

33 Working with Lookup Tables

33-18

When there are three points specified at the origin, the block generates the output
associated with the middle point. The following example demonstrates this special rule.

Vector of input values: [-2 -1 -1 0 0 0 1 1 2]

Vector of output values: [-1 -1 -2 -2 1 2 2 1 1]

In this example, three points define the discontinuity at the origin. When the input is 0, y
is 1, the value of the middle point.

You can apply this same method to create discontinuities in breakpoint data sets
associated with multidimensional lookup tables.

Formulation of Evenly Spaced Breakpoints

You can represent evenly spaced breakpoints in a data set by using one of these methods.

Formulation Example When to Use This
Formulation

[first_value:spacing:last_value] [10:10:200] The lookup table does
not use double or
single.

first_value + spacing * [0:

(last_value-first_value)/spacing]

1 + (0.02 *

[0:450])

The lookup table uses
double or single.

Because floating-point data types cannot precisely represent some numbers, the second
formulation works better for double and single. For example, use 1 + (0.02 *

 Characteristics of Lookup Table Data

33-19

[0:450]) instead of [1:0.02:10]. For a list of lookup table blocks that support evenly
spaced breakpoints, see “Summary of Lookup Table Block Features” on page 33-9.

Among other advantages, evenly spaced breakpoints can make the generated code
division-free and reduce memory usage. For more information, see:

• fixpt_evenspace_cleanup in the Simulink documentation
• “Effects of Spacing on Speed, Error, and Memory Usage” in the Fixed-Point Designer

documentation
• “Identify questionable fixed-point operations” in the Simulink Coder documentation

Tip Do not use the MATLAB linspace function to define evenly spaced breakpoints.
Simulink uses a tighter tolerance to check whether a breakpoint set has even spacing. If
you use linspace to define breakpoints for your lookup table, Simulink considers the
breakpoints to be unevenly spaced.

33 Working with Lookup Tables

33-20

Methods for Estimating Missing Points

In this section...

“About Estimating Missing Points” on page 33-20
“Interpolation Methods” on page 33-20
“Extrapolation Methods” on page 33-21
“Rounding Methods” on page 33-22
“Example Output for Lookup Methods” on page 33-23

About Estimating Missing Points

The second stage of a table lookup operation involves generating outputs that correspond
to the supplied inputs. If the inputs match the values of indices specified in breakpoint
data sets, the block outputs the corresponding values. However, if the inputs fail to
match index values in the breakpoint data sets, Simulink estimates the output. In the
block parameter dialog box, you can specify how to compute the output in this situation.
The available lookup methods are described in the following sections.

Interpolation Methods

When an input falls between breakpoint values, the block interpolates the output value
using neighboring breakpoints. Most lookup table blocks have the following interpolation
methods available:

• Flat — Disables interpolation and uses the rounding operation titled Use Input
Below. For more information, see “Rounding Methods” on page 33-22.

• Nearest — Disables interpolation and returns the table value corresponding to
the breakpoint closest to the input. If the input is equidistant from two adjacent
breakpoints, the breakpoint with the higher index is chosen.

• Linear — Fits a line between the adjacent breakpoints, and returns the point on that
line corresponding to the input.

• Cubic spline — Fits a cubic spline to the adjacent breakpoints, and returns the
point on that spline corresponding to the input.

 Methods for Estimating Missing Points

33-21

Note: The Lookup Table Dynamic block does not let you select an interpolation method.
The Interpolation-Extrapolation option in the Lookup Method field of the block
parameter dialog box performs linear interpolation.

Each interpolation method includes a trade-off between computation time and the
smoothness of the result. Although rounding is quickest, it is the least smooth. Linear
interpolation is slower than rounding but generates smoother results, except at
breakpoints where the slope changes. Cubic spline interpolation is the slowest method
but produces the smoothest results.

Extrapolation Methods

When an input falls outside the range of a breakpoint data set, the block extrapolates
the output value from a pair of values at the end of the breakpoint data set. Most lookup
table blocks have the following extrapolation methods available:

• Clip — Disables extrapolation and returns the table data corresponding to the end of
the breakpoint data set range. This does not provide protection against out-of-range
values.

• Linear — If the interpolation method is Linear, this extrapolation method fits a
line between the first or last pair of breakpoints, depending on whether the input is
less than the first or greater than the last breakpoint. If the interpolation method is
Cubic spline, this extrapolation method fits a linear surface using the slope of the
interpolant at the first or last break point, depending on whether the input is less
than the first or greater than the last breakpoint. The extrapolation method returns
the point on the generated linear surface corresponding to the input.

• Cubic spline — Fits a cubic spline to the first or last pair of breakpoints,
depending if the input is less than the first or greater than the last breakpoint,
respectively. This method returns the point on that spline corresponding to the input.

Note: The Lookup Table Dynamic block does not let you select an extrapolation method.
The Interpolation-Extrapolation option in the Lookup Method field of the block
parameter dialog box performs linear extrapolation.

In addition to these methods, some lookup table blocks, such as the n-D Lookup Table
block, allow you to select an action to perform when encountering situations that require
extrapolation. For instance, you can specify that Simulink generate either a warning or

33 Working with Lookup Tables

33-22

an error when the lookup table inputs are outside the ranges of the breakpoint data sets.
To specify such an action, select it from the Diagnostic for out-of-range input list on
the block parameter dialog box.

Rounding Methods

If an input falls between breakpoint values or outside the range of a breakpoint data
set and you do not specify interpolation or extrapolation, the block rounds the value to
an adjacent breakpoint and returns the corresponding output value. For example, the
Lookup Table Dynamic block lets you select one of the following rounding methods:

• Use Input Nearest — Returns the output value corresponding to the nearest input
value.

• Use Input Below — Returns the output value corresponding to the breakpoint
value that is immediately less than the input value. If no breakpoint value exists
below the input value, it returns the breakpoint value nearest the input value.

• Use Input Above — Returns the output value corresponding to the breakpoint
value that is immediately greater than the input value. If no breakpoint value exists
above the input value, it returns the breakpoint value nearest the input value.

 Methods for Estimating Missing Points

33-23

Example Output for Lookup Methods

In the following model, the Lookup Table Dynamic block accepts a vector of breakpoint
data given by [-5:5] and a vector of table data given by sinh([-5:5]).

The Lookup Table Dynamic block outputs the following values when using the specified
lookup methods and inputs.

Lookup Method Input Output Comment

1.4 2.156 N/AInterpolation-

Extrapolation 5.2 83.59 N/A
1.4 2.156 N/AInterpolation-

Use End Values 5.2 74.2 The block uses the value for
sinh(5.0).

1.4 3.627 The block uses the value for
sinh(2.0).

Use Input Above

5.2 74.2 The block uses the value for
sinh(5.0).

1.4 1.175 The block uses the value for
sinh(1.0).

Use Input Below

-5.2 -74.2 The block uses the value for
sinh(-5.0).

Use Input Nearest 1.4 1.175 The block uses the value for
sinh(1.0).

33 Working with Lookup Tables

33-24

Edit Lookup Tables

In this section...

“Edit N-Dimensional Lookup Tables” on page 33-24
“Edit Custom Lookup Table Blocks” on page 33-26

You can edit a lookup table using:

• Lookup Table block dialog box
• Lookup Table Editor

To edit the lookup table in a block:

1 Open the subsystem that contains the lookup table block.
2 Open the lookup table block’s dialog box.
3 In the Table and Breakpoints tab, edit the Table data and relevant Breakpoints

parameters as needed.

With the Lookup Table Editor, you can skip these steps and edit the desired lookup table
without navigating to the block that uses it. However, you cannot use the Lookup Table
Editor to change the dimensions of a lookup table. You must use the block parameter
dialog box for this purpose.

Edit N-Dimensional Lookup Tables

If the lookup table of the block currently selected in the Lookup Table Editor tree view
has more than two dimensions, the table view displays a two-dimensional slice of the
lookup table.

 Edit Lookup Tables

33-25

The Dimension Selector specifies which slice currently appears and lets you select
another slice. The selector consists of a 2-by-N array of controls, where N is the number
of dimensions in the lookup table. Each column corresponds to a dimension of the lookup
table. The first column corresponds to the first dimension of the table, the second column
to the second dimension of the table, and so on. The Dimension size row of the selector
array displays the size of each dimension. The Select 2-D slice row specifies which
dimensions of the table correspond to the row and column axes of the slice and the
indices that select the slice from the remaining dimensions.

To select another slice of the table, specify the row and column axes of the slice in the
first two columns of the Select 2-D slice row. Then select the indices of the slice from
the pop-up index lists in the remaining columns.

For example, the following selector displays slice (:,:,1) of a 3-D lookup table, as shown
under Dimension Selector in the Lookup Table Editor.

To transpose the table display, select the Transpose display check box.

33 Working with Lookup Tables

33-26

Edit Custom Lookup Table Blocks

You can use the Lookup Table Editor to edit custom lookup table blocks that you have
created. To do this, you must first configure the Lookup Table Editor to recognize the
custom lookup table blocks in your model.

1 Select File > Configure. The Lookup Table Blocks Type Configuration dialog box
appears.

The dialog box displays a table of the lookup table block types that the Lookup Table
Editor currently recognizes. This table includes the standard blocks. Each row of the
table displays key attributes of a lookup table block type.

2 Click Add on the dialog box. A new row appears at the bottom of the block type
table.

3 Enter information for the custom block in the new row under these headings.

 Edit Lookup Tables

33-27

Field Name Description

Block type Block type of the custom block. The block type is
the value of the block's BlockType parameter.

Mask type Mask type of the custom block. The mask type is
the value of the block's MaskType parameter.

Breakpoint name Names of the block parameters that store the
breakpoints.

Table name Name of the block parameter that stores the table
data.

Number of dimensions Leave empty.
Explicit dimensions Leave empty.

4 Click OK.

To remove a custom lookup table block type from the list that the Lookup Table Editor
recognizes, select the custom entry in the table of the Lookup Table Blocks Type
Configuration dialog box and click Remove. To remove all custom lookup table block
types, select the Use Simulink default lookup table blocks list check box at the top
of the dialog box.

33 Working with Lookup Tables

33-28

Import Lookup Table Data from MATLAB

In this section...

“Import Standard Format Lookup Table Data” on page 33-28
“Propagate Standard Format Lookup Table Data” on page 33-29
“Import Nonstandard Format Lookup Table Data” on page 33-30
“Propagate Nonstandard Format Lookup Table Data” on page 33-31

You can import table and breakpoint data from variables in the MATLAB workspace by
referencing them in the Table and Breakpoints tab of the dialog box. The following
examples show how to import and export standard format and non-standard format data
from the MATLAB workspace.

Import Standard Format Lookup Table Data

Suppose you specify a 3-D lookup table in your n-D Lookup Table block.

Create workspace variables to use as breakpoint and table data for the lookup table.

table3d_map = zeros(2,4,3);

table3d_map(:,:,1) = [1 2 3 4; 5 6 7 8];

table3d_map(:,:,2) = [11 12 13 14; 15 16 17 18];

table3d_map(:,:,3) = [111 112 113 114; 115 116 117 118];

bp3d_z =[0 10 20];

bp3d_x =[0 10 20 30];

bp3d_y =[400 6400];

Open the n-D Lookup Table block dialog box, and enter the following parameters in the
Table and Breakpoints tab:

• Table data: table3d_map
• Breakpoints 1: bp3d_y
• Breakpoints 2: bp3d_x
• Breakpoints 3: bp3d_z

Click Edit table and breakpoints to open the Lookup Table Editor and show the data
from the workspace variables.

 Import Lookup Table Data from MATLAB

33-29

Propagate Standard Format Lookup Table Data

When you make changes to your lookup table data, consider propagating the changes
back to the MATLAB workspace variables the data was imported from using File >
Update Block Data.

Suppose you make a change to the lookup table variables imported from the MATLAB
workspace variables in “Import Standard Format Lookup Table Data” on page 33-28.
For example, change the value of the data in (1,1,1) from 1 to 33. To propagate this
change back to table3d_map in the workspace, select File > Update Block Data. Click
Yes to confirm that you want to overwrite table3d_map.

33 Working with Lookup Tables

33-30

Import Nonstandard Format Lookup Table Data

Suppose you specify a 3-D lookup table in your n-D Lookup Table block. Create
workspace variables to use as breakpoint and table data for the lookup table. The
variable for table data, table3d_map_custom, is a two-dimensional matrix.

table3d_map_custom = zeros(6,4);

table3d_map_custom = [1 2 3 4; 5 6 7 8;

11 12 13 14; 15 16 17 18;

111 112 113 114; 115 116 117 118];

bp3d_z =[0 10 20];

bp3d_x =[0 10 20 30];

bp3d_y =[400 6400];

Open the n-D Lookup Table block dialog box, and enter the following parameters in the
Table and Breakpoints tab. Transform table3d_map_custom into a three-dimensional
matrix for the table data input using the reshape command below.

• Table data: reshape(table3d_map_custom,[2,4,3])
• Breakpoints 1: bp3d_y
• Breakpoints 2: bp3d_x
• Breakpoints 3: bp3d_z

Click Edit table and breakpoints to open the Lookup Table Editor and show the data
from the workspace variables.

 Import Lookup Table Data from MATLAB

33-31

Change 1 to 33 in the Lookup Table Editor. The Lookup Table Editor records your
changes by maintaining a copy of the table. To restore the variable values from the
MATLAB workspace, select File > Reload Block Data. To update the MATLAB
workspace variables with the edited data, select File > Update Block Data in the
Lookup Table Editor. You cannot propagate the change to table3d_map_custom, the
workspace variable that contains the nonstandard table data for the n-D Lookup Table
block. To propagate the change, you must register a customization function that resides
on the MATLAB search path. For details, see “Propagate Nonstandard Format Lookup
Table Data” on page 33-31.

Propagate Nonstandard Format Lookup Table Data

This example shows how to propagate changes from the Lookup Table Editor to
workspace variables of nonstandard format. Suppose your Simulink model from “Import
Nonstandard Format Lookup Table Data” on page 33-30 has a three-dimensional
lookup table that gets its table data from the two-dimensional workspace variable

33 Working with Lookup Tables

33-32

table3d_map_custom. Update the lookup table in the Lookup Table Editor and
propagate these changes back to table3d_map_custom using a customization function.

1 Create a file named sl_customization.m with these contents.

function sl_customization(cm)

cm.LookupTableEditorCustomizer.getTableConvertToCustomInfoFcnHandle{end+1} = ...

@myGetTableConvertInfoFcn;

end

In this function:

• The argument cm is the handle to a customization manager object.
• The handle @myGetTableConvertInfoFcn is added

to the list of function handles in the cell array for
cm.LookupTableEditorCustomizer.getTableConvertToCustomInfoFcnHandle.
You can use any alphanumeric name for the function whose handle you add to the
cell array.

2 In the same file, define the myGetTableConvertInfoFcn function.

function blkInfo = myGetTableConvertInfoFcn(blk,tableStr)

 blkInfo.allowTableConvertLocal = true;

 blkInfo.tableWorkSpaceVarName = 'table3d_map_custom';

 blkInfo.tableConvertFcnHandle = @myConvertTableFcn;

end

The myGetTableConvertInfoFcn function returns the blkInfo object containing
three fields.

• allowTableConvertLocal — Allows table data conversion for a block.
• tableWorkSpaceVarName — Specifies the name of the workspace variable that

has a nonstandard table format.
• tableConvertFcnHandle — Specifies the handle for the conversion function.

When allowTableConvertLocal is set to true, the table data for that block is
converted to the nonstandard format of the workspace variable whose name matches
tableWorkSpaceVarName. The conversion function corresponds to the handle that
tableConvertFcnHandle specifies. You can use any alphanumeric name for the
conversion function.

3 In the same file, define the myConvertTableFcn function. This function converts
a three-dimensional lookup table of size Rows * Columns * Height to a two-
dimensional variable of size (Rows*Height) * Columns.

 Import Lookup Table Data from MATLAB

33-33

% Converts 3-dimensional lookup table from Simulink format to

% nonstandard format used in workspace variable

function cMap = myConvertTableFcn(data)

% Determine the row and column number of the 3D table data

 mapDim = size(data);

 numCol = mapDim(2);

 numRow = mapDim(1)*mapDim(3);

 cMap = zeros(numRow, numCol);

 % Transform data back to a 2-dimensional matrix

 cMap = reshape(data,[numRow,numCol]);

end

4 Put sl_customization.m on the MATLAB search path. You can have multiple
files named sl_customization.m on the search path. For more details, see
“Behavior with Multiple Customization Functions” on page 33-34.

5 Refresh Simulink customizations at the MATLAB command prompt.

sl_refresh_customizations

6 Open the Lookup Table Editor for your lookup table block and select File > Update
Block Data. Click Yes to overwrite the workspace variable table3d_map_custom.

7 Check the value of table3d_map_custom in the base workspace.

table3d_map_custom =

 33 2 3 4

 5 6 7 8

 11 12 13 14

 15 16 17 18

 111 112 113 114

 115 116 117 118

The change in the Lookup Table Editor has propagated to the workspace variable.

Note: If you do not overwrite the workspace variable table3d_map_custom, you are
prompted to replace it with numeric data. Click Yes to replace the expression in the
Table data field with numeric data. Click No if you do not want your Lookup Table
Editor changes for the table data to appear in the block dialog box.

33 Working with Lookup Tables

33-34

Behavior with Multiple Customization Functions

At the start of a MATLAB session, Simulink loads each sl_customization.m
customization file on the path and executes the sl_customization function. Executing
each function establishes the customizations for that session.

When you select File > Update Block Data in the Lookup Table
Editor, the editor checks the list of function handles in the cell array for
cm.LookupTableEditorCustomizer.getTableConvertToCustomInfoFcnHandle.
If the cell array contains one or more function handles, the allowTableConvertLocal
property determines whether changes in the Lookup Table Editor can be propagated.

• If the value is set to true, then the table data is converted to the nonstandard format
in the workspace variable.

• If the value is set to false, then table data is not converted to the nonstandard
format in the workspace variable.

• If the value is set to true and another customization function specifies it to be false,
the Lookup Table Editor reports an error.

 Import Lookup Table Data from Excel

33-35

Import Lookup Table Data from Excel

This example shows how to use the MATLAB xlsread function in a Simulink model to
import data into a lookup table.

1 Save the Excel file in a folder on the MATLAB path.
2 Open the model containing the lookup table block and select File > Model

Properties > Model Properties.
3 In the Model Properties dialog box, in the Callbacks tab, click PostLoadFcn

callback in the model callbacks list.
4 Enter the code to import the Excel Spreadsheet data in the text box. Use the

MATLAB xlsread function, as shown in this example for a 2-D lookup table.

% Import the data from Excel for a lookup table

data = xlsread('MySpreadsheet','Sheet1');

% Row indices for lookup table

breakpoints1 = data(2:end,1)';

% Column indices for lookup table

breakpoints2 = data(1,2:end);

% Output values for lookup table

table_data = data(2:end,2:end);

5 Click OK.

After you save your changes, the next time you open the model, Simulink invokes the
callback and imports the data.

33 Working with Lookup Tables

33-36

Create a Logarithm Lookup Table

Suppose you want to approximate the common logarithm (base 10) over the input
range [1, 10] without performing an expensive computation. You can perform this
approximation using a lookup table block as described in the following procedure.

1 Copy the following blocks to a Simulink model:

• One Constant block to input the signal, from the Sources library
• One n-D Lookup Table block to approximate the common logarithm, from the

Lookup Tables library
• One Display block to display the output, from the Sinks library

2 Assign the table data and breakpoint data set to the n-D Lookup Table block:

a In the Number of table dimensions field, enter 1.
b In the Table data field, enter

[0 .301 .477 .602 .699 .778 .845 .903 .954 1].
c In the Breakpoints 1 field, enter [1:10].
d Click Apply.

The dialog box looks something like this:

 Create a Logarithm Lookup Table

33-37

3 Double-click the Constant block to open the parameter dialog box, and change the
Constant value parameter to 5. Click OK to apply the changes and close the dialog
box.

4 Connect the blocks as follows.

5 Start simulation.

The following behavior applies to the n-D Lookup Table block.

33 Working with Lookup Tables

33-38

Example of Block BehaviorValue of the Constant
Block

Action by the n-D Lookup
Table Block Input Value Output Value

Equals a breakpoint Returns the
corresponding output
value

5 0.699

Falls between
breakpoints

Linearly interpolates
the output value
using neighboring
breakpoints

7.5 0.874

Falls outside the range
of the breakpoint data
set

Linearly extrapolates
the output value from
a pair of values at the
end of the breakpoint
data set

10.5 1.023

For the n-D Lookup Table block, the default settings for Interpolation method and
Extrapolation method are both Linear.

 Prelookup and Interpolation Blocks

33-39

Prelookup and Interpolation Blocks

The following examples show the benefits of using Prelookup and Interpolation
Using Prelookup blocks.

Action Benefit Example

Use an index search to relate
inputs to table data, followed
by an interpolation and
extrapolation stage that
computes outputs

Enables reuse of index search
results to look up data in
multiple tables, which reduces
simulation time

To open the model, type
sldemo_bpcheck at the
command prompt.

Lowers memory required to
store:

• Breakpoint data that uses a
smaller type than the input
signal

• Table data that uses a
smaller type than the
output signal

To open the model, type
sldemo_interp_memory at the
command prompt.

Provides easier sharing of:

• Breakpoint data among
Prelookup blocks

• Table data among
Interpolation Using
Prelookup blocks

To open the model, type
fxpdemo_lookup_shared_param

at the command prompt.

Set breakpoint and table data
types explicitly

Enables reuse of utility
functions in the generated code

To open the model, type
fxpdemo_prelookup_utilfcn

at the command prompt.
Set the data type for
intermediate results explicitly

Enables use of higher precision
for internal computations than
for table data or output data

To open the model, type
fxpdemo_interp_precision

at the command prompt.

33 Working with Lookup Tables

33-40

Optimize Generated Code for Lookup Table Blocks

In this section...

“Remove Code That Checks for Out-of-Range Inputs” on page 33-40
“Optimize Breakpoint Spacing in Lookup Tables” on page 33-42

Remove Code That Checks for Out-of-Range Inputs

By default, generated code for the following lookup table blocks include conditional
statements that check for out-of-range breakpoint or index inputs:

• 1-D Lookup Table

• 2-D Lookup Table

• n-D Lookup Table

• Prelookup

• Interpolation Using Prelookup

To generate code that is more efficient, you can remove the conditional statements that
protect against out-of-range input values.

Block Check Box to Select

1-D Lookup Table

2-D Lookup Table

n-D Lookup Table

Prelookup

Remove protection against out-of-range input in
generated code

Interpolation Using

Prelookup

Remove protection against out-of-range index in
generated code

Selecting the check box on the block dialog box improves code efficiency because there
are fewer statements to execute. However, if you are generating code for safety-critical
applications, you should not remove the range-checking code.

To verify the usage of the check box, run the following Model Advisor checks and perform
the recommended actions.

 Optimize Generated Code for Lookup Table Blocks

33-41

Model Advisor Check When to Run the Check

By Product > Embedded Coder >
Identify lookup table blocks that
generate expensive out-of-range
checking code

For code efficiency

By Product > Simulink Verification
and Validation > Modeling Standards >
DO-178C/DO-331 Checks > Check usage
of lookup table blocks

For safety-critical applications

For more information about the Model Advisor, see “Consulting the Model Advisor” on
page 5-2 in the Simulink documentation.

33 Working with Lookup Tables

33-42

Optimize Breakpoint Spacing in Lookup Tables

When breakpoints in a lookup table are tunable, the spacing does not affect efficiency
or memory usage of the generated code. When breakpoints are not tunable, the type of
spacing can affect the following factors.

Factor Even Power of 2 Spaced
Data

Evenly Spaced Data Unevenly Spaced Data

Execution speed The execution speed
is the fastest. The
position search and
interpolation are the
same as for evenly-
spaced data. However,
to increase speed a
bit more for fixed-
point types, a bit shift
replaces the position
search, and a bit
mask replaces the
interpolation.

The execution speed
is faster than that for
unevenly-spaced data
because the position
search is faster and the
interpolation uses a
simple division.

The execution speed
is the slowest of the
different spacings
because the position
search is slower, and
the interpolation
requires more
operations.

Error The error can be
larger than that for
unevenly-spaced data
because approximating
a function with
nonuniform curvature
requires more points
to achieve the same
accuracy.

The error can be
larger than that for
unevenly-spaced data
because approximating
a function with
nonuniform curvature
requires more points
to achieve the same
accuracy.

The error can be
smaller because
approximating
a function with
nonuniform curvature
requires fewer points
to achieve the same
accuracy.

ROM usage Uses less command
ROM, but more data
ROM.

Uses less command
ROM, but more data
ROM.

Uses more command
ROM, but less data
ROM.

RAM usage Not significant. Not significant. Not significant.

Follow these guidelines:

• For fixed-point data types, use breakpoints with even, power-of-2 spacing.
• For non-fixed-point data types, use breakpoints with even spacing.

 Optimize Generated Code for Lookup Table Blocks

33-43

To identify opportunities for improving code efficiency in lookup table blocks, run the
following Model Advisor checks and perform the recommended actions:

• By Product > Embedded Coder > Identify questionable fixed-point
operations

• By Product > Embedded Coder > Identify blocks that generate expensive
saturation and rounding code

For more information about the Model Advisor, see “Consulting the Model Advisor” on
page 5-2 in the Simulink documentation.

33 Working with Lookup Tables

33-44

Update Lookup Table Blocks to New Versions

In this section...

“Comparison of Blocks with Current Versions” on page 33-44
“Compatibility of Models with Older Versions of Lookup Table Blocks” on page 33-45
“How to Update Your Model” on page 33-46
“What to Expect from the Model Advisor Check” on page 33-46

Comparison of Blocks with Current Versions

In R2011a, the following lookup table blocks were replaced with newer versions in the
Simulink library:

Block Changes Enhancements

Lookup
Table

• Block renamed as 1-D
Lookup Table

• Icon changed

• Default integer rounding mode changed from
Floor to Simplest

• Support for the following features:

• Specification of parameter data types different
from input or output signal types

• Reduced memory use and faster code execution
for nontunable breakpoints with even spacing

• Cubic-spline interpolation and extrapolation
• Table data with complex values
• Fixed-point data types with word lengths up to

128 bits
• Specification of data types for fraction and

intermediate results
• Specification of index search method
• Specification of diagnostic for out-of-range

inputs
Lookup
Table (2-
D)

• Block renamed as 2-D
Lookup Table

• Icon changed

• Default integer rounding mode changed from
Floor to Simplest

• Support for the following features:

 Update Lookup Table Blocks to New Versions

33-45

Block Changes Enhancements

• Specification of parameter data types different
from input or output signal types

• Reduced memory use and faster code execution
for nontunable breakpoints with even spacing

• Cubic-spline interpolation and extrapolation
• Table data with complex values
• Fixed-point data types with word lengths up to

128 bits
• Specification of data types for fraction and

intermediate results
• Specification of index search method
• Specification of diagnostic for out-of-range

inputs
• Check box for Require all inputs to have the

same data type now selected by default

Lookup
Table (n-
D)

• Block renamed as n-D
Lookup Table

• Icon changed

• Default integer rounding mode changed from
Floor to Simplest

Compatibility of Models with Older Versions of Lookup Table Blocks

When you load existing models that contain the Lookup Table, Lookup Table (2-D), and
Lookup Table (n-D) blocks, those versions of the blocks appear. The current versions of
the lookup table blocks appear only when you drag the blocks from the Simulink Library
Browser into new models.

If you use the add_block function to add the Lookup Table, Lookup Table (2-D), or
Lookup Table (n-D) blocks to a model, those versions of the blocks appear. If you want
to add the current versions of the blocks to your model, change the source block path for
add_block:

Block Old Block Path New Block Path

Lookup Table simulink/Lookup Tables/Lookup

Table

simulink/Lookup Tables/1-D

Lookup Table

33 Working with Lookup Tables

33-46

Block Old Block Path New Block Path

Lookup Table (2-D) simulink/Lookup Tables/Lookup

Table (2-D)

simulink/Lookup Tables/2-D

Lookup Table

Lookup Table (n-D) simulink/Lookup Tables/Lookup

Table (n-D)

simulink/Lookup Tables/n-D

Lookup Table

How to Update Your Model

To update your model to use current versions of the lookup table blocks, follow these
steps:

Step Action Reason

1 Run the Upgrade Advisor. Identify blocks that do not have compatible
settings with the 1-D Lookup Table and 2-D
Lookup Table blocks.

2 For each block that does not have compatible
settings:

• Decide how to address each warning.
• Adjust block parameters as needed.

Modify each Lookup Table or Lookup Table
(2-D) block to ensure compatibility with the
current versions.

3 Repeat steps 1 and 2 until you are satisfied
with the results of the Upgrade Advisor
check.

Ensure that block replacement works for the
entire model.

After block replacement, the block names that appear in the model remain the same.
However, the block icons match the ones for the 1-D Lookup Table and 2-D Lookup Table
blocks. For more information about the Upgrade Advisor, see “Model Upgrades”.

What to Expect from the Model Advisor Check

The Model Advisor check groups all Lookup Table and Lookup Table (2-D) blocks into
three categories:

• Blocks that have compatible settings with the 1-D Lookup Table and 2-D Lookup
Table blocks

• Blocks that have incompatible settings with the 1-D Lookup Table and 2-D Lookup
Table blocks

 Update Lookup Table Blocks to New Versions

33-47

• Blocks that have repeated breakpoints

Blocks with Compatible Settings

When a block has compatible parameter settings, automatic block replacement can occur
without backward incompatibilities.

Parameter Settings After Automatic Block ReplacementLookup Method in the Lookup
Table or Lookup Table (2-D) Block Interpolation Extrapolation

Interpolation-

Extrapolation

Linear Linear

Interpolation-Use End

Values

Linear Clip

Use Input Below Flat Not applicable

Depending on breakpoint spacing, one of two index search methods can apply.

Breakpoint Spacing in the Lookup Table or Lookup
Table (2-D) Block

Index Search Method After Automatic Block
Replacement

Not evenly spaced Binary search

Evenly spaced and tunable
Evenly spaced and not tunable

A prompt appears, asking you to select Binary
search or Evenly spaced points.

Blocks with Incompatible Settings

When a block has incompatible parameter settings, the Model Advisor shows a warning
and a recommended action, if applicable.

• If you perform the recommended action, you can avoid incompatibility during block
replacement.

• If you use automatic block replacement without performing the recommended action,
you might see numerical differences in your results.

Incompatibility Warning Recommended Action What Happens for Automatic Block
Replacement

The Lookup Method is Use
Input Nearest or Use Input

Change the lookup method to
one of the following options:

The Lookup Method changes
to Interpolation - Use End
Values.

33 Working with Lookup Tables

33-48

Incompatibility Warning Recommended Action What Happens for Automatic Block
Replacement

Above. The replacement block
does not support these lookup
methods.

• Interpolation -

Extrapolation

• Interpolation - Use

End Values

• Use Input Below

The Lookup Method
is Interpolation -
Extrapolation, but the
input and output are not the
same floating-point type. The
replacement block supports
linear extrapolation only when
all inputs and outputs are the
same floating-point type.

Change the extrapolation
method or the port data types
of the block.

In the replacement block, this
setting corresponds to:

• Interpolation set to Linear
• Extrapolation set to Clip

You also see a message that
explains possible numerical
differences.

The block uses small fixed-
point word lengths, so that
interpolation uses only one
rounding operation. The
replacement block uses two
rounding operations for
interpolation.

None You see a message that explains
possible numerical differences.

Blocks with Repeated Breakpoints

When a block has repeated breakpoints, the Model Advisor recommends that you
change the breakpoint data and rerun the check. You cannot perform automatic block
replacement for blocks with repeated breakpoints.

 Lookup Table Glossary

33-49

Lookup Table Glossary
The following table summarizes the terminology used to describe lookup tables in the
Simulink user interface and documentation.

Term Meaning

breakpoint A single element of a breakpoint data set.
A breakpoint represents a particular input
value to which a corresponding output
value in the table data is mapped.

breakpoint data set A vector of input values that indexes a
particular dimension of a lookup table. A
lookup table uses breakpoint data sets to
relate its input values to the output values
that it returns.

extrapolation A process for estimating values that lie
beyond the range of known data points.

interpolation A process for estimating values that lie
between known data points.

lookup table An array of data that maps input values
to output values, thereby approximating a
mathematical function. Given a set of input
values, a “lookup” operation retrieves the
corresponding output values from the table.
If the lookup table does not explicitly define
the input values, Simulink can estimate
an output value using interpolation,
extrapolation, or rounding.

monotonically increasing The elements of a set are ordered such that
each successive element is greater than or
equal to its preceding element.

rounding A process for approximating a value by
altering its digits according to a known
rule.

strictly monotonically increasing The elements of a set are ordered such that
each successive element is greater than its
preceding element.

33 Working with Lookup Tables

33-50

Term Meaning

table data An array that serves as a sampled
representation of a function evaluated at a
lookup table's breakpoint values. A lookup
table uses breakpoint data sets to index the
table data, ultimately returning an output
value.

34

Working with Block Masks

• “Block Masks” on page 34-2
• “How Mask Parameters Work” on page 34-4
• “Mask Code Execution” on page 34-7
• “Mask Terminology” on page 34-10
• “Mask a Block” on page 34-11
• “Draw Mask Icon” on page 34-14
• “Create Mask Documentation” on page 34-18
• “Initialize Mask” on page 34-20
• “Best Practices for Masking” on page 34-24
• “Considerations for Masking Model Blocks” on page 34-25
• “Masks on Blocks in User Libraries” on page 34-27
• “Parameter Promotion” on page 34-29
• “Operate on Existing Masks” on page 34-35
• “Calculate Values Used Under the Mask” on page 34-38
• “Control Masks Programmatically” on page 34-41
• “Create Dynamic Mask Dialog Boxes” on page 34-48
• “Create Dynamic Masked Subsystems” on page 34-52
• “Debug Masks That Use MATLAB Code” on page 34-58
• “Masking Linked Blocks” on page 34-59
• “Mask a Linked Block” on page 34-62

34 Working with Block Masks

34-2

Block Masks

In this section...

“What Are Masks?” on page 34-2
“When to Use Masks?” on page 34-2

What Are Masks?

Masks are custom interfaces you can apply to Simulink blocks. A mask hides the
user interface of the block, and instead displays a custom dialog control for specific
parameters of the masked block.

When you mask a block, you change only the interface to the block, not its underlying
characteristics. Masking a non atomic subsystem does not make it act as an atomic
subsystem, and masking a virtual block does not convert it to a nonvirtual block.

Note: You cannot save a mask separately from the block that it masks. Also you cannot
create an isolated mask definition and apply it to more than one block.

The mask icon and mask dialog box are analogous to the block icon and block dialog box,
respectively.

You can use the mask parameters to control the mask display and change underlying
subsystem content dynamically (add or delete blocks and set the parameters of those
blocks). However, you can change subsystem content dynamically only if the subsystem is
part of a library.

When to Use Masks?

Masks are useful for customizing block interfaces, encapsulating logic, and providing
restricted access to data.

Masks are comparable to subsystems, in that they both simplify the graphical
appearance of a model. However, subsystems do not offer an interface for users to
interact with underlying block parameters.

Consider masking a Simulink block when you want to:

 Block Masks

34-3

• display a meaningful dynamic icon that reflects values within a block
• define customized parameters whose names reflect the purpose of a block
• provide a dialog box that enables you to access only select parameters of the

underlying blocks
• provide users customized description that is specific to the masked block

If you use a mask only to represent the contents of a subsystem, consider using content
preview instead. For that usage, content preview has these advantages, compared to
using a mask:

• Automatically update changes in the subsystem (for a masked block, you need to
manually update the mask image that represents the content of the item).

• Eliminates the setup tasks for icons for masked blocks.

Masked blocks do not support content preview. For details, see “Preview Content of
Hierarchical Items” on page 1-43.

Tip To view the masking examples, see Simulink Masking Examples. Notice that the
examples of similar type are grouped together. In an example model,

• To view the mask definition, double-click the View Mask block.

• To view the mask dialog box, double-click the block.

More About
• “How Mask Parameters Work” on page 34-4
• “Mask a Block” on page 34-11

34 Working with Block Masks

34-4

How Mask Parameters Work
A masked block is a custom interface to underlying blocks that are governed by block
parameters. Mask parameters are the links to underlying block parameters.

Mask parameters are defined in the mask workspace, while block parameters are defined
in the model or base workspace.

You can provide access to one or more underlying block parameters by defining the
corresponding number of mask parameters. Mask parameters appear in the Mask
Parameters dialog box as fields that can be edited. Simulink applies the value of a mask
parameter to the value of the corresponding block parameter during simulation.

Consider the Mask Parameters dialog box of the model masking_example.

This dialog contains fields for mask parameters Slope and Intercept, both defined in
the Mask Editor.

Slope corresponds to mask workspace variable m, and Intercept, to mask workspace
variable b. Moreover, names m and b correspond to the Gain and Constant value
parameters of the underlying blocks.

 How Mask Parameters Work

34-5

Note: The name of a mask parameter cannot match the name of any of the parameters
of the underlying blocks. For example, if you are masking a Gain block, creating a mask
parameter named Gain makes that mask parameter invalid.

In the mask dialog box, when you set Slope and Intercept to 5 and 2, respectively,
Simulink assigns these values to m and b.

Before simulation begins, Simulink searches the workspace hierarchy, looking in the
mask workspace first, for values to resolve the Gain parameter m and Constant value
parameter b. Since variables m and b are defined in the mask workspace, Simulink
applies their values to the block parameters.

To view related examples, see

• Set mask parameters
• Group parameters under tabs

34 Working with Block Masks

34-6

More About
• “Block Masks” on page 34-2
• “Mask a Block” on page 34-11

 Mask Code Execution

34-7

Mask Code Execution

In this section...

“Mask Code Placement” on page 34-7
“Drawing Command Execution” on page 34-7
“Initialization Command Execution” on page 34-8
“Callback Code Execution” on page 34-9

Mask Code Placement

You can use MATLAB code to initialize a mask as well as to draw mask icons. Since the
location of code affects model performance, place your code to reflect the functionality you
need.

Purpose Placement in Mask Editor Programmatic Specification

Initialize the mask Initialization pane MaskInitialization

parameter
Draw mask icon Icon & Ports pane MaskDisplay parameter
Callback code for mask
parameters

Parameters & Dialog
pane

MaskCallbacks parameter

Drawing Command Execution

Place MATLAB code for drawing mask icons in the Icon Drawing Commands section
of the Icon & Ports pane. Simulink executes these commands sequentially to redraw the
mask icon in the following cases:

• The drawing commands are dependent on mask parameters and the values of these
mask parameters change.

• The block appearance is altered due to rotation or other changes.

Note: If you place MATLAB code for drawing mask icons in the Initialization pane,
model performance is affected, because Simulink redraws the icon each time the masked
block is evaluated in the model.

34 Working with Block Masks

34-8

Initialization Command Execution

When you open a model, Simulink locates visible masked blocks that reside at the top
level of the model or in an open subsystem. Simulink only executes the initialization
commands for these visible masked blocks if they meet either of the following conditions:

• The masked block has icon drawing commands.

Note: Simulink does not initialize masked blocks that do not have icon drawing
commands, even if they have initialization commands.

• The masked subsystem belongs to a library and has the Allow library block to
modify its contents parameter enabled.

Simulink initializes masked blocks that are not initially visible when you open the model
that contains these blocks.

When you load a model into memory without displaying it graphically, no initialization
commands initially run for any masked blocks. See “Load a Model” on page 1-10 and
load_system for information about loading a model without displaying it.

Initialization commands for all masked blocks in a model that have drawing commands
run when you:

• Update the diagram
• Start simulation
• Start code generation

Initialization commands for an individual masked block run when you:

• Change any of the parameters that define the mask, such as MaskDisplay and
MaskInitialization, using the Mask Editor or set_param.

• Rotate or flip the masked block, if the icon depends on initialization commands.
• Cause the icon to be drawn or redrawn, and the icon drawing depends on

initialization code.
• Change the value of a mask parameter by using the block dialog box or set_param.
• Copy the masked block within the same model or between different models.

 Mask Code Execution

34-9

Callback Code Execution

Simulink executes the callback commands in the following cases:

• You open the mask dialog box. Callback commands execute sequentially, starting with
the top mask dialog box.

• You modify a parameter value in the mask dialog box and then change the cursor's
focus (that is, you press the Tab key or click into another field in the dialog box).

Note: When you modify the parameter value by using the set_param command, the
callback commands do not execute.

• You modify the parameter value, either in the mask dialog box or using set_param,
and then apply the change by clicking Apply or OK. Mask initialization commands
execute after callback commands (See “Initialization Pane”).

• You hover over a masked block to see the data tip for the block, when the data tip
contains parameter names and values. The callback executes again when the block
data tip disappears.

Note: Callback commands do not execute if the mask dialog box is open when the
block data tip appears.

• Update a diagram (for example, by pressing Ctrl+D or by selecting Simulation >
Update diagram in the Simulink Editor).

• If you close a mask dialog box without saving the changes, the Callback command for
parameters is sequentially executed.

To view related examples, see

• Sequence mask callbacks
• Unsafe mask callbacks
• Unsafe nested mask callbacks

More About
• “Initialize Mask” on page 34-20

34 Working with Block Masks

34-10

Mask Terminology

Terminology Table

Term Description

Mask icon The masked block icon generated using drawing commands.
This icon may be static or change dynamically with
underlying block parameter values.

Mask parameters Parameters defined in the Mask Editor that link to
underlying block parameters. Setting a mask parameter sets
the corresponding block parameter.

Mask initialization
code

MATLAB code that initializes a masked block or reflects
current parameter values.

Mask callback code MATLAB code that runs when the value of a mask
parameter changes. Use callback code to modify a mask
dialog box to reflect current parameter values.

Mask documentation Description and usage information for a masked block
defined in the Mask Editor.

Mask dialog A dialog box that contains fields for setting mask parameter
values and provides mask description.

Mask workspace Masks that define mask parameters or contain initialization
code have a mask workspace. This workspace stores mask
parameters and temporary values used by the mask.

 Mask a Block

34-11

Mask a Block

This example shows how to create a block mask and define its parameters.

In this section...

“Create mask” on page 34-11
“Define mask parameters” on page 34-11
“Set mask parameter values” on page 34-12

Create mask

1 Open the model subsystem_example. Alternately, execute the following command
in MATLAB:

open_system([docroot '/toolbox/simulink/ug/examples/masking...

/subsystem_example'])

This model contains a Subsystem block that models the equation for a line: y = mx
+ b.

2 Double-click the subsystem block to open it.

Notice that this subsystem contains the following blocks that are controlled by
parameters.

• Gain block, named Slope
• Constant block, named Intercept

3 Return to the top-level model, right-click the subsystem block, and select Mask >
Create Mask.

The Mask Editor opens.

Define mask parameters

Define parameters to control the underlying blocks.

1 In the Mask Editor, click the Parameters & Dialog tab.
2 Click the Edit parameter icon and add two rows.
3 In the rows that appear, specify the parameters as follows.

34 Working with Block Masks

34-12

4 Click Apply.

Set mask parameter values

Provide values to the parameters.

1 Double-click the mask to view the mask dialog box.
2 Set Slope and Intercept as 5 and 2, respectively.

 Mask a Block

34-13

To control the underlying blocks, change these parameters.
3 Click OK.

34 Working with Block Masks

34-14

Draw Mask Icon

This example shows how to use drawing commands to create a mask icon. You can create
icons that update when you change the mask parameters, thereby reflecting the purpose
of the block.

In this section...

“Draw static icon” on page 34-14
“Draw dynamic icon” on page 34-16
“Additional examples” on page 34-17

Draw static icon

A static mask icon remains unchanged, independent of the value of the mask parameters.

1 Right-click the masked block that requires the icon and select Mask > Edit Mask.

The Mask Editor opens.

 Draw Mask Icon

34-15

2 In the Icons & Ports tab, enter the following command in the Icon Drawing
commands pane:

% Use specified image as mask icon

image('engine.jpg')

The image file must be on the MATLAB path. You can use images in .svg format as
block mask image.

For more examples of drawing command syntax, explore the Command drop-down
list in the Examples of drawing commands pane.

Images in formats: .cur, .hdf4, .ico, .pcx, .ras, .xwd cannot be used as
block mask images. However, you can use images in these formats if you wrap the
filename in the imread() function and use the RGB triplet. Using the imread()
function is not efficient, however it is still supported for backward compatibility.

34 Working with Block Masks

34-16

Draw dynamic icon

A dynamic icon changes with the values of the mask parameters. Use it to represent the
purpose of the masked block.

1 Right-click the masked block that requires the icon and select Mask > Edit Mask.

The Mask Editor opens.

2 In the Icons & Ports tab, enter the following command in the Icon Drawing
commands pane:

pos = get_param(gcb, 'Position');

width = pos(3) - pos(1);

x = [0, width];

y = m*x + b;

plot(x,y)

 Draw Mask Icon

34-17

3 Under Options, set Icon Units to Pixels.

The drop-down lists under Options allow you to specify icon frame visibility, icon
transparency, drawing context, icon rotation, and port rotation.

4 Click Apply. If Simulink cannot evaluate all commands in the Icon Drawing
commands pane to generate an icon, three question marks (? ? ?) appear on the
mask. See model masking_example to view the icon generated.

Additional examples

See model slexMaskDisplayAndInitializationExample for more examples of icon
drawing commands. This model shows how to draw:

• a static mask
• a dynamic shape mask
• a dynamic text mask
• an image mask

34 Working with Block Masks

34-18

Create Mask Documentation

This example shows how to create mask documentation for display in the mask dialog
box.

1 Right-click the masked block to document and select Mask > Edit Mask.

The Mask Editor opens.
2 In the Documentation tab, type the following information:

• Type: The name of the mask. This name appears at the top of the mask dialog
box. New lines are not permitted.

• Description: A summary of what the mask does. This description appears below
the mask name, and it contains new lines as well as spaces.

• Help: Additional mask information that appears when you click Help in the
mask dialog box. You can use plain text, HTML and graphics, URLs, and web or
eval commands.

 Create Mask Documentation

34-19

34 Working with Block Masks

34-20

Initialize Mask

The initialization code is MATLAB code that you specify and that Simulink runs to
initialize the masked subsystem at critical times, such as model loading and the start of
a simulation run (see “Initialization Command Execution” on page 34-8). You can use the
initialization code to set the initial values of the mask parameters.

The masked subsystem initialization code can refer only to variables in its local
workspace.

When you reference the block within, or copy the block into, a model, the mask dialog box
displays the specified default values. You cannot use mask initialization code to change
mask parameter default values in a library block or any other block.

Mask Editor Initialization Pane

Use the Mask Editor Initialization pane to enter MATLAB commands that initialize
a masked block. Reference information about the Initialization pane appears in
“Initialization Pane”.

The Initialization pane has two sections:

• Dialog variables list
• Initialization commands edit area

 Initialize Mask

34-21

Dialog variables

The Dialog variables list displays the names of the variables associated with the mask
parameters of the masked block (that is, the parameters defined in the Parameters
pane).

You can copy the name of a parameter from this list and paste it into the adjacent
Initialization commands field, using the Simulink keyboard copy and paste
commands.

You can also use the list to change the names of mask parameter variables. To change
a name, double-click the name in the list. An edit field containing the existing name
appears. Edit the existing name and press Enter or click outside the edit field to confirm
your changes.

34 Working with Block Masks

34-22

Initialization Commands

Enter the initialization commands in this field. You can enter any valid MATLAB
expression, consisting of MATLAB functions and scripts, operators, and variables defined
in the mask workspace. Initialization commands cannot access base workspace variables.

Terminate initialization commands with a semicolon to avoid echoing results to the
MATLAB Command Window.

For information on debugging initialization commands, see “Initialization Command
Limitations” on page 34-22 and “Debug Masks That Use MATLAB Code” on page
34-58.

To view related examples, see

• Define mask display and initialization
• Use handle graphics in masking

Initialization Command Limitations

Mask initialization commands must observe the following rules:

• Do not use initialization code to create dynamic mask dialog boxes (that is, dialog
boxes whose appearance or control settings change depending on changes made to
other control settings). Instead, use the mask callbacks that are specifically for this
purpose. For more information, see “Create Dynamic Mask Dialog Boxes” on page
34-48.

• Avoid using set_param commands on blocks residing in another masked subsystem
that you are initializing. Trying to set parameters of blocks in lower-level masked
subsystems can trigger unresolved symbol errors if lower-level masked subsystems
reference symbols defined by higher-level masked subsystems. Suppose, for example,
a masked subsystem A contains masked subsystem B, which contains Gain block
C, whose Gain parameter references a variable defined by B. Suppose also that
subsystem A has initialization code that contains the following command:

set_param([gcb '/B/C'], 'SampleTime', '-1');

Simulating or updating a model containing A causes an unresolved symbol error.
• You cannot use mask initialization code to create data objects. Data objects are objects

of these classes:

 Initialize Mask

34-23

• Simulink.Parameter and subclasses
• Simulink.Signal and subclasses

More About
• “How Mask Parameters Work” on page 34-4
• “Mask Code Execution” on page 34-7

34 Working with Block Masks

34-24

Best Practices for Masking

These examples show best practices for masking Simulink blocks. There are also some
examples that show practices to avoid.

In this section...

“Use These Best Practices” on page 34-24
“Avoid These Practices” on page 34-24

Use These Best Practices

• Set mask parameters
• Group parameters under tabs
• Promote mask parameters
• Sequence mask callbacks
• Define mask display and initialization
• Create dynamic mask dialog boxes
• Use self-modifying library masks
• Use handle graphics in masking

Avoid These Practices

• Unsafe mask callbacks
• Unsafe nested mask callbacks

 Considerations for Masking Model Blocks

34-25

Considerations for Masking Model Blocks
In this section...

“Referenced Model Name” on page 34-25
“Variable Workspace” on page 34-25

Referenced Model Name

You can use a mask parameter to specify the name of a model referenced by

• a masked Model block, or
• a Model block in a masked subsystem

In these cases, the mask parameter receives the name of the reference model literally,
without being evaluated, because Simulink updates model reference targets before mask
parameters.

Use one of the following approaches to obtain the literal name of the referenced model:

• Restricted model names: In the Parameters & Dialog pane of the Mask Editor,
select the parameter that stores the referenced model name. Set its Type to popup
and clear the check box for Evaluate.

With this approach, users can only select a model name from a drop-down list in the
mask dialog box. Further, since the Evaluate option is cleared, the name is provided
literally and not numerically evaluated.

• Unrestricted model names: In the Parameters & Dialog pane of the Mask
Editor, select the parameter that stores the referenced model name. Set its Type to
edit and clear the check box for Evaluate.

With this approach, users can type the model name in the mask dialog box. However,
since the Evaluate option is cleared, the name is provided literally and not
numerically evaluated.

See “Parameters & Dialog Pane” for more information about Pop-Up and Edit controls.

Variable Workspace

When you mask a model block that references another model, the referenced model
cannot access the mask workspace of the model block.

34 Working with Block Masks

34-26

Therefore, variables used by the referenced model must resolve either to workspaces
defined by the referenced model or to the base workspace.

 Masks on Blocks in User Libraries

34-27

Masks on Blocks in User Libraries

In this section...

“About Masks and User-Defined Libraries” on page 34-27
“Masking a Block for Inclusion in a User Library” on page 34-27
“Masking a Block that Resides in a User Library” on page 34-27
“Masking a Block Copied from a User Library” on page 34-28

About Masks and User-Defined Libraries

You can mask a block that is included in a user library or already resides in a user
library, or you can mask an instance of a user library block that you have copied into
a model. For example, a user library block might provide the capabilities that a model
needs, but its native interface might be inappropriate or unhelpful in the context of the
particular model. Masking the block could give it a more appropriate user interface.

Masking a Block for Inclusion in a User Library

You can create a custom block by encapsulating a block diagram that defines the block's
behavior in a masked subsystem and then placing the masked subsystem in a library.
You can also apply a mask to any other type of block that supports masking, then include
the block in a library.

Masking a block that is later included in a library requires no special provisions. Create
the block and its mask as described in this section, and include the block in the library as
described in “Create Block Libraries” on page 36-19.

Masking a Block that Resides in a User Library

Creating or changing a library block mask immediately changes the block interface in all
models that access the block using a library reference, but has no effect on instances of
the block that already exist as separate copies.

To apply or change a library block mask, open the library that contains the block.
Apply, change, or remove a mask as you could if the block did not reside in a library.
In addition, you can specify non-default values for block mask parameters. When the
block is referenced within or copied into a model, the specified default values appear on

34 Working with Block Masks

34-28

the block's mask dialog box. By default, edit fields have a value of zero, check boxes are
cleared, and drop-down lists select the first item in the list. To change the default for any
field:

1 Fill in the desired default values or change check box or drop-down list settings
2 Click Apply or OK to save the changed values into the library block mask.

Be sure to save the library after changing the mask of any block that it contains.
Additional information relating to masked library blocks appears in “Create Block
Libraries” on page 36-19.

To view related example, see Use self-modifying library masks.

Masking a Block Copied from a User Library

A block that was copied from a user library, as distinct from a block accessed by using a
library reference, has no special status with respect to masking. You can add a mask to
the copied block, or change or remove any mask that it already has.

More About
• “Masking Linked Blocks” on page 34-59

 Parameter Promotion

34-29

Parameter Promotion

In this section...

“Promote Underlying Parameters to Block Mask” on page 34-31
“Promote Underlying Parameters to Subsystem Mask” on page 34-32
“Best Practices” on page 34-34

Blocks and subsystems can have multiple parameters associated with them. Block masks
allow you to expose one or more of these parameters while hiding others from view.
Promoting specific parameters to the mask block simplifies the interface and enables you
to specify the parameters the user of the block can view and set.

Promote button on the Mask Editor enables you to promote any underlying parameter
of a block either to a block mask or to a subsystem mask. The promoted block parameter
gets associated with a parameter in the mask, allowing you to edit the parameter value
from the mask dialog box.

Promote parameters from the block dialog box to the mask:

• To customize the mask dialog box by moving the required parameters from the block
dialog box to the mask dialog box.

• In the case of library blocks, you can reuse a block at different instances of a model.
For each instance of the library block, you can create individual mask dialog box by
promoting parameters for each.

Consider the block dialog box of the Gain block, which has parameters such as Gain,
Multiplication.

34 Working with Block Masks

34-30

To expose only the Gain parameter, mask the Gain block and promote the Gain
parameter to the mask dialog box.

Similarly, you can mask a subsystem block and promote parameters to the mask. If
the data type of subsystem parameters is the same, you can associate a single mask
parameter with multiple promoted parameters. For example, you can promote multiple
Gain parameters in a subsystem to a single dialog box on your mask.

If the parameter is of data type popup or, DataType then the options must also be the
same for the parameters to be promoted together. The Evaluate attribute for all the
parameters to be promoted must be similar.

You can promote parameters on a linked block. However, you can edit the values only in
the source block in the library.

To view related example, see Promote mask parameters.

 Parameter Promotion

34-31

Promote Underlying Parameters to Block Mask

1 Right-click the block whose parameter you want to promote and select Mask >
Create Mask.

2 In the Mask Editor dialog box, click the Parameters & Dialog tab.
3 In the Controls pane, click Promote.
4

In the Property editor pane, next to Type options, click .

Use the Promoted Parameter Selector dialog box to select the parameters that
you want to promote.

34 Working with Block Masks

34-32

5 To add a parameter to the Promoted parameters list, select a parameter from the
Promotable parameters table and click the Add to promoted parameter list

button .

To view the parameter properties such as Type, hover over the parameter name in
the Promotable parameter pane.

Tip

• You can use the Child blocks list or the Search box to find underlying block
parameters to promote.

• To prevent tuning of a property during simulation, you can disable the
Tunable attribute while promoting a tunable parameter.

6 Click OK.
7 In the Mask Editor dialog box, edit the prompt names for the promoted parameters

and click OK. You cannot edit the variable names.
8 Click OK. Look at the block mask. Only the parameters you promoted are available

to set.

Note:

•
You can use Promote all to promote all parameters. Promote all is
available only for block masks and not for subsystem masks.

• To remove a promoted parameter, select the parameter and press Delete
key.

• You cannot view or promote parameters of a masked or linked child block.

Promote Underlying Parameters to Subsystem Mask

1 Right-click the subsystem and select Mask > Create Mask.
2 In the Mask Editor dialog box, click the Parameters & Dialog tab.
3 In the Controls pane, click Promote.

 Parameter Promotion

34-33

4
In the Property editor pane, next to Type options, click .

5 In the Promoted Parameter Selector dialog box, select the parameters that you
want to promote.

6 To add a parameter to the Promoted parameters list, select a parameter from the
Promotable parameters table and click the Add to promoted parameter list

button .

You can add parameters of the same data type, from different child blocks, to the
Promoted parameters list. For example, the Gain parameter from different child
block can be added to the Promoted parameters list to promote to the single Gain
parameter on the mask.

7 Click OK.
8 In the Mask Editor dialog box, edit the prompt names for the promoted parameters

and click OK. You cannot edit the variable names.
9 Click OK. Look at the block mask. Only the parameters you promoted are available

to set.

34 Working with Block Masks

34-34

Best Practices

• Once you have promoted a parameter, set the value only in the mask. Do not look
under the mask and set the value in the underlying the block dialog box or from the
command line.

• Promote a parameter only once. You cannot promote a parameter from one mask to
another.

• Do not edit the Evaluate attribute of the promoted parameter. This property is
inherited from the block parameter.

• If you are promoting a nontunable parameter, do not edit the Tunable attribute.
• If you are promoting parameter to a block mask, do not promote multiple parameters

to a single mask parameter.
• Parameters of a masked or linked child block cannot be viewed or promoted.
• Callbacks associated with a block parameter are promoted to the block mask and not

to the subsystem mask. You can also specify user-defined callbacks. Your callbacks
execute after the dynamic dialog callback executes.

See Also
“How Mask Parameters Work” on page 34-4 | “Block Masks” on page 34-2

 Operate on Existing Masks

34-35

Operate on Existing Masks

In this section...

“Change a Block Mask” on page 34-35
“View Mask Parameters” on page 34-35
“Look Under Block Mask” on page 34-35
“Remove and Cache Mask” on page 34-36
“Restore Cached Mask” on page 34-37
“Permanently Delete Mask” on page 34-37

Change a Block Mask

You can change an existing mask by reopening the Mask Editor and using the same
techniques that you used to create the mask:

1 Select the masked block.
2 Select Mask > Edit Mask.

The Mask Editor reopens, showing the existing mask definition. Change the mask as
needed. After you change a mask, be sure to save the model before closing it, or the
changes will be lost.

View Mask Parameters

To display a mask dialog box, double-click the block. Alternatively, right-click the block
and select Mask > Mask Parameters.

To display the block dialog box that double-clicking would display if no mask existed,
right-click the masked block and select Block Parameters (BlockType).

Look Under Block Mask

To see the block diagram under a masked Subsystem block, built-in block, or the model
referenced by a masked model block, right-click the block and select Mask > Look
Under Mask.

34 Working with Block Masks

34-36

Remove and Cache Mask

To remove a mask from a block and cache it for possible restoration later:

1 Right-click the block.
2 Select Mask > Edit Mask.

The Mask Editor opens and displays the existing mask, for example:

3 Click Unmask in the lower left corner of the Mask Editor.

 Operate on Existing Masks

34-37

The Mask Editor removes the mask from the block, saves the mask in a cache for possible
restoration, then closes. The editor caches masks separately for each block, so removing
a mask from one block has no effect on a mask cached for any other block. Closing the
Mask Editor has no effect on cached masks.

When you have removed and cached a mask, you can later restore it, as described in
“Restore Cached Mask” on page 34-37, or delete it, as described in “Permanently
Delete Mask” on page 34-37. The removed cached mask has no further effect unless
you restore it.

Restore Cached Mask

As long as a model remains open, you can restore a mask that you removed as described
in “Remove and Cache Mask” on page 34-36.

1 Right-click the block.
2 Select Mask > Create Mask.

The Mask Editor reopens, showing the cached masked definition.
3 Modify the definition if needed, using the techniques in “Mask a Block” on page

34-11
4 Click Apply or OK to restore the mask, including any changes that you made.

If you made any changes, be sure to save the model before closing it, or the changes will
be lost.

Permanently Delete Mask

To delete a mask permanently, first remove it as described in “Remove and Cache
Mask” on page 34-36, then save and close the model. You do not need to close the
model immediately after removing a mask that you intend to delete. The removed mask
remains in the cache and has no further effect unless you restore it.

34 Working with Block Masks

34-38

Calculate Values Used Under the Mask

The masking_example assigns the values input using the mask dialog box directly
to block parameters underneath the mask, as described in “How Mask Parameters
Work” on page 34-4. The assignment occurs because the block parameter and the
mask parameter have the same name, so the search that always occurs when a block
parameter needs a value finds the mask parameter value automatically, as described in
“Symbol Resolution” on page 4-95.

You can use the Mask Editor to insert any desired calculation between a value in the
mask dialog box and an underlying block parameter

See the “Initialization Pane” reference for reference information about all Initialization
pane capabilities. This section shows you how to use it for calculating block parameter
values.

To calculate a value for a block parameter, first break the link between the mask and
block parameters by giving them different names. To facilitate such changes, the Dialog
variables subpane lists all mask parameters. The Initialization pane looks like this:

 Calculate Values Used Under the Mask

34-39

You cannot use mask initialization code to change mask parameter default values in a
library block or any other block.

You can use the initialization code for a masked block to link mask parameters indirectly
to block parameters. In this approach, the initialization code creates variables in the
mask workspace whose values are functions of the mask parameters and that appear in
expressions that set the values of parameters of blocks concealed by the mask.

If you need both the string entered and the evaluated value, clear the Evaluate option.
To get the value of a base workspace variable entered as the literal value of the mask
parameter, use the MATLAB evalin command in the mask initialization code. For
example, suppose the user enters the string 'gain' as the literal value of the mask
parameter k where gain is the name of a base workspace variable. To obtain the value of

34 Working with Block Masks

34-40

the base workspace variable, use the following command in the initialization code for the
mask:

value = evalin('base', k)

These values are stored in variables in the mask workspace. A masked block can
access variables in its mask workspace. A workspace is associated with each masked
subsystem that you create. The current values of the subsystem's parameters are stored
in the workspace as well as any variables created by the block's initialization code and
parameter callbacks.

To use a masked subsystem in a referenced model that uses model arguments, do not
create in the mask workspace a variable that derives its value from a mask parameter.
Instead, use blocks under the masked subsystem to perform the calculations for the mask
workspace variable.

More About
• “How Mask Parameters Work” on page 34-4

 Control Masks Programmatically

34-41

Control Masks Programmatically

In this section...

“Use Simulink.Mask and Simulink.MaskParameter” on page 34-41
“Use get_param and set_param” on page 34-42
“Programmatically Create Mask Parameters and Dialogs” on page 34-43

Simulink defines a set of parameters that help in setting and editing masks. To
set and edit mask from the MATLAB command line, you can use instances of the
Simulink.Mask and Simulink.MaskParameter classes. You can also use the
get_param and set_param functions to set and edit masks. However, since these
functions use de-limiters that do not support Unicode (Non English) characters you must
use instances of the Simulink.Mask and Simulink.MaskParameter classes to control
masks.

Use Simulink.Mask and Simulink.MaskParameter

Use instances of Simulink.Mask and Simulink.MaskParameter classes to perform
the following mask operations:

• Create, copy, and delete masks
• Create, edit, and delete mask parameters
• Determine the block that owns the mask
• Get workspace variables defined for a mask

1 In this example the Simulink.Mask.create method is used to create a block mask:

 maskObj = Simulink.Mask.create(gcb);

 maskObj =

 Simulink.Mask handle

 Package: Simulink

 Properties:

 Type: ''

 Description: ''

 Help: ''

 Initialization: ''

 SelfModifiable: 'off'

34 Working with Block Masks

34-42

 Display: ''

 IconFrame: 'on'

 IconOpaque: 'on'

 RunInitForIconRedraw: 'off'

 IconRotate: 'none'

 PortRotate: 'default'

 IconUnits: 'autoscale'

 Parameters: []

 Methods, Events, Superclasses

2 In this example the mask object is assigned to variable maskObj using the
Simulink.Mask.get method:

maskObj = Simulink.Mask.get(gcb)

maskObj =

 Simulink.Mask handle

 Package: Simulink

 Properties:

 Type: ''

 Description: ''

 Help: ''

 Initialization: ''

 SelfModifiable: 'off'

 Display: ''

 IconFrame: 'on'

 IconOpaque: 'on'

 RunInitForIconRedraw: 'off'

 IconRotate: 'none'

 PortRotate: 'default'

 IconUnits: 'autoscale'

 Parameters: [1x1 Simulink.MaskParameter]

 Methods, Events, Superclasses

For examples of other mask operations, like creating and editing mask parameters and
copying and deleting masks see Simulink.Mask and Simulink.MaskParameter .

Use get_param and set_param

The set_param and get_param functions have parameters for setting and controlling
the mask. You can use these functions to set the mask of any block in the model or
library based on a value passed from the MATLAB command line:

set_param(gcb,'MaskStyleString','edit,edit',..

 Control Masks Programmatically

34-43

'MaskVariables','maskparameter1=@1;maskparameter2=&2;',..

'MaskPromptString','Mask Parameter 1:|Mask Parameter 2:',..

'MaskValues',{'1','2'});

get_param(gcb,'MaskStyleString');

set_param(gcb,'MaskStyles',{'edit','edit'},'MaskVariables',..

'maskparameter1=@1;maskparameter2=&2;','MaskPrompts',..

{'Mask Parameter 1:','Mask Parameter 2:'},..

'MaskValueString','1|2');

get_param(gcb,'MaskStyles');

where

• | separates individual string values for the mask parameters
• @ indicates that the parameter field is evaluated
• & indicates that the parameter field is not evaluated but assigned as a string

Note: When you use get_param to get the Value of a mask parameter, Simulink returns
the value that was last applied using the mask dialog. Values that you have entered
into the mask dialog but not applied will not be reflected when you use the get_param
command.

See Mask Parameters for detailed information on the mask parameters.

Programmatically Create Mask Parameters and Dialogs

This example shows how to create this simple mask dialog, add controls to the dialog,
and change the properties of the controls.

34 Working with Block Masks

34-44

1 Create the mask for a block you selected in the model.

maskobj = Simulink.Mask.create(gcb);

2 Create parameters for the mask. You can change the location of these parameters on
the dialog in a subsequent step.

maskobj.addParameter('Type','checkbox','Prompt','Option 1',...

'Name','option1');

maskobj.addParameter('Type','checkbox','Prompt','Option 2',...

'Name','option2');

These commands create a mask dialog with the default layout. Simulink adds
the two parameters to the Parameters group, which is internally named as
ParameterGroupVar by default.

 Control Masks Programmatically

34-45

You can verify the group name programmatically.

dlg = maskobj.getDialogControls();

dlg(2)

ans =

 Group with properties:

 Name: 'ParameterGroupVar'

 Prompt: 'Simulink:studio:ToolBarParametersMenu'

 Row: 'new'

 Enabled: 'on'

 Visible: 'on'

 DialogControls: [1x1 Simulink.dialog.parameter.CheckBox]

3 To customize the dialog and to use tabs instead of the default group, remove the
Parameters group box.

maskobj.removeDialogControl('ParameterGroupVar');

34 Working with Block Masks

34-46

Simulink preserves the child dialog controls, the two check boxes in this example,
even when you delete the ParametersGroupVar group surrounding them. This
is because these controls are parameters, which cannot be deleted using the dialog
control methods.

You can delete parameters using methods such as
Simulink.Mask.removeAllParameters, which belongs to the Simulink.Mask class.

4 In order to create tabs, first create a tab container and get its handle.

tabgroup = maskobj.addDialogControl('tabcontainer','tabgroup');

5 Create tabs within this tab container.

tab1 = tabgroup.addDialogControl('tab','tab1');

tab1.Prompt = 'First';

tab2 = tabgroup.addDialogControl('tab', 'tab2');

tab2.Prompt = 'Second';

tab3 = tabgroup.addDialogControl('tab','tab3');

tab3.Prompt = 'Third (invisible)';

Make the third tab invisible.

tab3.Visible = 'off'

tab3 =

 Tab with properties:

 Name: 'tab3'

 Control Masks Programmatically

34-47

 Prompt: 'Third (invisible)'

 Enabled: 'on'

 Visible: 'on'

 DialogControls: []

6 Move the mask parameters you created previously to the first tab.

opt1 = maskobj.getDialogControl('option1');

opt2 = maskobj.getDialogControl('option2');

opt1.moveTo(tab1);

opt2.moveTo(tab1);

For more information on dialog controls and their properties, type help
Simulink.dialog.Control at the MATLAB command line.

More About
• “How Mask Parameters Work” on page 34-4
• “Initialize Mask” on page 34-20

34 Working with Block Masks

34-48

Create Dynamic Mask Dialog Boxes

In this section...

“About Dynamic Masked Dialog Boxes” on page 34-48
“Show parameter” on page 34-49
“Enable parameter” on page 34-49
“Create Dynamic Mask Dialog Box” on page 34-49
“Setting Nested Masked Block Parameters” on page 34-50

About Dynamic Masked Dialog Boxes

You can create dialogs for masked blocks whose appearance changes in response to user
input. Features of masked dialog boxes that can change in this way include

• Visibility of parameter controls

Changing a parameter can cause the control for another parameter to appear or
disappear. The dialog expands or shrinks when a control appears or disappears,
respectively.

• Enabled state of parameter controls

Changing a parameter can cause the control for another parameter to be enabled or
disabled for input. A disabled control is grayed to indicate visually that it is disabled.

• Parameter values

Changing a mask dialog box parameter can cause related mask dialog box parameters
to be set to appropriate values.

Creating a dynamic masked dialog box entails using the Mask Editor in combination
with the set_param command. Specifically, you use the Mask Editor to define
parameters of the dialog box, both static and dynamic. For each dynamic parameter, you
enter a callback function that defines how the dialog box responds to changes to that
parameter (see “Callback Code Execution” on page 34-9). The callback function can in
turn use the set_param command to set mask parameters that affect the appearance
and settings of other controls on the dialog box (see “Create Dynamic Mask Dialog
Box” on page 34-49). Finally, you save the model or library containing the masked
subsystem to complete the creation of the dynamic masked dialog box.

 Create Dynamic Mask Dialog Boxes

34-49

To view related example, see Create dynamic mask dialog boxes.

Show parameter

The selected parameter appears on the mask dialog box only if this option is checked (the
default).

Enable parameter

Clearing this option grays the prompt of the selected parameter and disables the edit
control of the prompt.

Create Dynamic Mask Dialog Box

This example shows how to create a mask dialog blocks whose appearance changes in
response to your input.

You can set two parameters using this mask dialog box. The first parameter is a popup
menu through which you select one of three gain values: 2, 5, or User-defined.
Depending on the value that you select in this popup menu, an edit field for specifying
the gain appears or disappears.

1 Mask a subsystem by right-clicking the block and selecting Mask > Create Mask.
2 Select the Parameters & Dialog pane on the Mask Editor.
3 Drag and drop a Popup parameter and select it in the Dialog box pane.

• In the Prompt field, enter Gain.
• In the Name field, enter gainpopup.
• In the Property editor pane, clear Evaluate so that Simulink uses the literal

values you specify for the popup.
• In the Type options field, click the edit button to enter the following three

values in the Popup Options dialog box:

2

5

User-defined

4 Enter the following code in the Dialog callback field:

% Get the mask parameter values. This is a cell

34 Working with Block Masks

34-50

% array of strings.

maskStr = get_param(gcb,'gainpopup');

% The pop-up menu is the first mask parameter.

% Check the value selected in the pop-up

if strcmp(maskStr(1),'U'),

 % Set the visibility of both parameters on when

 % User-defined is selected in the pop-up.

 set_param(gcb,'MaskVisibilities',{'on';'on'}),

else

 % Turn off the visibility of the Value field

 % when User-defined is not selected.

 set_param(gcb,'MaskVisibilities',{'on';'off'}),

 % Set the string in the Values field equal to the

 % string selected in the Gain pop-up menu.

 %maskStr{2}=maskStr{1};

 set_param(gcb,'editvalue',maskStr);

end

5 Drag and drop an Edit parameter and select it in the Dialog box pane.

• In the Prompt field, enter Value.
• In the Name field, enter editvalue.
• In the Property editor pane, clear Visible so that Simulink turns off the

visibility of this property by default.
6 Click Apply.
7 Double-click the masked subsystem to open the mask dialog box.

If you select 2 or 5 as the Gain, Simulink hides the Value. If you select User-
defined as the Gain the Value is visible.

Setting Nested Masked Block Parameters

Avoid using set_param commands to set parameters of blocks residing in masked
subsystems that reside in the masked subsystem being initialized. Trying to set

 Create Dynamic Mask Dialog Boxes

34-51

parameters of blocks in lower-level masked subsystems can trigger unresolved symbol
errors if lower-level masked subsystems reference symbols defined by higher-level
masked subsystems. Suppose, for example, a masked subsystem A contains masked
subsystem B, which contains Gain block C, whose Gain parameter references a variable
defined by B. Suppose also that subsystem A's initialization code contains the command

set_param([gcb '/B/C'], 'SampleTime', '-1');

Simulating or updating a model containing A causes an unresolved symbol error.

More About
• “Create Dynamic Masked Subsystems” on page 34-52

34 Working with Block Masks

34-52

Create Dynamic Masked Subsystems

In this section...

“Allow library block to modify its contents” on page 34-52
“Create Self-Modifying Masks for Library Blocks” on page 34-52
“Evaluate Blocks Under Self-Modifying Mask” on page 34-56

Allow library block to modify its contents

This check box is enabled only if the masked subsystem resides in a library. Checking
this option allows the block initialization code to modify the contents of the masked
subsystem (that is, it lets the code add or delete blocks and set the parameters of those
blocks). Otherwise, an error is generated when a masked library block tries to modify its
contents in any way. To set this option at the MATLAB prompt, select the self-modifying
block and enter the following command.

set_param(gcb, 'MaskSelfModifiable', 'on');

Then save the block.

Create Self-Modifying Masks for Library Blocks

You can create masked library blocks that can modify their structural contents. These
self-modifying masks allow you to:

• Modify the contents of a masked subsystem based on parameters in the mask dialog
box or when the subsystem is initially dragged from the library into a new model.

• Vary the number of ports on a multiport S-Function block that resides in a library.

Creating Self-Modifying Masks Using the Mask Editor

To create a self-modifying mask using the Mask Editor:

1 Unlock the library (see “Modify and Lock Libraries” on page 36-20).
2 Right-click the block in the library.
3 Select Mask > Edit Mask. The Mask Editor opens.

 Create Dynamic Masked Subsystems

34-53

4 In the Mask Editor Initialization pane, select the Allow library block to modify
its contents option.

5 Enter the code that modifies the masked subsystem in the mask Initialization
pane.

Do not enter code that structurally modifies the masked subsystem in a dialog
parameter callback (see “Mask Code Placement” on page 34-7). Doing so triggers an
error when a user edits the parameter.

6 Click Apply to apply the change or OK to apply the change and close the Mask
Editor.

7 Lock the library.

Creating Self-Modifying Masks from the Command Line

To create a self-modifying mask from the command line:

1 Unlock the library using the following command:

set_param(gcs,'Lock','off')

2 Specify that the block is self-modifying by using the following command:

set_param(block_name,'MaskSelfModifiable','on')

where block_name is the full path to the block in the library.

Self-Modifying Mask Example

The library selfModifying_example contains a masked subsystem that modifies its
number of input ports based on a selection made in the subsystem mask dialog box.

34 Working with Block Masks

34-54

Right-click the subsystem then select Mask > Edit Mask. The Mask Editor opens. The
Mask Editor Parameters & Dialog pane defines a parameter numIn that stores the
value for the Number of inports option. This mask dialog box callback adds or removes
Input ports inside the masked subsystem based on the selection made in the Number of
inports list.

 Create Dynamic Masked Subsystems

34-55

To allow the dialog box callback to function properly, the Allow library block to
modify its contents option on the Mask Editor Initialization pane is selected. If this
option were not selected, copies of the library block could not modify their structural
contents and changing the selection in the Number of inports list would produce an
error.

34 Working with Block Masks

34-56

Evaluate Blocks Under Self-Modifying Mask

This example shows how to force Simulink to evaluate blocks inside self-modifying
masks.

Simulink evaluates elements of models containing masks in the following order:

1 Mask dialog box
2 Mask initialization code
3 Blocks or masked subsystems under the mask

Consider the following case:

A block named myBlock inside subsystem mySubsys masked by a self-modifying mask
depends on mask parameter myParam to update itself.

 Create Dynamic Masked Subsystems

34-57

myParam is exposed to the user through the Mask Parameters dialog box. mySubsys is
updated through MATLAB code written in the Mask Initialization pane.

In this model, the sequence of updates is as follows:

1 You modify myParam through the mask dialog box.
2 The mask initialization code receives this change and modifies mySubsys under the

mask.
3 myBlock, which lies under mySubsys, modifies itself based on the change to

myParam.

In this sequence, Simulink does not evaluate myBlock, which lies under mySubsys,
when the mask initialization code executes. Instead, Simulink only evaluates and
updates the masked subsystem mySubsys. Meanwhile, myBlock remains unmodified.

You can force Simulink to evaluate such blocks earlier by using the
Simulink.Block.eval method in the initialization code of the masked subsystem.

Simulink.Block.eval('mySubsys/myBlock');

More About
• “How Mask Parameters Work” on page 34-4
• “Initialize Mask” on page 34-20
• “Masking Linked Blocks” on page 34-59

34 Working with Block Masks

34-58

Debug Masks That Use MATLAB Code

In this section...

“Code Written in Mask Editor” on page 34-58
“Code Written Using MATLAB Editor/Debugger” on page 34-58

Code Written in Mask Editor

Debug initialization commands and parameter callbacks entered directly into the Mask
Editor in one of the following ways:

• Remove the terminating semicolon from a command to echo its results to the
MATLAB Command Window.

• Place a keyboard command in the code to stop execution and give control to the
keyboard.

Code Written Using MATLAB Editor/Debugger

Note: You cannot debug icon drawing commands using the MATLAB Editor/Debugger.
Use the syntax examples provided in the Mask Editor Icons & Ports pane to help solve
errors in the icon drawing commands.

Debug initialization commands and parameter callbacks written in files using the
MATLAB Editor/Debugger in the same way that you would with any other MATLAB
program file.

When debugging initialization commands, you can view the contents of the mask
workspace. However, when debugging parameter callbacks, you can only access the base
workspace of the block. If you need the value of a mask parameter, use get_param.

 Masking Linked Blocks

34-59

Masking Linked Blocks

In this section...

“Guidelines for Mask Parameters” on page 34-60
“Mask Behavior for Masked, Linked Blocks” on page 34-61

Simulink libraries can contain blocks that have masks. An example of this type of block
is the Ramp block. These blocks become library links when copied to a model or another
library. You can add a new mask on this linked block. If this linked block is in a library
and copied again, you can add another mask to this new linked block thus creating a
stack of masks. Masking linked blocks allows you to add a custom interface to the link
blocks similar to other Simulink blocks.

The block mask that is present as part of the library is the base mask. A derived mask is
the one created on top of the base mask.

For example, in the figure, Library A contains Block A, which has a Mask A. Block A is
copied to Library B, and Mask B is added to it. When Block A is copied to Library B, a
library link from Library B to Library A is created.

Block B is then copied to a model, and Mask C is added to it. This creates a library link
from Library B to Block C. Block C now has Mask A, Mask B, and Mask C. Mask C is the
derived mask and Mask B is the base mask.

34 Working with Block Masks

34-60

LibA/BlockA LibB/BlockB Model/BlockC

Library link

Copy

Library link

Copy

Mask A Mask AMask A

Mask B

Mask AMask A

Mask B

Mask CDerived mask

Base mask

Note that for Block C:

• Mask parameter names are unique in the stack.
• You can set mask parameters for Mask B and Mask C.
• Mask B and Mask C inherit MaskType and MaskSelfModifiable parameters from

Mask A.
• Mask initialization code for Mask C executes first, followed by Mask B and Mask A.
• Variables are resolved starting from the mask immediately above the current mask

in the stack. If the current mask is the top mask, it follows the regular variable
resolution rules.

Guidelines for Mask Parameters

• You cannot use same names for the mask parameters. The exception is the Promote
type mask parameter, for which the name is inherited and is the same as that of the
parameter promoted to it.

• You cannot set mask parameters for masks below the base mask. Mask parameters
for masks below the base mask are inherited from the library.

 Masking Linked Blocks

34-61

Mask Behavior for Masked, Linked Blocks

The following are some of the behaviors that are important to understand about masked,
linked blocks.

• The MaskType and the MaskSelfModifiable parameters are inherited from the
base mask.

• Mask display code for the derived mask executes first, followed by the display code for
the masks below it until we come across a mask whose MaskIconFrame parameter is
set to opaque.

• Mask initialization code for the derived mask executes first, followed by the
initialization code for the masks below it.

• Variables are resolved starting from the mask immediately above the current mask
in the stack. If the current mask is the top mask, the regular variable resolution rules
apply.

• When you save a Simulink model or library containing a block with multiple masks,
using File > Export Model to > Previous Version, the Sourceblock parameter is
modified to point to the library block having the bottom most mask.

• The following occurs when you disable, break, or reestablish links to libraries:

• If you disable the link to the library block, the entire mask hierarchy is saved to
the model file so that the block can act as a standalone block.

• If you break the link to the library block, the block becomes a standalone block.
• If you reestablish the link after disabling by doing a restore, all changes to the

mask are discarded. If you mask subsystems, you must reestablish the link after
disabling by doing a push. When you do a push, subsystem changes are pushed to
the library block and top mask changes are pushed to the immediate library.

More About
• “Masking Linked Blocks” on page 34-59

34 Working with Block Masks

34-62

Mask a Linked Block

In this section...

“Create a Custom Library With Mask on Link Block” on page 34-62
“Add a Mask to the Masked, Link Block” on page 34-62
“View Masks Below the Top Mask” on page 34-63

This example shows the steps for creating masks on linked blocks. To view the example
model, click Mask Linked Blocks.

Create a Custom Library With Mask on Link Block

1 From the Simulink Library Browser, select File > New > Library .
2 Drag the Ramp block to the Library editor window.
3 Right-click the Ramp block and select Mask > Create Mask.

The Mask Editor opens.
4 In the Icons & Ports tab, enter the following command in the Icon drawing

commands pane:

plot ([0:10],[0,1:10])

5
Click the Promote underlying block parameter(s) to this mask
parameter button.

Add Slope and Initial Output to the promoted parameters list, and click OK.
Add a custom parameter Company Notes.

6 Rename the block to Derived Ramp Block.

Add a Mask to the Masked, Link Block

1 From the Simulink Library Browser, select File > New > Model.
2 Drag the Derived Ramp Block to the Model.

The Derived Ramp Block in the model has multiple masks on it. You can set parameters
of the derived mask.

 Mask a Linked Block

34-63

View Masks Below the Top Mask

• Right click the Derived Ramp Block in the model and select Mask > View Base
Mask. This opens the Mask Editor displaying the base mask definition.

More About
• “Masking Linked Blocks” on page 34-59

35

Creating Custom Blocks

• “When to Create Custom Blocks” on page 35-2
• “Types of Custom Blocks” on page 35-3
• “Comparison of Custom Block Functionality” on page 35-7
• “Expanding Custom Block Functionality” on page 35-18
• “Create a Custom Block” on page 35-19
• “Custom Block Examples” on page 35-42

35 Creating Custom Blocks

35-2

When to Create Custom Blocks

Custom blocks expand the modeling functionality provided with the Simulink product.
Use a custom block to:

• Model behaviors that are not provided with a Simulink built-in solution.
• Build more advanced models.
• Encapsulate model components into a library block that you can copy into multiple

models.
• Provide custom graphical user interfaces or analysis routines.

 Types of Custom Blocks

35-3

Types of Custom Blocks

In this section...

“MATLAB Function Blocks” on page 35-3
“MATLAB System Blocks” on page 35-3
“Subsystem Blocks” on page 35-4
“S-Function Blocks” on page 35-4

MATLAB Function Blocks

A MATLAB Function block allows you to use the MATLAB language to define custom
functionality. These blocks are a good starting point for creating a custom block if:

• You have an existing MATLAB function that models the custom functionality.
• You find it easier to model custom functionality using a MATLAB function than using

a Simulink block diagram.
• The custom functionality does not include continuous or discrete dynamic states.

You can create a custom block from a MATLAB function using one of the following types
of MATLAB function blocks.

• The Fcn block allows you to use a MATLAB expression to define a single-input,
single-output (SISO) block.

• The Interpreted MATLAB Function block allows you to use a MATLAB function
to define a SISO block.

• The MATLAB Function block allows you to define a custom block with multiple
inputs and outputs that you can deploy to an embedded processor.

Each of these blocks has advantages in particular modeling applications. For example,
you can generate code from models containing MATLAB Function blocks, whereas you
cannot generate code for models containing an Fcn block.

MATLAB System Blocks

A MATLAB System block allows you to use System objects written with the MATLAB
language to define custom functionality. These blocks are a good starting point for
creating a custom block if:

35 Creating Custom Blocks

35-4

• You have an existing System object™ that models the custom functionality.
• You find it easier to model custom functionality using the MATLAB language than

using a Simulink block diagram.
• The custom functionality includes discrete dynamic states.

Subsystem Blocks

Subsystem blocks allow you to build a Simulink diagram to define custom functionality.
These blocks serve as a good starting point for creating a custom block if:

• You have an existing Simulink diagram that models custom functionality.
• You find it easier to model custom functionality using a graphical representation

rather than using handwritten code.
• The custom functionality is a function of continuous or discrete system states.
• You can model the custom functionality using existing Simulink blocks.

Once you have a Simulink subsystem that models the required behavior, you can convert
it into a custom block by:

1 Masking the block to hide the block contents and provide a custom block dialog box.
2 Placing the block in a library to prohibit modifications and allow for easily updating

copies of the block.

For more information, see “Libraries” and “Block Masks”.

S-Function Blocks

S-function blocks allow you to write MATLAB, C, or C++ code to define custom
functionality. These blocks serve as a good starting point for creating a custom block if:

• You have existing MATLAB, C, or C++ code that models custom functionality.
• You use continuous or discrete dynamic states or other system behaviors that require

access to the S-function API.
• You cannot model the custom functionality using existing Simulink blocks.

You can create a custom block from an S-function using one of the following types of S-
function blocks.

 Types of Custom Blocks

35-5

• The Level-2 MATLAB S-Function block allows you to write your S-function using
the MATLAB language. (See“Write Level-2 MATLAB S-Functions”). You can debug a
MATLAB S-function during a simulation using the MATLAB debugger.

• The S-Function block allows you to write your S-function in C or C++, or to
incorporate existing code into your model using a C MEX wrapper. (See “C/C++ S-
Functions”.)

• The S-Function Builder block assists you in creating a C MEX S-function or a
wrapper function to incorporate legacy C or C++ code. (See “C/C++ S-Functions”.)

• The Legacy Code Tool transforms existing C or C++ functions into C MEX S-
functions. (See “Integrate C Functions Using Legacy Code Tool”.)

The S-function target in the Simulink Coder product automatically generates a C MEX
S-function from a graphical subsystem. If you want to build your custom block in a
Simulink subsystem, but implement the final version of the block in an S-function, you
can use the S-function target to convert the subsystem to an S-function. See “Generated
S-Function Block” in the Simulink Coder User's Guide for details and limitations on
using the S-function target.

Comparing MATLAB S-Functions to MATLAB Functions for Code Generation

MATLAB S-functions and MATLAB functions for code generation have some
fundamental differences.

• The Simulink Coder product can generate code for both MATLAB S-functions and
MATLAB functions for code generation. However, MATLAB S-functions require a
Target Language Compiler (TLC) file for code generation. MATLAB functions for code
generation do not require a TLC-file.

• MATLAB S-functions can use any MATLAB function whereas MATLAB functions
for code generation are a subset of the MATLAB language. For a list of supported
functions for code generation, see “Functions and Objects Supported for C and C++
Code Generation — Alphabetical List” on page 42-2.

• MATLAB S-functions can model discrete and continuous state dynamics whereas
MATLAB functions for code generation cannot model state dynamics.

Using S-Function Blocks to Incorporate Legacy Code

Each S-function block allows you to incorporate legacy code into your model, as follows.

• A MATLAB S-function accesses legacy code through its TLC-file. Therefore, the legacy
code is available only in the generated code, not during simulation.

35 Creating Custom Blocks

35-6

• A C MEX S-function directly calls legacy C or C++ code.
• The S-Function Builder generates a wrapper function that calls the legacy C or C++

code.
• The Legacy Code Tool generates a C MEX S-function to call the legacy C or C++ code,

which is optimized for embedded systems. See “Integrate C Functions Using Legacy
Code Tool” for more information.

See “Integration Options” in the Simulink Coder User's Guide for more information.

See “S-Functions Incorporate Legacy C Code” in the Simulink Developing S-Functions for
an example.

 Comparison of Custom Block Functionality

35-7

Comparison of Custom Block Functionality

In this section...

“Custom Block Considerations” on page 35-7
“Modeling Requirements” on page 35-11
“Speed and Code Generation Requirements” on page 35-14

Custom Block Considerations

When creating a custom block, consider the following.

• Does the custom block need multiple input and output ports?
• Does the block model continuous or discrete state behavior?
• Do the block inputs and outputs have various data attributes, such as data types or

complexity?
• How important is the effect of the custom block on the speed of updating the Simulink

diagram or simulating the Simulink model?
• Do you need to generate code for a model containing the custom block?

The following two tables provide an overview of how each custom block type addresses
the previous questions. More detailed information for each consideration follows these
two tables.

Modeling Requirements

Custom Block Type Supports Multiple Inputs
and Outputs

Models State
Dynamics

Supports Various Data Attributes

Subsystem Yes, including bus
signals.

Yes. Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports frame-
based signals.

Fcn No. Must have a single
vector input and scalar
output.

No. Supports only real scalar signals
with a data type of double or
single.

35 Creating Custom Blocks

35-8

Custom Block Type Supports Multiple Inputs
and Outputs

Models State
Dynamics

Supports Various Data Attributes

Interpreted
MATLAB Function

No. Must have a single
vector input and output.

No. Supports only n-D, real, or
complex signals with a data type
of double.

MATLAB Function Yes, including bus
signals.

No. Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports frame-
based signals.

MATLAB System Yes, excluding bus
signals.

Yes. Yes, including all data types
(except buses and enumerated),
numeric types, and dimensions
supported by the Simulink
software. Also supports frame-
based signals.

Level-2 MATLAB
S-function

Yes. Yes, including
limited access
to other S-
function APIs.

Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports frame-
based signals.

C MEX S-function Yes, including bus signals
if using the Legacy Code
Tool to generate the S-
function.

Yes, including
full access to
all S-function
APIs.

Yes, including all data types,
numeric types, and dimensions
supported by the Simulink
software. Also supports frame-
based signals.

Speed and Code Generation Requirements

Custom Block Type Speed of Updating the
Diagram

Simulation Overhead Code Generation Support

Subsystem Proportional to the
complexity of the
subsystem. For library
blocks, can be slower
the first time the
library is loaded.

Proportional to the
complexity of the
subsystem. Library
blocks introduce no
additional overhead.

Natively supported.

 Comparison of Custom Block Functionality

35-9

Custom Block Type Speed of Updating the
Diagram

Simulation Overhead Code Generation Support

Fcn Very fast. Minimal, but these blocks
also provide limited
functionality.

Natively supported.

Interpreted
MATLAB Function

Fast. High and incurred
when calling out to the
MATLAB execution
engine. Avoid these calls
if simulation speed is a
concern.

Not supported.

MATLAB Function Can be slower if code
must be generated to
update the diagram.

Minimal if the MATLAB
execution engine is not
called. Simulation speed
is equivalent to C MEX
S-functions when the
MATLAB execution
engine is not called.

Natively supported,
with exceptions. See
“Code Generation” on
page 35-17 for more
information.

MATLAB System Faster than MATLAB
Function because code
is not generated to
update the diagram.

In interpreted execution
mode, the simulation
has the overhead of
calling the MATLAB
execution engine. In
code generation mode,
the first simulation
incurs code generation
overhead. However, in
subsequent runs, the
block simulation speed is
equivalent to C MEX S-
functions.

Natively supported, with
exceptions.

Level-2 MATLAB
S-function

Can be slower if the
S-function overrides
methods executed when
updating the diagram.

Higher than for
Interpreted MATLAB
Function blocks because
the MATLAB execution
engine is called for every
S-function method used.

MATLAB S-functions
initialized as a
SimViewingDevice

do not generate code.
Otherwise, MATLAB S-
functions require a TLC-
file for code generation.

35 Creating Custom Blocks

35-10

Custom Block Type Speed of Updating the
Diagram

Simulation Overhead Code Generation Support

Very flexible, but very
costly.

C MEX S-function Can be slower if the
S-function overrides
methods executed when
updating the diagram.

Minimal, but
proportional to the
complexity of the
algorithm and the
efficiency of the code.

Might require a TLC-file.

Block Type Flowchart

The diagram shows how to decide which block to use. One deciding factor is whether you
need the block for a function or a system. In this context:

• A function defines the relationship between a set of inputs and outputs.
• A system defines the relationship between a set of inputs and outputs. It can

also define a set of states, parameters, and System object processing methods for
initialization, output, update, termination, and so forth.

 Comparison of Custom Block Functionality

35-11

MATLAB or
C/C++?

System or
function?

Discrete and
single-rate?

Function

Create
C/C++ S-Function

MATLAB
System

Level-2
MATLAB

S-function

Fcn

MATLAB
Function

Interpreted
MATLAB
Function

Single-input,
single-output

single or
double type,

basic math operations
and

functions?
Limited to

MATLAB functions
supported for

code generation?

Single-input,
single-output
and double

type?

C/C++

Yes

Yes

No

Yes

No

No

MATLAB

System

Yes

Use MATLAB System
or Level 2 MATLAB
S-Function System

block

No

Modeling Requirements

Multiple Input and Output Ports

The following types of custom blocks support multiple input and output ports.

35 Creating Custom Blocks

35-12

Custom Block Type Multiple Input and Output Port Support

Subsystem Supports multiple input and output ports, including bus signals. In
addition, you can modify the number of input and output ports based
on user-defined parameters. See “Self-Modifying Linked Subsystems”
on page 36-6 for more information.

Fcn, Interpreted
MATLAB
Function

Supports only a single input and a single output port. Use a Mux
block to combine the inputs and a Demux block to separate the
outputs if you pass multiple signals into or out of these blocks.

MATLAB
Function

Supports multiple input and output ports, including bus signals. See
“How Structure Inputs and Outputs Interface with Bus Signals” on
page 37-74 for more information.

MATLAB System Supports multiple input and output ports, excluding bus signals. See
“Define System Objects” for more information.

S-function
(MATLAB or C
MEX)

Supports multiple input and output ports. In addition, you can
modify the number of input and output ports based on user-defined
parameters. S-functions generated using the Legacy Code Tool also
accept Simulink bus signals. See “Integrate C Functions Using
Legacy Code Tool” for more information.

State Behavior and the S-Function API

Simulink blocks communicate with the Simulink engine through the S-function API, a
set of methods that fully specifies the behavior of blocks. Each custom block type accesses
a different set of the S-function APIs, as follows.

Custom Block Type S-Function API Support

Subsystem Communicates directly with the engine. You can model state
behaviors using appropriate blocks from the Continuous and Discrete
Simulink block libraries.

Fcn, Interpreted
MATLAB
Function,
MATLAB
Function

All create a mdlOutputs method to calculate the value of the outputs
given the value of the inputs. You cannot access any other S-function
API methods using one of these blocks and, therefore, cannot model
state behavior.

MATLAB System Uses System object methods for S-function APIs: mdlOutputs
(stepImpl, outputImpl), mdlUpdate (updateImpl),

 Comparison of Custom Block Functionality

35-13

Custom Block Type S-Function API Support

mdlInitializeConditions (resetImpl), mdlStart (setupImpl),
mdlTerminate (releaseImpl).

MATLAB S-
function

Accesses a larger subset of the S-function APIs, including methods
you can use to model continuous and discrete states. For a list of
supported methods, see “Level-2 MATLAB S-Function Callback
Methods” in “Writing S-Functions”.

C MEX S-
function

Accesses the complete set of S-function APIs.

Data Attribute Support

All custom block types support real scalar inputs and outputs with a data type of double.

Custom Block Type Data Attribute Support

Subsystem Supports any data type supported by the Simulink software,
including fixed-point types. Also supports complex, 2-D, n-D, and
frame-based signals.

Fcn Supports only double or single data types. In addition, the input and
output cannot be complex and the output must be a scalar signal.
Does not support frame-based signals.

Interpreted
MATLAB
Function

Supports 2-D, n-D, and complex signals, but the signal must have a
data type of double. Does not support frame-based signals.

MATLAB
Function

Supports any data type supported by the Simulink software,
including fixed-point types. Also supports complex, 2-D, n-D, and
frame-based signals.

MATLAB System Supports any data type supported by the Simulink software,
including fixed-point types. Also supports complex, 2-D, n-D, and
frame-based signals.

S-function
(MATLAB or C
MEX)

Supports any data type supported by the Simulink software,
including fixed-point types. Also supports complex, 2-D, n-D, and
frame-based signals.

35 Creating Custom Blocks

35-14

Speed and Code Generation Requirements

Updating the Simulink Diagram

The Simulink software updates the diagram before every simulation and whenever
requested by the user. Every block introduces some overhead into the “update diagram”
process.

Custom Block Type Speed of Updating the Diagram

Subsystem The speed is proportional to the complexity of the algorithm
implemented in the subsystem. If the subsystem is contained in a
library, some cost is incurred when the Simulink software loads any
unloaded libraries the first time the diagram is updated or readied
for simulation. If all referenced library blocks remain unchanged,
the Simulink software does not subsequently reload the library and
compiling the model becomes faster than if the model did not use
libraries.

Fcn, Interpreted
MATLAB
Function

Does not incur greater update cost than other Simulink blocks.

MATLAB
Function

Performs simulation through code generation, so these blocks can
take a significant amount of time when first updated. However,
because code generation is incremental, Simulink does not repeatedly
update the block if the block and the signals connected to it have not
changed.

MATLAB System Faster than MATLAB Function because code is not generated
to update the diagram. However, because code generation is
incremental, Simulink does not repeatedly update the block if the
block and the signals connected to it have not changed.

S-function
(MATLAB or C
MEX)

Incurs greater costs than other Simulink blocks only if it overrides
methods executed when updating the diagram. If these methods
become complex, they can contribute significantly to the time it takes
to update the diagram. For a list of methods executed when updating
the diagram, see the process view in “Simulink Engine Interaction
with C S-Functions”. When updating the diagram, the Simulink
software invokes all relevant methods in the model initialization
phase up to, but not including, mdlStart.

 Comparison of Custom Block Functionality

35-15

Simulation Overhead

For most applications, any of the custom block types provide acceptable simulation
performance. Use the Simulink profiler to obtain an indication of the actual performance.
See“How Profiler Captures Performance Data” on page 27-5 for more information.

You can break simulation performance into two categories. The interface cost is the time
it takes to move data from the Simulink engine into the block. The algorithm cost is the
time it takes to perform the algorithm that the block implements.

Custom Block Type Simulation Overhead

Subsystem If included in a library, introduces no interface or algorithm costs
beyond what would normally be incurred if the block existed as a
regular subsystem in the model.

Fcn Has the least simulation overhead. The block is tightly integrated
with the Simulink engine and implements a rudimentary expression
language that is efficiently interpreted.

Interpreted
MATLAB
Function

Has a higher interface cost than most blocks and the same algorithm
cost as a MATLAB function.
When block data (such as inputs and outputs) is accessed or returned
from an Interpreted MATLAB Function block, the Simulink engine
packages this data into MATLAB arrays. This packaging takes
additional time and causes a temporary increase in memory during
communication. If you pass large amounts of data across this
interface, such as, frames or arrays, this overhead can be substantial.
Once the data has been converted, the MATLAB execution engine
executes the algorithm. As a result, the algorithm cost is the same
as for MATLAB function. Efficient code can be competitive with C
code if MATLAB is able to optimize it, or if the code uses the highly
optimized MATLAB library functions.

MATLAB
Function

Performs simulation through code generation and so incurs the same
interface cost as standard blocks.
The algorithm cost of this block is harder to analyze because of
the block's implementation. On average, a function for this block
and a MATLAB function run at about the same speed. To reduce
the algorithm cost, you can disable debugging for all the MATLAB
Function blocks.
If the MATLAB Function block uses simulation-only capabilities
to call out to the MATLAB execution engine, it incurs all the costs

35 Creating Custom Blocks

35-16

Custom Block Type Simulation Overhead

that a MATLAB S-function or Interpreted MATLAB Function block
incur. Calling out to the MATLAB execution engine from a MATLAB
Function block produces a warning to prevent you from doing so
unintentionally.

MATLAB System Performs simulation through one of the following:

• Interpreted execution, the model simulates the block using the
MATLAB execution engine.

• Code generation, the model simulates the block using generated
code.

For more information, see the MATLAB Function entry in this table.
MATLAB S-
function

Incurs the same algorithm costs as the Interpreted MATLAB
Function block, but with a slightly higher interface cost. Because
MATLAB S-functions can handle multiple inputs and outputs, the
packaging is more complicated than for the Interpreted MATLAB
Function block. In addition, the Simulink engine calls the MATLAB
execution engine for each block method you implement whereas
for the Interpreted MATLAB Function block, it calls the MATLAB
execution engine only for the mdlOutputs method.

C MEX S-
function

Simulates via the compiled code and so incurs the same interface cost
as standard blocks. The algorithm cost depends on the complexity of
the S-function.

 Comparison of Custom Block Functionality

35-17

Code Generation

Not all custom block types support code generation with Simulink Coder.

Custom Block Type Code Generation Support

Subsystem Supports code generation.
Fcn Supports code generation.
Interpreted
MATLAB
Function

Does not support code generation.

MATLAB
Function

Supports code generation. However, if your MATLAB Function block
calls out to the MATLAB execution engine, it will build with the
Simulink Coder product only if the calls to the MATLAB execution
engine do not affect the block outputs. Under this condition, the
Simulink Coder product omits these calls from the generated C code.
This feature allows you to leave visualization code in place, even
when generating embedded code.

MATLAB System Supports code generation. However, if your MATLAB System block
calls out to the MATLAB execution engine, it will build with the
Simulink Coder product only if the calls to the MATLAB execution
engine do not affect the block outputs. Under this condition, the
Simulink Coder product omits these calls from the generated C code.
This feature allows you to leave visualization code in place, even
when generating embedded code.

MATLAB S-
function

Generates code only if you implement the algorithm using a Target
Language Compiler (TLC) function. In accelerated and external mode
simulations, you can choose to execute the S-function in interpretive
mode by calling back to the MATLAB execution engine without
implementing the algorithm in TLC. If the MATLAB S-function is
a SimViewingDevice, the Simulink Coder product automatically
omits the block during code generation.

C MEX S-
function

Supports code generation. For noninlined S-functions, the Simulink
Coder product uses the C MEX function during code generation.
However, you must write a TLC-file for the S-function if you need
to either inline the S-function or create a wrapper for hand-written
code. See “S-Functions and Code Generation” in the Simulink Coder
User's Guide for more information.

35 Creating Custom Blocks

35-18

Expanding Custom Block Functionality

You can expand the functionality of any custom block using callbacks and Handle
Graphics.

Block callbacks perform user-defined actions at specific points in the simulation. For
example, the callback can load data into the MATLAB workspace before the simulation
or generate a graph of simulation data at the end of the simulation. You can assign block
callbacks to any of the custom block types. For a list of available callbacks and more
information on how to use them, see “Create Block Callbacks” on page 4-75.

GUIDE, the MATLAB graphical user interface development environment, provides tools
for easily creating custom user interfaces. See “GUI Building” for more information on
using GUIDE.

 Create a Custom Block

35-19

Create a Custom Block

In this section...

“How to Design a Custom Block” on page 35-19
“Defining Custom Block Behavior” on page 35-21
“Deciding on a Custom Block Type” on page 35-22
“Placing Custom Blocks in a Library” on page 35-26
“Adding a User Interface to a Custom Block” on page 35-29
“Adding Block Functionality Using Block Callbacks” on page 35-37

How to Design a Custom Block

In general, use the following process to design a custom block:

1 “Defining Custom Block Behavior” on page 35-21
2 “Deciding on a Custom Block Type” on page 35-22
3 “Placing Custom Blocks in a Library” on page 35-26
4 “Adding a User Interface to a Custom Block” on page 35-29

Suppose you want to create a customized saturation block that limits the upper and
lower bounds of a signal based on either a block parameter or the value of an input
signal. In a second version of the block, you want the option to plot the saturation limits
after the simulation is finished. The following tutorial steps you through designing
these blocks. The library customsat_lib contains the two versions of the customized
saturation block.

35 Creating Custom Blocks

35-20

The example model sldemo_customsat uses the basic version of the block.

 Create a Custom Block

35-21

Defining Custom Block Behavior

Begin by defining the features and limitations of your custom block. In this example, the
block supports the following features:

• Turning on and off the upper or lower saturation limit.
• Setting the upper and/or lower limits via a block parameters.

35 Creating Custom Blocks

35-22

• Setting the upper and/or lower limits using an input signal.

It also has the following restrictions:

• The input signal under saturation must be a scalar.
• The input signal and saturation limits must all have a data type of double.
• Code generation is not required.

Deciding on a Custom Block Type

Based on the custom block features, the implementation needs to support the following:

• Multiple input ports
• A relatively simple algorithm
• No continuous or discrete system states

Therefore, this tutorial implements the custom block using a Level-2 MATLAB S-
function. MATLAB S-functions support multiple inputs and, because the algorithm is
simple, do not have significant overhead when updating the diagram or simulating the
model. See “Comparison of Custom Block Functionality” on page 35-7 for a description of
the different functionality provided by MATLAB S-functions as compared to other types
of custom blocks.

Parameterizing the MATLAB S-Function

Begin by defining the S-function parameters. This example requires four parameters:

• The first parameter indicates how the upper saturation limit is set. The limit can be
off, set via a block parameter, or set via an input signal.

• The second parameter is the value of the upper saturation limit. This value is used
only if the upper saturation limit is set via a block parameter. In the event this
parameter is used, you should be able to change the parameter value during the
simulation, i.e., the parameter is tunable.

• The third parameter indicates how the lower saturation limit is set. The limit can be
off, set via a block parameter, or set via an input signal.

• The fourth parameter is the value of the lower saturation limit. This value is used
only if the lower saturation limit is set via a block parameter. As with the upper
saturation limit, this parameter is tunable when in use.

 Create a Custom Block

35-23

The first and third S-function parameters represent modes that must be translated into
values the S-function can recognize. Therefore, define the following values for the upper
and lower saturation limit modes:

• 1 indicates that the saturation limit is off.
• 2 indicates that the saturation limit is set via a block parameter.
• 3 indicates that the saturation limit is set via an input signal.

Writing the MATLAB S-Function

After you define the S-function parameters and functionality, write the S-function.
The template msfuntmpl.m provides a starting point for writing a Level-2 MATLAB
S-function. You can find a completed version of the custom saturation block in the file
custom_sat.m. Save this file to your working folder before continuing with this tutorial.

This S-function modifies the S-function template as follows:

• The setup function initializes the number of input ports based on the values entered
for the upper and lower saturation limit modes. If the limits are set via input signals,
the method adds input ports to the block. The setup method then indicates there are
four S-function parameters and sets the parameter tunability. Finally, the method
registers the S-function methods used during simulation.
function setup(block)

% The Simulink engine passes an instance of the Simulink.MSFcnRunTimeBlock

% class to the setup method in the input argument "block". This is known as

% the S-function block's run-time object.

% Register original number of input ports based on the S-function

% parameter values

try % Wrap in a try/catch, in case no S-function parameters are entered

 lowMode = block.DialogPrm(1).Data;

 upMode = block.DialogPrm(3).Data;

 numInPorts = 1 + isequal(lowMode,3) + isequal(upMode,3);

catch

 numInPorts=1;

end % try/catch

block.NumInputPorts = numInPorts;

block.NumOutputPorts = 1;

% Setup port properties to be inherited or dynamic

block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

% Override input port properties

block.InputPort(1).DatatypeID = 0; % double

35 Creating Custom Blocks

35-24

block.InputPort(1).Complexity = 'Real';

% Override output port properties

block.OutputPort(1).DatatypeID = 0; % double

block.OutputPort(1).Complexity = 'Real';

% Register parameters. In order:

% -- If the upper bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The upper limit value. Should be empty if the upper limit is off or

% set via an input signal

% -- If the lower bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The lower limit value. Should be empty if the lower limit is off or

% set via an input signal

block.NumDialogPrms = 4;

block.DialogPrmsTunable = {'Nontunable','Tunable','Nontunable', ...

 'Tunable'};

% Register continuous sample times [0 offset]

block.SampleTimes = [0 0];

%% ---

%% Options

%% ---

% Specify if Accelerator should use TLC or call back into

% MATLAB script

block.SetAccelRunOnTLC(false);

%% ---

%% Register methods called during update diagram/compilation

%% ---

block.RegBlockMethod('CheckParameters', @CheckPrms);

block.RegBlockMethod('ProcessParameters', @ProcessPrms);

block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);

block.RegBlockMethod('Outputs', @Outputs);

block.RegBlockMethod('Terminate', @Terminate);

%end setup function

• The CheckParameters method verifies the values entered into the Level-2 MATLAB
S-Function block.

function CheckPrms(block)

lowMode = block.DialogPrm(1).Data;

lowVal = block.DialogPrm(2).Data;

upMode = block.DialogPrm(3).Data;

upVal = block.DialogPrm(4).Data;

% The first and third dialog parameters must have values of 1-3

if ~any(upMode == [1 2 3]);

 error('The first dialog parameter must be a value of 1, 2, or 3');

end

 Create a Custom Block

35-25

if ~any(lowMode == [1 2 3]);

 error('The first dialog parameter must be a value of 1, 2, or 3');

end

% If the upper or lower bound is specified via a dialog, make sure there

% is a specified bound. Also, check that the value is of type double

if isequal(upMode,2),

 if isempty(upVal),

 error('Enter a value for the upper saturation limit.');

 end

 if ~strcmp(class(upVal), 'double')

 error('The upper saturation limit must be of type double.');

 end

end

if isequal(lowMode,2),

 if isempty(lowVal),

 error('Enter a value for the lower saturation limit.');

 end

 if ~strcmp(class(lowVal), 'double')

 error('The lower saturation limit must be of type double.');

 end

end

% If a lower and upper limit are specified, make sure the specified

% limits are compatible.

if isequal(upMode,2) && isequal(lowMode,2),

 if lowVal >= upVal,

 error('The lower bound must be less than the upper bound.');

 end

end

%end CheckPrms function

• The ProcessParameters and PostPropagationSetup methods handle the S-
function parameter tuning.

function ProcessPrms(block)

%% Update run time parameters

block.AutoUpdateRuntimePrms;

%end ProcessPrms function

function DoPostPropSetup(block)

%% Register all tunable parameters as runtime parameters.

block.AutoRegRuntimePrms;

%end DoPostPropSetup function

• The Outputs method calculates the block's output based on the S-function parameter
settings and any input signals.

35 Creating Custom Blocks

35-26

function Outputs(block)

lowMode = block.DialogPrm(1).Data;

upMode = block.DialogPrm(3).Data;

sigVal = block.InputPort(1).Data;

lowPortNum = 2; % Initialize potential input number for lower saturation limit

% Check upper saturation limit

if isequal(upMode,2), % Set via a block parameter

 upVal = block.RuntimePrm(2).Data;

elseif isequal(upMode,3), % Set via an input port

 upVal = block.InputPort(2).Data;

 lowPortNum = 3; % Move lower boundary down one port number

else

 upVal = inf;

end

% Check lower saturation limit

if isequal(lowMode,2), % Set via a block parameter

 lowVal = block.RuntimePrm(1).Data;

elseif isequal(lowMode,3), % Set via an input port

 lowVal = block.InputPort(lowPortNum).Data;

else

 lowVal = -inf;

end

% Assign new value to signal

if sigVal > upVal,

 sigVal = upVal;

elseif sigVal < lowVal,

 sigVal=lowVal;

end

block.OutputPort(1).Data = sigVal;

%end Outputs function

Placing Custom Blocks in a Library

Libraries allow you to share your custom blocks with other users, easily update the
functionality of copies of the custom block, and collect blocks for a particular project into
a single location. This example places the custom saturation block into a library.

1 In the Simulink Library Browser, select File > New > Library.
2 From the User-Defined Functions library, drag a Level-2 MATLAB S-Function block

into your new library.

 Create a Custom Block

35-27

3 Save your library with the filename saturation_lib.
4 Double-click the block to open its Function Block Parameters dialog box.
5 In the S-function name field, enter the name of the S-function. For example, enter

custom_sat. In the Parameters field enter 2,-1,2,1.

35 Creating Custom Blocks

35-28

6 Click OK.

You have created a custom saturation block that you can share with other users.

 Create a Custom Block

35-29

You can make the block easier to use by adding a customized user interface.

Adding a User Interface to a Custom Block

You can create a block dialog box for a custom block using the masking features of
Simulink. Masking the block also allows you to add port labels to indicate which ports
corresponds to the input signal and the saturation limits.

1 Open the library saturation_lib that contains the custom block you created,
2 Right-click the Level-2 MATLAB S-Function block and select Mask > Create Mask.
3 On the Icon & Ports pane in the Icons drawing commands box, enter

port_label('input',1,'uSig'), and then click Apply.

This command labels the default port as the input signal under saturation.

35 Creating Custom Blocks

35-30

4 In the Parameters & Dialog pane, add four parameters corresponding to the four
S-Function parameters. For each new parameter, drag a popup or edit control to the
Dialog box section, as shown in the table. Drag each parameter into the Parameters
group.

Type Prompt Name EvaluateTunable Popup options Callback

popup Upper
boundary:

upMode ✓ No limit

Enter limit as
parameter

Limit using input
signal

customsat_callback('upperbound_callback',

gcb)

edit Upper
limit:

upVal ✓ ✓ N/A customsat_callback('upperparam_callback',

gcb)

Type Prompt Name EvaluateTunable Popup options Callback

popup Lower
boundary:

lowMode ✓ No limit customsat_callback('lowerbound_callback',

gcb)

 Create a Custom Block

35-31

Type Prompt Name EvaluateTunable Popup options Callback
Enter limit as
parameter

Limit using input
signal

edit Lower
limit:

lowVal ✓ ✓ N/A customsat_callback('lowerparam_callback',

gcb)

The MATLAB S-Function script custom_sat_final.m contains the mask parameter
callbacks. Save custom_sat_final.m to your working folder to define the callbacks
in this example. This MATLAB script has two input arguments. The first input
argument is a string indicating which mask parameter invoked the callback. The
second input argument is the handle to the associated Level-2 MATLAB S-Function
block.

The figure shows the completed Parameters & Dialog pane in the Mask Editor.

35 Creating Custom Blocks

35-32

5 In the Initialization pane, select the Allow library block to modify its contents
check box. This setting allows the S-function to change the number of ports on the
block.

6 In the Documentation pane:

• In the Mask type field, enter

Customized Saturation

• In the Mask description field, enter

Limit the input signal to an upper and lower saturation value

set either through a block parameter or input signal.

 Create a Custom Block

35-33

7 Click OK.
8 To map the S-function parameters to the mask parameters, right-click the Level-2

MATLAB S-Function block and select Mask > Look Under Mask.
9 Change the S-function name field to custom_sat_final and the Parameters

field to lowMode,lowVal,upMode,upVal.

The figure shows the Function Block Parameters dialog box after the changes.

10 Click OK. Save and close the library to exit the edit mode.
11 Reopen the library and double-click the customized saturation block to open the

masked parameter dialog box.

35 Creating Custom Blocks

35-34

To create a more complicated user interface, place a Handle Graphics user interface on
top of the masked block. The block OpenFcn invokes the Handle Graphics user interface,
which uses calls to set_param to modify the S-function block parameters based on
settings in the user interface.

Writing the Mask Callback

The function customsat_callback.m contains the mask callback code for the custom
saturation block mask parameter dialog box. This function invokes local functions
corresponding to each mask parameter through a call to feval.

The following local function controls the visibility of the upper saturation limit's
field based on the selection for the upper saturation limit's mode. The callback
begins by obtaining values for all mask parameters using a call to get_param with
the property name MaskValues. If the callback needed the value of only one mask
parameter, it could call get_param with the specific mask parameter name, for example,
get_param(block,'upMode'). Because this example needs two of the mask parameter
values, it uses the MaskValues property to reduce the calls to get_param.

 Create a Custom Block

35-35

The callback then obtains the visibilities of the mask parameters using a call to
get_param with the property name MaskVisbilities. This call returns a cell array of
strings indicating the visibility of each mask parameter. The callback alters the values
for the mask visibilities based on the selection for the upper saturation limit's mode and
then updates the port label string.

The callback finally uses the set_param command to update the block's MaskDisplay
property to label the block's input ports.
function customsat_callback(action,block)

% CUSTOMSAT_CALLBACK contains callbacks for custom saturation block

% Copyright 2003-2007 The MathWorks, Inc.

%% Use function handle to call appropriate callback

feval(action,block)

%% Upper bound callback

function upperbound_callback(block)

vals = get_param(block,'MaskValues');

vis = get_param(block,'MaskVisibilities');

portStr = {'port_label(''input'',1,''uSig'')'};

switch vals{1}

 case 'No limit'

 set_param(block,'MaskVisibilities',[vis(1);{'off'};vis(3:4)]);

 case 'Enter limit as parameter'

 set_param(block,'MaskVisibilities',[vis(1);{'on'};vis(3:4)]);

 case 'Limit using input signal'

 set_param(block,'MaskVisibilities',[vis(1);{'off'};vis(3:4)]);

 portStr = [portStr;{'port_label(''input'',2,''up'')'}];

end

if strcmp(vals{3},'Limit using input signal'),

 portStr = [portStr;{['port_label(''input'',',num2str(length(portStr)+1), ...

 ',''low'')']}];

end

set_param(block,'MaskDisplay',char(portStr));

The final call to set_param invokes the setup function in the MATLAB S-function
custom_sat.m. Therefore, the setup function can be modified to set the number of
input ports based on the mask parameter values instead of on the S-function parameter
values. This change to the setup function keeps the number of ports on the Level-2
MATLAB S-Function block consistent with the values shown in the mask parameter
dialog box.

The modified MATLAB S-function custom_sat_final.m contains the following new setup
function. If you are stepping through this tutorial, open the file and save it to your
working folder.
%% Function: setup ===

35 Creating Custom Blocks

35-36

function setup(block)

% Register original number of ports based on settings in Mask Dialog

ud = getPortVisibility(block);

numInPorts = 1 + isequal(ud(1),3) + isequal(ud(2),3);

block.NumInputPorts = numInPorts;

block.NumOutputPorts = 1;

% Setup port properties to be inherited or dynamic

block.SetPreCompInpPortInfoToDynamic;

block.SetPreCompOutPortInfoToDynamic;

% Override input port properties

block.InputPort(1).DatatypeID = 0; % double

block.InputPort(1).Complexity = 'Real';

% Override output port properties

block.OutputPort(1).DatatypeID = 0; % double

block.OutputPort(1).Complexity = 'Real';

% Register parameters. In order:

% -- If the upper bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The upper limit value. Should be empty if the upper limit is off or

% set via an input signal

% -- If the lower bound is off (1) or on and set via a block parameter (2)

% or input signal (3)

% -- The lower limit value. Should be empty if the lower limit is off or

% set via an input signal

block.NumDialogPrms = 4;

block.DialogPrmsTunable = {'Nontunable','Tunable','Nontunable','Tunable'};

% Register continuous sample times [0 offset]

block.SampleTimes = [0 0];

%% ---

%% Options

%% ---

% Specify if Accelerator should use TLC or call back into

% MATLAB script

block.SetAccelRunOnTLC(false);

%% ---

%% Register methods called during update diagram/compilation

%% ---

block.RegBlockMethod('CheckParameters', @CheckPrms);

block.RegBlockMethod('ProcessParameters', @ProcessPrms);

block.RegBlockMethod('PostPropagationSetup', @DoPostPropSetup);

block.RegBlockMethod('Outputs', @Outputs);

block.RegBlockMethod('Terminate', @Terminate);

%endfunction

 Create a Custom Block

35-37

The getPortVisibility local function in custom_sat_final.m uses the saturation
limit modes to construct a flag that is passed back to the setup function. The setup
function uses this flag to determine the necessary number of input ports.

%% Function: Get Port Visibilities =======================================

function ud = getPortVisibility(block)

ud = [0 0];

vals = get_param(block.BlockHandle,'MaskValues');

switch vals{1}

 case 'No limit'

 ud(2) = 1;

 case 'Enter limit as parameter'

 ud(2) = 2;

 case 'Limit using input signal'

 ud(2) = 3;

end

switch vals{3}

 case 'No limit'

 ud(1) = 1;

 case 'Enter limit as parameter'

 ud(1) = 2;

 case 'Limit using input signal'

 ud(1) = 3;

end

Adding Block Functionality Using Block Callbacks

The User-Defined Saturation with Plotting block in customsat_lib uses block callbacks
to add functionality to the original custom saturation block. This block provides an option
to plot the saturation limits when the simulation ends. The following steps show how to
modify the original custom saturation block to create this new block.

1 Add a check box to the mask parameter dialog box to toggle the plotting option on
and off.

a Right-click the Level-2 MATLAB S-Function block in saturation_lib and
select Mask+Create Mask.

b On the Mask Editor Parameters pane, add a fifth mask parameter with the
following properties.

35 Creating Custom Blocks

35-38

Prompt Name Type TunableType
options

Callback

Plot
saturation
limits

plotcheckcheckboxNo NA customsat_callback('plotsaturation',gcb)

c Click OK.

2 Write a callback for the new check box. The callback initializes a structure to
store the saturation limit values during simulation in the Level-2 MATLAB S-
Function block UserData. The MATLAB script customsat_plotcallback.m
contains this new callback, as well as modified versions of the previous callbacks to
handle the new mask parameter. If you are following through this example, open
customsat_plotcallback.m and copy its local functions over the previous local
functions in customsat_callback.m.

 Create a Custom Block

35-39

%% Plotting checkbox callback

function plotsaturation(block)

% Reinitialize the block's userdata

vals = get_param(block,'MaskValues');

ud = struct('time',[],'upBound',[],'upVal',[],'lowBound',[],'lowVal',[]);

if strcmp(vals{1},'No limit'),

 ud.upBound = 'off';

else

 ud.upBound = 'on';

end

if strcmp(vals{3},'No limit'),

 ud.lowBound = 'off';

else

 ud.lowBound = 'on';

end

set_param(gcb,'UserData',ud);

3 Update the MATLAB S-function Outputs method to store the saturation limits, if
applicable, as done in the new MATLAB S-function custom_sat_plot.m. If you are
following through this example, copy the Outputs method in custom_sat_plot.m
over the original Outputs method in custom_sat_final.m
%% Function: Outputs ===

function Outputs(block)

lowMode = block.DialogPrm(1).Data;

upMode = block.DialogPrm(3).Data;

sigVal = block.InputPort(1).Data;

vals = get_param(block.BlockHandle,'MaskValues');

plotFlag = vals{5};

lowPortNum = 2;

% Check upper saturation limit

if isequal(upMode,2)

 upVal = block.RuntimePrm(2).Data;

elseif isequal(upMode,3)

 upVal = block.InputPort(2).Data;

 lowPortNum = 3; % Move lower boundary down one port number

else

 upVal = inf;

end

% Check lower saturation limit

if isequal(lowMode,2),

 lowVal = block.RuntimePrm(1).Data;

elseif isequal(lowMode,3)

 lowVal = block.InputPort(lowPortNum).Data;

else

 lowVal = -inf;

end

35 Creating Custom Blocks

35-40

% Use userdata to store limits, if plotFlag is on

if strcmp(plotFlag,'on');

 ud = get_param(block.BlockHandle,'UserData');

 ud.lowVal = [ud.lowVal;lowVal];

 ud.upVal = [ud.upVal;upVal];

 ud.time = [ud.time;block.CurrentTime];

 set_param(block.BlockHandle,'UserData',ud)

end

% Assign new value to signal

if sigVal > upVal,

 sigVal = upVal;

elseif sigVal < lowVal,

 sigVal=lowVal;

end

block.OutputPort(1).Data = sigVal;

%endfunction

4 Write the function plotsat.m to plot the saturation limits. This function takes the
handle to the Level-2 MATLAB S-Function block and uses this handle to retrieve the
block's UserData. If you are following through this tutorial, save plotsat.m to your
working folder.
function plotSat(block)

% PLOTSAT contains the plotting routine for custom_sat_plot

% This routine is called by the S-function block's StopFcn.

ud = get_param(block,'UserData');

fig=[];

if ~isempty(ud.time)

 if strcmp(ud.upBound,'on')

 fig = figure;

 plot(ud.time,ud.upVal,'r');

 hold on

 end

 if strcmp(ud.lowBound,'on')

 if isempty(fig),

 fig = figure;

 end

 plot(ud.time,ud.lowVal,'b');

 end

 if ~isempty(fig)

 title('Upper bound in red. Lower bound in blue.')

 end

 % Reinitialize userdata

 ud.upVal=[];

 ud.lowVal=[];

 ud.time = [];

 set_param(block,'UserData',ud);

end

 Create a Custom Block

35-41

5 Right-click the Level-2 MATLAB S-Function block and select Properties. The Block
Properties dialog box opens. On the Callbacks pane, modify the StopFcn to call the
plotting callback as shown in the following figure, then click OK.

35 Creating Custom Blocks

35-42

Custom Block Examples

In this section...

“Creating Custom Blocks from Masked Library Blocks” on page 35-42
“Creating Custom Blocks from MATLAB Functions” on page 35-42
“Creating Custom Blocks from System Objects” on page 35-43
“Creating Custom Blocks from S-Functions” on page 35-43

Creating Custom Blocks from Masked Library Blocks

The Additional Math and Discrete Simulink library is a group of custom blocks created
by extending the functionality of built-in Simulink blocks. The Additional Discrete
library contains a number of masked blocks that extend the functionality of the standard
Unit Delay block. See “Libraries” for more general information on Simulink libraries.

Creating Custom Blocks from MATLAB Functions

The Simulink product provides a number of examples that show how to incorporate
MATLAB functions into a custom block.

• The Single Hydraulic Cylinder Simulation, sldemo_hydcyl, uses a Fcn block to model
the control valve flow. In addition, the Control Valve Flow block is a library link to
one of a number of custom blocks in the library hydlib.

• The Radar Tracking Model, sldemo_radar, uses an Interpreted MATLAB Function
block to model an extended Kalman filter. The MATLAB function aero_extkalman.m
implements the Kalman filter found inside the Radar Kalman Filter subsystem.
In this example, the MATLAB function requires three inputs, which are bundled
together using a Mux block in the Simulink model.

• The Spiral Galaxy Formation example, sldemo_eml_galaxy, uses several MATLAB
Function blocks to construct two galaxies and calculate the effects of gravity as these
two galaxies nearly collide. The example also uses MATLAB Function blocks to plot
the simulation results using a subset of MATLAB functions not supported for code
generation. However, because these MATLAB Function blocks have no outputs, the
Simulink Coder product optimizes them away during code generation.

 Custom Block Examples

35-43

Creating Custom Blocks from System Objects

The Simulink product provides a number of examples that show how to incorporate
System objects into a custom block. Access the MATLAB source code for each System
object by clicking the Source code link from the block dialog box. For more information
on using MATLAB System blocks and System objects, see “System Object Integration”).

• System Identification for an FIR System Using MATLAB System Blocks,
slexSysIdentMATLABSystemExample, uses the MATLAB System block to implement
Simulink blocks using a System object. It highlights two MATLAB System blocks.

• MATLAB System Block with Variable-Size Input and Output Signals,
slexVarSizeMATLABSystemExample, uses the MATLAB System block to implement
Simulink blocks with variable-size input and output signals. Due to the use of
variable-size signals, the example uses System object propagation methods.

• Illustration of Law of Large Numbers Using MATLAB System Blocks,
slexLawOfLargeNumbersExample, uses MATLAB System blocks to illustrate the
law of large numbers. Due to the use of MATLAB functions not supported for code
generation, the example uses System object propagation methods and interpreted
execution.

Creating Custom Blocks from S-Functions

The Simulink model sfundemos contains various examples of MATLAB and C MEX S-
functions. For more information on writing MATLAB S-functions, see “Write Level-2
MATLAB S-Functions”. For more information on writing C MEX S-functions, see “C/C+
+ S-Functions”. For a list of available S-function examples, see “S-Function Examples” in
Writing S-Functions.

36

Working with Block Libraries

• “About Block Libraries and Linked Blocks” on page 36-2
• “Create and Work with Linked Blocks” on page 36-4
• “Work with Library Links” on page 36-8
• “Create Block Libraries” on page 36-19
• “Add Libraries to the Library Browser” on page 36-30

36 Working with Block Libraries

36-2

About Block Libraries and Linked Blocks

Block Libraries

A block library is a collection of blocks that you can use to create instances of blocks in a
Simulink model.

Note: Simulink comes with some built-in block libraries in addition to the default
Simulink library. These libraries support simulating models that contain these blocks.
However, you cannot generate code or modify these blocks without the relevant product
licences. You cannot change a built-in block library in any way.

Benefits of Block Libraries

Block libraries are a useful componentization technique for:

• Providing frequently used, and seldom changed, modeling utilities
• Reusing components repeatedly in a model or in multiple models

For additional information about how libraries compare to other Simulink
componentization techniques, see “Componentization Guidelines” on page 14-28.

Library Browser

Simulink provides a Library Browser that you can use to display block libraries, search
for blocks by name, and copy library blocks into models. All installed libraries appear in
the Library Browser when you open it. See “Model Editing Environment” on page 1-35.

Linked Blocks

When you copy a block from a library into a model, Simulink creates a linked block in
the model, and connects it to the library block using a library link. The library block is
the prototype block, and the linked block in the model is an instance of the library block.
The linked block appearance and behavior are the same as the library block. For most
purposes, you can ignore the underlying link and just think of a linked block as a clone of
the library block.

 About Block Libraries and Linked Blocks

36-3

Copying a block from a library to another library or model does not always create a
linked block. Library blocks that support linking include subsystems, masked blocks,
and charts. However, the block author can choose not to make the copy a linked block by
modifying the CopyFcn, as done by the Simulink Subsystem block.

36 Working with Block Libraries

36-4

Create and Work with Linked Blocks

In this section...

“About Linked Blocks” on page 36-4
“Create a Linked Block” on page 36-4
“Update a Linked Block” on page 36-5
“Modify Linked Blocks” on page 36-6
“Find a Linked Block's Prototype” on page 36-7
“Find Linked Blocks in a Model” on page 36-7

About Linked Blocks

A linked block is an instance of a library block and contains a link to that library block
that serves as the block type's prototype. The link consists of the path of the library
block that serves as the instance's prototype. The link allows the linked block to update
whenever the corresponding prototype in the library changes (“Update a Linked Block”
on page 36-5). This ensures that your model always uses the latest version of the
block.

Note: The tooltip for a linked block shows the name of the library block it references.

You can change the values of a linked block's parameters (including in an existing mask).
You cannot add a new mask for linked blocks or edit the mask setup, that is, add or
remove mask parameters or change mask behavior.

Also, you cannot set callback parameters for a linked block. If the linked block's prototype
is a subsystem, you can make nonstructural changes to the contents of the linked
subsystem (see “Modify Linked Blocks” on page 36-6).

Create a Linked Block

To create a linked block in a model or another library:

1 Open your model.

 Create and Work with Linked Blocks

36-5

2 Open the Simulink Library Browser or another library.
3 Use the Library Browser to find the library block that serves as a prototype of the

block you want to create.

Note: If you add a description to the library block through the Block Properties
dialog box, Simulink does not propagate that description to the linked block. If you
want to create a description that propagates, mask the library block and add the
description in the Documentation pane of the mask.

4 Drag the library block from the Blocks pane and drop it into your model.

Update a Linked Block

Simulink updates out-of-date linked blocks in a model or library when you:

• Load the model or library.
• Run the simulation.
• Use the find_system command.
• Query the LinkStatus parameter of a block, using the get_param command (see

“Check and Set Link Status Programmatically” on page 36-15).

Note Querying the StaticLinkStatus parameter of a block does not update any
out-of-date linked blocks.

• Save changes to a library block, then Simulink automatically refreshes all links to the
block in open Model Editor windows.

When you edit a library block (in the Model Editor or at the command line), then
Simulink indicates stale links which are open in the Model Editor by displaying the
linked blocks grayed out. Simulink refreshes any stale links to edited blocks when you
activate the Model Editor window, even if you have not saved the library yet.

To manually refresh links:

• Select Simulation > Update Diagram (or press Ctrl+D).
• Select Diagram > Refresh Blocks (or press Ctrl+K) to refresh links.
• Select Go To Library Link.

36 Working with Block Libraries

36-6

Modify Linked Blocks

You cannot make structural changes to linked blocks, such as adding or deleting lines or
blocks to the block diagram of a masked subsystem. If you want to make such changes,
you must disable the linked block's link to its library prototype (see “Disable Links to
Library Blocks” on page 36-11).

Parameterized Links

If you change parameter values inside a linked block, you create a parameterized link.
You can change the values of any masked subsystem linked block parameter that does
not alter the block's structure, e.g., by adding or deleting lines, blocks, or ports. An
example of a nonstructural change is a change to the value of a mathematical block
parameter, such as the Gain parameter of the Gain block. A linked subsystem block
whose parameter values of inner blocks differ from their corresponding library blocks
is called a parameterized link. Changing the top-level mask values does not create a
parameterized link.

When saving a model containing a parameterized link, Simulink saves the changes to the
local copy of the subsystem together with the path to the library copy in the model's file.
When you reopen the system, Simulink copies the library block into the loaded model and
applies the saved changes.

Tip To determine whether a linked block's parameter values differ from those of its
library prototype, open the linked block's block diagram in an editor window. The linked
block’s library link indicator (if displayed) changes to a red arrow and the title bar of
the editor window displaying the subsystem displays “Parameterized Link” if the linked
block’s parameter values differ from the library block's parameter values.

See “Display Library Links” on page 36-8.

Self-Modifying Linked Subsystems

Simulink allows linked subsystems to change their own structural contents without
disabling the link. This allows you to create masked subsystems that modify their
structural contents based on mask parameter dialog box values.

 Create and Work with Linked Blocks

36-7

Find a Linked Block's Prototype

To find the source library and the prototype of a linked block, right-click the linked block
and select Library Link > Go To Library Link.

Alternatively, select the linked block and select Diagram > Library Link > Go To
Library Link.

If the library is open, Simulink selects and highlights the library block and makes the
source library the active window. If the library is not open, Simulink first opens it and
then selects the library block.

Find Linked Blocks in a Model

Use the libinfo command to get information about the linked blocks in the model and
which library blocks they link to. The ReferenceBlock property gives the path of the
library block to which a block links.

36 Working with Block Libraries

36-8

Work with Library Links

In this section...

“Display Library Links” on page 36-8
“Lock Links to Blocks in a Library” on page 36-9
“Disable Links to Library Blocks” on page 36-11
“Restore Disabled or Parameterized Links” on page 36-12
“Check and Set Link Status Programmatically” on page 36-15
“Break a Link to a Library Block” on page 36-17
“Fix Unresolved Library Links” on page 36-18

Display Library Links

A model can have a block linked to a library block, or it can have a local instance of a
block that is not linked. To enable the display of library links:

1 In the Model Editor window, select Display > Library Links and from the
submenu, select one of these options:

a None — displays no links
b Disabled — displays only disabled links (the default for new models)
c User Defined — displays only links to user libraries
d All — displays all links

2 Observe the library link indicators.

The library link indicator is a badge in the bottom left corner of each block. You can
right-click the link badge to access link menu options.

 Work with Library Links

36-9

The color and icon of the link badge indicates the status of the link. If you open a linked
block, the Model Editor displays the same link badge at bottom left. You can right-click
the link badge in the corner of the canvas to access link options such as Go To Library
Block.

Link Badge Status

Black links Active link

Grey separated
links

Inactive link

Black links with
a red star icon

Active and modified (parameterized link)

White links,
black background

Locked link

Note: If you have a variant subsystem block inside a link block, modifying the
parameters on the variant subsystem creates a link data on the topmost link block. If the
link badge is visible, presence of link data is indicated by a red star on the link badge.

Lock Links to Blocks in a Library

You can lock links to a library. Lockable library links enable control of end user editing,
to prevent unintentional disabling of these links. This ensures robust usage of mature
stable libraries.

To lock links to a library, either:

• In your library window, select Diagram > Lock Links To Library.

36 Working with Block Libraries

36-10

• At the command line, use the LockLinksToLibrary property:

 set_param('MyModelName', 'LockLinksToLibrary', 'on')

where MyModelName is the library file.

When you copy a block to a model from a library with locked links:

• The link is locked.
• You cannot disable locked links from the Model Editor.

If you select Diagram or right-click the linked block, you see the Library Link menu
has changed to Locked Library Link, and the only enabled option is now Go To
Library Block.

• If you display library links, the locked link icon has a black background.

• If you open a locked link, the window title is Locked Link: blockname. The bottom
left corner shows a lock icon and a link badge.

• You cannot edit locked link contents. If you try to make a structural change to a
locked link (such as editing the diagram), you see a message stating that you cannot
modify the link because it is either locked or inside another locked link.

 Work with Library Links

36-11

• The mask and block parameter dialogs are disabled for blocks inside locked links.
For a resolved linked block with a mask, its parameter dialog is always disabled.

• You cannot parameterize locked links in the Model Editor.
• You can disable locked links only from the command line as follows:

set_param(gcb, 'LinkStatus', 'inactive')

To unlock links to a library:

• In your library window, select Diagram > Unlock Links To Library
• At the command line:

 set_param('MyModelName', 'LockLinksToLibrary', 'off')

The status of a link (locked or not) is determined by the library state when you copy
the block. If you copy a block from a library with locked links, the link is locked. If you
later unlock the library links, any existing linked blocks do not change to unlocked
links until you refresh links.

If you use sublibraries as an organizational tool, when you lock links to a library, you
might want also to lock links to any sublibraries.

Disable Links to Library Blocks

To make a structural change to a linked block, you need to disable the link between the
block and the library block that serves as its prototype.

You cannot disable locked links from the Model Editor. See “Lock Links to Blocks in a
Library” on page 36-9.

Note When you use the Model Editor to make a structural change (such as editing the
diagram) to a block with an active library link, Simulink offers to disable the library link
for you (unless the link is locked). If you accept, Simulink disables the link and allows
you to make changes to the subsystem block.

Do not use set_param to make a structural change to an active link; the result of this
type of change is undefined.

To disable a link:

36 Working with Block Libraries

36-12

1 In the Model Editor window, right-click a linked block and select Library Link >
Disable Link.

2 Alternatively, select a linked block and select the menu item Diagram > Library
Link > Disable Link.

The library link is disabled and the library link indicator changes to gray. When a
library block is disabled and it is within another library block (a child of a parent
library block), the model also disables the parent block containing the child block.

To disable a link from the command-line, set the LinkStatus property to inactive as
follows:

set_param(gcb, 'LinkStatus', 'inactive')

Restore Disabled or Parameterized Links

After you make changes to a disabled linked block, you may want to restore its link to the
library block and resolve any differences between the two blocks. The Links Tool helps
you with this task.

1 In the Model Editor window, select a linked block with a disabled library link.
2 From the Diagram menu (or right-click context menu), select Library Link >

Resolve Link.

The Links Tool window opens.

 Work with Library Links

36-13

The Edited links table has the following columns:

• Linked block — List of linked blocks. The list of links includes library links with
structural changes (disabled links), parameterized library links (edited links),
and library links that were actively chosen to be resolved.

• Action — Select an action to perform on the linked block or library.
• Library — List of library names and version numbers.

3 Select the check box Show all disabled links if you want to view disabled links as
well as parameterized links.

4 Under Push/Restore Mode, choose a mode of action:

• If you want to act on individual links, select Individual.

36 Working with Block Libraries

36-14

• If you want to act on the whole link hierarchy, leave the default setting on
Hierarchy. See “Pushing or Restoring Link Hierarchies” on page 36-15.

5 From the Linked block list, select a block name.

The Links Tool updates the Paths for selected link panel with links to the linked
block in the model and in the library.

6 From the Action list, select Push or Restore for the currently selected block.

Action Choice Links Tool Action

Push The Links Tool looks for all changes in the link hierarchy
and pushes all links with changes to their libraries.
Push replaces the version of the block in the library with
the version in the model.

Restore The Links Tool looks for all disabled or edited links
in the link hierarchy and restores them all with their
corresponding library blocks.
Restore replaces the version of the block in the model with
the version in the library.

Push Individual In Individual mode, the disabled or edited block is pushed
to the library, preserving the changes inside it without
acting on the hierarchy. All other links are unaffected.

Restore

Individual

In Individual mode, the disabled or edited block is restored
from the library, and all other links are unaffected.

To select the same action for all linked blocks, click Push all, Restore all, or Clear
all.

7 When you click OK or Apply, the Links Tool performs the push or restore actions
you selected in the edited links table.

After resolving a link, the versions in the library and the linked block now match.

Note: Changes you push to the library are not saved until you actively save the
library.

If a linked block name has a cautionary icon before it, the model has other instances
of this block linked from the same library block, and they have different changes. Choose

 Work with Library Links

36-15

one of the instances to push changes to the library block and restore links to the other
blocks , or choose to restore all of them with the library version.

Pushing or Restoring Link Hierarchies

Caution Be cautious using Push or Restore in hierarchy mode if you have a large
hierarchy of edited and disabled links. Ensure that you want to push or restore the whole
hierarchy of links.

Pushing a hierarchy of disabled links affects the disabled links inside and outside in
the hierarchy for a given link. If you push changes from a disabled link in the middle
of a hierarchy, the inside links are pushed and the outside links are restored if without
changes. This operation does not affect outside (parent) links with changes unless you
also explicitly selected them for push. The Links Tool starts from the lowest links (the
deepest inside) and then moves upward in the hierarchy.

Some simple examples:

1 Link A contains link B and both have changes.

• Push A. The Links Tool pushes both A and B.
• Push B. The Links Tool pushes B and not A.

2 Link A contains link B. A has no changes, and B has changes.

• Push B. The Links Tool pushes B and restores A. When parent links are
unmodified, they are restored.

If you have a hierarchy of parameterized links, the Links Tool can manipulate only the
top level.

Check and Set Link Status Programmatically

All blocks have a LinkStatus parameter and a StaticLinkStatus parameter that
indicate whether the block is a linked block.

Use get_param(gcb, 'StaticLinkStatus') to query the link status without
updating out-of-date linked blocks.

Use get_param and set_param to query and set the LinkStatus, which can have the
following values.

36 Working with Block Libraries

36-16

Get LinkStatus Value Description

none Block is not a linked block.
resolved Resolved link.
unresolved Unresolved link.
implicit Block resides in library block and is itself not a link to a library

block. For example, suppose that A is a link to a subsystem
in a library that contains a Gain block. Further, suppose that
you open A and select the Gain block. Then, get_param(gcb,
'LinkStatus') returns implicit.

inactive Disabled link.

Set LinkStatus Value Description

none Breaks link. Use none to break a link, e.g., set_param(gcb,
'LinkStatus', 'none')

inactive Disables link. Use inactive to disable a link, e.g.,
set_param(gcb, 'LinkStatus', 'inactive')

restore Restores an inactive or disabled link to a library block and
discards any changes made to the local copy of the library block.
For example, set_param(gcb, 'LinkStatus', 'restore')
replaces the selected block with a link to a library block of the
same type, discarding any changes in the local copy of the library
block.

This is equivalent to Restore Individual in the Links Tool.
propagate Pushes any changes made to the disabled link to the library block

and re-establishes its link.

This is equivalent to Push Individual in the Links Tool.
restoreHierarchy Restores all disabled links in the hierarchy with their

corresponding library blocks. This is equivalent to Restore in
hierarchy mode in the Links Tool.

propagateHierarchyPushes all links with changes in the hierarchy to their libraries.
This is equivalent to Push in hierarchy mode in the Links Tool.
See “Restore Disabled or Parameterized Links” on page 36-12.

 Work with Library Links

36-17

Note Using get_param to query a block's LinkStatus also resolves any out-of-date
block links. Use get_param to update library links in a model programmatically.
Querying the StaticLinkStatus property does not resolve any out-of-date links. Query
the StaticLinkStatus property when the call to get_param is in the callback of a
child block querying the link status of its parent.

If you call get_param on a block inside a library link, Simulink resolves the link
if necessary. This operation may involve loading part of the library and executing
callbacks.

Break a Link to a Library Block

You can break the link between a linked block and its library block to cause the linked
block to become a simple copy of the library block, unlinked to the library block. Changes
to the library block no longer affect the block. Breaking links to library blocks may enable
you to transport a masked subsystem model as a standalone model, without the libraries
(see “Block Masks”).

To break the link between a linked block and its library block, you can use any of the
following actions.

• Disable the link, then right-click the block and choose Library Link > Break Link .
• At the command line, change the value of the LinkStatus parameter to 'none'

using this command:

set_param(gcb, 'LinkStatus', 'none')

• Right-click and drag to copy a block, and you see an offer to break links, unless the
parent library has LockLinksToLibrary set to on. If your copied block will be a
locked link, then you do not see the option to break links.

To copy and break links to multiple blocks simultaneously, select multiple blocks and
then drag. Any locked links are ignored and not broken.

• When saving the model, you can break links by supplying arguments to the
save_system command. See save_system.

Note Breaking library links in a model does not guarantee that you can run the model
standalone, especially if the model includes blocks from third-party libraries or optional
Simulink blocksets. It is possible that a library block invokes functions supplied with

36 Working with Block Libraries

36-18

the library and hence can run only if the library is installed on the system running the
model. Further, breaking a link can cause a model to fail when you install a new version
of the library on a system.

For example, suppose a block invokes a function that is supplied with the library. Now
suppose that a new version of the library eliminates the function. Running a model with
an unlinked copy of the block results in invocation of a now nonexistent function, causing
the simulation to fail. To avoid such problems, you should generally avoid breaking links
to libraries.

Fix Unresolved Library Links

If Simulink is unable to find either the library block or the source library on your
MATLAB path when it attempts to update the linked block, the link becomes unresolved.
Simulink changes the appearance of these blocks.

If you double-click the unresolved block, the parameter dialog box displays an error
similar to the following:

Failed to find 'source-block-name'

in library 'source-library-name'

referenced by

"linked-block-path".

To fix an unresolved link, you must do one of the following:

• Delete the unresolved block and copy the library block back into your model.
• Add the folder that contains the required library to the MATLAB path and select

either Simulation > Update Diagram or Diagram > Refresh Blocks.
• Double-click the unresolved block to open its dialog box (see the Unresolved Link

block reference page). On the dialog box that appears, correct the path name in the
Source block field and click OK.

 Create Block Libraries

36-19

Create Block Libraries

In this section...

“Create a Library” on page 36-19
“Create a Sublibrary” on page 36-19
“Modify and Lock Libraries” on page 36-20
“Make Backward-Compatible Changes to Libraries” on page 36-21

Create a Library

You can create your own block library and, optionally, add it to the Simulink Library
Browser. The file types you can save the model as are also model file types. However, you
cannot simulate in a library, and a library becomes locked (i.e., you cannot make changes
to it without unlocking) each time you close it.

1

In the Library Browser, click the New Model button arrow and select New
Library. Simulink creates an empty library.

2 Drag blocks from models or other libraries into the new library. Make the changes
you want to the blocks, such as changing block parameters, adding masks, or adding
blocks to subsystems.

3 Save the library.

When you create an instance of a library block in a model, you can create a library link
on the instance only if the block in the library had a mask. See “Linked Blocks” on page
36-2 for more information.

Once you have created a library, consider adding it to the Library Browser. See “Add
Libraries to the Library Browser” on page 36-30 for more information.

Create a Sublibrary

If your library contains many blocks, consider grouping the blocks into a hierarchy of
sublibraries. Creating a sublibrary entails inserting a reference in the Simulink model
file of one library to the model file of another library. The referenced file is called a

36 Working with Block Libraries

36-20

sublibrary of the parent (i.e., referencing) library. The sublibrary is said to be included by
reference in the parent library.

To include a library in another library as a sublibrary:

1 Open the parent library.
2 Add a Subsystem block to the parent library.
3 Delete the subsystem's default input and output ports.
4 Create a mask for the subsystem that displays text or an image that conveys the

sublibrary's purpose.
5 Set the subsystem's OpenFcn parameter to the name of the sublibrary's model file.
6 Save the parent library.

Modify and Lock Libraries

When you open a library, it is automatically locked and you cannot modify its contents.
To unlock the library, select Diagram > Unlock Library.

When you close the library window, Simulink locks the library.

Locking a library prevents a user from inadvertently modifying a library, for example,
by moving a block in the library or adding or deleting a block from the library. If you
attempt to modify a locked library, Simulink displays a dialog box that allows you to
unlock the library and make the change.

To unlock a block library from the MATLAB command line, use the following command:

set_param('library_name', 'Lock', 'off');

You must then relock the library from the MATLAB command line to prevent further
changes. Use the following command to relock a block library:

set_param('library_name', 'Lock', 'on');

If you want to control end user editing of linked blocks and prevent unintentional
disabling of links, you can lock links to a library. See “Lock Links to Blocks in a Library”
on page 36-9.

When you save a library, Simulink checks file permissions and offers to try to make the
library writable if necessary.

 Create Block Libraries

36-21

Make Backward-Compatible Changes to Libraries

Simulink provides the following features to facilitate making changes to library blocks
without invalidating models that use the library blocks.

Forwarding Tables

You can create forwarding tables for libraries to specify how to update links in models to
reflect changes in the parameters. Use the Forwarding Table to map old library blocks to
new library blocks. For example, if you rename or move a block in a library, you can use a
forwarding table to enable Simulink to update models that link to the block.

After you specify the forwarding table entry in a library, any links to old library
blocks will be updated when you load a model containing links to old blocks. Library
authors can use the forwarding tables to automatically transform old links into updated
links without any loss of functionality and data. Use the forwarding table to solve
compatibility issues with models containing old links that cannot load in the current
version of Simulink. Library authors do not need to run the Upgrade Advisor to upgrade
old links, and can reduce maintenance of legacy blocks.

To set up a forwarding table for a library,

1 Select Diagram > Unlock Library.
2 Select File > Library Properties > Library Properties. The Library Properties

dialog box opens.
3 Select the Forwarding Table tab.

36 Working with Block Libraries

36-22

4 Define the mapping from old library blocks to new library blocks.

a Click the Add New Entry button. A new row appears in the table.
b Enter values in Old Block Path and New Block Path columns.

Click GCB to get the path of the currently selected block.

If you select identical old and new library block names and paths, the
Forwarding Table automatically populates library version numbers in the
Version columns. The initial value of the LibraryVersion property is the
ModelVersion of the library at the time the link was created. The value
updates with increments in the model version of the library.

c (Optional) You can define a transformation function to update old link
parameter data using a MATLAB file on the path. Specify the function in the

 Create Block Libraries

36-23

Transformation Function column. Transforming old link parameter data for
the new library block enables you to load old links and preserve parameter data.

If you do not want to specify a transformation function, do not edit the field.
When you save the library, the column will display No Transformation.

5 Click OK to apply changes and close the dialog box.

After specifying the forwarding table mapping, when you open a model containing
links to the library, links to old library blocks will be updated.

To view an example of a forwarding table:

1 Enter

open_system('simulink')

2 Select File > Library Properties > Library Properties
3 Click the Forwarding Table tab.
4 View how the forwarding table specifies the mapping of old blocks to new blocks. You

cannot make changes because the library is locked. Do not edit the forwarding table
for your Simulink library.

36 Working with Block Libraries

36-24

5 Click OK to close the dialog

The following example shows a forwarding table that defines:

• A block with the same name moving to a different library (Constant A)
• A block changing name in the same library (Block X to Block Y)
• A block changing name, moving library, and applying a transformation function

(Gain A to Gain B)
• A block with three version updates (Block A) using a transformation function. When

you select identical old and new library block names and paths, the Forwarding
Table automatically populates version numbers in the Version columns. If this is
the first entry with identical names, version starts at 0, and the new version number
is set to the ModelVersion of the library. For subsequent entries, the first version

 Create Block Libraries

36-25

is set to the previous entry’s new version, and the new version is set to the current
ModelVersion of the library.

At the command line you can create a simple forwarding table specifying the old locations
and new locations of blocks that have moved within the library or to another library. You
associate a forwarding table with a library by setting its ForwardingTable parameter
to a cell array of two-element cell arrays, each of which specifies the old and new path of
a block that has moved. For example, the following command creates a forwarding table
and assigns it to a library named Lib1.

set_param('Lib1', 'ForwardingTable', {{'Lib1/A', 'Lib2/A'}

{'Lib1/B', 'Lib1/C'}});

The forwarding table specifies that block A has moved from Lib1 to Lib2. and that block
B is now named C. Suppose that you open a model that contains links to Lib1/A and Lib1/
B. Simulink updates the link to Lib1/A to refer to Lib2/A and the link to Lib1/B to refer to
Lib1/C. The changes become permanent when you subsequently save the model.

Writing Transformation Functions

You can use transformation functions to add or remove parameters and define parameter
values. Transforming old link parameter data for the new library block enables you to
load old links and preserve parameter data that differs from library values. Define your
transformation function using a MATLAB file on the path, then specify the function in
the Forwarding Table Transformation Function column.

The transformation function in your MATLAB file must be like the following:

function outData = TransformationFcn(inData)

where inData is a structure with fields ForwardingTableEntry and InstanceData,
and ForwardingTableEntry is a structure.

36 Working with Block Libraries

36-26

This general transformation function can have many local functions defined in it. The
function calls the appropriate local functions based on old block names and versions.
Use this to combine many local functions into a single transformation function, to avoid
having many transformation functions on the MATLAB path.

InstanceData and NewInstanceData are structures with fields Name and Value.
Instance data means the names and values of parameters that are different from the
library values.

outData is a structure with fields NewInstanceData and NewBlockPath.

The following example code shows how to define a transformation function that adds a
parameter with value uint8 to update a Compare To Constant block:
function [outData] = TransformationCompConstBlk(inData)

% Example transformation Function for old 'Compare To Const' block.

%

% If instanceData of old 'Compare To Const' block does not have

% the 'OutDataTypestr' parameter,

% add the parameter with value 'uint8'.

%%

outData.NewBlockPath = '';

outData.NewInstanceData = [];

instanceData = inData.InstanceData;

% Get the field type 'Name' from instanceData

[ParameterNames{1:length(instanceData)}] = instanceData.Name;

if (~ismember('OutDataTypeStr',ParameterNames))

 % OutDataTypeStr parameter is not present in old link. Add it and set value uint8

 instanceData(end+1).Name = 'OutDataTypeStr';

 instanceData(end).Value = 'uint8';

end

outData.NewInstanceData = instanceData;

Creating Aliases for Mask Parameters

Simulink lets you create aliases, i.e., alternate names, for a mask's parameters. A model
can then refer to the mask parameter by either its name or its alias. This allows you to
change the name of a mask parameter in a library block without having to recreate links
to the block in existing models (see “Using Mask Parameter Aliases to Create Backward-
Compatible Parameter Name Changes” on page 36-27).

To create aliases for a masked block's mask parameters, use the set_param command
to set the block's MaskVarAliases parameter to a cell array that specifies the names of
the aliases in the same order as the mask names appear in the block's MaskVariables
parameter.

 Create Block Libraries

36-27

Using Mask Parameter Aliases to Create Backward-Compatible Parameter Name Changes

The following example illustrates the use of mask parameter aliases to create backward-
compatible parameter name changes.

1 Create a new library. File > New > Library
2 Open the model masking_example described in “How Mask Parameters Work” on

page 34-4. Drag the masked block named mx+b into your new library and rename it
to Line.

3 Right-click the block and select Properties. In the Block Properties dialog, select
the Block Annotation tab. In the Enter text and tokens for annotation box,
enter

m = %<m>

b = %

The block displays the value of its m and b parameters,
4 Right-click the block, and select Mask > Mask Parameters. In the Block

Parameter dialog, enter 0.5 for the Slope and 0 for the Intercept.
5 Save the new library with the filename mylibrary.
6 Create a new Simulink model. File > New > Model.
7 From the mylibrary window, drag an instance of the Line block to your new model.

Rename the instance LineA.
8 Right-click the block and select Mask > Mask Parameters. In the Block

Parameters dialog, change the value Slope to -0.5 and change the value Intercept
to 30. Select Display > Library Links > User Defined.

9 Add a Scope and Clock block to your model and connect them to your block. Save the
new model with the filename mymodel.

10 From the Simulation menu, select Model Configuration Parameters. From
the Type list, select Fixed-step. From the Solver list, select discrete (no
continuous states. In the Fixed-step size box, enter 0.1. Simulate model.

Note that the model simulates without error.
11 Save and close mymodel.
12 Open mylibrary.
13 Edit mask. Right-click block, select Edit mask. In the Mask Editor dialog,

36 Working with Block Libraries

36-28

• Select the Parameters tab. In the Dialog parameters section and Variable
column, change the variable m to slope and b to intercept.

• Select the Icon & Ports tab. In the Icon Drawing commends box, change the
variable m to slope and b to intercept.

14 Right-click the Line block, select Properties. In the Block Properties dialog, .

• Select the Block Annotation tab . In the Enter text and tokens of
annotation box, rename the m parameter to slope and the b parameter to
intercept.

15 Click OK and save mylibrary.
16 Reopen mymodel.

Note that LineA icon has reverted to the appearance of its library master (i.e.,
mylib/Line) and that its annotation displays question marks for the values of
m and b. These changes reflect the parameter name changes in the library block.
In particular, Simulink cannot find any parameters named m and b in the library
block and hence does not know what to do with the instance values for those
parameters. As a result, LineA reverts to the default values for the slope and
intercept parameters, thereby inadvertently changing the behavior of the model. The
following steps show how to use parameter aliases to avoid this inadvertent change
of behavior.

17 Close mymodel.
18 In the Library: mylibrary window, select the Line block.
19 Execute the following command at the MATLAB command line.

set_param(gcb, 'MaskVarAliases',{'m', 'b'})

This specifies that m and b are aliases for the Line block slope and intercept
parameters.

20 Reopen mymodel.

Note that LineA appearance, not the annotation, now reflects the value of the slope
parameter under its original name, i.e., m. This is because when Simulink opened the
model, it found that m is an alias for slope and assigned the value of m stored in the
model file to the LineA slope parameter.

21 Change LineA block annotation property to reflect LineA parameter name changes,
replace

 Create Block Libraries

36-29

m = %<m>

b = %

with

m = %<slope>

b = %<intercept>

LineA now appears with m = -0.5 and b = 30.

Note that LineA annotation shows that, thanks to parameter aliasing, Simulink has
correctly applied the parameter values stored for LineA in the mymodels file to the
block renamed parameters.

36 Working with Block Libraries

36-30

Add Libraries to the Library Browser

This example shows how to create a block library and add it to the Simulink Library
Browser.

1 In the Simulink Editor, select File > New > Library.
2 Drag blocks from models or other libraries into the new library. You can modify

the blocks in the library by changing block parameters, adding masks, or grouping
blocks in subsystems.

3 Save the library in a folder that is on the MATLAB path. To add a folder to the
MATLAB path, right-click the folder in MATLAB, and select Add to Path >
Selected Folders and Subfolders.

4 Open the library and unlock it by selecting Diagram > Unlock Library.
5 At the MATLAB command prompt, enable the model property

EnableLBRepository so that Simulink can add the library to the Library Browser.

set_param(gcs,'EnableLBRepository','on');

6 In MATLAB, open the folder containing the library. Right-click and select New File
> Script.

7 Save the file as slblocks.m.
8 Open slblocks.m, and add this function into it.

function blkStruct = slblocks

 % This function specifies that the library should appear

 % in the Library Browser

 % and be cached in the browser repository

 Browser.Library = 'mylib';

 % 'mylib' is the name of the library

 Browser.Name = 'My Library';

 % 'My Library' is the library name that appears in the Library Browser

 blkStruct.Browser = Browser;

The figure shows the example library mylib.slx, which contains a Gain block, the
Subsystem1 block, which uses default properties, and the Subsystem2 block. The
OpenFcn property of the Subsystem2 block points to the library mylib2.

 Add Libraries to the Library Browser

36-31

9 Save the file slblocks.m. Open the Library Browser and refresh to view the
new library. To refresh, right-click in the library list and select Refresh Library
Browser.

The figure shows the example library mylib with the library browser name My
Library.

36 Working with Block Libraries

36-32

 Add Libraries to the Library Browser

36-33

Because of the callback you created, clicking Subystem2 shows the contents of the
mylib2 library in the right pane.

You can specify the location of your library relative to the other libraries by adding your
own sl_customization.m file to the MATLAB path and setting the sort priority of
your library. For example, to see your library at the top of the list, you can set the sort
priority to -2. By default, the sort priority of the Simulink library is -1. All the other
libraries have a sort priority of 0.

This example shows sample content of the customization file that moves the new library
to the top of the list of libraries.

function sl_customization(cm)

% Change the order of libraries in the Simulink Library Browser.

36 Working with Block Libraries

36-34

cm.LibraryBrowserCustomizer.applyOrder({'My Library',-2});

end

For more information about registering user interface customizations, see “Registering
Customizations” on page 63-25.

37

Using the MATLAB Function Block

• “Integrate MATLAB Algorithm in Model” on page 37-3
• “What Is a MATLAB Function Block?” on page 37-5
• “Why Use MATLAB Function Blocks?” on page 37-7
• “Use Nondirect Feedthrough in a MATLAB Function Block” on page 37-8
• “Create Model That Uses MATLAB Function Block” on page 37-9
• “Code Generation Readiness Tool” on page 37-15
• “Check Code Using the Code Generation Readiness Tool” on page 37-21
• “Debugging a MATLAB Function Block” on page 37-22
• “MATLAB Function Block Editor” on page 37-31
• “MATLAB Function Reports” on page 37-46
• “Type Function Arguments” on page 37-59
• “Size Function Arguments” on page 37-66
• “Add Parameter Arguments” on page 37-68
• “Resolve Signal Objects for Output Data” on page 37-69
• “Types of Structures in MATLAB Function Blocks” on page 37-71
• “Attach Bus Signals to MATLAB Function Blocks” on page 37-72
• “How Structure Inputs and Outputs Interface with Bus Signals” on page 37-74
• “Rules for Defining Structures in MATLAB Function Blocks” on page 37-75
• “Index Substructures and Fields” on page 37-76
• “Create Structures in MATLAB Function Blocks” on page 37-77
• “Assign Values to Structures and Fields” on page 37-79
• “Initialize a Matrix Using a Non-Tunable Structure Parameter” on page 37-81
• “Define and Use Structure Parameters” on page 37-84
• “Limitations of Structures and Buses in MATLAB Function Blocks” on page 37-85
• “What Is Variable-Size Data?” on page 37-86

37 Using the MATLAB Function Block

37-2

• “How MATLAB Function Blocks Implement Variable-Size Data” on page 37-87
• “Enable Support for Variable-Size Data” on page 37-88
• “Declare Variable-Size Inputs and Outputs” on page 37-89
• “Filter a Variable-Size Signal” on page 37-90
• “Enumerated Types Supported in MATLAB Function Blocks” on page 37-97
• “Define Enumerated Data Types for MATLAB Function Blocks” on page 37-100
• “Add Inputs, Outputs, and Parameters as Enumerated Data” on page 37-102
• “Use Enumerated Data in MATLAB Function Blocks” on page 37-104
• “Instantiate Enumerated Data in MATLAB Function Blocks” on page 37-105
• “Control an LED Display” on page 37-106
• “Operations on Enumerated Data” on page 37-110
• “Enumerated Data in MATLAB Function Blocks” on page 37-111
• “Share Data Globally” on page 37-112
• “Create Custom Block Libraries” on page 37-119
• “Use Traceability in MATLAB Function Blocks” on page 37-138
• “Include MATLAB Code as Comments in Generated Code” on page 37-142
• “Integrate C Code Using the MATLAB Function Block” on page 37-147
• “Enhance Code Readability for MATLAB Function Blocks” on page 37-151
• “Control Run-Time Checks” on page 37-159
• “Track Object Using MATLAB Code” on page 37-161
• “Filter Audio Signal Using MATLAB Code” on page 37-187
• “Encapsulating the Interface to External Code” on page 37-216
• “Encapsulate Interface to an External C Library” on page 37-217
• “Best Practices for Using coder.ExternalDependency” on page 37-220
• “Update Build Information from MATLAB code” on page 37-222

 Integrate MATLAB Algorithm in Model

37-3

Integrate MATLAB Algorithm in Model

Here is an example of a Simulink model that contains a MATLAB Function block:

The MATLAB Function block contains the following algorithm:

function [mean,stdev] = stats(vals)

% #codegen

% calculates a statistical mean and a standard

% deviation for the values in vals.

len = length(vals);

mean = avg(vals,len);

stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);

plot(vals,'-+');

function mean = avg(array,size)

mean = sum(array)/size;

You will build this model in “Create Model That Uses MATLAB Function Block” on page
37-9.

Defining Local Variables for Code Generation

If you intend to generate code from the MATLAB algorithm in a MATLAB Function
block, you must explicitly assign the class, size, and complexity of local variables before
using them in operations or returning them as outputs (see “Data Definition for Code
Generation” on page 45-2. In the example function stats, the local variable len is
defined before being used to calculate mean and standard deviation:

37 Using the MATLAB Function Block

37-4

len = length(vals);

Generally, once you assign properties to a variable, you cannot redefine its class, size, or
complexity elsewhere in the function body, but there are exceptions (see “Reassignment
of Variable Properties” on page 44-9).

 What Is a MATLAB Function Block?

37-5

What Is a MATLAB Function Block?

The MATLAB Function block allows you to add MATLAB functions to Simulink models
for deployment to desktop and embedded processors. This capability is useful for coding
algorithms that are better stated in the textual language of MATLAB than in the
graphical language of Simulink. From the MATLAB Function block, you can generate
readable, efficient, and compact C/C++ code for deployment to desktop and embedded
applications.

Calling Functions in MATLAB Function Blocks

MATLAB Function blocks can call any of the following types of functions:

• Local functions

Local functions are defined in the body of the MATLAB Function block. In the
preceding example, avg is a local function. See “Call Local Functions” on page
53-9.

• MATLAB toolbox functions that support code generation

From MATLAB Function blocks, you can call toolbox functions that support code
generation. When you build your model with Simulink Coder, these functions
generate C code that is optimized to meet the memory and performance requirements
of desktop and embedded environments. In the preceding example, length, sqrt,
and sum are examples of toolbox functions that support code generation. See “Call
Supported Toolbox Functions” on page 53-10. For a complete list of supported
functions, see “Functions and Objects Supported for C and C++ Code Generation —
Alphabetical List” on page 42-2.

• MATLAB functions that do not support code generation

From MATLAB Function blocks, you can also call extrinsic functions. These are
functions on the MATLAB path that the compiler dispatches to MATLAB software
for execution because the target language does not support them. These functions do
not generate code; they execute only in the MATLAB workspace during simulation of
the model. The Simulink Coder software attempts to compile all MATLAB functions
unless you explicitly declare them to be extrinsic by using coder.extrinsic. See
“Declaring MATLAB Functions as Extrinsic Functions” on page 53-12.

The code generation software detects calls to many common visualization functions,
such as plot, disp, and figure. For MEX code generation, it automatically calls out

37 Using the MATLAB Function Block

37-6

to MATLAB for these functions. For standalone code generation, it does not generate
code for these visualization functions. This capability removes the requirement to
declare these functions extrinsic using the coder.extrinsic function.

See “Resolution of Function Calls for Code Generation” on page 53-2.
• Functions from Simulink Function blocks and Stateflow blocks

From MATLAB Function blocks, you can also call functions defined in a Simulink
Function block. You can call Stateflow functions with Export Chart Level
Functions (Make Global) and Allow exported functions to be called by
Simulink checked in the chart Properties dialog box.

 Why Use MATLAB Function Blocks?

37-7

Why Use MATLAB Function Blocks?

MATLAB Function blocks provide the following capabilities:

• Allow you to build MATLAB functions into embeddable applications —
MATLAB Function blocks support a subset of MATLAB toolbox functions that
generate efficient C/C++ code. For information see “Functions and Objects Supported
for C and C++ Code Generation — Alphabetical List” on page 42-2.. With this
support, you can use Simulink Coder to generate embeddable C code from MATLAB
Function blocks that implement a variety of sophisticated mathematical applications.
In this way, you can build executables that harness MATLAB functionality, but run
outside the MATLAB environment.

• Inherit properties from Simulink input and output signals — By default,
both the size and type of input and output signals to a MATLAB Function block are
inherited from Simulink signals. You can also choose to specify the size and type of
inputs and outputs explicitly in the Ports and Data Manager (see “Ports and Data
Manager” on page 37-33) or in the Model Explorer (see “Model Explorer Overview”
on page 11-2).

37 Using the MATLAB Function Block

37-8

Use Nondirect Feedthrough in a MATLAB Function Block

By default, MATLAB Function blocks have direct feedthrough enabled. To disable, in
the Ports and Data Manager, clear the Allow direct feedthrough check box. Nondirect
feedthrough enables semantics to ensure that outputs rely only on current state.

To use nondirect feedthrough, do not program outputs to rely on inputs or updated
persistent variables. For example, do not use the following code in a nondirect
feedthrough block:

counter = counter + 1; % update state

output = counter; % compute output based on updated state

Instead, use code such as:

output = counter; % compute output based on current state

counter = counter + 1; % update state

Also, nondirect feedthrough semantics require function inlining. Do not disable inlining.

Using nondirect feedthrough enables you to use MATLAB Function blocks in a feedback
loop and prevent algebraic loops.

 Create Model That Uses MATLAB Function Block

37-9

Create Model That Uses MATLAB Function Block

In this section...

“Adding a MATLAB Function Block to a Model” on page 37-9
“Programming the MATLAB Function Block” on page 37-10
“Building the Function and Checking for Errors” on page 37-11
“Defining Inputs and Outputs” on page 37-13

Adding a MATLAB Function Block to a Model

1 Create a new Simulink model and add a MATLAB Function block to the model from
the User-Defined Functions library:

2 Add the following Source and Sink blocks to the model:

• From the Sources library, add a Constant block to the left of the MATLAB
Function block and set its value to the vector [2 3 4 5].

• From the Sinks library, add two Display blocks to the right of the MATLAB
Function block.

3 In the Simulink Editor, select File > Save As and save the model as
call_stats_block1.

37 Using the MATLAB Function Block

37-10

Programming the MATLAB Function Block

The following exercise demonstrates programming the block to calculate the mean and
standard deviation for a vector of values:

1 Open the call_stats_block1 model that you saved at the end of “Adding a
MATLAB Function Block to a Model” on page 37-9. Double-click the MATLAB
Function block fcn to open it for editing.

A default function signature appears, along with the %#codegen directive. In the
MATLAB Function block, the %#codegen directive is included to emphasize that the
block’s MATLAB algorithm is always intended for code generation. The %#codegen
directive, or the absence of it, does not change the error checking behavior in the
context of the MATLAB Function block. For more information see “Compilation
Directive %#codegen” on page 53-8.

2 Edit the function header line:

function [mean,stdev] = stats(vals)

%#codegen

The function stats calculates a statistical mean and standard deviation for the
values in the vector vals. The function header declares vals as an argument to the
stats function, with mean and stdev as return values.

3 Save the model as call_stats_block2.
4 Complete the connections to the MATLAB Function block as shown.

5 In the MATLAB Function Block Editor, enter a line space after the function header
and add the following code:

 Create Model That Uses MATLAB Function Block

37-11

% calculates a statistical mean and a standard

% deviation for the values in vals.

len = length(vals);

mean = avg(vals,len);

stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);

plot(vals,'-+');

function mean = avg(array,size)

mean = sum(array)/size;

More about length

The function length is an example of a toolbox function that supports code
generation. When you simulate this model, C code is generated for this function in
the simulation application.

More about len

The class, size, and complexity of local variable len matches the output of the
toolbox function length, which returns a real scalar of type double.

By default, implicitly declared local variables like len are temporary. They come
into existence only when the function is called and cease to exist when the function
is exited. To make implicitly declared variables persist between function calls, see
“Define and Initialize Persistent Variables” on page 44-10.

More about plot

The function plot is not supported for code generation. The code generation
software detects calls to many common visualization functions, such as plot, disp,
and figure. For MEX code generation, it automatically calls out to MATLAB for
these functions. For standalone code generation, it does not generate code for these
visualization functions.

6 Save the model as call_stats_block2.

Building the Function and Checking for Errors

After programming a MATLAB Function block in a Simulink model, you can build the
function and test for errors. This section describes the steps:

37 Using the MATLAB Function Block

37-12

1 Set up your compiler.
2 Build the function.
3 Locate and fix errors.

Setting Up Your Compiler

Building your MATLAB Function block requires a supported compiler. MATLAB
automatically selects one as the default compiler. If you have multiple MATLAB-
supported compilers installed on your system, you can change the default using the mex
-setup command. See “Change Default Compiler”.

Supported Compilers for Simulation Builds

To view a list of compilers for building models containing MATLAB Function blocks for
simulation:

1 Navigate to the Supported and Compatible Compilers Web page.
2 Select your platform.
3 In the table for Simulink and related products, find the compilers checked in the

column titled Simulink for MATLAB Function blocks.

Supported Compilers for Code Generation

To generate code for models that contain MATLAB Function blocks, you can use any
of the C compilers supported by Simulink software for code generation with Simulink
Coder. For a list of these compilers:

1 Navigate to the Supported and Compatible Compilers Web page.
2 Select your platform.
3 In the table for Simulink and related products, find the compilers checked in the

column titled Simulink Coder.

How to Generate Code for the MATLAB Function Block

1 Open the call_stats_block2 model that you saved at the end of “Programming
the MATLAB Function Block” on page 37-10.

2 Double-click its MATLAB Function block stats to open it for editing.
3 In the MATLAB Function Block Editor, select Build Model > Build to compile and

build the example model.

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

 Create Model That Uses MATLAB Function Block

37-13

If no errors occur, the Simulation Diagnostics window displays a message
indicating success. Otherwise, this window helps you locate errors, as described in
“How to Locate and Fix Errors” on page 37-13.

How to Locate and Fix Errors

If errors occur during the build process, the Simulation Diagnostics window lists the
errors with links to the offending code.

The following exercise shows how to locate and fix an error in a MATLAB Function block.

1 In the stats function, change the local function avg to a fictitious local function aug
and then compile again to see the following messages in window:

The Simulation Diagnostics window displays each detected error with a red
button.

2 Click the first error line to display its diagnostic message in the bottom error
window.

The message also links to a report about compile-time type information for variables
and expressions in your MATLAB functions. This information helps you diagnose
error messages and understand type propagation rules. For more information about
the report, see “MATLAB Function Reports” on page 37-46.

3 In the diagnostic message for the selected error, click the blue link after the function
name to display the offending code.

The offending line appears highlighted in the MATLAB Function Block Editor:
4 Correct the error by changing aug back to avg and recompile.

Defining Inputs and Outputs

In the stats function header for the MATLAB Function block you defined in
“Programming the MATLAB Function Block” on page 37-10, the function argument
vals is an input, and mean and stdev are outputs. By default, function inputs and
outputs inherit their data type and size from the signals attached to their ports. In this
topic, you examine input and output data for the MATLAB Function block to verify that
it inherits the correct type and size.

37 Using the MATLAB Function Block

37-14

1 Open the call_stats_block2 model that you saved at the end of “Programming
the MATLAB Function Block” on page 37-10. Double-click the MATLAB
Function block stats to open it for editing.

2 In the MATLAB Function Block Editor, select Edit Data.

The Ports and Data Manager opens to help you define arguments for MATLAB
Function blocks.

The left pane displays the argument vals and the return values mean and stdev
that you have already created for the MATLAB Function block. Notice that vals
is assigned a Scope of Input, which is short for Input from Simulink. mean and
stdev are assigned the Scope of Output, which is short for Output to Simulink.

3 In the left pane of the Ports and Data Manager, click anywhere in the row for vals
to highlight it.

The right pane displays the Data properties dialog box for vals. By default, the
class, size, and complexity of input and output arguments are inherited from the
signals attached to each input or output port. Inheritance is specified by setting Size
to -1, Complexity to Inherited, and Type to Inherit: Same as Simulink.

The actual inherited values for size and type are set during compilation of the model,
and are reported in the Compiled Type and Compiled Size columns of the left
pane.

You can specify the type of an input or output argument by selecting a type in the
Type field of the Data properties dialog box, for example, double. You can also
specify the size of an input or output argument by entering an expression in the
Size field. For example, you can enter [2 3] in the Size field to specify vals as a 2-
by-3 matrix. See “Type Function Arguments” on page 37-59 and “Size Function
Arguments” on page 37-66 for more information on the expressions that you can
enter for type and size.

Note: The default first index for any arrays that you add to a MATLAB Function
block function is 1, just as it would be in MATLAB.

For more information, see “Ports and Data Manager” on page 37-33.

 Code Generation Readiness Tool

37-15

Code Generation Readiness Tool

In this section...

“Information That the Code Generation Readiness Tool Provides” on page 37-15
“Summary Tab” on page 37-16
“Code Structure Tab” on page 37-17
“See Also” on page 37-20

Information That the Code Generation Readiness Tool Provides

The code generation readiness tool screens MATLAB code for features and functions that
code generation does not support. The tool provides a report that lists the source files
that contain unsupported features and functions. The report also indicates the amount
of work required to make the MATLAB code suitable for code generation. It is possible
that the tool does not detect all code generation issues. Under certain circumstances, it is
possible that the tool can report false errors. Therefore, before you generate C code, verify
that your code is suitable for code generation by generating a MEX function.

37 Using the MATLAB Function Block

37-16

Summary Tab

The Summary tab provides a Code Generation Readiness Score, which ranges from
1 to 5. A score of 1 indicates that the tool detects issues that require extensive changes
to the MATLAB code to make it suitable for code generation. A score of 5 indicates that
the tool does not detect code generation issues; the code is ready to use with minimal or
no changes.

On this tab, the tool also displays information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor. To learn
more about the issues and how to fix them, use the Code Analyzer.

• Unsupported MATLAB function calls.
• Unsupported MATLAB language features, such as anonymous function handles and

nested functions.
• Unsupported data types.

 Code Generation Readiness Tool

37-17

Code Structure Tab

If the code that you are checking calls other MATLAB functions, or you are checking
multiple entry-point functions, the tool displays the Code Structure Tab.

This tab displays information about the relative size of each file and how suitable each
file is for code generation.

37 Using the MATLAB Function Block

37-18

Code Distribution

The Code Distribution pane displays a pie chart that shows the relative sizes of the
files and how suitable each file is for code generation. During the planning phase of
a project, you can use this information for estimation and scheduling. If the report
indicates that multiple files are not suitable for code generation, consider fixing files that
require minor changes before addressing files with significant issues.

Call Tree

The Call Tree pane displays information about the nesting of function calls. For each
called function, the report provides a Code Generation Readiness score, which ranges
from 1 to 5. A score of 1 indicates that the tool detects issues that require extensive
changes to the MATLAB code to make it suitable for code generation. A score of 5
indicates that the tool does not detect code generation issues. The code is ready to use
with minimal or no changes. The report also lists the number of lines of code in each file.

Show MATLAB Functions

If you select Show MATLAB Functions, the report also lists the MATLAB functions
that your function calls. For each of these MATLAB functions, if code generation
supports the function, the report sets Code Generation Readiness to Yes.

 Code Generation Readiness Tool

37-19

37 Using the MATLAB Function Block

37-20

See Also

• “Check Code Using the Code Generation Readiness Tool” on page 37-21

 Check Code Using the Code Generation Readiness Tool

37-21

Check Code Using the Code Generation Readiness Tool

In this section...

“Run Code Generation Readiness Tool at the Command Line” on page 37-21
“Run the Code Generation Readiness Tool From the Current Folder Browser” on page
37-21

Run Code Generation Readiness Tool at the Command Line

1 Navigate to the folder that contains the file that you want to check for code
generation readiness.

2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename, provides
a code generation readiness score, and lists issues that must be fixed prior to code
generation.

Run the Code Generation Readiness Tool From the Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for code
generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file and provides a
code generation readiness score and lists issues that must be fixed prior to code
generation.

37 Using the MATLAB Function Block

37-22

Debugging a MATLAB Function Block

In this section...

“Debugging the Function in Simulation” on page 37-22
“Watching Function Variables During Simulation” on page 37-25
“Checking for Data Range Violations” on page 37-27
“Debugging Tools” on page 37-28

Debugging the Function in Simulation

In “Create Model That Uses MATLAB Function Block” on page 37-9, you created an
example model with a MATLAB Function block that calculates the mean and standard
deviation for a set of input values. The software enables debugging for a MATLAB
Function when you set a breakpoint.

To debug the MATLAB Function in this model:

1 Open the call_stats_block2 model and double-click the MATLAB Function block
stats to open the editor.

2 In the MATLAB Function Block Editor, click the dash (-) in the left margin of the
line:

len = length(vals);

A red dot appears in the line margin, indicating the breakpoint.

 Debugging a MATLAB Function Block

37-23

3 Simulate the model.

Simulation pauses when execution reaches the breakpoint. This is indicated by a
green arrow in the margin.

4 In the toolbar, click Step to advance execution.

The execution arrow advances to the next line of stats, which calls the local
function avg.

5 In the toolbar, click Step In.

37 Using the MATLAB Function Block

37-24

Execution advances to enter the local function avg. Once you are in a local function,
you can use the Step or Step In commands to advance execution. If the local function
calls another local function, use Step In to enter it. If you want to execute the
remaining lines of the local function, use Step Out.

6 Click Step to execute the only line in the local function avg. When the local function
avg finishes executing, a green arrow, pointing down, appears under the last line of
the function.

7 Click Step to return to the function stats.

Execution advances to the line after the call to the local function avg.
8 Click Step twice to calculate the stdev and to execute the plot function.

The plot function executes in MATLAB:

 Debugging a MATLAB Function Block

37-25

In the MATLAB Function Block Editor, a green arrow points down under the last
line of code, indicating the completion of the function stats.

9 Click Continue to continue execution of the model.

The computed values of mean and stdev appear in the Display blocks.
10 In the MATLAB Function Block Editor, click Quit Debugging to stop simulation.

Watching Function Variables During Simulation

While you simulate a MATLAB Function block, you can use several tools to keep track of
variable values in the function.

37 Using the MATLAB Function Block

37-26

Watching with the Interactive Display

To display the value of a variable in the function of a MATLAB Function block during
simulation:

1 In the MATLAB Function Block Editor, place the mouse cursor over the variable text
and observe the pop-up display.

For example, to watch the variable len during simulation, place the mouse cursor
over the text len in the code. The value of len appears adjacent to the cursor, as
shown:

Watching with the Command Line Debugger

You can report the values for a function variable with the Command Line Debugger
utility in the MATLAB window during simulation. When you reach a breakpoint, the
Command Line Debugger prompt, debug>>, appears. At this prompt, you can see the
value of a variable defined for the MATLAB Function block by entering its name:

debug>> stdev

 1.1180

debug>>

The Command Line Debugger also provides the following commands during simulation:

Command Description

ctrl-c Quit debugging and terminate simulation.
dbcont Continue execution to next breakpoint.
dbquit Quit debugging and terminate simulation.
dbstep [in|

out]

Advance to next program step after a breakpoint is encountered. Step
over or step into/out of a MATLAB local function.

help Display help for command line debugging.

 Debugging a MATLAB Function Block

37-27

Command Description

print <var> Display the value of the variable var in the current scope. If var is a
vector or matrix, you can also index into var. For example, var(1,2).

save Saves all variables in the current scope to the specified file. Follows
the syntax of the MATLAB save command. To retrieve variables to
the MATLAB base workspace, use load command after simulation
has been ended.

<var> Equivalent to "print <var>" if variable is in the current scope.
who Display the variables in the current scope.
whos Display the size and class (type) of all variables in the current scope.

You can issue any other MATLAB command at the debug>> prompt, but the results are
executed in the workspace of the MATLAB Function block. To issue a command in the
MATLAB base workspace at the debug>> prompt, use the evalin command with the
first argument 'base' followed by the second argument command string, for example,
evalin('base','whos'). To return to the MATLAB base workspace, use the dbquit
command.

Watching with MATLAB

You can display the execution result of a MATLAB Function block line by omitting
the terminating semicolon. If you do, execution results for the line are echoed to the
MATLAB window during simulation.

Display Size Limits

The MATLAB Function Block Editor does not display the contents of matrices that have
more than two dimensions or more than 200 elements. For matrices that exceed these
limits, the MATLAB Function Block Editor displays the shape and base type only.

Checking for Data Range Violations

MATLAB Function blocks check inputs and outputs for data range violations when
the input or output values enter or leave the blocks. To enable data range violation
checking, set Simulation range checking in the Diagnostics: Data Validity pane of
the Configuration Parameters dialog box to error.

Specifying a Range

To specify a range for input and output data, follow these steps:

37 Using the MATLAB Function Block

37-28

1 In the Ports and Data Manager, select the input or output of interest.

The data properties dialog box opens.
2 In the data properties dialog box, select the General tab and enter a limit range, as

described in “Setting General Properties” on page 37-39.

Debugging Tools

Use the following tools during a MATLAB Function block debugging session:

Tool Button Description Shortcut Key

Build

Access this tool from the Editor tab by selecting
Build Model > Build.

Check for errors and build a simulation
application (if no errors are found) for the model
containing this MATLAB Function block.

Ctrl+B

Update Diagram

Access this tool from the Editor tab by selecting
Build Model > Update Diagram.

Check for errors based on the latest changes you
make to the MATLAB Function block.

Ctrl+D

Update Ports

Access this tool from the Editor tab by selecting
Build Model > Update Ports.

Updates the ports of the MATLAB Function block
with the latest changes made to the function
argument and return values without closing the
MATLAB Function Block Editor.

Ctrl+Shift+A

Run Model

Start simulation of the model containing the
MATLAB Function block. If execution is paused
at a breakpoint, continues debugging.

F5

Stop Model

Stop simulation of the model containing the
MATLAB Function block. Alternatively, from the
Editor tab, select Quit Debugging if execution
is paused at a breakpoint.

Shift+F5

 Debugging a MATLAB Function Block

37-29

Tool Button Description Shortcut Key

Set/Clear

Access this tool by selecting Breakpoints > Set/
Clear.

Set a new breakpoint or clear an existing
breakpoint for the selected line of code in the
MATLAB Function block. The presence of the
text cursor or highlighted text selects the line.
A breakpoint indicator appears in the on the
selected line.

Alternatively, click the hyphen character (-)
next to the line number. A breakpoint indicator
appears in place of the hyphen. Click the
breakpoint indicator to clear the breakpoint.

F12

Clear All

Access this tool by selecting Breakpoints >
Clear All.

Clear all existing breakpoints in the MATLAB
Function block code.

None

Step

Step through the execution of the next line of
code in the MATLAB Function block. This tool
steps past function calls and does not enter called
functions for line-by-line execution. You can use
this tool only after execution has stopped at a
breakpoint.

F10

Step In

Step through the execution of the next line of
code in the MATLAB Function block. If the line
calls a local function, step into the first line of
the local function. You can use this tool only after
execution has stopped at a breakpoint.

F11

Step Out

Step out of line-by-line execution of the current
function or local function. If in a local function,
the debugger continues to the line following the
call to this local function. You can use this tool
only after execution has stopped at a breakpoint.

Shift+F11

37 Using the MATLAB Function Block

37-30

Tool Button Description Shortcut Key

Continue

Continue debugging after a pause, such as
stopping at a breakpoint. You can use this tool
only after execution has stopped at a breakpoint.

F5

Quit Debugging

Exit debug mode. You can use this tool only after
execution has stopped at a breakpoint.

Shift+F5

 MATLAB Function Block Editor

37-31

MATLAB Function Block Editor

In this section...

“Customizing the MATLAB Function Block Editor” on page 37-31
“MATLAB Function Block Editor Tools” on page 37-31
“Editing and Debugging MATLAB Function Block Code” on page 37-32
“Ports and Data Manager” on page 37-33

Customizing the MATLAB Function Block Editor

Use the toolbar icons to customize the appearance of the MATLAB Function Block Editor
in the same manner as the MATLAB editor. See “Basic Settings”.

MATLAB Function Block Editor Tools

Use the following tools to work with the MATLAB Function block:

Tool Button Description

Edit Data

Opens the Ports and Data Manager dialog to add or modify
arguments for the current MATLAB Function block (see “Ports
and Data Manager” on page 37-33).

View Report

Opens the MATLAB Function report for the MATLAB Function
block. For more information, see “MATLAB Function Reports” on
page 37-46.

Simulation Target

Opens the Simulation Target pane in the Configuration
Parameters dialog to include custom code.

Go To Diagram

Displays the MATLAB function in its native diagram without
closing the editor.

See “Defining Inputs and Outputs” on page 37-13 for an example of defining an input
argument for a MATLAB Function block.

37 Using the MATLAB Function Block

37-32

Editing and Debugging MATLAB Function Block Code

Manual Indenting

To indent a block of code manually:

1 Highlight the text that you would like to indent.
2 Select one of the Indent tools on the Editor tab:

Tool Description

Applies smart indenting to selected text.

Move selected text right one indent level.

Move selected text left one indent level.

Opening a Selection

You can open a local function, function, file, or variable from within a file in the
MATLAB Function Block Editor.

To open a selection:

1 Position the cursor in the name of the item you would like to open.
2 Right-click and select Open <selection> from the context menu.

The Editor chooses the appropriate tool to open the selection. For more information, refer
to “Manage Files and Folders”.

Note: If you open a MATLAB Function block input or output parameter, the Ports and
Data Manager opens with the selected parameter highlighted. You can use the Ports and
Data Manager to modify parameter attributes. For more information, refer to “Ports and
Data Manager” on page 37-33.

Evaluating a Selection

You can use the Evaluate a Selection menu option to report the value for a MATLAB
function variable or equation in the MATLAB window during simulation.

 MATLAB Function Block Editor

37-33

To evaluate a selection:

1 Highlight the variable or equation that you would like to evaluate.
2 Hold the mouse over the highlighted text and then right-click and select Evaluate

Selection from the context menu. (Alternatively, select Evaluate Selection from
the Text menu).

When you reach a breakpoint, the MATLAB command Window displays the value of the
variable or equation at the Command Line Debugger prompt.

debug>> stdev

 1.1180

debug>>

Note: You cannot evaluate a selection while MATLAB is busy, for example, running a
MATLAB file.

Setting Data Scope

To set the data scope of a MATLAB Function block input parameter:

1 Highlight the input parameter that you would like to modify.
2 Hold the mouse over the highlighted text and then right-click and select Data Scope

for <selection> from the context menu.
3 Select:

• Input if your input data is provided by the Simulink model via an input port to
the MATLAB Function block.

• Parameter if your input is a variable of the same name in the MATLAB or
model workspace or in the workspace of a masked subsystem containing this
block.

For more information, refer to “Setting General Properties” on page 37-39.

Ports and Data Manager

The Ports and Data Manager provides a convenient method for defining objects and
modifying their properties in a MATLAB Function block that is open and has focus.

37 Using the MATLAB Function Block

37-34

The Ports and Data Manager provides the same data definition capabilities for individual
MATLAB Function blocks as the Model Explorer provides across the model hierarchy
(see “Model Explorer Overview” on page 11-2).

Ports and Data Manager Dialog Box

The Ports and Data Manager dialog box allows you to add and define data arguments,
input triggers, and function call outputs for MATLAB Function blocks. Using this
dialog, you can also modify properties for the MATLAB Function block and the objects it
contains.

The dialog box consists of two panes:

• The Contents (left) pane lists the objects that have been defined for the MATLAB
Function block.

• The Dialog (right) pane displays fields for modifying the properties of the selected
object.

Properties vary according to the scope and type of the object. Therefore, the Ports and
Data Manager properties dialogs are dynamic, displaying only the property fields that
are relevant for the object you add or modify.

When you first open the dialog box, it displays the properties of the MATLAB Function
block.

Opening the Ports and Data Manager

To open the Ports and Data Manager from the MATLAB Function Block Editor, select
Edit Data on the Editor tab. The Ports and Data Manager appears for the MATLAB
Function block that is open and has focus.

Ports and Data Manager Tools

The following tools are specific to the Ports and Data Manager:

Tool Button Description

Go to Block Editor

Displays the MATLAB function in the MATLAB Function Block
Editor.

 MATLAB Function Block Editor

37-35

Tool Button Description

Show Block Dialog

Displays the default MATLAB function properties (see
“MATLAB Function Block Properties” on page 37-35). Use
this button to return to the settings used by the block after
viewing data associated with the block arguments.

MATLAB Function Block Properties

This section describes each property of a MATLAB Function block.

Name

Name of the MATLAB Function block, following the same naming conventions as for
Simulink blocks (see “Manipulate Block Names” on page 31-15).

Update method

Method for activating the MATLAB Function block. You can choose from the following
update methods:

Update
Method

Description

Inherited
(default)

Input from the Simulink model activates the MATLAB Function block.
If you define an input trigger, the MATLAB Function block executes
in response to a Simulink signal or function-call event on the trigger
port. If you do not define an input trigger, the MATLAB Function block
implicitly inherits triggers from the model. These implicit events are the
sample times (discrete or continuous) of the signals that provide inputs
to the chart.
If you define data inputs, the MATLAB Function block samples at
the rate of the fastest data input. If you do not define data inputs, the
MATLAB Function block samples as defined by its parent subsystem's
execution behavior.

Discrete The MATLAB Function block is sampled at the rate you specify as the
block's Sample Time property. An implicit event is generated at regular
time intervals corresponding to the specified rate. The sample time is in
the same units as the Simulink simulation time. Note that other blocks
in the model can have different sample times.

Continuous The Simulink software wakes up (samples) the MATLAB Function block
at each step in the simulation, as well as at intermediate time points

37 Using the MATLAB Function Block

37-36

Update
Method

Description

that can be requested by the solver. This method is consistent with the
continuous method.

Saturate on integer overflow

Option that determines how the MATLAB Function block handles overflow conditions
during integer operations:

Setting Action When Overflow Occurs

Enabled
(default)

Saturates an integer by setting it to the maximum positive or negative
value allowed by the word size. Matches MATLAB behavior.

Disabled In simulation mode, generates a run-time error. For Simulink Coder code
generation, the behavior depends on your C language compiler.

Note: The Saturate on integer overflow option is relevant only for integer arithmetic.
It has no effect on fixed-point or double-precision arithmetic.

When you enable Saturate on integer overflow, MATLAB adds additional checks
during simulation to detect integer overflow or underflow. Therefore, it is more efficient
to disable this option if you are sure that integer overflow and underflow will not occur in
your MATLAB Function block code.

Note that the code generated by Simulink Coder does not check for integer overflow or
underflow and, therefore, may produce unpredictable results when Saturate on integer
overflow is disabled. In this situation, it is recommended that you simulate first to test
for overflow and underflow before generating code.

Lock Editor

Option for locking the MATLAB Function Block Editor. When enabled, this option
prevents users from making changes to the MATLAB Function block.

Treat these inherited Simulink signal types as fi objects

 MATLAB Function Block Editor

37-37

Setting that determines whether to treat inherited fixed-point and integer signals as
Fixed-Point Designer fi objects (“Ways to Construct fi Objects”).

• When you select Fixed-point, the MATLAB Function block treats all fixed-point
inputs as Fixed-Point Designer fi objects.

• When you select Fixed-point & Integer, the MATLAB Function block treats all
fixed-point and integer inputs as Fixed-Point Designer fi objects.

MATLAB Function block fimath

Setting that defines fimath properties for the MATLAB Function block. The block
associates the fimath properties you specify with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block that you
choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can select one of the following options for the MATLAB Function block fimath.

Setting Description

Same as MATLAB When you select this option, the block uses the same fimath properties as
the current default fimath. The edit box appears dimmed and displays the
current global fimath in read-only form.

Specify other When you select this option, you can specify your own fimath object in the
edit box. You can do so in one of two ways:

• Constructing the fimath object inside the edit box.
• Constructing the fimath object in the MATLAB or model workspace and

then entering its variable name in the edit box. If you use this option and
plan to share your model with others, make sure you define the variable
in the model workspace. See “Sharing Models with Fixed-Point MATLAB
Function Blocks”.

For more information on fimath objects, see “fimath Object Construction”.

Description

Description of the MATLAB Function block.

37 Using the MATLAB Function Block

37-38

Document link

Link to documentation for the MATLAB Function block. To document a MATLAB
Function block, set the Document link property to a Web URL address or MATLAB
expression that displays documentation in a suitable format (for example, an HTML file
or text in the MATLAB Command Window). The MATLAB Function block evaluates the
expression when you click the blue Document link text.

Adding Data to a MATLAB Function Block

You can define data arguments for MATLAB Function blocks using the following
methods:

Method For Defining Reference

Define data directly in the
MATLAB Function block
code

Input and output data See “Defining Inputs and
Outputs” on page 37-13.

Use the Ports and Data
Manager

Input, output, and
parameter data in the
MATLAB Function block
that is open and has focus

See “Defining Data in the
Ports and Data Manager” on
page 37-38.

Use the Model Explorer Input, output, and
parameter data in MATLAB
Function blocks at all levels
of the model hierarchy

See “Model Explorer
Overview” on page 11-2

Defining Data in the Ports and Data Manager

To add a data argument and modify its properties, follow these steps:

1 In the Ports and Data Manager, select Add > Data

The Ports and Data Manager adds a default definition of the data to the MATLAB
Function block.

 MATLAB Function Block Editor

37-39

2 Modify data properties.
3 Return to the MATLAB Function block properties at any time by selecting Tools >

Block Dialog.

Setting General Properties

You can set the following properties in the General tab:

Property Description

Name Name of the data argument, following the same naming conventions used in
MATLAB.

Scope Where data resides in memory, relative to its parent. Scope determines the
range of functionality of the data argument. You can set scope to one of the
following values:

37 Using the MATLAB Function Block

37-40

Property Description

• Parameter— Specifies that the source for this data is a variable of the same
name in the MATLAB or model workspace or in the workspace of a masked
subsystem containing this block. If a variable of the same name exists in
more than one of the workspaces visible to the block, the variable closest to
the block in the workspace hierarchy is used (see “Model Workspaces” on
page 4-84).

• Input— Data provided by the model via an input port to the MATLAB
Function block.

• Output— Data provided by the MATLAB Function block via an output port
to the model.

• Data Store Memory— Data provided by a Data Store Memory block in the
model.

For more information, see “Defining Inputs and Outputs” on page 37-13 and
“Add Parameter Arguments” on page 37-68.

Port Index of the port associated with the data argument. This property applies only
to input and output data.

Tunable Indicates whether the parameter used as the source of this data item is
tunable (see “Tunable Parameters” on page 3-8). This property applies only
to parameter data. Clear this option if the parameter must be a constant
expression, such as for MATLAB toolbox functions supported for code
generation (see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List” on page 42-2).

Data must
resolve to
Simulink signal
object

Specifies that the data argument must resolve to a Simulink signal object. This
property applies only to output data. See “Symbol Resolution” on page 4-95 for
more information.

Size Size of the data argument. Size can be a scalar value or a MATLAB vector of
values. Size defaults to –1, which means that it is inherited, as described in
“Inheriting Argument Sizes from Simulink” on page 37-66. This property
does not apply to Data Store Memory data. For more details, see “Size Function
Arguments” on page 37-66.

Variable Size Indicates whether the size of this data item is variable. This property does not
apply to Data Store Memory data.

 MATLAB Function Block Editor

37-41

Property Description

Complexity Indicates real or complex data arguments. You can set complexity to one of the
following values:

• Off— Data argument is a real number
• On— Data argument is a complex number
• Inherited— Data argument inherits complexity based on its scope. Input

and output data inherit complexity from the Simulink signals connected to
them; parameter data inherits complexity from the parameter to which it is
bound.

Type Type of data object. You can specify the data type by:

• Selecting a built-in type from the Type drop down list.
• Entering an expression in the Type field that evaluates to a data type (see

“About Data Types in Simulink” on page 55-2).
• Using the Data Type Assistant to specify a data Mode, then specifying the

data type based on that mode.

Note: To display the Data Type Assistant, click the Show data type
assistant button:

For more information, see “Specifying Argument Types” on page 37-59.
Limit range Specify the range of acceptable values for input or output data. The MATLAB

Function block uses this range to validate the input or output as it enters or
leaves the block. You can enter an expression or parameter that evaluates to a
numeric scalar value.

• Minimum — The smallest value allowed for the data item during
simulation. The default value is -inf.

• Maximum — The largest value allowed for the data item during
simulation. The default value is inf.

37 Using the MATLAB Function Block

37-42

Setting Description Properties

You can set the following properties on the Description tab:

Property Description

Save final
value to base
workspace

The MATLAB Function block assigns the value of the data argument to
a variable of the same name in the MATLAB base workspace at the end
of simulation.

Description Description of the data argument.
Document
link

Link to documentation for the data argument. You can enter a Web
URL address or a MATLAB command that displays documentation
in a suitable format, such as an HTML file or text in the MATLAB
Command Window. When you click the blue text, Document link,
displayed at the bottom of the Data properties dialog, the MATLAB
Function block evaluates the link and displays the documentation.

Adding Input Triggers to a MATLAB Function Block

An input trigger is an event on the input port that causes the MATLAB Function block to
execute. See “Create a Triggered Subsystem” on page 9-38.

You can define the following types of triggers in MATLAB Function blocks:

• Rising
• Falling
• Either (rising or falling)
• Function call

For a description of each trigger type, see “Setting Input Trigger Properties” on page
37-43.

Use the Ports and Data Manager to add input triggers to a MATLAB Function block that
is open and has focus. To add an input trigger and modify its properties, follow these
steps:

1 In the Ports and Data Manager, select Add > Input Trigger.

The Ports and Data Manager adds a default definition of the new input trigger to the
MATLAB Function block and displays the Trigger properties dialog.

2 Modify trigger properties.

 MATLAB Function Block Editor

37-43

3 Return to the MATLAB Function block properties at any time by selecting Tools >
Block Dialog.

The Trigger Properties Dialog

The Trigger properties dialog in the Ports and Data Manager allows you to set and
modify the properties of input triggers in MATLAB Function blocks.

To open the Trigger properties dialog, select an input trigger in the Contents pane.

Setting Input Trigger Properties

You can set the following properties in the Trigger properties dialog:

Property Description

Name Name of the input trigger, following the same naming conventions
used in MATLAB.

Port Index of the port associated with the input trigger. The default value
is 1.

Trigger Type of event that triggers execution of the MATLAB Function block.
You can select one of the following types of triggers:

• Rising (default) — Triggers execution of the MATLAB Function
block when the control signal rises from a negative or zero value
to a positive value (or zero if the initial value is negative).

• Falling— Triggers execution of the MATLAB Function block
when the control signal falls from a positive or zero value to a
negative value (or zero if the initial value is positive).

• Either— Triggers execution of the MATLAB Function block
when the control signal is either rising or falling.

• Function call— Triggers execution of the MATLAB Function
block from a block that outputs function-call events, or from an S-
function

Description Description of the input trigger.
Document link Link to documentation for the input trigger. You can enter a Web

URL address or a MATLAB command that displays documentation
in a suitable format, such as an HTML file or text in the MATLAB
Command Window. When you click the blue text that reads
Document link displayed at the bottom of the Trigger properties

37 Using the MATLAB Function Block

37-44

Property Description

dialog, the MATLAB Function block evaluates the link and displays
the documentation.

Adding Function Call Outputs to a MATLAB Function Block

A function call output is an event on the output port of a MATLAB Function block that
causes a Function-Call Subsystem block in the Simulink model to execute. Another
block can invoke a function-call subsystem directly during a simulation. See “Create a
Function-Call Subsystem” on page 9-50.

Use the Ports and Data Manager to add and modify function call outputs to a MATLAB
Function block that is open and has focus. To add a function call output and modify its
properties, follow these steps:

1 In the Ports and Data Manager, select Add > Function Call Output.

The Ports and Data Manager adds a default definition of the new function call
output to the MATLAB Function block and displays the Function Call properties
dialog.

2 Modify function call output properties.
3 Return to the MATLAB Function block properties at any time by selecting Tools >

Block Dialog.

Considerations when Supplying Output to the Function-Call Subsystem

If a MATLAB Function block triggers a function-call subsystem, and supplies an output
signal to the same function-call subsystem, the signal to the function-call subsystem can
effectively be delayed by one time step compared to the function call. At the moment of
the function call, the function-call subsystem sees the previous MATLAB Function block
outport value even if the output data has been updated within the block MATLAB code.
The Function Call Properties Dialog

The Function Call properties dialog in the Ports and Data Manager allows you to edit the
properties of function call outputs in MATLAB Function blocks.

To open the Function Call properties dialog, select a function call output in the Contents
pane.
Setting Function Call Output Properties

You can set the following properties in the Function Call properties dialog:

 MATLAB Function Block Editor

37-45

Property Description

Name Name of the function call output, following the same naming
conventions used in MATLAB.

Port Index of the port associated with the function call output. Function call
output ports are numbered sequentially after input and output ports.

Description Description of the function call output.
Document
link

Link to documentation for the function call output. You can
enter a Web URL address or a MATLAB command that displays
documentation in a suitable format, such as an HTML file or text in
the MATLAB Command Window. When you click Document link
displayed at the bottom of the Function Call properties dialog,
the MATLAB Function block evaluates the link and displays the
documentation.

37 Using the MATLAB Function Block

37-46

MATLAB Function Reports

In this section...

“About MATLAB Function Reports” on page 37-46
“Opening MATLAB Function Reports” on page 37-46
“Description of MATLAB Function Reports” on page 37-47
“Viewing Your MATLAB Function Code” on page 37-47
“Viewing Call Stack Information” on page 37-48
“Viewing the Compilation Summary Information” on page 37-49
“Viewing Error and Warning Messages” on page 37-49
“Viewing Variables in Your MATLAB Code” on page 37-50
“Keyboard Shortcuts for the MATLAB Function Report” on page 37-56
“Report Limitations” on page 37-57

About MATLAB Function Reports

When you build a Simulink model that contains MATLAB Function blocks, Simulink
generates a report in HTML format for each MATLAB Function block in your model. You
can use the report to debug your MATLAB functions and verify that they are suitable
for code generation. The report provides links to your MATLAB functions and compile-
time type information for the variables and expressions in these functions. If your model
fails to build, this information simplifies finding sources of error messages and aids
understanding of type propagation rules.

Note: If you have a Stateflow license, there is one report for each Stateflow chart,
regardless of the number of MATLAB functions it contains.

Note: If you have identical MATLAB Function blocks in your model, for example, one in a
library and one in the model, a single report is generated for the identical blocks.

Opening MATLAB Function Reports

Use one of the following methods:

 MATLAB Function Reports

37-47

• In the MATLAB Function Block Editor, select View Report.
• In the Simulation Diagnostics window, select the report link if compilation errors

occur.

Description of MATLAB Function Reports

When you build the MATLAB function, the code generation software generates an HTML
report. The report provides the following information, as applicable:

• MATLAB code information, including a list of all functions and their compilation
status

• Call stack information, providing information on the nesting of function calls
• Summary of compilation results, including type of target and number of warnings or

errors
• List of all error and warning messages
• List of all variables in your MATLAB function

Viewing Your MATLAB Function Code

To view your MATLAB function code, click the MATLAB code tab. The report displays
the MATLAB code for the function highlighted in the list on this tab.

The MATLAB code tab provides:

• A list of the MATLAB functions that have been compiled. The report displays icons
next to each function name to indicate whether compilation was successful:

• Errors in function.
• Warnings in function.
• Successful compilation, no errors or warnings.

• A filter control that you can use to sort your functions by:

• Size
• Complexity
• Class

37 Using the MATLAB Function Block

37-48

Viewing Local Functions

The report annotates the local function with the name of the parent function in the list of
functions on the MATLAB code tab.

For example, if the MATLAB function fcn1 contains the local function subfcn and fcn2
contains the local function subfcn2, the report displays:

fcn1 > subfcn1

fcn2 > subfcn2

Viewing Specializations

If your MATLAB function calls the same function with different types of inputs, the
report numbers each of these specializations in the list of functions on the MATLAB
code tab.

For example, if the function fcn calls the function subfcn with different types of inputs:

function y = fcn(u) %#codegen

% Specializations

y = y + subfcn(single(u));

y = y + subfcn(double(u));

The report numbers the specializations in the list of functions.

fcn > subfcn > 1

fcn > subfcn > 2

Viewing Call Stack Information

The report provides call stack information:

• On the Call stack tab.
• In the list of Callers.

If a function is called from more than one function, this list provides details of each
call site. Otherwise, the list is disabled.

Viewing Call Stack Information on the Call Stack Tab

To view call stack information, click the Call stack tab. The call stack lists the functions
in the order that the top-level function calls them. It also lists the local functions that
each function calls.

 MATLAB Function Reports

37-49

Viewing Function Call Sites in the Callers List

If a function is called from more than one function, this list provides details of each call
site. To navigate between call sites, select a call site from the Callers list. If the function
is not called more than once, this list is disabled.

Viewing the Compilation Summary Information

To view a summary of the compilation results, including type of target and number of
errors or warnings, click the Summary tab.

Viewing Error and Warning Messages

The report provides information about errors and warnings. If errors occur during
simulation of a Simulink model, simulation stops. If warnings occur, but no errors,
simulation of the model continues.

The report provides information about warnings and errors by listing all errors and
warnings in chronological order in the All Messages tab.

Viewing Errors and Warnings in the All Messages Tab

If errors or warnings occurred during compilation, click the All Messages tab to view
a complete list of these messages. The report lists the messages in the order that the
compiler detects them. It is best practice to address the first message in the list, because
often subsequent errors and warnings are related to the first message.

To locate the offending line of code for an error or warning in the list, click the message
in the list. The report highlights errors in the list and MATLAB code in red and warnings
in orange. Click the blue line number next to the offending line of code in the MATLAB
code pane to go to the error in the source file.

Note: You can fix errors only in the source file.

37 Using the MATLAB Function Block

37-50

Viewing Error and Warning Information in Your MATLAB Code

If errors or warnings occurred during compilation, the report underlines them in your
MATLAB code. The report underlines errors in red and warnings in orange. To learn
more about a particular error or warning, place your pointer over the underlined text.

Viewing Variables in Your MATLAB Code

The report provides compile-time type information for the variables and expressions
in your MATLAB code, including name, type, size, complexity, and class. It also
provides type information for fixed-point data types, including word length and fraction
length. You can use this type information to find the sources of error messages and to
understand type propagation rules.

You can view information about the variables in your MATLAB code:

• On the Variables tab, view the list.

 MATLAB Function Reports

37-51

• In your MATLAB code, place your cursor over the variable name.

In the MATLAB code, an orange variable name indicates a compile-time constant
argument to a specialized function. The information for a constant argument includes
the value. This information helps you to see when code generation created function
specializations for different constant argument values.

Viewing Variables in the Variables Tab

To view a list of the variables in your MATLAB function, click the Variables tab. The
report displays a complete list of variables in the order that they appear in the function
that you selected on the MATLAB code tab. Clicking a variable in the list highlights
instances of that variable, and scrolls the MATLAB code pane so that you can view the
first instance.

As applicable, the report provides the following information about each variable:

• Order
• Name
• Type
• Size
• Complexity
• Class
• DataTypeMode (DT mode) — for fixed-point data types only. For more information,

see “Data Type and Scaling Properties”.
• Signed — sign information for built-in data types, signedness information for fixed-

point data types.
• Word length (WL) — for fixed-point data types only.
• Fraction length (FL) — for fixed-point data types only.

Note: For more information on viewing fixed-point data types, see “Use Fixed-Point Code
Generation Reports”.

The report displays only a column if at least one variable in the code has information in
that column. For example, if the code does not contain fixed-point data types, the report
does not display the DT mode, WL or FL columns.

37 Using the MATLAB Function Block

37-52

Sorting Variables in the Variables Tab

By default, the report lists the variables in the order that they appear in the selected
function.

You can sort the variables by clicking the column headings on the Variables tab. To sort
the variables by multiple columns, hold down the Shift key when clicking the column
headings.

To restore the list to the original order, click the Order column heading.

Viewing Structures on the Variables Tab

You can expand structures listed on the Variables tab to display the field properties.

If you sort the variables by type, size, complexity, or class, a structure and its fields
might not appear sequentially in the list. To restore the list to the original order, click
the Order column heading.

Viewing Information About Variable-Size Arrays in the Variables Tab

For variable-size arrays, the Size field includes information on the computed maximum
size of the array. The size of each array dimension that varies is prefixed with a colon :.

In the following report, variable A is variable-size. Its maximum computed size is 1×100.

 MATLAB Function Reports

37-53

If the code generation software cannot compute the maximum size of a variable-size
array, the report displays the size as :?.

If you declare a variable-size array, and then subsequently fix the dimensions of this
array in the code, the report appends * to the size of the variable. In the generated C
code, this variable appears as a variable-size array, but the size of its dimensions do not
change during execution.

For more information on how to use the size information for variable-size arrays, see
“Variable-Size Data Definition for Code Generation”.

Viewing Renamed Variables in the Variables Tab

If your MATLAB function reuses a variable with a different size, type, or complexity,
the code generation software attempts to create separate, uniquely named variables in
the generated code. For more information, see “Reuse the Same Variable with Different

37 Using the MATLAB Function Block

37-54

Properties”. The report numbers the renamed variables in the list on the Variables
tab. When you place your cursor over a renamed variable, the report highlights only the
instances of this variable that share the same data type, size, and complexity.

For example, suppose your code uses the variable t in a for-loop to hold a scalar double,
and reuses it outside the for-loop to hold a 5x5 matrix. The report displays two variables,
t>1 and t>2, in the list on the Variables tab.

Viewing Information About Variables and Expressions in Your MATLAB Function Code

To view information about a particular variable or expression in your MATLAB function
code, on the MATLAB code pane, place your cursor over the variable name or expression.
The report highlights variables and expressions in different colors:

Green, when the variable has data type information at this location in the code

For variable-size arrays, the Size field includes information on the computed maximum
size of the array. The size of each array dimension that varies is prefixed with a colon :.
Here the array A is variable-size with a maximum computed size of 1 x 100.

 MATLAB Function Reports

37-55

Green with orange text, when a constant argument has data type and value information

When the variable is a compile-time constant argument to a specialized function:

• The variable name is orange.
• The information for the variable includes the value.

If you export the value as a variable to the base workspace, you can use the Workspace
browser to view detailed information about the variable.

To export the value to the base workspace:

1 Click the Value link.
2 In the Export Constant Value dialog box, specify the Variable name.
3 Click OK.

The variable and its value appear in the Workspace browser.

Pink, when the variable has no data type information

37 Using the MATLAB Function Block

37-56

Purple, information about expressions

You can also view information about expressions in your MATLAB code. On the
MATLAB code pane, place your cursor over an expression. The report highlights
expressions in purple and provides more detailed information.

Red, when there is error information for an expression

If the code generation software cannot compute the maximum size of a variable-size
array, the report underlines the variable name and provides error information.

Keyboard Shortcuts for the MATLAB Function Report

You can use the following keyboard shortcuts to navigate between the different panes
in the MATLAB Function report. Once you have selected a pane, use the Tab key to
advance through data in that pane.

To select: Use:

MATLAB Code Tab Ctrl+m
Call Stack Tab Ctrl+k
MATLAB Code Pane Ctrl+w
Summary Tab Ctrl+s

 MATLAB Function Reports

37-57

To select: Use:

All Messages Tab Ctrl+a
Variables Tab Ctrl+v

Report Limitations

The report displays information about the variables and expressions in your MATLAB
code with the following limitations:

varargin and varargout

The report does not support varargin and varargout arrays.

Loop Unrolling

The report does not display full information for unrolled loops. It displays data types of
one arbitrary iteration.

Dead Code

The report does not display information about dead code.

Structures

The report does not provide complete information about structures.

• The report does not provide information about all structure fields in the struct()
constructor.

• If a structure has a nonscalar field, and an expression accesses an element of this
field, the report does not provide information for the field.

Column Headings on the Variables Tab

If you scroll through the list of variables, the report does not display the column headings
on the Variables tab.

Multiline Matrices

On the MATLAB code pane, the report does not support selection of multiline matrices.
It supports only selection of individual lines at a time. For example, if you place your
cursor over the following matrix, you cannot select the entire matrix.

37 Using the MATLAB Function Block

37-58

out1 = [1 2 3;

 4 5 6];

The report does support selection of single line matrices.

out1 = [1 2 3; 4 5 6];

 Type Function Arguments

37-59

Type Function Arguments

In this section...

“About Function Arguments” on page 37-59
“Specifying Argument Types” on page 37-59
“Inheriting Argument Data Types” on page 37-61
“Built-In Data Types for Arguments” on page 37-62
“Specifying Argument Types with Expressions” on page 37-62
“Specifying Fixed-Point Designer Data Properties” on page 37-63

About Function Arguments

You create function arguments for a MATLAB Function block by entering them in its
function header in the MATLAB Function Block Editor. When you define arguments, the
Simulink software creates corresponding ports on the MATLAB Function block that you
can attach to signals. You can select a data type mode for each argument that you define
for a MATLAB Function block. Each data type mode presents its own set of options for
selecting a data type.

By default, the data type mode for MATLAB Function block function arguments is
Inherited. This means that the function argument inherits its data type from the
incoming or outgoing signal. To override the default type, you first choose a data type
mode and then select a data type based on the mode.

Specifying Argument Types

To specify the type of a MATLAB Function block function argument:

1 From the MATLAB Function Block Editor, select Edit Data to open the Ports and
Data Manager.

2 In the left pane, select the argument of interest.
3 In the Data properties dialog box (right pane), click the Show data type assistant

button to display the Data Type Assistant. Then, choose an option from the
Mode drop-down menu.

37 Using the MATLAB Function Block

37-60

The Data properties dialog box changes dynamically to display additional fields for
specifying the data type associated with the mode.

4 Based on the mode you select, specify a desired data type:

Mode What to Specify

Inherit (default) You cannot specify a value. The data type is inherited from previously-defined
data, based on the scope you selected for the MATLAB Function block function
argument:

• If scope is Input, data type is inherited from the input signal on the
designated port.

• If scope is Output, data type is inherited from the output signal on the
designated port.

• If scope is Parameter, data type is inherited from the associated
parameter, which can be defined in the Simulink masked subsystem or the
MATLAB workspace.

See “Inheriting Argument Data Types” on page 37-61.
Built in Select from the drop-down list of supported data types, as described in “Built-

In Data Types for Arguments” on page 37-62.
Fixed point Specify the fixed-point data properties as described in “Specifying Fixed-Point

Designer Data Properties” on page 37-63.
Expression Enter an expression that evaluates to a data type, as described in “Specifying

Argument Types with Expressions” on page 37-62.
Bus Object In the Bus object field, enter the name of a Simulink.Bus object to define

the properties of a MATLAB structure. You must define the bus object in the
base workspace. See “How Structure Inputs and Outputs Interface with Bus
Signals” on page 37-74.

Note: You can click the Edit button to create or modify Simulink.Bus objects
using the Simulink Bus Editor (see “Attach Bus Signals to MATLAB Function
Blocks” on page 37-72.

Enumerated In the Enumerated field, enter the name of a Simulink.IntEnumType object
that you define in the base workspace. See “Enumerated Types Supported in

 Type Function Arguments

37-61

Mode What to Specify

MATLAB Function Blocks” on page 37-97 and “Define Enumerated Data
Types for MATLAB Function Blocks” on page 37-100.

Inheriting Argument Data Types

MATLAB Function block function arguments can inherit their data types, including fixed
point types, from the signals to which they are connected. , and set data type mode using
one of these methods:

1 Select the argument of interest in the Ports and Data Manager
2 In the Data properties dialog, select Inherit: Same as Simulink from the Type

drop-down menu.

See “Built-In Data Types for Arguments” on page 37-62 for a list of supported data
types.

Note An argument can also inherit its complexity (whether its value is a real or
complex number) from the signal that is connected to it. To inherit complexity, set the
Complexity field on the Data properties dialog to Inherited.

After you build the model, the Compiled Type column of the Ports and Data Manager
gives the actual type inherited from Simulink in the compiled simulation application.

The inherited type of output data is inferred from diagram actions that store values
in the specified output. In the preceding example, the variables mean and stdev are
computed from operations with double operands, which yield results of type double. If
the expected type matches the inferred type, inheritance is successful. In all other cases,
a mismatch occurs during build time.

Note Library MATLAB Function blocks can have inherited data types, sizes, and
complexities like ordinary MATLAB Function blocks. However, all instances of the
library block in a given model must have inputs with the same properties.

37 Using the MATLAB Function Block

37-62

Built-In Data Types for Arguments

When you select Built-in for Data type mode, the Data properties dialog displays a
Data type field that provides a drop-down list of supported data types. You can also
choose a data type from the Data Type column in the Ports and Data Manager. The
supported data types are:

Data Type Description

double 64-bit double-precision floating point
single 32-bit single-precision floating point
int32 32-bit signed integer
int16 16-bit signed integer
int8 8-bit signed integer
uint32 32-bit unsigned integer
uint16 16-bit unsigned integer
uint8 8-bit unsigned integer
boolean Boolean (1 = true; 0 = false)

Specifying Argument Types with Expressions

You can specify the types of MATLAB Function block function arguments as expressions
in the Ports and Data Manager.

1 Select <data type expression> from the Type drop-down menu of the Data
properties dialog.

2 In the Type field, replace “<data type expression>” with an expression that
evaluates to a data type. The following expressions are allowed:

• Alias type from the MATLAB workspace, as described in “Creating a Data Type
Alias”.

• fixdt function to create a Simulink.NumericType object describing a fixed-
point or floating-point data type

• type operator, to base the type on previously defined data

 Type Function Arguments

37-63

Specifying Fixed-Point Designer Data Properties

MATLAB Function blocks can represent signals and parameter values as fixed-point
numbers. To simulate models that use fixed-point data in MATLAB Function blocks, you
must install the Fixed-Point Designer product on your system.

You can set the following fixed-point properties:

Signedness. Select whether you want the fixed-point data to be Signed or Unsigned.
Signed data can represent positive and negative quantities. Unsigned data represents
positive values only. The default is Signed.

Word length. Specify the size (in bits) of the word that will hold the quantized integer.
Large word sizes represent large quantities with greater precision than small word sizes.
Word length can be any integer between 0 and 128 bits. The default is 16.

Scaling. Specify the method for scaling your fixed point data to avoid overflow
conditions and minimize quantization errors. You can select the following scaling modes:

Scaling Mode Description

Binary

point

(default)

If you select this mode, the Data Type Assistant displays the Fraction Length
field, specifying the binary point location.

Binary points can be positive or negative integers. A positive integer moves the
binary point left of the rightmost bit by that amount. For example, an entry of 2
sets the binary point in front of the second bit from the right. A negative integer
moves the binary point further right of the rightmost bit by that amount, as in this
example:

The default is 0.
Slope and

bias

If you select this mode, the Data Type Assistant displays fields for entering the
Slope and Bias.

37 Using the MATLAB Function Block

37-64

Scaling Mode Description

• Slope can be any positive real number. The default is 1.0.
• Bias can be any real number. The default value is 0.0.

You can enter slope and bias as expressions that contain parameters defined in the
MATLAB workspace.

Note: You should use binary-point scaling whenever possible to simplify the
implementation of fixed-point data in generated code. Operations with fixed-point
data using binary-point scaling are performed with simple bit shifts and eliminate the
expensive code implementations required for separate slope and bias values.

Data type override. Specify whether the data type override setting is Inherit
(default) or Off.

Calculate Best-Precision Scaling. The Simulink software can automatically
calculate “best-precision” values for both Binary point and Slope and bias scaling,
based on the Limit range properties you specify.

To automatically calculate best precision scaling values:

1 Specify Minimum, Maximum, or both Limit range properties.
2 Click Calculate Best-Precision Scaling.

The Simulink software calculates the scaling values, then displays them in either the
Fraction Length, or Slope and Bias fields.

Note: The Limit range properties do not apply to Constant or Parameter scopes.
Therefore, Simulink cannot calculate best-precision scaling for these scopes.

Fixed-point Details. You can view the following Fixed-point details:

Fixed-point Detail Description

Representable maximum The maximum number that can be
represented by the chosen data type, sign,
word length and fraction length (or data
type, sign, slope and bias).

 Type Function Arguments

37-65

Fixed-point Detail Description

Maximum The maximum value specified.
Minimum The minimum value specified.
Representable minimum The minimum number that can be

represented by the chosen data type, sign,
word length and fraction length (or data
type, sign, slope and bias).

Precision The precision for the given word length and
fraction length (or slope and bias).

Using Data Type Override with the MATLAB Function Block

If you set the Data Type Override mode to Double or Single in Simulink, the MATLAB
Function block sets the type of all inherited input signals and parameters to fi double
or fi single objects respectively (see “MATLAB Function Block with Data Type
Override” for more information). You must check the data types of your inherited input
signals and parameters and use the Ports and Data Manager (see “Ports and Data
Manager” on page 37-33) to set explicit types for any inputs that should not be fixed-
point. Some operations, such as sin, are not applicable to fixed-point objects.

Note: If you do not set the correct input types explicitly, you may encounter compilation
problems after setting Data Type Override.

How Do I Set Data Type Override?

To set Data Type Override, follow these steps:

1 From the Simulink Analysis menu, select Fixed-Point Tool.
2 Set the value of the Data type override parameter to Double or Single.

37 Using the MATLAB Function Block

37-66

Size Function Arguments

In this section...

“Specifying Argument Size” on page 37-66
“Inheriting Argument Sizes from Simulink” on page 37-66
“Specifying Argument Sizes with Expressions” on page 37-67

Specifying Argument Size

To examine or specify the size of an argument, follow these steps:

1 From the MATLAB Function Block Editor, select Edit Data.
2 Enter the size of the argument in the Size field of the Data properties dialog, located

in the General pane.

Note: The default value is -1, indicating that size is inherited, as described in
“Inheriting Argument Sizes from Simulink” on page 37-66.

Inheriting Argument Sizes from Simulink

Size defaults to -1, which means that the data argument inherits its size from Simulink
based on its scope:

For Scope Inherits Size

Input From the Simulink input signal connected to the argument.
Output From the Simulink output signal connected to the argument.
Parameter From the Simulink or MATLAB parameter to which it is bound. See

“Add Parameter Arguments” on page 37-68.

After you compile the model, the Compiled Size column in the Contents pane displays
the actual size used in the compiled simulation application.

The size of an output argument is the size of the value that is assigned to it. If the
expected size in the Simulink model does not match, a mismatch error occurs during
compilation of the model.

 Size Function Arguments

37-67

Note: No arguments with inherited sizes are allowed for MATLAB Function blocks in a
library.

Specifying Argument Sizes with Expressions

The size of a data argument can be a scalar value or a MATLAB vector of values.

To specify size as a scalar, set the Size field to 1 or leave it blank. To specify Size as a
vector, enter an array of up to two dimensions in [row column] format where

• Number of dimensions equals the length of the vector.
• Size of each dimension corresponds to the value of each element of the vector.

For example, a value of [2 4] defines a 2-by-4 matrix. To define a row vector of size 5,
set the Size field to [1 5]. To define a column vector of size 6, set the Size field to [6
1] or just 6. You can enter a MATLAB expression for each [row column] element in
the Size field. Each expression can use one or more of the following elements:

• Numeric constants
• Arithmetic operators, restricted to +, -, *, and /
• Parameters
• Calls to the MATLAB functions min, max, and size

The following examples are valid expressions for Size:

k+1

size(x)

min(size(y),k)

In these examples, k, x, and y are variables of scope Parameter.

Once you build the model, the Compiled Size column displays the actual size used in
the compiled simulation application.

37 Using the MATLAB Function Block

37-68

Add Parameter Arguments

Parameter arguments for MATLAB Function blocks do not take their values from signals
in the Simulink model. Instead, Simulink searches up the workspace hierarchy. Simulink
first looks in a masked workspace if the MATLAB Function block or a parent subsystem
is masked. If the value is not found, it next looks in the model workspace and then the
MATLAB base workspace.

You can provide a custom interface for parameters by masking the MATLAB Function
block. Creating a mask for a block allows you to define the access for each parameter. See
“How Mask Parameters Work” on page 34-4 for more information.

1 In the MATLAB Function Block Editor, add an argument to the function header of
the MATLAB Function block. The name of the argument must match the name of
the masked parameter or MATLAB variable that you want to pass to the MATLAB
Function block.

The new argument appears as an input port on the MATLAB Function block in the
model.

2 In the MATLAB Function Block Editor, click Edit Data.
3 Select the new argument.
4 Set Scope to Parameter and click Apply.

The input port for the parameter argument no longer appears in the MATLAB
Function block.

Note: Parameter arguments appear as arguments in the function header of the MATLAB
Function block to maintain MATLAB consistency. As a result, you can test functions in a
MATLAB Function block by copying and pasting them to MATLAB.

For information on declaring parameters for masked blocks, see “How Mask Parameters
Work” on page 34-4.

 Resolve Signal Objects for Output Data

37-69

Resolve Signal Objects for Output Data

In this section...

“Implicit Signal Resolution” on page 37-69
“Eliminating Warnings for Implicit Signal Resolution in the Model” on page 37-69
“Disabling Implicit Signal Resolution for a MATLAB Function Block” on page 37-69
“Forcing Explicit Signal Resolution for an Output Data Signal” on page 37-70

Implicit Signal Resolution

MATLAB Function blocks participate in signal resolution with Simulink signal objects.
By default, output data from MATLAB Function blocks become associated with Simulink
signal objects of the same name during a process called implicit signal resolution, as
described in Simulink.Signal.

By default, implicit signal resolution generates a warning when you update the chart
in the Simulink model. The following sections show you how to manage implicit signal
resolution at various levels of the model hierarchy. See “Symbol Resolution” on page 4-95
and “Explicit and Implicit Symbol Resolution” on page 4-98 for more information.

Eliminating Warnings for Implicit Signal Resolution in the Model

To enable implicit signal resolution for all signals in a model, but eliminate the attendant
warnings, follow these steps:

1 In the Simulink Editor, select Simulation > Model Configuration Parameters.

The Configuration Parameters dialog appears.
2 In the left pane of the Configuration Parameters dialog, under Diagnostics, select

Data Validity.

Data Validity configuration parameters appear in the right pane.
3 In the Signal resolution field, select Explicit and implicit.

Disabling Implicit Signal Resolution for a MATLAB Function Block

To disable implicit signal resolution for a MATLAB Function block in your model, follow
these steps:

37 Using the MATLAB Function Block

37-70

1 Right-click the MATLAB Function block and select Block Parameters
(Subsystem) in the context menu.

The Block Parameters dialog opens.
2 In the Permit hierarchical resolution field, select ExplicitOnly or None, and click

OK.

Forcing Explicit Signal Resolution for an Output Data Signal

To force signal resolution for an output signal in a MATLAB Function block, follow these
steps:

1 In the Simulink model, right-click the signal line connected to the output that you
want to resolve and select Properties from the context menu.

2 In the Signal Properties dialog, enter a name for the signal that corresponds to the
signal object.

3 Select the Signal name must resolve to Simulink signal object check box and
click OK.

 Types of Structures in MATLAB Function Blocks

37-71

Types of Structures in MATLAB Function Blocks

In MATLAB Function blocks, you can define structure data as inputs or outputs that
interact with bus signals. MATLAB Function blocks also support arrays of buses (for
more information, see “Combine Buses into an Array of Buses” on page 61-82). You
can also define structures inside MATLAB functions that are not part of MATLAB
Function blocks (see “Structure Definition for Code Generation” on page 47-2.

The following table summarizes how to create different types of structures in MATLAB
Function blocks:

Scope How to Create Details

Input Create structure data with scope of
Input.

Output Create structure data with scope of
Output.

You can create structure data
as inputs or outputs in the
top-level MATLAB function
for interfacing to other
environments. See “Create
Structures in MATLAB
Function Blocks” on page
37-77.

Local Create a local variable implicitly in a
MATLAB function.

See “Define Scalar Structures
for Code Generation” on page
47-4.

Persistent Declare a variable to be persistent in a
MATLAB function.

See “Make Structures
Persistent” on page 47-8.

Parameter Create structure data with scope of
Parameter.

See “Define and Use Structure
Parameters” on page 37-84.

Structures in MATLAB Function blocks can contain fields of any type and size, including
muxed signals, buses, and arrays of structures.

37 Using the MATLAB Function Block

37-72

Attach Bus Signals to MATLAB Function Blocks

For an example of how to use structures in a MATLAB Function block, open the model
emldemo_bus_struct.

In this model, a MATLAB Function block receives a bus signal using the structure inbus
at input port 1 and outputs two bus signals from the structures outbus at output port
1 and outbus1 at output port 2. The input signal comes from the Bus Creator block
MainBusCreator, which bundles signals ele1, ele2, and ele3. The signal ele3 is the
output of another Bus Creator block SubBusCreator, which bundles the signals a1 and
a2. The structure outbus connects to a Bus Selector block BusSelector1; the structure
outbus1 connects to another Bus Selector block BusSelector3.

To explore the MATLAB function fcn, double-click the MATLAB Function block. Notice
that the code implicitly defines a local structure variable mystruct using the struct
function, and uses this local structure variable to initialize the value of the first output
outbus. It initializes the second output outbus1 to the value of field ele3 of structure
inbus.

Structure Definitions in Example

Here are the definitions of the structures in the MATLAB Function block in the example,
as they appear in the Ports and Data Manager:

Bus Objects Define Structure Inputs and Outputs

Each structure input and output must be defined by a Simulink.Bus object in the base
workspace (see “Create Structures in MATLAB Function Blocks” on page 37-77). This
means that the structure shares the same properties as the bus object, including number,
name, type, and sequence of fields. In this example, the following bus objects define the
structure inputs and outputs:

 Attach Bus Signals to MATLAB Function Blocks

37-73

The Simulink.Bus object MainBus defines structure input inbus and structure output
outbus. The Simulink.Bus object SubBus defines structure output outbus1. Based
on these definitions, inbus and outbus have the same properties as MainBus and,
therefore, reference their fields by the same names as the fields in MainBus, using dot
notation (see “Index Substructures and Fields” on page 37-76). Similarly, outbus1
references its fields by the same names as the fields in SubBus. Here are the field
references for each structure in this example:

Structure First Field Second Field Third Field

inbus inbus.ele1 inbus.ele2 inbus.ele3

outbus outbus.ele1 outbus.ele2 outbus.ele3

outbus1 outbus1.a1 outbus1.a2 —

To learn how to define structures in MATLAB Function blocks, see “Create Structures in
MATLAB Function Blocks” on page 37-77.

37 Using the MATLAB Function Block

37-74

How Structure Inputs and Outputs Interface with Bus Signals

Buses in a Simulink model appear inside the MATLAB Function block as structures;
structure outputs from the MATLAB Function block appear as buses in Simulink models.
When you create structure inputs, the MATLAB Function block determines the type,
size, and complexity of the structure from the input signal. When you create structure
outputs, you must define their type, size, and complexity in the MATLAB function.

You connect structure inputs and outputs from MATLAB Function blocks to any bus
signal, including:

• Blocks that output bus signals — such as Bus Creator blocks
• Blocks that accept bus signals as input — such as Bus Selector and Gain blocks
• S-Function blocks
• Other MATLAB Function blocks

You can use global bus type data in Data Store Memory blocks with MATLAB Function
blocks. For more information on using buses and Data Store Memory, see “Data Stores
with Buses and Arrays of Buses” on page 58-8.

Working with Virtual and Nonvirtual Buses

MATLAB Function blocks supports nonvirtual buses only (see “Virtual and Nonvirtual
Buses” on page 61-11). When models that contain MATLAB Function block inputs
and outputs are built, hidden converter blocks are used to convert bus signals for code
generation from MATLAB, as follows:

• Converts incoming virtual bus signals to nonvirtual buses for inputs to structures in
MATLAB Function blocks

• Converts outgoing nonvirtual bus signals from MATLAB Function blocks to virtual
bus signals

 Rules for Defining Structures in MATLAB Function Blocks

37-75

Rules for Defining Structures in MATLAB Function Blocks

Follow these rules when defining structures in MATLAB Function blocks:

• For each structure input or output in a MATLAB Function block, you must define a
Simulink.Bus object in the base workspace to specify its type. For more information,
see Simulink.Bus.

• MATLAB Function blocks support nonvirtual buses only (see “Working with Virtual
and Nonvirtual Buses” on page 37-74).

37 Using the MATLAB Function Block

37-76

Index Substructures and Fields

As in MATLAB, you index substructures and fields structures in MATLAB Function
blocks by using dot notation. However, for code generation from MATLAB, you must
reference field values individually (see “Structure Definition for Code Generation” on
page 47-2).

For example, in the emldemo_bus_struct model described in “Attach Bus Signals to
MATLAB Function Blocks” on page 37-72, the MATLAB function uses dot notation to
index fields and substructures:

function [outbus, outbus1] = fcn(inbus)

%#codegen

substruct.a1 = inbus.ele3.a1;

substruct.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),

 'ele3',substruct);

outbus = mystruct;

outbus.ele3.a2 = 2*(substruct.a2);

outbus1 = inbus.ele3;

The following table shows how the code generation software resolves symbols in dot
notation for indexing elements of the structures in this example:

Dot Notation Symbol Resolution

substruct.a1 Field a1 of local structure substruct
inbus.ele3.a1 Value of field a1 of field ele3, a substructure of structure

inputinbus
inbus.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a

substructure of structure input inbus

 Create Structures in MATLAB Function Blocks

37-77

Create Structures in MATLAB Function Blocks

Here is the workflow for creating a structure in a MATLAB Function block:

1 Decide on the type (or scope) of the structure (see “Types of Structures in MATLAB
Function Blocks” on page 37-71).

2 Based on the scope, follow these guidelines for creating the structure:

For Structure
Scope:

Follow These Steps:

Input a Create a Simulink.Bus object in the base workspace to define the structure
input.

b Add data to the MATLAB Function block, as described in “Adding Data to a
MATLAB Function Block” on page 37-38. The data should have the following
properties

• Scope = Input
• Type = Bus: <object name>

For <object name>, enter the name of the Simulink.Bus object that
defines the structure input

See “Rules for Defining Structures in MATLAB Function Blocks” on page 37-75.
Output a Create a Simulink.Bus object in the base workspace to define the structure

output.
b Add data to the MATLAB Function block with the following properties:

• Scope = Output
• Type = Bus: <object name>

For <object name>, enter the name of the Simulink.Bus object that
defines the structure output

c Define and initialize the output structure implicitly as a variable in
the MATLAB function, as described in “Structure Definition for Code
Generation” on page 47-2.

d Make sure the number, type, and size of fields in the output structure
variable definition match the properties of the Simulink.Bus object.

37 Using the MATLAB Function Block

37-78

For Structure
Scope:

Follow These Steps:

Local Define the structure implicitly as a local variable in the MATLAB function, as
described in “Structure Definition for Code Generation” on page 47-2. By
default, local variables in MATLAB Function blocks are temporary.

Persistent Define the structure implicitly as a persistent variable in the MATLAB function,
as described in “Make Structures Persistent” on page 47-8.

Parameter a Create a structure variable in the base workspace.
b Add data to the MATLAB Function block with the following properties:

• Name = same name as the structure variable you created in step 1.
• Scope = Parameter

See “Define and Use Structure Parameters” on page 37-84.

 Assign Values to Structures and Fields

37-79

Assign Values to Structures and Fields

You can assign values to any structure, substructure, or field in a MATLAB Function
block. Here are the guidelines:

Operation Conditions

Assign one structure to another structure You must define each structure with the
same number, type, and size of fields,
either as Simulink.Bus objects in the
base workspace or locally as implicit
structure declarations (see “Create
Structures in MATLAB Function Blocks”
on page 37-77).

Assign one structure to a substructure of a
different structure and vice versa

You must define the structure with the
same number, type, and size of fields as
the substructure, either as Simulink.Bus
objects in the base workspace or locally as
implicit structure declarations.

Assign an element of one structure to an
element of another structure

The elements must have the same type and
size.

For example, the following table presents valid and invalid structure assignments
based on the specifications for the model described in “Attach Bus Signals to MATLAB
Function Blocks” on page 37-72:

Assignment Valid or Invalid? Rationale

outbus = mystruct; Valid Both outbus and mystruct have the same number,
type, and size of fields. The structure outbus is defined
by the Simulink.Bus object MainBus and mystruct
is defined locally to match the field properties of
MainBus.

outbus = inbus; Valid Both outbus and inbus are defined by the same
Simulink.Bus object, MainBus.

outbus1 =
inbus.ele3;

Valid Both outbus1 and inbus.ele3 have the same type
and size because each is defined by the Simulink.Bus
object SubBus.

37 Using the MATLAB Function Block

37-80

Assignment Valid or Invalid? Rationale

outbus1 = inbus; Invalid The structure outbus1 is defined by a different
Simulink.Bus object than the structure inbus.

 Initialize a Matrix Using a Non-Tunable Structure Parameter

37-81

Initialize a Matrix Using a Non-Tunable Structure Parameter

The following simple example uses a non-tunable structure parameter input to initialize
a matrix output. The model looks like this:

This model defines a structure variable p in its pre-load callback function, as follows:

37 Using the MATLAB Function Block

37-82

The structure p has two fields, rows and cols, which specify the dimensions of a matrix.
The MATLAB Function block uses a constant input u to initialize the matrix output y.
Here is the code:

function y = fcn(u, p)

y = zeros(p.rows,p.cols) + u;

Running the model initializes each element of the 2-by-3 matrix y to 99, the value of u:

 Initialize a Matrix Using a Non-Tunable Structure Parameter

37-83

37 Using the MATLAB Function Block

37-84

Define and Use Structure Parameters

In this section...

“Defining Structure Parameters” on page 37-84
“FIMATH Properties of Non-Tunable Structure Parameters” on page 37-84

Defining Structure Parameters

To define structure parameters in MATLAB Function blocks, follow these steps:

1 Define and initialize a structure variable

A common method is to create a structure in the base workspace. For other methods,
see “Organize Related Parameters in Structures and Arrays of Structures” on page
32-20.

2 In the Ports and Data Manager, add data in the MATLAB Function block with the
following properties:

Property What to Specify

Name Enter same name as the structure variable you defined in the
base workspace

Scope Select Parameter
Tunable Leave checked if you want to change (tune) the value of the

parameter during simulation; otherwise, clear to make the
parameter non-tunable and preserve the initial value during
simulation

Type Select Inherit: Same as Simulink

3 Click Apply.

FIMATH Properties of Non-Tunable Structure Parameters

FIMATH properties for non-tunable structure parameters containing fixed-point values
are based on the initial values of the structure. They do not come from the FIMATH
properties specified for fixed-point input signals to the parent MATLAB Function block.
(These FIMATH properties appear in the properties dialog box for MATLAB Function
blocks.)

 Limitations of Structures and Buses in MATLAB Function Blocks

37-85

Limitations of Structures and Buses in MATLAB Function Blocks

• Structures in MATLAB Function blocks support a subset of the operations available
for MATLAB structures (see “Structures”).

• You cannot use variable-size data with arrays of buses (see “Array of Buses
Limitations” on page 61-84).

37 Using the MATLAB Function Block

37-86

What Is Variable-Size Data?

Variable-size data is data whose size may change at run time. By contrast, fixed-size
data is data whose size is known and locked at compile time, and therefore cannot change
at run time.

 How MATLAB Function Blocks Implement Variable-Size Data

37-87

How MATLAB Function Blocks Implement Variable-Size Data

You can define variable-size arrays and matrices as inputs, outputs, and local data in
MATLAB Function blocks. However, the block must be able to determine the upper
bounds of variable-size data at compile time.

For more information about using variable-size data in Simulink, see “Variable-Size
Signal Basics” on page 62-2.

37 Using the MATLAB Function Block

37-88

Enable Support for Variable-Size Data

Support for variable-size data is enabled by default for MATLAB Function blocks. To
modify this property for individual blocks:

1 In the MATLAB Function Block Editor, select Edit Data.
2 Select or clear the check box Support variable-size arrays.

 Declare Variable-Size Inputs and Outputs

37-89

Declare Variable-Size Inputs and Outputs

1 In the MATLAB Function Block Editor, select Edit Data.
2 Select Add > Data
3 Select the Variable size check box.
4 Set Scope as either Input or Output.
5 Enter size:

For: What to Specify

Input Enter -1 to inherit size from Simulink or specify the explicit size and
upper bound.

For example, enter [2 4] to specify a 2-D matrix where the upper
bounds are 2 for the first dimension and 4 for the second.

Output Specify the explicit size and upper bound.

37 Using the MATLAB Function Block

37-90

Filter a Variable-Size Signal
In this section...

“About the Example” on page 37-90
“Simulink Model” on page 37-90
“Source Signal” on page 37-91
“MATLAB Function Block: uniquify” on page 37-91
“MATLAB Function Block: avg” on page 37-93
“Variable-Size Results” on page 37-94

About the Example

The following example appears throughout this section to illustrate how MATLAB
Function blocks exchange variable-size data with other Simulink blocks. The model uses
a variable-size vector to store the values of a white noise signal. The size of the vector
may vary at run time as the signal values get pruned by functions that:

• Filter out signal values that are not unique within a specified tolerance of each other
• Average every two signal values and output only the resulting means

Simulink Model

Open the example model by typing emldemo_process_signal at the MATLAB
command prompt. The model contains the following blocks:

Simulink Block Description

Band-Limited White Noise Generates a set of normally distributed
random values as the source of the white
noise signal.

MATLAB Function uniquify Filters out signal values that are not
unique to within a specified tolerance of
each other.

MATLAB Function avg Outputs the average of a specified number
of unique signal values.

Unique values Scope that displays the unique signal
values output from the uniquify function.

 Filter a Variable-Size Signal

37-91

Simulink Block Description

Average values Scope that displays the average signal
values output from the avg function.

Source Signal

The band-limited white noise signal has these properties:

The size of the noise power value defines the size of the matrix that holds the signal
values — in this case, a 1-by-9 vector of double values.

MATLAB Function Block: uniquify

This block filters out signal values that are not within a tolerance of 0.2 of each other.
Here is the code:

function y = uniquify(u) %#codegen

y = emldemo_uniquetol(u,0.2);

The uniquify function calls an external MATLAB function emldemo_uniquetol to
filter the signal values. uniquify passes the 1-by-9 vector of white noise signal values as
the first argument and the tolerance value as the second argument. Here is the code for
emldemo_uniquetol:

function B = emldemo_uniquetol(A,tol) %#codegen

37 Using the MATLAB Function Block

37-92

A = sort(A);

coder.varsize('B',[1 100]);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

emldemo_uniquetol returns the filtered values of A in an output vector B so that
abs(B(i) - B(j)) > tol for all i and j. Every time Simulink samples the Band-
Limited White Noise block, it generates a different set of random values for A. As a
result, emldemo_uniquetol may produce a different number of output signals in
B each time it is called. To allow B to accommodate a variable number of elements,
emldemo_uniquetol declares it as variable-size data with an explicit upper bound:

coder.varsize('B',[1 100]);

In this statement, coder.varsize declares B as a vector whose first dimension is fixed
at 1 and whose second dimension can grow to a maximum size of 100. Accordingly,
output y of the uniquify block must also be variable sized so it can pass the values
returned from emldemo_uniquetol to the Unique values scope. Here are the
properties of y:

 Filter a Variable-Size Signal

37-93

For variable-size outputs, you must specify an explicit size and upper bound, shown here
as [1 9].

MATLAB Function Block: avg

This block averages signal values filtered by the uniquify block as follows:

If number of signal values: The MATLAB Function block:

> 1 and divisible by 2 Averages every consecutive pair of values
> 1 but not divisible by 2 Drops the first (smallest) value and

average the remaining consecutive pairs
= 1 Returns the value unchanged

The avg function outputs the results to the Average values scope. Here is the code:

function y = avg(u) %#codegen

if numel(u) == 1

 y = u;

else

 k = numel(u)/2;

 if k ~= floor(k)

 u = u(2:numel(u));

 end

 y = emldemo_navg(u,2);

end

Both input u and output y of avg are declared as variable-size vectors because the
number of elements varies depending on how the uniquify function block filters the
signal values. Input u inherits its size from the output of uniquify.

37 Using the MATLAB Function Block

37-94

The avg function calls an external MATLAB function emldemo_navg to calculate the
average of every two consecutive signal values. Here is the code for emldemo_navg:

function B = emldemo_navg(A,n) %#codegen

assert(n>=1 && n<=numel(A));

B = zeros(1,numel(A)/n);

k = 1;

for i = 1 : numel(A)/n

 B(i) = mean(A(k + (0:n-1)));

 k = k + n;

end

Variable-Size Results

Simulating the model produces the following results:

• The uniquify block outputs a variable number of signal values each time it executes:

 Filter a Variable-Size Signal

37-95

• The avg block outputs a variable number of signal values each time it executes —
approximately half the number of the unique values:

37 Using the MATLAB Function Block

37-96

 Enumerated Types Supported in MATLAB Function Blocks

37-97

Enumerated Types Supported in MATLAB Function Blocks

An enumerated type is a user-defined type whose values belong to a predefined set
of enumerated values. Each enumerated value consists of a name and an underlying
numeric value. For basic information about using enumerated data types in Simulink,
see “Use Enumerated Data in Simulink Models” on page 56-7.

You can define an enumerated data type in an enumeration class definition file. For use
in a MATLAB Function block, you must base the class on Simulink.IntEnumType,
int8, uint8, int16, uint16, or int32. For example:

classdef PrimaryColors < Simulink.IntEnumType

 enumeration

 Red(1),

 Blue(2),

 Yellow(4)

 end

end

In this example, the statement classdef PrimaryColors <
Simulink.IntEnumType means that the enumerated type PrimaryColors is based
on the Simulink.IntEnumType class. PrimaryColors inherits the characteristics of
the Simulink.IntEnumType class. It also defines its own unique characteristics. For
example, PrimaryColors is restricted to three enumerated values.

Enumerated Value Enumerated Name Underlying Numeric Value

Red(1) Red 1
Blue(2) Blue 2
Yellow(4) Yellow 4

If the enumerated type inherits from a base type supported for a MATLAB Function
block, you can exchange enumerated data between MATLAB Function blocks and other
Simulink blocks in a model.

You can also define an enumerated type by using the function
Simulink.defineIntEnumType.

37 Using the MATLAB Function Block

37-98

Enumeration Class Base Types in MATLAB Function Block

For MATLAB Function blocks, you must base an enumerated type on the
Simulink.IntEnumType class or one of the following built-in MATLAB integer data
types:

• int8

• uint8

• int16

• uint16

• int32

You can use the base type to control the size of an enumerated type in generated C/C++
code. You can:

• Represent an enumerated type as a fixed-size integer that is portable to different
targets.

• Reduce memory usage.
• Interface to legacy code.
• Match company standards.

The base type determines the representation of the enumerated type in generated C/C++
code.

C Code Representation for Simulink.IntEnumType Base Type

If the base type is Simulink.IntEnumType , the code generation software generates a C
enumeration type. Consider the following MATLAB enumerated type definition:

classdef LEDcolor < Simulink.IntEnumType

 enumeration

 GREEN(1),

 RED(2)

 end

end

This enumerated type definition results in the following C code:

typedef enum {

 GREEN = 1,

 Enumerated Types Supported in MATLAB Function Blocks

37-99

 RED

} LEDcolor;

C Code Representation for Built-In Integer Base Types

For built-in integer base types, the code generation software generates a typedef
statement for the enumerated type and #define statements for the enumerated values.
Consider the following MATLAB enumerated type definition:

classdef LEDcolor < int16

 enumeration

 GREEN(1),

 RED(2)

 end

 end

This enumerated type definition results in the following C code:

typedef int16_T LEDcolor;

#define GREEN ((LEDcolor)1)

#define RED ((LEDcolor)2)

37 Using the MATLAB Function Block

37-100

Define Enumerated Data Types for MATLAB Function Blocks

You can define enumerated data types for MATLAB Function blocks in two ways:

• Use the Simulink.defineIntEnumType function. See “Import Enumerations
Defined Externally to MATLAB” on page 56-12.

• Define an enumerated type in a class definition file.

Define Enumerated Type in Class Definition File

1 Create a class definition file.

In the Command Window, select File > New > Class.

2 Enter the class definition:

classdef EnumTypeName < BaseType

EnumTypeName is a case-sensitive string that must be unique among
data type names and workspace variable names. BaseType must be
Simulink.IntEnumType, int8, uint8, int16, uint16, or int32.

For example, the following code defines an enumerated type called sysMode that
inherits from the built-in type Simulink.IntEnumType:

classdef sysMode < Simulink.IntEnumType

 ...

end

3 Define enumerated values in an enumeration section:

classdef EnumTypeName < BaseType

 enumeration

 EnumName(N)

 ...

 end

end

For example, the following code defines a set of two values for enumerated type
LEDcolor:

classdef LEDcolor < Simulink.IntEnumType

 enumeration

 Define Enumerated Data Types for MATLAB Function Blocks

37-101

 GREEN(1),

 RED(2),

 end

end

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type. The match
is case sensitive.

For more information about the supported base types, see “Enumerated Types Supported
in MATLAB Function Blocks” on page 37-97.

37 Using the MATLAB Function Block

37-102

Add Inputs, Outputs, and Parameters as Enumerated Data

You can add inputs, outputs, and parameters as enumerated data, according to these
guidelines:

For: Do This:

Inputs Inherit from the enumerated type of the connected Simulink signal or
specify the enumerated type explicitly.

Outputs Always specify the enumerated type explicitly.
Parameters For tunable parameters, specify the enumerated type explicitly.

For non-tunable parameters, derive properties from an enumerated
parameter in a parent Simulink masked subsystem or enumerated
variable defined in the MATLAB base workspace.

To add enumerated data to a MATLAB Function block:

1 In the MATLAB Function Block Editor, select Edit Data.
2 In the Ports and Data Manager, select Add > Data.
3 In the Name field, enter a name for the enumerated data.

For parameters, the name must match the enumerated masked parameter or
workspace variable name.

4 In the Type field, specify an enumerated type.

To specify an explicit enumerated type:

a Select Enum:<class name> from the drop-down menu in the Type field.
b Replace <class name> with the name of an enumerated data type that you

defined in a MATLAB file on the MATLAB path.

For example, you can enter Enum:led in the Type field (see “Define
Enumerated Data Types for MATLAB Function Blocks” on page 37-100).

Note: The Complexity field disappears when you select Enum:<class name>
because enumerated data types do not support complex values.

 Add Inputs, Outputs, and Parameters as Enumerated Data

37-103

For example, the following output ledval has an explicit enumerated type, led:

To inherit the enumerated type from a connected Simulink signal (for inputs only):

a Select Inherit:Same as Simulink from the drop-down menu in the Type
field.

For example, the following input state inherits its enumerated type
switchmode from a Simulink signal:

5 Click Apply.

37 Using the MATLAB Function Block

37-104

Use Enumerated Data in MATLAB Function Blocks

The basic workflow for using enumerated data in MATLAB Function blocks:

Step Action How?

1 Define an enumerated data
type that inherits from
Simulink.IntEnumType, int8,
uint8, int16, uint16, or int32.

See “Define Enumerated Data Types
for MATLAB Function Blocks” on page
37-100.

1 Add the enumerated data to your
MATLAB Function block.

See “Add Inputs, Outputs, and
Parameters as Enumerated Data” on
page 37-102.

1 Instantiate the enumerated type in
your MATLAB Function block.

See “Instantiate Enumerated Data in
MATLAB Function Blocks” on page
37-105.

1 Simulate and/or generate code. See “Use Enumerated Data in
Generated Code”.

 Instantiate Enumerated Data in MATLAB Function Blocks

37-105

Instantiate Enumerated Data in MATLAB Function Blocks

To instantiate an enumerated type in a MATLAB Function block, use dot notation
to specify ClassName.EnumName. For example, the following MATLAB function
checkState instantiates the enumerated types switchmode and led from “Control an
LED Display” on page 37-106. The dot notation appears highlighted in the code.

function led = checkState(state)

%#codegen

if state == switchmode.ON

 led = led.GREEN;

else

 led = led.RED;

end

37 Using the MATLAB Function Block

37-106

Control an LED Display
In this section...

“About the Example” on page 37-106
“Class Definition: switchmode” on page 37-106
“Class Definition: led” on page 37-106
“Simulink Model” on page 37-107
“MATLAB Function Block: checkState” on page 37-108
“How the Model Displays Enumerated Data” on page 37-109

About the Example

The following example illustrates how MATLAB Function blocks exchange enumerated
data with other Simulink blocks. This simple model uses enumerated data to represent
the modes of a device that controls the colors of an LED display. The MATLAB Function
block receives an enumerated data input representing the mode and, in turn, outputs
enumerated data representing the color to be displayed by the LED.

This example uses two enumerated types: switchmode to represent the set of allowable
modes and led to represent the set of allowable colors. Both type definitions inherit from
the built-in type Simulink.IntEnumType and must reside on the MATLAB path.

Class Definition: switchmode

Here is the class definition of the switchmode enumerated data type:

classdef switchmode < Simulink.IntEnumType

 enumeration

 OFF(0)

 ON(1)

 end

end

This definition must reside on the MATLAB path in a MATLAB file with the same name
as the class, switchmode.m.

Class Definition: led

Here is the class definition of the led enumerated data type:

 Control an LED Display

37-107

classdef led < Simulink.IntEnumType

 enumeration

 GREEN(1),

 RED(8)

 end

end

This definition must reside on the MATLAB path in a file called led.m. The set of
allowable values do not need to be consecutive integers.

Simulink Model

Open the example model by typing emldemo_led_switch at the MATLAB command
prompt. The model contains the following blocks:

Simulink Block Description

Step Provides source of the on/off signal.
Outputs an initial value of 0 (off) and at 10
seconds steps up to a value of 1 (on).

Data Type Conversion from double to
int32

Converts the Step signal of type double to
type int32.

Data Type Conversion from int32 to
enumerated type switchmode

Converts the value of type int32 to the
enumerated type switchmode.

In the Data Type Conversion block, you
specify the enumerated data type using the
prefix Enum: followed by the type name.
You cannot set a minimum or maximum
value for a signal of an enumerated type;
leave these fields at the default value
[]. For this example, the Data Type
Conversion block parameters have these
settings:

• Output minimum: []
• Output maximum: []
• Output data type: Enum:switchmode

For more information about specifying
enumerated types in Simulink models,

37 Using the MATLAB Function Block

37-108

Simulink Block Description

see “Define Enumerated Data Types for
MATLAB Function Blocks” on page 37-100.

MATLAB Function checkState Evaluates enumerated data input state
to determine the color to output as
enumerated data ledval. See “MATLAB
Function Block: checkState” on page
37-108.

Display Displays the enumerated value of output
led.

MATLAB Function Block: checkState

The function checkState in the MATLAB Function block uses enumerated data to
activate an LED display, based on the state of a device. It lights a green LED display to
indicate the ON state and lights a red LED display to indicate the OFF state.

function ledval = checkState(state)

%#codegen

if state == switchmode.ON

 ledval = led.GREEN;

else

 ledval = led.RED;

end

The input state inherits its enumerated type switchmode from the Simulink step
signal; the enumerated type of output ledval is explicitly declared as Enum:led:

Explicit enumerated type declarations must include the prefix Enum:. For more
information, see “Define Enumerated Data Types for MATLAB Function Blocks” on page
37-100.

 Control an LED Display

37-109

How the Model Displays Enumerated Data

Wherever possible, Simulink displays the name of an enumerated value, not its
underlying integer. For instance, Display blocks display the name of enumerated values.
In this example, when the model simulates for less than 10 seconds, the step signal is 0,
resulting in a red LED display to signify the off state.

Similarly, if the model simulates for 10 seconds or more, the step signal is 1, resulting in
a green LED display to signify the on state.

Simulink scope blocks work differently. For more information, see “Enumerations and
Scopes” on page 56-5.

37 Using the MATLAB Function Block

37-110

Operations on Enumerated Data

Simulink software prevents enumerated values from being used as numeric values in
mathematical computation (see “Operations on Enumerated Data” on page 37-110).

The code generation software supports the following enumerated data operations:

• Assignment (=)
• Relational operations (==, ~=, <, >, <=, >=,)
• Cast
• Indexing

For more information, see “Enumerated Data”.

 Enumerated Data in MATLAB Function Blocks

37-111

Enumerated Data in MATLAB Function Blocks

In this section...

“When to Use Enumerated Data” on page 37-111
“Limitations of Enumerated Types” on page 37-111

When to Use Enumerated Data

You can use enumerated types to represent program states and to control program logic,
especially when you need to restrict data to a predetermined set of values and refer to
these values by name. Even though you can sometimes achieve these goals by using
integers or strings, enumerated types offer the following advantages:

• Provide more readable code than integers
• Allow more robust error checking than integers or strings

For example, if you mistype the name of an element in the enumerated type, the code
generation software alerts you that the element does not belong to the set of allowable
values.

• Produce more efficient code than strings

For example, comparisons of enumerated values execute faster than comparisons of
strings.

Limitations of Enumerated Types

Enumerated types in MATLAB Function blocks are subject to the limitations imposed by
the code generation software. See “Enumerated Data Definition for Code Generation” on
page 49-2.

37 Using the MATLAB Function Block

37-112

Share Data Globally

In this section...

“When Do You Need to Use Global Data?” on page 37-112
“Using Global Data with the MATLAB Function Block” on page 37-112
“Choosing How to Store Global Data” on page 37-113
“How to Use Data Store Memory Blocks” on page 37-114
“How to Use Simulink.Signal Objects” on page 37-116
“Using Data Store Diagnostics to Detect Memory Access Issues” on page 37-118
“Limitations of Using Shared Data in MATLAB Function Blocks” on page 37-118

When Do You Need to Use Global Data?

You might need to use global data with a MATLAB Function block if:

• You have multiple MATLAB functions that use global variables and you want to call
these functions from MATLAB Function blocks.

• You have an existing model that uses a large amount of global data and you are
adding a MATLAB Function block to this model, and you want to avoid cluttering
your model with additional inputs and outputs.

• You want to scope the visibility of data to parts of the model.

Using Global Data with the MATLAB Function Block

In Simulink, you store global data using data store memory. You implement data store
memory using either Data Store Memory blocks or Simulink.Signal objects. How you
store global data depends on the number and scope of your global variables. For more
information, see “Local and Global Data Stores” on page 58-2 and “Choosing How to
Store Global Data” on page 37-113.

How MATLAB Globals Relate to Data Store Memory

In MATLAB functions in Simulink, global declarations are not mapped to the MATLAB
global workspace. Instead, you register global data with the MATLAB Function block
to map the data to data store memory. This difference allows global data in MATLAB
functions to inter-operate with the Simulink solver and to provide diagnostics if they are
misused.

 Share Data Globally

37-113

A global variable resolves hierarchically to the closest data store memory with the
same name in the model. The same global variable occurring in two different MATLAB
Function blocks might resolve to different data store memory depending on the hierarchy
of your model. You can use this ability to scope the visibility of data to a subsystem.

How to Use Globals with the MATLAB Function Block

To use global data in your MATLAB Function block, or in any code that this block calls,
you must:

1 Declare a global variable in your MATLAB Function block, or in any code that is
called by the MATLAB Function block.

2 Register a Data Store Memory block or Simulink.Signal object that has the same
name as the global variable with the MATLAB Function block.

For more information, see “How to Use Data Store Memory Blocks” on page 37-114
and “How to Use Simulink.Signal Objects” on page 37-116.

Choosing How to Store Global Data

The following table summarizes whether to use Data Store Memory blocks or
Simulink.Signal objects.

If you want to: Use: For more information:

Use a small number of
global variables in a single
model that does not use
model reference.

Data Store Memory blocks.

Note: Using Data Store
Memory blocks scopes the
data to the model.

“How to Use Data Store
Memory Blocks” on page
37-114

Use a large number of
global variables in a single
model that does not use
model reference.

Simulink.Signal

objects defined in the
model workspace.
Simulink.Signal objects
offer these advantages:

• You do not have to add
numerous Data Store
Memory blocks to your
model.

“How to Use Simulink.Signal
Objects” on page 37-116

37 Using the MATLAB Function Block

37-114

If you want to: Use: For more information:

• You can load the
Simulink.Signal

objects in from a MAT-
file.

Share data between
multiple models (including
referenced models).

Simulink.Signal

objects defined in the base
workspace

Note: If you use Data Store
Memory blocks as well
as Simulink.Signal,
note that using Data Store
Memory blocks scopes the
data to the model.

“How to Use Simulink.Signal
Objects” on page 37-116

How to Use Data Store Memory Blocks

1 Add a MATLAB Function block to your model.
2 Double-click the MATLAB Function block to open its editor.
3 Declare a global variable in the MATLAB Function block code, or in any MATLAB

file that the MATLAB Function block code calls. For example:

global A;

4 Add a Data Store Memory block to your model and set the following:

a Set the Data store name to match the name of the global variable in your
MATLAB Function block code.

b Set Data type to an explicit data type.

The data type cannot be auto.
c Set the Signal type.
d Specify an Initial value.

The initial value of the Data Store Memory block cannot be unspecified.
5 Register the variable to the MATLAB Function block.

 Share Data Globally

37-115

a In the Ports and Data Manager, add data with the same name as the global
variable.

b Set the Scope of the data to Data Store Memory.

For more information on using the Ports and Data Manager, see “Ports and Data
Manager” on page 37-33.

Example: Using Data Store Memory with the MATLAB Function Block

This simple model demonstrates how a MATLAB Function block uses the global data
stored in Data Store Memory block A.

1 Open the dsm_demo model. At the MATLAB command line, enter:

run(docpath(fullfile(docroot, 'toolbox', 'simulink', 'examples', 'dsm_demo.mdl')))

2 Double-click the MATLAB Function block to open the MATLAB Function Block
Editor.

The MATLAB Function block modifies the value of global data A each time it
executes.

function y = fcn

%#codegen

global A;

A = A+1;

y = A;

3 In the MATLAB Function Block Editor, select Edit Data.
4 In the Ports and Data Manager, select the data A in the left pane.

The Ports and Data Manager displays the data attributes in the right pane. Note
that A has a scope of Data Store Memory.

5 In the model, double-click the Data Store Memory block A.

37 Using the MATLAB Function Block

37-116

The Block Parameters dialog box opens. Note that A has an initial value of 25.
6 Simulate the model.

The MATLAB Function block reads the initial value of global data stored in A and
updates the value of A each time it executes.

How to Use Simulink.Signal Objects

1 Create a Simulink.Signal object in the model workspace.

Tip Create a Simulink.Signal object in the base workspace to use the global data
with multiple models.

a In the Model Explorer, navigate to model_name > Model Workspace in the
Model Hierarchy pane.

b Select Add > Simulink Signal.
c Ensure that these settings apply to the Simulink.Signal object:

i Set Data type to an explicit data type.

The data type cannot be auto.
ii Set Dimensions to be fully specified.

The signal dimensions cannot be -1 or inherited.
iii Set the Complexity.
iv Specify an Initial value.

The initial value of the signal cannot be unspecified.
2 Register the Simulink.Signal object to the MATLAB Function block.

a In the Ports and Data Manager, add data with the same name as the
Simulink.Signal object you created in the model (or base) workspace.

b Set the Scope of the data to Data Store Memory.
3 Declare a global variable with the same name in the code for your MATLAB

Function block.

 Share Data Globally

37-117

global Sig;

For more information on using the Ports and Data Manager, see “Ports and Data
Manager” on page 37-33.

Example: Using a Simulink.Signal Object with a MATLAB Function Block

1 Open the simulink_signal_local model. At the MATLAB command line, enter:

addpath(fullfile(docroot, 'toolbox', 'simulink', 'examples'))

simulink_signal_local

2 Double-click the MATLAB Function block to open its editor.

The MATLAB Function block modifies the value of global data A each time it
executes.

function y = fcn

%#codegen

global A;

A = A+1;

y = A;

3 From the MATLAB Function Block Editor menu, select Edit Data.
4 In the Ports and Data Manager, select the data A in the left pane.

The Ports and Data Manager displays the data attributes in the right pane. Note
that A has a scope of Data Store Memory.

5 From the model menu, select View > Model Explorer.
6 In the left pane of the Model Explorer, select the model workspace for the

simulink_signal_local model.

The Contents pane displays the data in the model workspace.
7 Click the Simulink.Signal object A.

37 Using the MATLAB Function Block

37-118

The right pane displays attributes for A, including.

Attribute Value

Data type double

Complexity real

Dimensions 1

Initial value 5

8 Simulate the model.

The MATLAB Function block reads the initial value of global data stored in A and
updates the value of A each time it executes.

Using Data Store Diagnostics to Detect Memory Access Issues

You can configure your model to provide run-time and compile-time diagnostics for
avoiding problems with data stores. Diagnostics are available in the Configuration
Parameters dialog box and the parameters dialog box for the Data Store Memory
block. These diagnostics are available for Data Store Memory blocks only, not for
Simulink.Signal objects. For more information on using data store diagnostics, see
“Data Store Diagnostics” on page 58-43.

Note: If you pass data store memory arrays to functions, optimizations such as
A=foo(A) might result in the code generation software marking the entire contents of
the array as read or written even though only some elements were accessed.

Limitations of Using Shared Data in MATLAB Function Blocks

There is no Data Store Memory support for:

• MATLAB structures
• Variable-sized data

 Create Custom Block Libraries

37-119

Create Custom Block Libraries

In this section...

“When to Use MATLAB Function Block Libraries” on page 37-119
“How to Create Custom MATLAB Function Block Libraries” on page 37-119
“Example: Creating a Custom Signal Processing Filter Block Library” on page 37-120
“Code Reuse with Library Blocks” on page 37-132
“Debugging MATLAB Function Library Blocks” on page 37-137
“Properties You Can Specialize Across Instances of Library Blocks” on page 37-137

When to Use MATLAB Function Block Libraries

In Simulink, you can create your own block libraries as a way to reuse the functionality
of blocks or subsystems in one or more models. If you want to reuse a set of MATLAB
algorithms in Simulink models, you can encapsulate your MATLAB code in a MATLAB
Function block library.

As with other Simulink block libraries, you can specialize each instance of MATLAB
Function library blocks in your model to use different data types, sample times, and
other properties. Library instances that inherit the same properties can reuse generated
code (see “Code Reuse with Library Blocks” on page 37-132).

For more information about Simulink block libraries, see “About Block Libraries and
Linked Blocks” on page 36-2.

How to Create Custom MATLAB Function Block Libraries

Here is a basic workflow for creating custom block libraries with MATLAB Function
blocks. To work through these steps with an example, see “Example: Creating a Custom
Signal Processing Filter Block Library” on page 37-120.

1 Add polymorphic MATLAB code to MATLAB Function blocks in a Simulink model.

Polymorphic code is code that can process data with different properties, such as
type, size, and complexity.

2 Configure the blocks to inherit the properties you want to specialize.

37 Using the MATLAB Function Block

37-120

For a list of properties you can specialize, see “Properties You Can Specialize Across
Instances of Library Blocks” on page 37-137.

3 Optionally, customize your library code using masking.
4 Add instances of MATLAB Function library blocks to a Simulink model.

Note: If your MATLAB Function block library is masked, you cannot modify contents
of the block with mask initialization code. The Allow library block to modify its
contents option in the Mask dialog box is not support for MATLAB Function block
libraries.

Example: Creating a Custom Signal Processing Filter Block Library

• “What You Will Learn” on page 37-120
• “About the Filter Algorithms” on page 37-120
• “Step 1: Add the Filter Algorithms to MATLAB Function Library Blocks” on page

37-121
• “Step 2: Configure Blocks to Inherit Properties You Want to Specialize” on page

37-122
• “Step 3: Customize Your Library Using Masking” on page 37-123
• “Step 4: Add Instances of MATLAB Library Blocks to a Simulink Model” on page

37-127

What You Will Learn

This simple example takes you through the workflow described in “How to Create
Custom MATLAB Function Block Libraries” on page 37-119 to show you how to:

• Create a library of signal processing filter algorithms using MATLAB Function blocks
• Customize one of the library blocks using mask parameters
• Convert one of the filter algorithms to source-protected P-code that you can call from a

MATLAB Function library block

About the Filter Algorithms

The MATLAB filter algorithms are:

 Create Custom Block Libraries

37-121

my_fft

Performs a discrete Fourier transform on an input signal. The input can be a vector,
matrix, or multidimensional array whose length is a power of 2.

my_conv

Convolves two input vector signals. Outputs a subsection of the convolution with a size
specified by a mask parameter, Shape.

my_sobel

Convolves a 2D input matrix with a Sobel edge detection filter.

Step 1: Add the Filter Algorithms to MATLAB Function Library Blocks

1 In Simulink, create a library model by selecting File > New > Library
2 Drag three MATLAB Function blocks into the model from the User-Defined

Functions section of the Simulink Library Browser and name them:

• my_fft_filter

• my_conv_filter

• my_sobel_filter

3 Save the library model as my_filter_lib.
4 Open the MATLAB Function block named my_fft_filter, replace the template

code with the following code, and save the block:

function y = my_fft(x)

y = fft(x);

5 Replace the template code in my_conv_filter block with the following code and
save the block:

function c = my_conv(a, b)

c = conv(a, b);

6 Replace the template code in my_sobel_filter block with the following code and
save the block:

function y = my_sobel(u)

37 Using the MATLAB Function Block

37-122

%% "my_sobel_filter" is a MATLAB function

%% on the MATLAB path.

y = my_sobel_filter(u);

The my_sobel function acts as a wrapper that calls a MATLAB function,
my_sobel_filter, on the code generation path. my_sobel_filter implements
the algorithm that convolves a 2D input matrix with a Sobel edge detection filter. By
calling the function rather than inlining the code directly in the MATLAB Function
block, you can reuse the algorithm both as MATLAB code and in a Simulink model.
You will create my_sobel_filter next.

7 In the same folder where you created my_filter_lib, create a new MATLAB
function my_sobel_filter with the following code:

function y = my_sobel_filter(u)

% Sobel edge detection filter

h = [1 2 1;...

 0 0 0;...

 -1 -2 -1];

y = abs(conv2(u, h));

Save the file as my_sobel_filter.m.

Step 2: Configure Blocks to Inherit Properties You Want to Specialize

In this example, the data in the signal processing filter algorithms must inherit size,
type, and complexity from the Simulink model. By default, data in MATLAB Function
blocks inherit these properties. To explicitly configure data to inherit properties:

1 Open a MATLAB Function block and select Edit Data.
2 In the left pane of the Ports and Data Manager, select the data of interest.
3 In the right pane, configure the data to inherit properties from Simulink:

To Inherit What to Specify

Size Enter -1 in Size field
Complexity Select Inherited from the Complexity

menu
Type Select Inherit: Same as Simulink from

the Type menu

 Create Custom Block Libraries

37-123

For example, if you open the MATLAB Function block my_fft_filter and look at the
properties of input x in the Ports and Data Manager, you see that size, type, and
complexity are inherited by default.

Note: If your design has specific requirements or constraints, you can enter values for
any of these properties, rather than inherit them from Simulink. For example, if your
algorithm is not supposed to work with complex inputs, set Complexity to Off.

See Also

• “Ports and Data Manager” on page 37-33
• “Inheriting Argument Data Types” on page 37-61

Step 3: Customize Your Library Using Masking

In this exercise you will modify the convolution filter my_conv to use a custom parameter
shape that specifies what subsection of the convolution to output. To customize this
algorithm for your library, place the my_conv_filter block under a masked subsystem
and define shape as a mask parameter.

1 Convert the block to a masked subsystem:

a Right-click the my_conv_filter block and select Subsystem & Model
Reference > Create Subsystem from Selection.

The my_conv_filter block changes to a subsystem block.
b Change the name of the subsystem to my_conv_filter.
c Right-click the my_conv_filter subsystem and select Mask > Create Mask from

the context menu.

The Mask Editor appears with the Icon & Ports tab open.
d Enter in the Icon drawing commands text box:

disp('my_conv');

port_label('output', 1, 'c');

port_label('input', 1, 'a');

port_label('input', 2, 'b');

e Select the Parameters & Dialog tab.

37 Using the MATLAB Function Block

37-124

f Highlight the Parameters line item in the Dialog box pane.
g Add a popup-type parameter by clicking Popup under the Parameter list in

the Controls pane.

A new parameter will appear in the Dialog box pane.
h In the Property editor pane, set the Properties:

Property Value

Name shape

Value full

Prompt shape

Type popup

Type options Open the Type Options Editor and
enter:

full

same

valid

i Set the Attributes, Dialog, and Layout properties in the Property editor
pane:

Attributes, Dialog, and Layout Items Value

Attributes • Evaluate: Checked
• Tunable: Cleared
• Read only: Cleared
• Hidden: Cleared
• Never save: Cleared

Dialog • Enable: Checked
• Visible: Checked
• Callback: no entry

Layout • Item location: Grayed out
• Prompt location: Left

j Click OK.

 Create Custom Block Libraries

37-125

Your subsystem should now look like this:

2 Set subsystem properties for code reuse:

a Right-click the my_conv_filter subsystem and select Block Parameters
(Subsystem) from the context menu.

b In the subsystem parameters dialog box, select the Treat as atomic unit check
box.

The dialog box expands to display new fields.
c To generate a reusable function, select the Code Generation tab and in the

Function packaging field, select Reusable function from the drop-down
menu.

Note: This is an optional step, required for this example. If you leave the default
setting of Auto, the code generation software uses an internal rule to determine
whether to inline the function or not.

d Click OK.
3 Define the shape parameter in the MATLAB Function my_conv:

a Right-click the my_conv_filter subsystem and select Mask > Look Under Mask
from the context menu.

The block diagram under the masked subsystem opens, containing the
my_conv_filter block:

37 Using the MATLAB Function Block

37-126

b Change the names of the port blocks to match the data names as follows:

Change: To:

In1 a

In2 b

Out1 c

c Double-click the my_conv_filter block to open the MATLAB Function Block
Editor.

d In the MATLAB Function Block Editor, select Edit Data.
e In the Ports and Data Manager, select Add > Data.

A new data element appears selected, along with its properties dialog.
f Enter the following properties:

Property What To Specify

Name Enter shape.
Scope Select Parameter.
Tunable Clear the box.

g Leave Size, Complexity, and Type as inherited (the defaults), as described in
“Step 2: Configure Blocks to Inherit Properties You Want to Specialize” on page
37-122.

h Click Apply, close the Ports and Data Manager, and return to the MATLAB
Function Block Editor.

4 Use the shape parameter to determine the size of the convolution to output:

 Create Custom Block Libraries

37-127

a In the MATLAB Function Block Editor, modify the my_conv function to call
conv with the right shape:

function c = my_conv(a, b, shape)

if shape == 1

 c = conv(a, b, 'full');

elseif shape == 2

 c = conv(a, b, 'same');

else

 c = conv(a, b, 'valid');

end

b Save your changes and close the MATLAB Function Block Editor.

See Also

• “Block Masks”

Step 4: Add Instances of MATLAB Library Blocks to a Simulink Model

In this exercise, you will add specialized instances of the my_conv_filter library block to a
simple test model.

1 Open a new Simulink model.

For purposes of this exercise, set the following configuration parameters for
simulation:

Pane Section What to Specify

Solver Solver options • Select Fixed-Step for
Type

• Select discrete (no
continuous states) for
Solver

• Enter 1 for Fixed-step
size

Data Import/Export Save options Structure for Format

2 Drag two instances of the my_conv_filter block from the my_filter_lib library into
the model.

37 Using the MATLAB Function Block

37-128

3 Add Constant, Outport, and Display blocks. Your model should look something like
this:

Both library instances share the same size, type, and complexity for inputs a and b
respectively.

4 Double-click each library instance.

The shape parameter defaults to full for both instances.
5 Simulate the model.

Each library instance outputs the same result, the full 2D convolution:

 Create Custom Block Libraries

37-129

6 Specialize the second instance, my_conv_filter1 by setting the value of its shape
parameter to same.

7 Now simulate the model again.

This time, the outputs have different sizes: my_conv_filter3 outputs the full 2D
convolution, while my_conv_filter1 displays the central part of the convolution as a
1-by-2 vector, the same size as a:

37 Using the MATLAB Function Block

37-130

8 Now, add a third instance by copying my_conv_filter1. Specialize the new instance,
my_conv_filter2, so that it does not inherit the same size inputs as the first two
instances:

 Create Custom Block Libraries

37-131

9 Simulate the model again.

This time, my_conv_filter1 and my_conv_filter2 each display the central part of the
convolution, but the output sizes are different because each matches a different sized
input a.

37 Using the MATLAB Function Block

37-132

Code Reuse with Library Blocks

When instances of MATLAB Function library blocks inherit the same properties, they
can reuse generated code, as illustrated by an example based on “Step 4: Add Instances
of MATLAB Library Blocks to a Simulink Model” on page 37-127:

 Create Custom Block Libraries

37-133

In this model, the library instances my_conv_filter and my_conv_filter1 inherit the same
size, type, and complexity for each respective input. For each instance, input a is a 1-
by-2 vector and input b is a 1-by-5 vector. By comparison, the inputs of my_conv_filter2
inherit different respective sizes; both are 1-by-3 vectors.

In addition, each library instance has a mask parameter called shape that determines
what subsection of the convolution to output. Assume that the value of shape is the same
for each instance.

To generate code for this example, follow these steps:

1 Enable code reuse for the library block:

a In the library, right-click the MATLAB Function block my_conv_filter and select
Block Parameters (Subsystem) from the context menu.

b In the Function Block Parameters dialog box, set these parameters:

37 Using the MATLAB Function Block

37-134

• Select the Treat as atomic unit check box.
• In the Function packaging field, select Reusable function from the

drop-down menu.
2 Configure the model for code generation.

For purposes of this exercise, set the following configuration parameters:

Pane Section What to Specify

Code Generation Target selection Enter ert.tlc for System
target file

Code Generation >
Report

 Select Create code
generation report check
box.

3 Build the model.

If you build this model, the generated C code reuses logic for the my_conv_filter
and my_conv_filter1 library instances because they inherit the same input
properties:

/*

 * Output and update for atomic system:

 * '<Root>/my_conv_filter'

 * '<Root>/my_conv_filter1'

 */

void sp_algorithm_tes_my_conv_filter(const real32_T rtu_a[2], const real32_T

 rtu_b[5], rtB_my_conv_filter_sp_algorithm *localB)

{

 int32_T jA;

 int32_T jA_0;

 real32_T s;

 int32_T jC;

 /* MATLAB Function Block: '<S1>/my_conv_filter' */

 /* MATLAB Function 'my_conv_filter/my_conv_filter': '<S4>:1' */

 /* '<S4>:1:4' */

 for (jC = 0; jC < 6; jC++) {

 if (5 < jC + 2) {

 jA = jC - 4;

 } else {

 jA = 0;

 Create Custom Block Libraries

37-135

 }

 if (2 < jC + 1) {

 jA_0 = 2;

 } else {

 jA_0 = jC + 1;

 }

 s = 0.0F;

 while (jA + 1 <= jA_0) {

 s += rtu_b[jC - jA] * rtu_a[jA];

 jA++;

 }

 localB->c[jC] = s;

 }

 /* end of MATLAB Function Block: '<S1>/my_conv_filter' */

}

However, a separate function is generated for my_conv_filter2:

37 Using the MATLAB Function Block

37-136

/* Output and update for atomic system: '<Root>/my_conv_filter2' */

void sp_algorithm_te_my_conv_filter2(const real_T rtu_a[3], const real_T rtu_b[3],

 rtB_my_conv_filter_sp_algorit_h *localB)

{

 int32_T jA;

 int32_T jA_0;

 real_T s;

 int32_T jC;

 /* MATLAB Function Block: '<S3>/my_conv_filter' */

 /* MATLAB Function 'my_conv_filter/my_conv_filter': '<S6>:1' */

 /* '<S6>:1:4' */

 for (jC = 0; jC < 5; jC++) {

 if (3 < jC + 2) {

 jA = jC - 2;

 } else {

 jA = 0;

 }

 if (3 < jC + 1) {

 jA_0 = 3;

 } else {

 jA_0 = jC + 1;

 }

 s = 0.0;

 while (jA + 1 <= jA_0) {

 s += rtu_b[jC - jA] * rtu_a[jA];

 jA++;

 }

 localB->c[jC] = s;

 }

 /* end of MATLAB Function Block: '<S3>/my_conv_filter' */

}

Note: Generating C code for this model requires a Simulink Coder or Embedded Coder
license.

 Create Custom Block Libraries

37-137

Debugging MATLAB Function Library Blocks

You debug MATLAB Function library blocks the same way you debug any MATLAB
Function block. However, when you add a breakpoint in a library block, the breakpoint is
shared by all instances. As you continue execution, the debugger stops at the breakpoint
in each instance.

For more information, see “Debugging a MATLAB Function Block” on page 37-22

Properties You Can Specialize Across Instances of Library Blocks

You can specialize instances of MATLAB Function library blocks by allowing them to
inherit any of the following properties from Simulink:

Property Inherits by
Default?

How to Specify Inheritance

Type Yes Set data type property to Inherit: Same as
Simulink.

Size Yes Set data size property to -1.
Complexity Yes Set data complexity property to Inherited.
Limit range No Specify minimum and maximum values as

Simulink parameters.
For example, if minimum value = aParam and
maximum value = aParam + 3, different instances
of a MATLAB Function library block can resolve
to different aParam parameters defined in their
parent mask subsystems.

Sampling mode
(input)

Yes MATLAB Function block input ports always
inherit sampling mode

Data type override
mode for fixed-
point data

Yes Set data type override property to Inherit.

Sample time
(block)

Yes Set block sample time property to -1.

37 Using the MATLAB Function Block

37-138

Use Traceability in MATLAB Function Blocks

In this section...

“Extent of Traceability in MATLAB Function Blocks” on page 37-138
“Traceability Requirements” on page 37-138
“Basic Workflow for Using Traceability” on page 37-138
“Tutorial: Using Traceability in a MATLAB Function Block” on page 37-139

Extent of Traceability in MATLAB Function Blocks

Like other Simulink blocks, MATLAB Function blocks support bidirectional traceability,
but extend navigation to lines of source code. That is, you can navigate between a line of
generated code and its corresponding line of source code. In other Simulink blocks, you
can navigate between a line of generated code and its corresponding object.

In addition, you can select to include the source code as comments in the generated
code. When you select this option, the MATLAB source code appears immediately after
the associated traceability tag. For more information, see “Include MATLAB Code as
Comments in Generated Code” on page 37-142.

For information about how traceability works in Simulink blocks, see “What Is Code
Tracing?”.

Traceability Requirements

To enable traceability comments in your code, you must have a license for Embedded
Coder software. These comments appear only in code that you generate for an Embedded
Real-Time (ERT) target.

Note: Traceability is not supported for MATLAB files that you call from a MATLAB
Function block.

Basic Workflow for Using Traceability

The workflow for using traceability is described in “Trace Model Objects to Generated
Code”. Here are the basic steps:

 Use Traceability in MATLAB Function Blocks

37-139

1 Open the MATLAB Function block in your Simulink model.
2 Define your system target file to be an Embedded Real-Time (ERT) target.

a In the model, select Simulation > Model Configuration Parameters.
b In the Code Generation pane, enter ert.tlc for the system target file.

3 Enable traceability options.

a In the Code Generation > Report pane, select Create code generation
report.

This action automatically selects the Open report automatically and Code-
to-model options.

b Select Model-to-code.

This action automatically selects all options in the Traceability Report
Contents section.

4 Generate the source code and header files for your model.
5 Trace a line of code:

To Trace: Do This:

Line of source code to line of generated
code

Right-click in a line in your source
code and select Code Generation >
Navigate to Code from the context
menu

Line of generated code to line of source
code

Click a hyperlink in the traceability
comment in your generated code

To learn how to complete each step in this workflow, see “Tutorial: Using Traceability in
a MATLAB Function Block” on page 37-139

Tutorial: Using Traceability in a MATLAB Function Block

This example shows how to trace between source code and generated code in a MATLAB
Function block in the eml_fire model. Follow these steps:

1 Type eml_fire at the MATLAB prompt.
2 In the Simulink model window, double-click the flame block to open the MATLAB

Function Block Editor.

37 Using the MATLAB Function Block

37-140

3 In the Simulink model window, select Simulation > Model Configuration
Parameters.

4 In the Code Generation pane, go to the Target selection section and enter
ert.tlc for the system target file. Then click Apply.

Note: Traceability comments appear hyperlinked in generated code only for
embedded real-time (ert) targets.

5 In the Code Generation > Report pane, select the Create code generation
report option.

This action automatically selects the Open report automatically and Code-to-
model options.

6 Select the Model-to-code option in the Navigation section. Then click Apply.

This action automatically selects all options in the Traceability Report Contents
section.

Note: For large models that contain over 1000 blocks, disable the Model-to-code
option to speed up code generation.

7 Go to the Code Generation > Interface pane. In the Software environment
section, select the continuous time option. Then click Apply.

Note: Because this example model contains a block with a continuous sample time,
you must perform this step before generating code.

8 In the Code Generation pane, click Build in the lower right corner.

This action generates source code and header files for the eml_fire model that
contains the flame block. After the code generation process is complete, the code
generation report appears automatically.

9 Click the eml_fire.c hyperlink in the report.
10 Scroll down through the code to see the traceability comments, which appear as links

inside /*...*/ brackets, as in this example.

for (b_x = 0; b_x < 256; b_x++) {

 /* '<S2>:1:19' */

 /* '<S2>:1:21' */

 Use Traceability in MATLAB Function Blocks

37-141

 yb = loopVar_i + 2;

 /* '<S2>:1:22' */

 xb = b_x - 1;

Note: The line numbers shown above may differ from the numbers that appear in
your code generation report.

11 Click the <S2>:1:19 hyperlink in this traceability comment:

/* '<S2>:1:19' */

Line 19 of the function appears highlighted in the MATLAB Function Block Editor.
12 You can also trace a line in a MATLAB function to a line of generated code. For

example, right-click in line 21 of your function and select Code Generation >
Navigate to Code from the context menu.

The code location for line 21 appears highlighted in eml_fire.c.

37 Using the MATLAB Function Block

37-142

Include MATLAB Code as Comments in Generated Code

If you have a Simulink Coder license, you can include MATLAB source code as comments
in the code generated for a MATLAB Function block. Including this information in the
generated code enables you to:

• Correlate the generated code with your source code.
• Understand how the generated code implements your algorithm.
• Evaluate the quality of the generated code.

When you select this option, the generated code includes:

• The source code as a comment immediately after the traceability tag. When you
enable traceability and generate code for ERT targets (requires an Embedded Coder
license), the traceability tags are hyperlinks to the source code. For more information
on traceability for the MATLAB Function block, see “Use Traceability in MATLAB
Function Blocks” on page 37-138.

For examples and information on the location of the comments in the generated code,
see “Location of Comments in Generated Code” on page 37-143.

• The function help text in the function body in the generated code. The function
help text is the first comment after the MATLAB function signature. It provides
information about the capabilities of the function and how to use it.

Note: With an Embedded Coder license, you can also include the function help text
in the function banner of the generated code. For more information, see “Including
MATLAB Function Help Text in the Function Banner” on page 37-145.

How to Include MATLAB Code as Comments in the Generated Code

To include MATLAB source code as comments in the code generated for a MATLAB
Function block:

1 In the model, select Simulation > Model Configuration Parameters.
2 In the Code Generation > Comments pane, select MATLAB source code as

comments and click Apply.

 Include MATLAB Code as Comments in Generated Code

37-143

Location of Comments in Generated Code

The automatically generated comments containing the source code appear after the
traceability tag in the generated code as follows.

Straight-Line Source Code

The comment containing the source code precedes the generated code that implements
the source code statement. This comment appears after any comments that you add
that precede the generated code. The comments are separated from the generated code
because the statements are assigned to function outputs.
MATLAB Code

function [x y] = straightline(r,theta)

%#codegen

% Convert polar to Cartesian

x = r * cos(theta);

y = r * sin(theta);

Commented C Code

/* MATLAB Function 'straightline': '<S1>:1' */

 /* Convert polar to Cartesian */

 /* '<S1>:1:4' x = r * cos(theta); */

 /* '<S1>:1:5' y = r * sin(theta); */

 straightline0_Y.x = straightline0_U.r * cos(straightline0_U.theta);

 /* Outport: '<Root>/y' incorporates:

 * Inport: '<Root>/r'

 * Inport: '<Root>/theta'

 * MATLAB Function Block: '<Root>/straightline'

 */

 straightline0_Y.y = straightline0_U.r * sin(straightline0_U.theta);

If Statements

The comment for the if statement immediately precedes the code that implements the
statement. This comment appears after any comments that you add that precede the
generated code. The comments for the elseif and else clauses appear immediately
after the code that implements the clause, and before the code generated for statements
in the clause.
MATLAB Code

function y = ifstmt(u,v)

37 Using the MATLAB Function Block

37-144

%#codegen

if u > v

 y = v + 10;

elseif u == v

 y = u * 2;

else

 y = v - 10;

end

Commented C Code

/* MATLAB Function 'MLFcn': '<S1>:1' */

 /* '<S1>:1:3' if u > v */

 if (MLFcn_U.u > MLFcn_U.v) {

 /* Outport: '<Root>/y' */

 /* '<S1>:1:4' y = v + 10; */

 MLFcn_Y.y = MLFcn_U.v + 10.0;

 } else if (MLFcn_U.u == MLFcn_U.v) {

 /* Outport: '<Root>/y' */

 /* '<S1>:1:5' elseif u == v */

 /* '<S1>:1:6' y = u * 2; */

 MLFcn_Y.y = MLFcn_U.u * 2.0;

 } else {

 /* Outport: '<Root>/y' */

 /* '<S1>:1:7' else */

 /* '<S1>:1:8' y = v - 10; */

 MLFcn_Y.y = MLFcn_U.v - 10.0;

For Statements

The comment for the for statement header immediately precedes the generated code
that implements the header. This comment appears after any comments that you add
that precede the generated code.
MATLAB Code

function y = forstmt(u)

%#codegen

y = 0;

for i=1:u

 y = y + 1;

end

Commented C Code

/* MATLAB Function 'MLFcn': '<S1>:1' */

 /* '<S1>:1:3' y = 0; */

 Include MATLAB Code as Comments in Generated Code

37-145

 rtb_y = 0.0;

 /* '<S1>:1:5' for i=1:u */

 for (i = 1.0; i <= MLFcn_U.u; i++) {

 /* '<S1>:1:6' y = y + 1; */

 rtb_y++;

While Statements

The comment for the while statement header immediately precedes the generated code
that implements the statement header. This comment appears after any comments that
you add that precede the generated code.

Switch Statements

The comment for the switch statement header immediately precedes the generated code
that implements the statement header. This comment appears after any comments that
you add that precede the generated code. The comments for the case and otherwise
clauses appear immediately after the generated code that implements the clause, and
before the code generated for statements in the clause.

Including MATLAB Function Help Text in the Function Banner

You can include the function help text in the function banner of the code generated for a
MATLAB Function block. The function help text is the first comment after the MATLAB
function signature. It provides information about the capabilities of the function and how
to use it.

1 In the model, select Simulation > Model Configuration Parameters.
2 In the Code Generation > Comments pane, select MATLAB function help text

and click Apply.

Note: If the function is inlined, the function help text is also inlined. Therefore, the help
text for inlined functions appears in the function body in the generated code even when
this option is selected.

Limitations of MATLAB Source Code as Comments

The MATLAB Function block has the following limitations for including MATLAB source
code as comments.

37 Using the MATLAB Function Block

37-146

• You cannot include MATLAB source code as comments for:

• MathWorks toolbox functions
• P-code
• Simulation targets
• Stateflow Truth Table blocks

• The appearance or location of comments can vary depending on the following
conditions:

• Comments might still appear in the generated code even if the implementation
code is eliminated, for example, due to constant folding.

• Comments might be eliminated from the generated code if a complete function or
code block is eliminated.

• For certain optimizations, the comments might be separated from the generated
code.

• The generated code always includes legally required comments from the MATLAB
source code, even if you do not choose to include source code comments in the
generated code.

 Integrate C Code Using the MATLAB Function Block

37-147

Integrate C Code Using the MATLAB Function Block

In this section...

“Call C Code from a Simulink model” on page 37-147
“Control Imported Bus and Enumeration Type Definitions” on page 37-149

Call C Code from a Simulink model

You can call external C code from a Simulink model using a MATLAB Function block and
the coder.ceval command. Follow these high-level steps:

1 Start with existing C code consisting of the source (.c) and header (.h) files.
2 In the MATLAB Function block, enter the MATLAB code that calls the C code. Use

the command coder.ceval.
3 Specify the C source and header files for simulation in the Simulation Target >

Custom Code pane of the Configuration Parameters dialog box.

Include the header file using double quotations, such as #include "program.h".
4 If you need to access C source and header files outside your working folder, list

the path in the Simulation Target > Custom Code pane of the Configuration
Parameters dialog box, in the Include Directories text box.

5 Test your Simulink model and ensure it functions correctly.
6 To use the same source and header files for code generation, click Use the same

custom code settings as Simulation Target in the Code Generation > Custom
Code pane.

You can also specify different source and header files.

If you have a Simulink Coder license, you can generate code for targets using this
method. For more information see coder.ceval.

Call the doubleIt Program Using a MATLAB Function Block

This example shows how to call the simple C program doubleIt from a MATLAB
Function block.

1 Create the source file doubleIt.c in your current working folder.

37 Using the MATLAB Function Block

37-148

/* doubleIt, a simple program that returns double the input */

#include "doubleIt.h"

double doubleIt(double u)

{

 return(u*2.0);

}

2 Create the header file doubleIt.h in your current working folder.

double doubleIt(double u);

3 Create a new Simulink model.
4 Add a MATLAB Function block to the model and double-click the block to open the

editor.
5 Enter code that calls the doubleIt program:

function y = callingDoubleIt(u)

%#codegen

y = 0.0;

y = coder.ceval('doubleIt',u);

6 Connect a Constant block having a value of 3.5 to the input port of the MATLAB
Function block.

7 Connect a Display block to the output port.

8 In the Configuration Parameters dialog box, open the Simulation Target >
Custom Code pane.

9 In the Include custom C code in generated section, select Header file from the
list, and enter #include "doubleIt.h" in the Header file text box.

10 In the Include list of additional section, select Source files from the list, enter
doubleIt.c in the Source files text box, and click OK.

 Integrate C Code Using the MATLAB Function Block

37-149

11 Simulate the model.

The value 7 appears in the Display block.

Control Imported Bus and Enumeration Type Definitions

This procedure applies to simulation only.

Simulink generates code for MATLAB Function blocks and Stateflow to simulate the
model. When you call external C code using MATLAB Function blocks or Stateflow,

37 Using the MATLAB Function Block

37-150

you can control the type definitions for imported buses and enumerations in model
simulation.

Simulink can generate type definitions, or you can supply a header file containing
the type definitions. You control this behavior using the Generate typedefs for
imported bus and enumeration types check box in the Simulation Target pane of
the Configuration Parameters dialog box.

To include a custom header file defining the enumeration and bus types:

1 Clear the Generate typedefs for imported bus and enumeration types check
box.

2 List the header file in the Simulation Target > Custom Code pane, in the
Header file text box.

To configure Simulink to automatically generate type definitions:

1 Select the Generate typedefs for imported bus and enumeration types check
box.

2 Do not list a header file that corresponds to the buses or enumerations.

For more information see “Simulation Target Pane: General”.

 Enhance Code Readability for MATLAB Function Blocks

37-151

Enhance Code Readability for MATLAB Function Blocks

In this section...

“Requirements for Using Readability Optimizations” on page 37-151
“Converting If-Elseif-Else Code to Switch-Case Statements” on page 37-151
“Example of Converting Code for If-Elseif-Else Decision Logic to Switch-Case
Statements” on page 37-153

Requirements for Using Readability Optimizations

To use readability optimizations in your code, you must have an Embedded Coder
license. These optimizations appear only in code that you generate for an embedded real-
time (ert) target.

Note: These optimizations do not apply to MATLAB files that you call from the MATLAB
Function block.

For more information, see “Code Generation Targets” and “Control Code Style” in the
Embedded Coder documentation.

Converting If-Elseif-Else Code to Switch-Case Statements

When you generate code for embedded real-time targets, you can choose to convert if-
elseif-else decision logic to switch-case statements. This conversion can enhance
readability of the code.

For example, when a MATLAB Function block contains a long list of conditions, the
switch-case structure:

• Reduces the use of parentheses and braces
• Minimizes repetition in the generated code

How to Convert If-Elseif-Else Code to Switch-Case Statements

The following procedure describes how to convert generated code for the MATLAB
Function block from if-elseif-else to switch-case statements.

37 Using the MATLAB Function Block

37-152

Step Task Reference

1 Verify that your block follows the rules
for conversion.

“Verifying the Contents of the Block” on
page 37-155

2 Enable the conversion. “Enabling the Conversion” on page
37-156

3 Generate code for your model. “Generating Code for Your Model” on
page 37-157

Rules for Conversion

For the conversion to occur, the following rules must hold. LHS and RHS refer to the left-
hand side and right-hand side of a condition, respectively.

Construct Rules to Follow

MATLAB Function
block

Must have two or more unique conditions, in addition to a
default.

For more information, see “How the Conversion Handles
Duplicate Conditions” on page 37-153.
Must test equality only.Each condition
Must use the same variable or expression for the LHS.

Note: You can reverse the LHS and RHS.
Must be a single variable or expression, not a compound
statement.
Cannot be a constant.
Must have an integer or enumerated data type.

Each LHS

Cannot have any side effects on simulation.

For example, the LHS can read from but not write to global
variables.
Must be a constant.Each RHS
Must have an integer or enumerated data type.

 Enhance Code Readability for MATLAB Function Blocks

37-153

How the Conversion Handles Duplicate Conditions

If a MATLAB Function block has duplicate conditions, the conversion preserves only the
first condition. The generated code discards all other instances of duplicate conditions.

After removal of duplicates, two or more unique conditions must exist. Otherwise, no
conversion occurs and the generated code contains all instances of duplicate conditions.

The following examples show how the conversion handles duplicate conditions.

Example of Generated Code Code After Conversion

if (x == 1) {

 block1

} else if (x == 2) {

 block2

} else if (x == 1) { // duplicate

 block3

} else if (x == 3) {

 block4

} else if (x == 1) { // duplicate

 block5

} else {

 block6

}

switch (x) {

 case 1:

 block1; break;

 case 2:

 block2; break;

 case 3:

 block4; break;

 default:

 block6; break;

}

if (x == 1) {

 block1

} else if (x == 1) { // duplicate

 block2

} else {

 block3

}

No change, because only one
unique condition exists

Example of Converting Code for If-Elseif-Else Decision Logic to Switch-
Case Statements

Suppose that you have the following model with a MATLAB Function block. Assume that
the output data type is double and the input data type is Controller, an enumerated
type that you define. (For more information, see “Define Enumerated Data Types for
MATLAB Function Blocks” on page 37-100.)

37 Using the MATLAB Function Block

37-154

The block contains the following code:

function system = fcn(type)

%#codegen

if (type == Controller.P)

 system = 0;

elseif (type == Controller.I)

 system = 1;

elseif (type == Controller.PD)

 system = 2;

elseif (type == Controller.PI)

 system = 3;

elseif (type == Controller.PID)

 system = 4;

else

 system = 10;

end

The enumerated type definition in Controller.m is:

classdef Controller < Simulink.IntEnumType

 enumeration

 P(0)

 I(1)

 PD(2)

 PI(3)

 PID(4)

 UNKNOWN(10)

 end

end

If you generate code for an embedded real-time target using default settings, you see
something like this:

if (if_to_switch_eml_blocks_U.In1 == P) {

 Enhance Code Readability for MATLAB Function Blocks

37-155

 /* '<S1>:1:4' */

 /* '<S1>:1:5' */

 if_to_switch_eml_blocks_Y.Out1 = 0.0;

} else if (if_to_switch_eml_blocks_U.In1 == I) {

 /* '<S1>:1:6' */

 /* '<S1>:1:7' */

 if_to_switch_eml_blocks_Y.Out1 = 1.0;

} else if (if_to_switch_eml_blocks_U.In1 == PD) {

 /* '<S1>:1:8' */

 /* '<S1>:1:9' */

 if_to_switch_eml_blocks_Y.Out1 = 2.0;

} else if (if_to_switch_eml_blocks_U.In1 == PI) {

 /* '<S1>:1:10' */

 /* '<S1>:1:11' */

 if_to_switch_eml_blocks_Y.Out1 = 3.0;

} else if (if_to_switch_eml_blocks_U.In1 == PID) {

 /* '<S1>:1:12' */

 /* '<S1>:1:13' */

 if_to_switch_eml_blocks_Y.Out1 = 4.0;

} else {

 /* '<S1>:1:15' */

 if_to_switch_eml_blocks_Y.Out1 = 10.0;

}

The LHS variable if_to_switch_eml_blocks_U.In1 appears multiple times in the
generated code.

Note: By default, variables that appear in the block do not retain their names in the
generated code. Modified identifiers guarantee that no naming conflicts occur.

Traceability comments appear between each set of /* and */ markers. To learn more
about traceability, see “Use Traceability in MATLAB Function Blocks” on page 37-138.

Verifying the Contents of the Block

Check that the block follows all the rules in “Rules for Conversion” on page 37-152.

Construct How the Construct Follows the Rules

MATLAB
Function block

Five unique conditions exist, in addition to the default:

• (type == Controller.P)

37 Using the MATLAB Function Block

37-156

Construct How the Construct Follows the Rules

• (type == Controller.I)

• (type == Controller.PD)

• (type == Controller.PI)

• (type == Controller.PID)

Each condition Each condition:

• Tests equality
• Uses the same input for the LHS

Each LHS Each LHS:

• Contains a single variable
• Is the input to the block and therefore not a constant
• Is of enumerated type Controller, which you define in

Controller.m on the MATLAB path
• Has no side effects on simulation

Each RHS Each RHS:

• Is an enumerated value and therefore a constant
• Is of enumerated type Controller

Enabling the Conversion

1 Open the Configuration Parameters dialog box.
2 In the Code Generation pane, select ert.tlc for the System target file.

This step specifies an embedded real-time target for your model.
3 In the Code Generation > Code Style pane, select the Convert if-elseif-else

patterns to switch-case statements check box.

Tip This conversion works on a per-model basis. If you select this check box, the
conversion applies to:

• All MATLAB Function blocks in a model
• MATLAB functions in all Stateflow charts of that model

 Enhance Code Readability for MATLAB Function Blocks

37-157

• Flow charts in all Stateflow charts of that model

For more information, see “Enhance Readability of Code for Flow Charts” in the
Embedded Coder documentation.

Generating Code for Your Model

In the Code Generation pane of the Configuration Parameters dialog box, click Build
in the lower right corner.

The code for the MATLAB Function block uses switch-case statements instead of if-
elseif-else code:

switch (if_to_switch_eml_blocks_U.In1) {

 case P:

 /* '<S1>:1:4' */

 /* '<S1>:1:5' */

 if_to_switch_eml_blocks_Y.Out1 = 0.0;

 break;

 case I:

 /* '<S1>:1:6' */

 /* '<S1>:1:7' */

 if_to_switch_eml_blocks_Y.Out1 = 1.0;

 break;

 case PD:

 /* '<S1>:1:8' */

 /* '<S1>:1:9' */

 if_to_switch_eml_blocks_Y.Out1 = 2.0;

 break;

 case PI:

 /* '<S1>:1:10' */

 /* '<S1>:1:11' */

 if_to_switch_eml_blocks_Y.Out1 = 3.0;

 break;

 case PID:

 /* '<S1>:1:12' */

 /* '<S1>:1:13' */

 if_to_switch_eml_blocks_Y.Out1 = 4.0;

 break;

37 Using the MATLAB Function Block

37-158

 default:

 /* '<S1>:1:15' */

 if_to_switch_eml_blocks_Y.Out1 = 10.0;

 break;

}

The switch-case statements provide the following benefits to enhance readability:

• The code reduces the use of parentheses and braces.
• The LHS variable if_to_switch_eml_blocks_U.In1 appears only once,

minimizing repetition in the code.

 Control Run-Time Checks

37-159

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 37-159
“When to Disable Run-Time Checks” on page 37-159
“How to Disable Run-Time Checks” on page 37-160

Types of Run-Time Checks

In simulation, the code generated for your MATLAB Function block includes the
following run-time checks:

• Memory integrity checks

These checks detect violations of memory integrity in code generated for MATLAB
Function blocks and stop execution with a diagnostic message.

Caution For safety, these checks are enabled by default. Without memory integrity
checks, violations result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB Function blocks

These checks enable periodic checks for Ctrl+C breaks in the generated code.
Enabling responsiveness checks also enables graphics refreshing.

Caution For safety, these checks are enabled by default. Without these checks, the
only way to end a long-running execution might be to terminate MATLAB.

When to Disable Run-Time Checks

Generally, generating code with run-time checks enabled results in more lines of
generated code and slower simulation than generating code with the checks disabled.
Disabling run-time checks usually results in streamlined generated code and faster
simulation, with these caveats:

37 Using the MATLAB Function Block

37-160

Consider disabling: Only if:

Memory integrity checks You are sure that your code is safe and that
all array bounds and dimension checking is
unnecessary.

Responsiveness checks You are sure that you will not need to stop
execution of your application using Ctrl+C.

How to Disable Run-Time Checks

MATLAB Function blocks enable run-time checks by default, but you can disable them
explicitly for all MATLAB Function blocks in your Simulink model. Follow these steps:

1 Open your MATLAB Function block.
2 In the MATLAB Function Block Editor, select Simulation Target.

The Configuration Parameters dialog box opens with Simulation Target selected.
3 Clear the Ensure memory integrity or Ensure responsiveness check boxes, as

applicable, and click Apply.

 Track Object Using MATLAB Code

37-161

Track Object Using MATLAB Code

In this section...

“Learning Objectives” on page 37-161
“Tutorial Prerequisites” on page 37-161
“Example: The Kalman Filter” on page 37-162
“Files for the Tutorial” on page 37-165
“Tutorial Steps” on page 37-166
“Best Practices Used in This Tutorial” on page 37-184
“Key Points to Remember” on page 37-185
“Where to Learn More” on page 37-185

Learning Objectives

In this tutorial, you will learn how to:

• Use the MATLAB Function block to add MATLAB functions to Simulink models for
modeling, simulation, and deployment to embedded processors.

This capability is useful for coding algorithms that are better stated in the textual
language of MATLAB than in the graphical language of Simulink.

• Use coder.extrinsic to call MATLAB code from a MATLAB Function block.

This capability allows you to do rapid prototyping. You can call existing MATLAB
code from Simulink without having to make this code suitable for code generation.

• Check that existing MATLAB code is suitable for code generation before generating
code.

You must prepare your code before generating code.
• Specify variable-size inputs when generating code.

Tutorial Prerequisites

• “What You Need to Know” on page 37-162
• “Required Products” on page 37-162

37 Using the MATLAB Function Block

37-162

What You Need to Know

To complete this tutorial, you should have basic familiarity with MATLAB software. You
should also understand how to create and simulate a basic Simulink model.

Required Products

To complete this tutorial, you must install the following products:

• MATLAB
• MATLAB Coder
• Simulink
• Simulink Coder
• C compiler

For a list of supported compilers, see http://www.mathworks.com/support/
compilers/current_release/.

You must set up the C compiler before generating C code. See “Setting Up Your C
Compiler” on page 37-167.

For instructions on installing MathWorks products, see the MATLAB installation
documentation for your platform. If you have installed MATLAB and want to check
which other MathWorks products are installed, enter ver in the MATLAB Command
Window.

Example: The Kalman Filter

• “Description” on page 37-162
• “Algorithm” on page 37-163
• “Filtering Process” on page 37-164
• “Reference” on page 37-165

Description

This section describes the example used by the tutorial. You do not have to be familiar
with the algorithm to complete the tutorial.

The example for this tutorial uses a Kalman filter to estimate the position of an object
moving in a two-dimensional space from a series of noisy inputs based on past positions.

 Track Object Using MATLAB Code

37-163

The position vector has two components, x and y, indicating its horizontal and vertical
coordinates.

Kalman filters have a wide range of applications, including control, signal and image
processing; radar and sonar; and financial modeling. They are recursive filters that
estimate the state of a linear dynamic system from a series of incomplete or noisy
measurements. The Kalman filter algorithm relies on the state-space representation of
filters and uses a set of variables stored in the state vector to characterize completely the
behavior of the system. It updates the state vector linearly and recursively using a state
transition matrix and a process noise estimate.

Algorithm

This section describes the algorithm of the Kalman filter and is implemented in the
MATLAB version of the filter supplied with this tutorial.

The algorithm predicts the position of a moving object based on its past positions using a
Kalman filter estimator. It estimates the present position by updating the Kalman state
vector, which includes the position (x and y), velocity (Vx and Vy), and acceleration (Ax
and Ay) of the moving object. The Kalman state vector, x_est, is a persistent variable.

% Initial conditions

persistent x_est p_est

if isempty(x_est)

 x_est = zeros(6, 1);

 p_est = zeros(6, 6);

end

x_est is initialized to an empty 6x1 column vector and updated each time the filter is
used.

The Kalman filter uses the laws of motion to estimate the new state:

X X Vx dt

Y Y Vy dt

Vx Vx Ax dt

Vy Vy Ay dt

= +

= +

= +

= +

0

0

0

0

.

.

.

.

These laws of motion are captured in the state transition matrix A, which is a matrix that
contains the coefficient values of x, y, Vx, Vy, Ax, and Ay.

37 Using the MATLAB Function Block

37-164

% Initialize state transition matrix

dt=1;

A=[1 0 dt 0 0 0;...

 0 1 0 dt 0 0;...

 0 0 1 0 dt 0;...

 0 0 0 1 0 dt;...

 0 0 0 0 1 0 ;...

 0 0 0 0 0 1];

Filtering Process

The filtering process has two phases:

• Predicted state and covariance

The Kalman filter uses the previously estimated state, x_est, to predict the current
state, x_prd. The predicted state and covariance are calculated in:

% Predicted state and covariance

x_prd = A * x_est;

p_prd = A * p_est * A' + Q;

• Estimation

The filter also uses the current measurement, z, and the predicted state, x_prd, to
estimate a more accurate approximation of the current state. The estimated state and
covariance are calculated in:

% Measurement matrix

H = [1 0 0 0 0 0; 0 1 0 0 0 0];

Q = eye(6);

R = 1000 * eye(2);

% Estimation

S = H * p_prd' * H' + R;

B = H * p_prd';

klm_gain = (S \ B)';

% Estimated state and covariance

x_est = x_prd + klm_gain * (z - H * x_prd);

p_est = p_prd - klm_gain * H * p_prd;

% Compute the estimated measurements

y = H * x_est;

 Track Object Using MATLAB Code

37-165

Reference

Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1996.

Files for the Tutorial

• “About the Tutorial Files” on page 37-165
• “Location of Files” on page 37-165
• “Names and Descriptions of Files” on page 37-165

About the Tutorial Files

The tutorial uses the following files:

• Simulink model files for each step of the tutorial.
• Example MATLAB code files for each step of the tutorial.

Throughout this tutorial, you work with Simulink models that call MATLAB files
containing a Kalman filter algorithm.

• A MAT-file that contains example input data.
• A MATLAB file for plotting.

Location of Files

The tutorial files are available in the following folder: docroot\toolbox\simulink
\examples\kalman. To run the tutorial, you must copy these files to a local folder. For
instructions, see “Copying Files Locally” on page 37-167.

Names and Descriptions of Files

Type Name Description

ex_kalman01 Baseline MATLAB implementation of a
scalar Kalman filter.

MATLAB
function
files ex_kalman02 Version of the original algorithm suitable for

code generation.

37 Using the MATLAB Function Block

37-166

Type Name Description

ex_kalman03 Version of Kalman filter suitable for code
generation and for use with frame-based and
packet-based inputs.

ex_kalman04 Disabled inlining for code generation.
ex_kalman00 Simulink model without a MATLAB

Function block.
ex_kalman11 Complete Simulink model with a MATLAB

Function block for scalar Kalman filter.
ex_kalman22 Simulink model with a MATLAB Function

block for a Kalman filter that accepts fixed-
size (frame-based) inputs.

ex_kalman33 Simulink model with a MATLAB Function
block for a Kalman filter that accepts
variable-size (packet-based) inputs.

Simulink
model files

ex_kalman44 Simulink model to call ex_kalman04.m,
which has inlining disabled.

MATLAB
data file

position Contains the input data used by the
algorithm.

Plot files plot_trajectory Plots the trajectory of the object and the
Kalman filter estimated position.

Tutorial Steps

• “Copying Files Locally” on page 37-167
• “Setting Up Your C Compiler” on page 37-167
• “About the ex_kalman00 Model” on page 37-168
• “Adding a MATLAB Function Block to Your Model” on page 37-169
• “Checking the ex_kalman11 Model” on page 37-171
• “Simulating the ex_kalman11 Model” on page 37-172
• “Modifying the Filter to Accept a Fixed-Size Input” on page 37-174
• “Using the Filter to Accept a Variable-Size Input” on page 37-178
• “Debugging the MATLAB Function Block” on page 37-181

 Track Object Using MATLAB Code

37-167

• “Generating C Code” on page 37-182

Copying Files Locally

Copy the tutorial files to a local working folder:

1 Create a local solutions folder, for example, c:\simulink\kalman\solutions.
2 Change to the docroot\toolbox\simulink\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'simulink', 'examples'))

3 Copy the contents of the kalman subfolder to your local solutions folder, specifying
the full path name of the solutions folder:

copyfile('kalman', 'solutions')

For example:

copyfile('kalman', 'c:\simulink\kalman\solutions')

Your solutions folder now contains a complete set of solutions for the tutorial. If
you do not want to perform the steps for each task in the tutorial, you can view the
solutions to see how the code should look.

4 Create a local work folder, for example, c:\simulink\kalman\work.
5 Copy the following files from your solutions folder to your work folder.

• ex_kalman01

• ex_kalman00

• position

• plot_trajectory

Your work folder now contains all the files that you need to get started with the
tutorial.

Setting Up Your C Compiler

Building your MATLAB Function block requires a supported compiler. MATLAB
automatically selects one as the default compiler. If you have multiple MATLAB-
supported compilers installed on your system, you can change the default using the mex
-setup command. See “Change Default Compiler”.

37 Using the MATLAB Function Block

37-168

About the ex_kalman00 Model

First, examine the ex_kalman00 model supplied with the tutorial to understand the
problem that you are trying to solve using the Kalman filter.

1 Open the ex_kalman00 model in Simulink:

a Set your MATLAB current folder to the folder that contains your working files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path name of the folder containing your files.
b At the MATLAB command line, enter:

ex_kalman00

This model is an incomplete model to demonstrate how to integrate MATLAB
code with Simulink. The complete model is ex_kalman11, which is also supplied
with this tutorial.

InitFcn Model Callback Function

The model uses this callback function to:

• Load position data from a MAT-file.
• Set up data used by the Index generator block, which provides the second input to the

Selector block.

To view this callback:

1 Select File > Model Properties > Model Properties.
2 Select the Callbacks tab.
3 Select InitFcn in the Model callbacks pane.

The callback appears.

load position.mat;

[R,C]=size(position);

idx=(1:C)';

t=idx-1;

 Track Object Using MATLAB Code

37-169

Source Blocks

The model uses two Source blocks to provide position data and a scalar index to a
Selector block.
Selector Block

The model uses a Selector block that selects elements of its input signal and generates an
output signal based on its index input and its Index Option settings. By changing the
configuration of this block, you can generate different size signals.

To view the Selector block settings, double-click the Selector block to view the function
block parameters.

In this model, the Index Option for the first port is Select all and for the second port
is Index vector (port). Because the input is a 2 x 310 position matrix, and the
index data increments from 1 to 310, the Selector block simply outputs one 2x1 output at
each sample time.
MATLAB Function Block

The model uses a MATLAB Function block to plot the trajectory of the object and the
Kalman filter estimated position. This function:

• First declares the figure, hold, and plot_trajectory functions as extrinsic
because these MATLAB visualization functions are not supported for code generation.
When you call an unsupported MATLAB function, you must declare it to be extrinsic
so MATLAB can execute it, but does not try to generate code for it.

• Creates a figure window and holds it for the duration of the simulation. Otherwise a
new figure window appears for each sample time.

• Calls the plot_trajectory function, which plots the trajectory of the object and the
Kalman filter estimated position.

Simulation Stop Time

The simulation stop time is 309, because the input to the filter is a vector containing 310
elements and Simulink uses zero-based indexing.

Adding a MATLAB Function Block to Your Model

To modify the model and code yourself, work through the exercises in this section.
Otherwise, open the supplied model ex_kalman11 in your solutions subfolder to see
the modified model.

37 Using the MATLAB Function Block

37-170

For the purposes of this tutorial, you add the MATLAB Function block to the
ex_kalman00.mdl model supplied with the tutorial. You would have to develop your
own test bench starting with an empty Simulink model.
Adding the MATLAB Function Block

To add a MATLAB Function block to the ex_kalman00 model:

1 Open ex_kalman00 in Simulink.

ex_kalman00

2 Add a MATLAB Function block to the model:

a At the MATLAB command line, type simulink to open the Simulink Library
Browser.

b From the list of Simulink libraries, select the User-Defined Functions
library.

c Click the MATLAB Function block and drag it into the ex_kalman00 model.
Place the block just above the red text annotation that reads Place MATLAB
Function Block here.

d Delete the red text annotations from the model.
e Save the model in the current folder as ex_kalman11.

Calling Your MATLAB Code from the MATLAB Function Block

To call your MATLAB code from the MATLAB Function block:

1 Double-click the MATLAB Function block to open the MATLAB Function Block
Editor.

2 Delete the default code displayed in the editor.
3 Copy the following code to the MATLAB Function block.

function y = kalman(u)

%#codegen

y = ex_kalman01(u);

4 Save the model.

Connecting the MATLAB Function Block Input and Output

1 Connect the MATLAB Function block input and output so that your model looks like
this.

 Track Object Using MATLAB Code

37-171

2 Save the model.

Checking the ex_kalman11 Model

To check the model:

1 In the Simulink model window, select Simulation > Update Diagram.

Simulink checks the model and generates a warning telling you to add the
%#codegen compilation directive to the ex_kalman01 file. Adding this directive
indicates that the file is intended for code generation and turns on code generation
error checking.

2 Open ex_kalman01 file and add the %#codegen compilation directive after the
function declaration.

function y = ex_kalman01(z) %#codegen

3 Modify the function name to ex_kalman02 and save the file as ex_kalman02.m.
4 Modify the model to call ex_kalman02 by updating the code in the MATLAB

Function block.

function y = kalman(u)

%#codegen

y = ex_kalman02(u);

5 Save the model and update diagram again.

This time the model updates successfully.

You are now ready to simulate your model, as described in “Simulating the
ex_kalman11 Model” on page 37-172.

37 Using the MATLAB Function Block

37-172

Simulating the ex_kalman11 Model

To simulate the model:

1 In the Simulink model window, select Simulation > Run.

As Simulink runs the model, it plots the trajectory of the object in blue and the
Kalman filter estimated position in green. Initially, you see that it takes a short time
for the estimated position to converge with the actual position of the object. Then
three sudden shifts in position occur—each time the Kalman filter readjusts and
tracks the object after a few iterations.

 Track Object Using MATLAB Code

37-173

2 The simulation stops.

You have proved that your MATLAB algorithm works in Simulink. You are now ready
to modify the filter to accept a fixed-size input, as described in “Modifying the Filter to
Accept a Fixed-Size Input” on page 37-174.

37 Using the MATLAB Function Block

37-174

Modifying the Filter to Accept a Fixed-Size Input

The filter you have worked on so far in this tutorial uses a simple batch process that
accepts one input at a time, so you must call the function repeatedly for each input. In
this part of the tutorial, you learn how to modify the algorithm to accept a fixed-sized
input, which makes the algorithm suitable for frame-based processing. You then modify
the model to provide the input as fixed-size frames of data and call the filter passing in
the data one frame at a time.

Modifying Your MATLAB Code

To modify the code yourself, work through the exercises in this section. Otherwise, open
the supplied file ex_kalman03.m in your solutions subfolder to see the modified
algorithm.

You can now modify the algorithm to process a vector containing more than one input.
You need to find the length of the vector and call the filter code for each element in the
vector in turn. You do this by calling the filter algorithm in a for loop.

1 Open ex_kalman02.m in the MATLAB Editor. At the MATLAB command line,
enter:

edit ex_kalman02.m

2 Add a for loop around the filter code.

a Before the comment:

% Predicted state and covariance

insert:

for i=1:size(z,2)

b After:

% Compute the estimated measurements

y = H * x_est;

insert:

end

c Select the code between the for statement and the end statement, right-click to
open the context menu and select Smart Indent to indent the code.

Your filter code should now look like this:

 Track Object Using MATLAB Code

37-175

for i=1:size(z,2)

 % Predicted state and covariance

 x_prd = A * x_est;

 p_prd = A * p_est * A' + Q;

 % Estimation

 S = H * p_prd' * H' + R;

 B = H * p_prd';

 klm_gain = (S \ B)';

 % Estimated state and covariance

 x_est = x_prd + klm_gain * (z - H * x_prd);

 p_est = p_prd - klm_gain * H * p_prd;

 % Compute the estimated measurements

 y = H * x_est;

end

3 Modify the line that calculates the estimated state and covariance to use the ith
element of input z.

Change:

x_est = x_prd + klm_gain * (z - H * x_prd);

to:

x_est = x_prd + klm_gain * (z(1:2,i) - H * x_prd);

4 Modify the line that computes the estimated measurements to append the result to
the ith element of the output y.

Change:

y = H * x_est;

to:

y(:,i) = H * x_est;

The code analyzer message indicator in the top right turns orange to indicate that
the code analyzer has detected warnings. The code analyzer underlines the offending
code in orange and places a orange marker to the right.

5 Move your pointer over the orange marker to view the error information.

37 Using the MATLAB Function Block

37-176

The code analyzer detects that y must be fully defined before sub-scripting it and
that you cannot grow variables through indexing in generated code.

6 To address this warning, preallocate memory for the output y, which is the same size
as the input z. Add this code before the for loop.

 % Pre-allocate output signal:

 y=zeros(size(z));

The orange marker disappears and the code analyzer message indicator in the top
right edge of the code turns green, which indicates that you have fixed all the errors
and warnings detected by the code analyzer.

Why Preallocate the Outputs?

You must preallocate outputs here because the code generation does not support
increasing the size of an array over time. Repeatedly expanding the size of an array
over time can adversely affect the performance of your program. See “Preallocating
Memory”.

7 Change the function name to ex_kalman03 and save the file as ex_kalman03.m in
the current folder.

You are ready to begin the next task in the tutorial, “Modifying Your Model to Call the
Updated Algorithm” on page 37-176.

Modifying Your Model to Call the Updated Algorithm

To modify the model yourself, work through the exercises in this section. Otherwise, open
the supplied model ex_kalman22.mdl in your solutions subfolder to see the modified
model.

Next, update your model to provide the input as fixed-size frames of data and call
ex_kalman03 passing in the data one frame at a time.

1 Open ex_kalman11 model in Simulink.

ex_kalman11

2 Double-click the MATLAB Function block to open the MATLAB Function Block
Editor.

3 Replace the code that calls ex_kalman02 with a call to ex_kalman03.

function y = kalman(u)

 Track Object Using MATLAB Code

37-177

%#codegen

y = ex_kalman03(u);

4 Close the editor.
5 Modify the InitFcn callback:

a Select File > Model Properties > Model Properties.

The Model Properties dialog box opens.
b In this dialog box, select the Callbacks tab.
c Select InitFcn in the Model callbacks pane.
d Replace the existing callback with:

load position.mat;

[R,C]=size(position);

FRAME_SIZE=5;

idx=(1:FRAME_SIZE:C)';

LEN=length(idx);

t=(1:LEN)'-1;

This callback sets the frame size to 5, and the index to increment by 5.
e Click Apply and close the Model Properties dialog box.

6 Update the Selector block to use the correct indices.

a Double-click the Selector block to view the function block parameters.

The Function Block Parameters dialog box opens.
b Set the second Index Option to Starting index (port).
c Set the Output Size for the second input to FRAME_SIZE, click Apply and close

the dialog box.

Now, the Index Option for the first port is Select all and for the second port is
Starting index (port). Because the index increments by 5 each sample time,
and the output size is 5, the Selector block outputs a 2x5 output at each sample
time.

7 Change the model simulation stop time to 61. Now the frame size is 5, so the
simulation completes in a fifth of the sample times.

a In the Simulink model window, select Simulation > Model Configuration
Parameters.

37 Using the MATLAB Function Block

37-178

b In the left pane of the Configuration Parameters dialog box, select Solver.
c In the right pane, set Stop time to 61.
d Click Apply and close the dialog box.

8 Save the model as ex_kalman22.mdl.

Testing Your Modified Algorithm

To simulate the model:

1 In the Simulink model window, select Simulation > Run.

As Simulink runs the model, it plots the trajectory of the object in blue and the
Kalman filter estimated position in green as before when you used the batch filter.

2 The simulation stops.

You have proved that your algorithm accepts a fixed-size signal. You are now ready for
the next task, “Using the Filter to Accept a Variable-Size Input” on page 37-178.

Using the Filter to Accept a Variable-Size Input

In this part of the tutorial, you learn how to specify variable-size data in your Simulink
model. Then you test your Kalman filter algorithm with variable-size inputs and see
that the algorithm is suitable for processing packets of data of varying size. For more
information on using variable-size data in Simulink, see “Variable-Size Signal Basics” on
page 62-2.

Updating the Model to Use Variable-Size Inputs

To modify the model yourself, work through the exercises in this section. Otherwise, open
the supplied model ex_kalman33.mdl in your solutions subfolder to see the modified
model.

1 Open ex_kalman22.mdl in Simulink.

ex_kalman22

2 Modify the InitFcn callback:

a Select File > Model Properties > Model Properties.

The Model Properties dialog box opens.

 Track Object Using MATLAB Code

37-179

b Select the Callbacks tab.
c Select InitFcn in the Model callbacks pane.
d Replace the existing callback with:

load position.mat;

idx=[1 1 ;2 3 ;4 6 ;7 10 ;11 15 ;16 30 ;

 31 70 ;71 100 ;101 200 ;201 250 ;251 310];

LEN=length(idx);

t=(0:1:LEN-1)';

This callback sets up indexing to generate eleven different size inputs. It
specifies the start and end indices for each sample time. The first sample time
uses only the first element, the second sample time uses the second and third
elements, and so on. The largest sample, 101 to 200, contains 100 elements.

e Click Apply and close the Model Properties dialog box.
3 Update the Selector block to use the correct indices.

a Double-click the Selector block to view the function block parameters.

The Function Block Parameters dialog box opens.
b Set the second Index Option to Starting and ending indices (port),

then click Apply and close the dialog box.

This setting means that the input to the index port specifies the start and end
indices for the input at each sample time. Because the index input specifies
different starting and ending indices at each sample time, the Selector block
outputs a variable-size signal as the simulation progresses.

4 Use the Ports and Data Manager to set the MATLAB Function input x and output y
as variable-size data.

a Double-click the MATLAB Function block to open the MATLAB Function Block
Editor.

b From the editor menu, select Edit Data.
c In the Ports and Data Manager left pane, select the input u.

The Ports and Data Manager displays information about u in the right pane.
d On the General tab, select the Variable size check box and click Apply.
e In the left pane, select the output y.
f On the General tab:

37 Using the MATLAB Function Block

37-180

i Set the Size of y to [2 100] to specify a 2-D matrix where the upper
bounds are 2 for the first dimension and 100 for the second, which is the
maximum size input specified in the InitFcn callback.

ii Select the Variable size check box.
iii Click Apply.

g Close the Ports and Data Manager.
5 Now do the same for the other MATLAB Function block. Use the Ports and Data

Manager to set the Visualizing block inputs y and z as variable-size data.

a Double-click the Visualizing block to open the MATLAB Function Block Editor.
b From the editor menu, select Edit Data.
c In the Ports and Data Manager left pane, select the input y.
d On the General tab, select the Variable size check box and click Apply.
e In the left pane, select the input z.
f On the General tab, select the Variable size check box and click Apply.
g Close the Ports and Data Manager.

6 Change the model simulation stop time to 10. This time, the filter processes one of
the eleven different size inputs each sample time.

7 Save the model as ex_kalman33.mdl.

Testing Your Modified Model

To simulate the model:

1 In the Simulink model window, select Simulation > Run.

As Simulink runs the model, it plots the trajectory of the object in blue and the
Kalman filter estimated position in green as before.

Note that the signal lines between the Selector block and the Tracking and
Visualization blocks change to show that these signals are variable-size.

2 The simulation stops.

You have successfully created an algorithm that accepts variable-size inputs. Next,
you learn how to debug your MATLAB Function block, as described in “Debugging the
MATLAB Function Block” on page 37-181.

 Track Object Using MATLAB Code

37-181

Debugging the MATLAB Function Block

You can debug your MATLAB Function block just like you can debug a function in
MATLAB.

1 Double-click the MATLAB Function block that calls the Kalman filter to open the
MATLAB Function Block Editor.

2 In the editor, click the dash (-) character in the left margin of the line:

y = kalman03(u);

A small red ball appears in the margin of this line, indicating that you have set a
breakpoint.

3 In the Simulink model window, select Simulation > Run.

The simulation pauses when execution reaches the breakpoint and a small green
arrow appears in the left margin.

4 Place the pointer over the variable u.

The value of u appears adjacent to the pointer.
5 From the MATLAB Function Block Editor menu, select Step In.

The kalman03.m file opens in the editor and you can now step through this code
using Step, Step In, and Step Out.

6 Select Step Out.

The kalman03.m file closes and the MATLAB Function block code reappears in the
editor.

7 Place the pointer over the output variable y.

You can now see the value of y.
8 Click the red ball to remove the breakpoint.
9 From the MATLAB Function Block Editor menu, select Quit Debugging.
10 Close the editor.
11 Close the figure window.

Now you are ready for the next task, “Generating C Code” on page 37-182.

37 Using the MATLAB Function Block

37-182

Generating C Code

You have proved that your algorithm works in Simulink. Next you generate code for your
model.

Note: Before generating code, you must check that your MATLAB code is suitable for
code generation. If you call your MATLAB code as an extrinsic function, you must remove
extrinsic calls before generating code.

1 Rename the MATLAB Function block to Tracking. To rename the block, double-
click the annotation MATLAB Function below the MATLAB Function block and
replace the text with Tracking.

When you generate code for the MATLAB Function block, Simulink Coder uses
the name of the block in the generated code. It is good practice to use a meaningful
name.

2 Before generating code, ensure that Simulink Coder creates a code generation report.
This HTML report provides easy access to the list of generated files with a summary
of the configuration settings used to generate the code.

a In the Simulink model window, select Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box opens.
b In the left pane of the Configuration Parameters dialog box, select Report

under Code Generation.
c In the right pane, select Create code generation report.

The Open report automatically option is also selected.
d Click Apply and close the Configuration Parameters dialog box.
e Save your model.

3 To generate code for the Tracking block:

a In your model, select the Tracking block.
b In the Simulink model window, select Code > C/C++ Code > Build Selected

Subsystem.

 Track Object Using MATLAB Code

37-183

4 The Simulink software generates an error informing you that it cannot log variable-
size signals as arrays. You need to change the format of data saved to the MATLAB
workspace. To change this format:

• In the Simulink model window, select Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box opens.
• In the left pane of the Configuration Parameters dialog box, select Data Import/

Export.
• In the right pane, under Save to workspace options, set Format to

Structure with time.

The logged data is now a structure that has two fields: a time field and a signals
field, enabling Simulink to log variable-size signals.

• Click Apply and close the Configuration Parameters dialog box.
• Save your model.

5 Repeat step 3 to generate code for the Tracking block.

The Simulink Coder software generates C code for the block and launches the code
generation report.

For more information on using the code generation report, see “Reports for Code
Generation”.

6 In the left pane of the code generation report, click the Tracking.c link to view
the generated C code. Note that in the code generated for the MATLAB Function
block, Tracking, there is no code for the ex_kalman03 function because inlining is
enabled by default.

7 Modify your filter algorithm to disable inlining:

a In ex_kalman03.m, after the function declaration, add:

coder.inline('never');

b Change the function name to ex_kalman04 and save the file as
ex_kalman04.m in the current folder.

c In your ex_kalman33 model, double-click the Tracking block.

The MATLAB Function Block Editor opens.

37 Using the MATLAB Function Block

37-184

d Modify the call to the filter algorithm to call ex_kalman04.

function y = kalman(u)

%#codegen

y = ex_kalman04(u);

e Save the model as ex_kalman44.mdl.
8 Generate code for the updated model.

a Select the Tracking block.
b In the model window, select Code > C/C++Code > Build Selected Subsystem.

The Build code for Subsystem dialog box appears.
c Click the Build button.

The Simulink Coder software generates C code for the block and launches the
code generation report.

d In the left pane of the code generation report, click the Tracking.c link to view
the generated C code.

This time the ex_kalman04 function has code because you disabled inlining.

/* Forward declaration for local functions */

static void Tracking_ex_kalman04(const real_T z_data[620], const int32_T

 z_sizes[2], real_T y_data[620], int32_T y_sizes[2]);

/* Function for MATLAB Function Block: '<Root>/Tracking' */

static void Tracking_ex_kalman04(const real_T z_data[620], const int32_T 48

 z_sizes[2], real_T y_data[620], int32_T y_sizes[2])

Best Practices Used in This Tutorial

Best Practice — Saving Incremental Code Updates

Save your code before making modifications. This practice provides a fallback in case of
error and a baseline for testing and validation. Use a consistent file naming convention.
For example, add a two-digit suffix to the file name for each file in a sequence.

 Track Object Using MATLAB Code

37-185

Key Points to Remember

• Back up your MATLAB code before you modify it.
• Decide on a naming convention for your files and save interim versions frequently.

For example, this tutorial uses a two-digit suffix to differentiate the various versions
of the filter algorithm.

• For simulation purposes, before generating code, call your MATLAB code using
coder.extrinsic to check that your algorithm is suitable for use in Simulink. This
practice provides these benefits:

• You do not have to make the MATLAB code suitable for code generation.
• You can debug your MATLAB code in MATLAB while calling it from Simulink.

• Create a Simulink Coder code generation report. This HTML report provides easy
access to the list of generated files with a summary of the configuration settings used
to generate the code.

Where to Learn More

• “Next Steps” on page 37-185
• “Product Help” on page 37-186

Next Steps

To: See:

Learn how to generate C code from your
MATLAB code using codegen

“C Code Generation at the Command Line”

Learn more about code generation from
MATLAB

“Getting Started with Simulink Coder”

Use variable-size data “Variable-Size Data Definition for Code
Generation” on page 46-3

Speed up fixed-point MATLAB code See “Workflow for Fixed-Point Code Acceleration
and Generation”.

Integrate custom C code into generated code “Specify External File Locations”
Integrate custom C code into a MATLAB
function

coder.ceval

37 Using the MATLAB Function Block

37-186

To: See:

Generate HDL code from MATLAB code http://www.mathworks.com/products/

hdl-coder/

Product Help

MathWorks product documentation is available online from the Open Help Browser

button on the MATLAB toolstrip.

For: See:

Code generation from MATLAB code “When to Generate Code from MATLAB
Algorithms” on page 41-2

A list of functions that are suitable for code
generation

“Functions and Objects Supported for C
and C++ Code Generation — Alphabetical
List” on page 42-2

http://www.mathworks.com/products/hdl-coder/
http://www.mathworks.com/products/hdl-coder/

 Filter Audio Signal Using MATLAB Code

37-187

Filter Audio Signal Using MATLAB Code

In this section...

“Learning Objectives” on page 37-187
“Tutorial Prerequisites” on page 37-187
“Example: The LMS Filter” on page 37-188
“Files for the Tutorial” on page 37-191
“Tutorial Steps” on page 37-192

Learning Objectives

In this tutorial, you will learn how to:

• Use the MATLAB Function block to add MATLAB functions to Simulink models for
modeling, simulation, and deployment to embedded processors.

This capability is useful for coding algorithms that are better stated in the textual
language of MATLAB than in the graphical language of Simulink. For more
information, see “What Is a MATLAB Function Block?” on page 37-5 and “Create
Model That Uses MATLAB Function Block” on page 37-9.

• Use coder.extrinsic to call MATLAB code from a MATLAB Function block.

This capability allows you to call existing MATLAB code from Simulink without first
having to make this code suitable for code generation, allowing for rapid prototyping.

• Check that existing MATLAB code is suitable for code generation.
• Convert a MATLAB algorithm from batch processing to streaming.
• Use persistent variables in code that is suitable for code generation.

You need to make the filter weights persistent so that the filter algorithm does not
reset their values each time it runs.

Tutorial Prerequisites

• “What You Need to Know” on page 37-188
• “Required Products” on page 37-188

37 Using the MATLAB Function Block

37-188

What You Need to Know

To work through this tutorial, you should have basic familiarity with MATLAB software.
You should also understand how to create a basic Simulink model and how to simulate
that model. For more information, see “Create a Simple Model”.

Required Products

To complete this tutorial, you must install the following products:

• MATLAB
• MATLAB Coder
• Simulink
• Simulink Coder
• DSP System Toolbox

Note: If you do not have a DSP System Toolbox license, see “Track Object Using
MATLAB Code” on page 37-161.

• C compiler

For a list of supported compilers, see http://www.mathworks.com/support/compilers/
current_release/.

For instructions on installing MathWorks products, refer to the installation
documentation. If you have installed MATLAB and want to check which other
MathWorks products are installed, enter ver in the MATLAB Command Window. For
instructions on installing and setting up a C compiler, see “Setting Up the C or C++
Compiler”.

Example: The LMS Filter

• “Description” on page 37-189
• “Algorithm” on page 37-189
• “Filtering Process” on page 37-190
• “Reference” on page 37-191

 Filter Audio Signal Using MATLAB Code

37-189

Description

A least mean squares (LMS) filter is an adaptive filter that adjusts its transfer function
according to an optimizing algorithm. You provide the filter with an example of the
desired signal together with the input signal. The filter then calculates the filter weights,
or coefficients, that produce the least mean squares of the error between the output
signal and the desired signal.

This example uses an LMS filter to remove the noise in a music recording. There are
two inputs. The first input is the distorted signal: the music recording plus the filtered
noise. The second input is the desired signal: the unfiltered noise. The filter works to
eliminate the difference between the output signal and the desired signal and outputs
the difference, which, in this case, is the clean music recording. When you start the
simulation, you hear both the noise and the music. Over time, the adaptive filter removes
the noise so you hear only the music.

Algorithm

This example uses the least mean squares (LMS) algorithm to remove noise from an
input signal. The LMS algorithm computes the filtered output, filter error, and filter
weights given the distorted and desired signals.

At the start of the tutorial, the LMS algorithm uses a batch process to filter the audio
input. This algorithm is suitable for MATLAB, where you are likely to load in the entire
signal and process it all at once. However, a batch process is not suitable for processing a
signal in real time. As you work through the tutorial, you refine the design of the filter to
convert the algorithm from batch-based to stream-based processing.

The baseline function signature for the algorithm is:

function [signal_out, err, weights] = ...

 lms_01(signal_in, desired)

The filtering is performed in the following loop:

for n = 1:SignalLength

 % Compute the output sample using convolution:

 signal_out(n,ch) = weights' * signal_in(n:n+FilterLength-1,ch);

 % Update the filter coefficients:

 err(n,ch) = desired(n,ch) - signal_out(n,ch) ;

 weights = weights + mu*err(n,ch)*signal_in(n:n+FilterLength-1,ch);

end

37 Using the MATLAB Function Block

37-190

where SignalLength is the length of the input signal, FilterLength is the filter
length, and mu is the adaptation step size.

What Is the Adaptation Step Size?

LMS algorithms have a step size that determines the amount of correction to apply
as the filter adapts from one iteration to the next. Choosing the appropriate step size
requires experience in adaptive filter design. A step size that is too small increases
the time for the filter to converge. Filter convergence is the process where the error
signal (the difference between the output signal and the desired signal) approaches an
equilibrium state over time. A step size that is too large might cause the adapting filter
to overshoot the equilibrium and become unstable. Generally, smaller step sizes improve
the stability of the filter at the expense of the time it takes to adapt.

Filtering Process

The filtering process has three phases:

• Convolution

The convolution for the filter is performed in:

signal_out(n,ch) = weights' * signal_in(n:n+FilterLength-1,ch);

What Is Convolution?

Convolution is the mathematical foundation of filtering. In signal processing,
convolving two vectors or matrices is equivalent to filtering one of the inputs by the
other. In this implementation of the LMS filter, the convolution operation is the vector
dot product between the filter weights and a subset of the distorted input signal.

• Calculation of error

The error is the difference between the desired signal and the output signal:

err(n,ch) = desired(n,ch) - signal_out(n,ch);

• Adaptation

The new value of the filter weights is the old value of the filter weights plus a
correction factor that is based on the error signal, the distorted signal, and the
adaptation step size:

weights = weights + mu*err(n,ch)*signal_in(n:n+FilterLength-1,ch);

 Filter Audio Signal Using MATLAB Code

37-191

Reference

Haykin, Simon. Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-Hall, Inc.,
1996.

Files for the Tutorial

• “About the Tutorial Files” on page 37-191
• “Location of Files” on page 37-191
• “Names and Descriptions of Files” on page 37-191

About the Tutorial Files

The tutorial uses the following files:

• Simulink model files for each step of the tutorial.
• MATLAB code files for each step of the example.

Throughout this tutorial, you work with Simulink models that call MATLAB files that
contain a simple least mean squares (LMS) filter algorithm.

Location of Files

The tutorial files are available in the following folder: docroot\toolbox\simulink
\examples\lms. To run the tutorial, you must copy these files to a local folder. For
instructions, see “Copying Files Locally” on page 37-192.

Names and Descriptions of Files

Type Name Description

lms_01 Baseline MATLAB implementation of batch
filter. Not suitable for code generation.

lms_02 Filter modified from batch to streaming.
lms_03 Frame-based streaming filter with Reset

and Adapt controls.
lms_04 Frame-based streaming filter with Reset

and Adapt controls. Suitable for code
generation.

MATLAB
files

lms_05 Disabled inlining for code generation.

37 Using the MATLAB Function Block

37-192

Type Name Description

lms_06 Demonstrates use of coder.nullcopy.
acoustic_environment Simulink model that provides an overview of

the acoustic environment.
noise_cancel_00 Simulink model without a MATLAB

Function block.
noise_cancel_01 Complete noise_cancel_00 model

including a MATLAB Function block.
noise_cancel_02 Simulink model for use with lms_02.m.
noise_cancel_03 Simulink model for use with lms_03.m.
noise_cancel_04 Simulink model for use with lms_04.m.
noise_cancel_05 Simulink model for use with lms_05.m.
noise_cancel_06 Simulink model for use with lms_06.m.

Simulink
model files

design_templates Simulink model containing Adapt and Reset
controls.

Tutorial Steps

• “Copying Files Locally” on page 37-192
• “Setting Up Your C Compiler” on page 37-193
• “Running the acoustic_environment Model” on page 37-193
• “Adding a MATLAB Function Block to Your Model” on page 37-194
• “Calling Your MATLAB Code As an Extrinsic Function for Rapid Prototyping” on

page 37-195
• “Simulating the noise_cancel_01 Model” on page 37-198
• “Modifying the Filter to Use Streaming” on page 37-200
• “Adding Adapt and Reset Controls” on page 37-205
• “Generating Code” on page 37-209
• “Optimizing the LMS Filter Algorithm” on page 37-213

Copying Files Locally

Copy the tutorial files to a local folder:

 Filter Audio Signal Using MATLAB Code

37-193

1 Create a local solutions folder, for example, c:\test\lms\solutions.
2 Change to the docroot\toolbox\simulink\examples folder. At the MATLAB

command line, enter:

cd(fullfile(docroot, 'toolbox', 'simulink', 'examples'))

3 Copy the contents of the lms subfolder to your solutions folder, specifying the full
path name of the solutions folder:

copyfile('lms', 'solutions')

Your solutions folder now contains a complete set of solutions for the tutorial.
If you do not want to perform the steps for each task, you can view the supplied
solution to see how the code should look.

4 Create a local work folder, for example, c:\test\lms\work.
5 Copy the following files from your solutions folder to your work folder.

• lms_01

• lms_02

• noise_cancel_00

• acoustic_environment

• design_templates

Your work folder now contains all the files that you need to get started.

You are now ready to set up your C compiler.

Setting Up Your C Compiler

Building your MATLAB Function block requires a supported compiler. MATLAB
automatically selects one as the default compiler. If you have multiple MATLAB-
supported compilers installed on your system, you can change the default using the mex
-setup command. See “Change Default Compiler” and the list of .

Running the acoustic_environment Model

Run the acoustic_environment model supplied with the tutorial to understand the
problem that you are trying to solve using the LMS filter. This model adds band-limited
white noise to an audio signal and outputs the resulting signal to a speaker.

To simulate the model:

37 Using the MATLAB Function Block

37-194

1 Open the acoustic_environment model in Simulink:

a Set your MATLAB current folder to the folder that contains your working files
for this tutorial. At the MATLAB command line, enter:

cd work

where work is the full path name of the folder containing your files. See “Find
Files and Folders” for more information.

b At the MATLAB command line, enter:

acoustic_environment

2 Ensure that your speakers are on.
3 To simulate the model, from the Simulink model window, select Simulation > Run.

As Simulink runs the model, you hear the audio signal distorted by noise.
4 While the simulation is running, double-click the Manual Switch to select the audio

source.

Now you hear the desired audio input without any noise.

The goal of this tutorial is to use a MATLAB LMS filter algorithm to remove the noise
from the noisy audio signal. You do this by adding a MATLAB Function block to the
model and calling the MATLAB code from this block. To learn how, see “Adding a
MATLAB Function Block to Your Model” on page 37-194.

Adding a MATLAB Function Block to Your Model

To modify the model and code yourself, work through the exercises in this section.
Otherwise, open the supplied model noise_cancel_01 in your solutions subfolder to
see the modified model.

For the purposes of this tutorial, you add the MATLAB Function block to the
noise_cancel_00 model supplied with the tutorial. In practice, you would have to
develop your own test bench starting with an empty Simulink model.

To add a MATLAB Function block to the noise_cancel_00 model:

1 Open noise_cancel_00 in Simulink.

noise_cancel_00

2 Add a MATLAB Function block to the model:

 Filter Audio Signal Using MATLAB Code

37-195

a At the MATLAB command line, type simulink to open the Simulink Library
Browser.

b From the list of Simulink libraries, select the User-Defined Functions
library.

c Click the MATLAB Function block and drag it into the noise_cancel_00
model. Place the block just above the red text annotation Place MATLAB
Function Block here.

d Delete the red text annotations from the model.
e Save the model in the current folder as noise_cancel_01.

Calling Your MATLAB Code As an Extrinsic Function for Rapid Prototyping

In this part of the tutorial, you use the coder.extrinsic function to call your MATLAB
code from the MATLAB Function block for rapid prototyping.

Why Call MATLAB Code As an Extrinsic Function?

Calling MATLAB code as an extrinsic function provides these benefits:

• For rapid prototyping, you do not have to make the MATLAB code suitable for code
generation.

• Using coder.extrinsic enables you to debug your MATLAB code in MATLAB. You
can add one or more breakpoints in the lms_01.m file, and then start the simulation
in Simulink. When the MATLAB execution engine encounters a breakpoint, it
temporarily halts execution so that you can inspect the MATLAB workspace and view
the current values of all variables in memory. For more information about debugging
MATLAB code, see “Debug a MATLAB Program”.

How to Call MATLAB Code As an Extrinsic Function

To call your MATLAB code from the MATLAB Function block:

1 Double-click the MATLAB Function block to open the MATLAB Function Block
Editor.

2 Delete the default code displayed in the MATLAB Function Block Editor.
3 Copy the following code to the MATLAB Function block.

function [Signal_Out, Weights] = LMS(Noise_In, Signal_In) %#codegen

 % Extrinsic:

37 Using the MATLAB Function Block

37-196

 coder.extrinsic('lms_01');

 % Compute LMS:

 [~, Signal_Out, Weights] = lms_01(Noise_In, Signal_In);

end

Why Use the Tilde (~) Operator?

Because the LMS function does not use the first output from lms_01, replace this
output with the MATLAB ~ operator. MATLAB ignores inputs and outputs specified
by ~. This syntax helps avoid confusion in your program code and unnecessary
clutter in your workspace, and allows you to reuse existing algorithms without
modification.

4 Save the model.

The lms_01 function inputs Noise_In and Signal_In now appear as input ports
to the block and the function outputs Signal_Out and Weights appear as output
ports.

Connecting the MATLAB Function Block Inputs and Outputs

1 Connect the MATLAB Function block inputs and outputs so that your model looks
like this.

 Filter Audio Signal Using MATLAB Code

37-197

See “Block and Signal Line Shortcuts and Actions” on page 1-77 for more
information.

2 In the MATLAB Function block code, preallocate the outputs by adding the following
code after the extrinsic call:

% Outputs:

Signal_Out = zeros(size(Signal_In));

Weights = zeros(32,1);

The size of Weights is set to match the Numerator coefficients of the Digital Filter
in the Acoustic Environment subsystem.

37 Using the MATLAB Function Block

37-198

Why Preallocate the Outputs?

For code generation, you must assign variables explicitly to have a specific class,
size, and complexity before using them in operations or returning them as outputs
in MATLAB functions. For more information, see “Differences in Behavior After
Compiling MATLAB Code” on page 41-8.

3 Save the model.

You are now ready to check your model for errors.

Simulating the noise_cancel_01 Model

To simulate the model:

1 Ensure that you can see the Time Domain plots.

To view the plots, in the noise_cancel_01 model, open the Analysis and
Visualization block and then open the Time Domain block.

2 In the Simulink model window, select Simulation > Run .

As Simulink runs the model, you see and hear outputs. Initially, you hear the audio
signal distorted by noise. Then the filter attenuates the noise gradually, until you
hear only the music playing with very little noise remaining. After two seconds, you
hear the distorted noisy signal again and the filter attenuates the noise again. This
cycle repeats continuously.

MATLAB displays the following plot showing this cycle.

 Filter Audio Signal Using MATLAB Code

37-199

3 Stop the simulation.

Why Does the Filter Reset Every 2 Seconds?

The filter resets every 2 seconds because the model uses 16384 samples per frame and a
sampling rate of 8192, so the 16384 samples represent 2 seconds of audio.

To see the model configuration:

37 Using the MATLAB Function Block

37-200

1 Double-click the White Noise subsystem and note that it uses a Sample time of
1/Fs and Samples per frame of FrameSize. The music in the Audio Source
subsystem also uses these values.

2 FrameSize is set in the model InitFcn callback. To view this callback:

a Right-click inside the model window and select Model Properties from the
context menu.

b Select the Callbacks tab.
c Select InitFcn in the Model callbacks pane.

Note that FrameSize = 16*1024, which is 16384.
3 Fs is set in the model PostLoadFcn callback. To view this callback, select

PostLoadFcn in the Model callbacks pane:

The following MATLAB commands set up Fs:

data = load('handel.mat');

music = data.y;

Fs = data.Fs;

Modifying the Filter to Use Streaming

• “What Is Streaming?” on page 37-200
• “Why Use Streaming?” on page 37-200
• “Viewing the Modified MATLAB Code” on page 37-201
• “Summary of Changes to the Filter Algorithm” on page 37-201
• “Modifying Your Model to Call the Updated Algorithm” on page 37-202
• “Simulating the Streaming Algorithm” on page 37-203

What Is Streaming?

A streaming filter is called repeatedly to process fixed-size chunks of input data, or
frames, until it has processed the entire input signal. The frame size can be as small as a
single sample, in which case the filter would be operating in a sample-based mode, or up
to a few thousand samples, for frame-based processing.
Why Use Streaming?

The design of the filter algorithm in lms_01 has the following disadvantages:

• The algorithm does not use memory efficiently.

 Filter Audio Signal Using MATLAB Code

37-201

Preallocating a fixed amount of memory for each input signal for the lifetime of the
program means more memory is allocated than is in use.

• You must know the size of the input signal at the time you call the function.

If the input signal is arriving in real time or as a stream of samples, you would have
to wait to accumulate the entire signal before you could pass it, as a batch, to the
filter.

• The signal size is limited to a maximum size.

In an embedded application, the filter is likely to be processing a continuous input
stream. As a result, the input signal can be substantially longer than the maximum
length that a filter working in batch mode could possibly handle. To make the filter work
for any signal length, it must run in real time. One solution is to convert the filter from
batch-based processing to stream-based processing.
Viewing the Modified MATLAB Code

The conversion to streaming involves:

• Introducing a first-in, first-out (FIFO) queue

The FIFO queue acts as a temporary storage buffer, which holds a small number of
samples from the input data stream. The number of samples held by the FIFO queue
must be exactly the same as the number of samples in the filter's impulse response, so
that the function can perform the convolution operation between the filter coefficients
and the input signal.

• Making the FIFO queue and the filter weights persistent

The filter is called repeatedly until it has processed the entire input signal. Therefore,
the FIFO queue and filter weights need to persist so that the adaptation process does
not have to start over again after each subsequent call to the function.

Open the supplied file lms_02.m in your work subfolder to see the modified algorithm.
Summary of Changes to the Filter Algorithm

Note the following important changes to the filter algorithm:

• The filter weights and the FIFO queue are declared as persistent:

persistent weights;

persistent fifo;

37 Using the MATLAB Function Block

37-202

• The FIFO queue is initialized:

fifo = zeros(FilterLength,ChannelCount);

• The FIFO queue is used in the filter update loop:

% For each channel:

for ch = 1:ChannelCount

 % For each sample time:

 for n = 1:FrameSize

 % Update the FIFO shift register:

 fifo(1:FilterLength-1,ch) = fifo(2:FilterLength,ch);

 fifo(FilterLength,ch) = signal_in(n,ch);

 % Compute the output sample using convolution:

 signal_out(n,ch) = weights' * fifo(:,ch);

 % Update the filter coefficients:

 err(n,ch) = desired(n,ch) - signal_out(n,ch) ;

 weights = weights + mu*err(n,ch)*fifo(:,ch);

 end

end

• You cannot output a persistent variable. Therefore, a new variable, weights_out, is
used to output the filter weights:

function [signal_out, err, weights_out] = ...

 lms_02(distorted, desired)

weights_out = weights;

Modifying Your Model to Call the Updated Algorithm

To modify the model yourself, work through the exercises in this section. Otherwise, open
the supplied model noise_cancel_02 in your solutions subfolder to see the modified
model.

1 In the noise_cancel_01 model, double-click the MATLAB Function block to open
the MATLAB Function Block Editor.

2 Modify the MATLAB Function block code to call lms_02.

a Modify the extrinsic call.

 Filter Audio Signal Using MATLAB Code

37-203

% Extrinsic:

coder.extrinsic('lms_02');

b Modify the call to the filter algorithm.

% Compute LMS:

[~, Signal_Out, Weights] = lms_02(Noise_In, Signal_In);

Modified MATLAB Function Block Code

Your MATLAB Function block code should now look like this:

function [Signal_Out, Weights] = LMS(Noise_In, Signal_In)

 % Extrinsic:

 coder.extrinsic('lms_02');

 % Outputs:

 Signal_Out = zeros(size(Signal_In));

 Weights = zeros(32,1);

 % Compute LMS:

 [~, Signal_Out, Weights] = lms_02(Noise_In, Signal_In);

end

3 Change the frame size from 16384 to 64, which represents a more realistic value.

a Right-click inside the model window and select Model Properties from the
context menu.

b Select the Callbacks tab.
c In the Model callbacks list, select InitFcn.
d Change the value of FrameSize to 64.
e Click Apply and close the dialog box.

4 Save your model as noise_cancel_02.

Simulating the Streaming Algorithm

To simulate the model:

1 Ensure that you can see the Time Domain plots.
2 Start the simulation.

As Simulink runs the model, you see and hear outputs. Initially, you hear the audio
signal distorted by noise. Then, during the first few seconds, the filter attenuates
the noise gradually, until you hear only the music playing with very little noise

37 Using the MATLAB Function Block

37-204

remaining. MATLAB displays the following plot showing filter convergence after
only a few seconds.

3 Stop the simulation.

The filter algorithm is now suitable for Simulink. You are ready to elaborate your model
to use Adapt and Reset controls.

 Filter Audio Signal Using MATLAB Code

37-205

Adding Adapt and Reset Controls

• “Why Add Adapt and Reset Controls?” on page 37-205
• “Modifying Your MATLAB Code” on page 37-205
• “Modifying Your Model to Use Reset and Adapt Controls” on page 37-206
• “Simulating the Model with Adapt and Reset Controls” on page 37-208

Why Add Adapt and Reset Controls?

In this part of the tutorial, you add Adapt and Reset controls to your filter. Using
these controls, you can turn the filtering on and off. When Adapt is enabled, the filter
continuously updates the filter weights. When Adapt is disabled, the filter weights
remain at their current values. If Reset is set, the filter resets the filter weights.
Modifying Your MATLAB Code

To modify the code yourself, work through the exercises in this section. Otherwise, open
the supplied file lms_03.m in your solutions subfolder to see the modified algorithm.

To modify your filter code:

1 Open lms_02.m.
2 In the Set up section, replace

if (isempty(weights))

with

if (reset || isempty(weights))

3 In the filter loop, update the filter coefficients only if Adapt is ON.

if adapt

 weights = weights + mu*err(n,ch)*fifo(:,ch);

end

4 Change the function signature to use the Adapt and Reset inputs and change the
function name to lms_03.

function [signal_out, err, weights_out] = ...

 lms_03(signal_in, desired, reset, adapt)

5 Save the file in the current folder as lms_03.m:

Summary of Changes to the Filter Algorithm

Note the following important changes to the filter algorithm:

37 Using the MATLAB Function Block

37-206

• The new input parameter reset is used to determine if it is necessary to reset the
filter coefficients:

if (reset || isempty(weights))

 % Filter coefficients:

 weights = zeros(L,1);

 % FIFO Shift Register:

 fifo = zeros(L,1);

end

• The new parameter adapt is used to control whether the filter coefficients are
updated or not.

if adapt

 weights = weights + mu*err(n)*fifo;

end

Modifying Your Model to Use Reset and Adapt Controls

To modify the model yourself, work through the exercises in this section. Otherwise, open
the supplied model noise_cancel_03 in your solutions subfolder to see the modified
model.

1 Open the noise_cancel_02 model.
2 Double-click the MATLAB Function block to open the MATLAB Function Block

Editor.
3 Modify the MATLAB Function block code:

a Update the function declaration.

function [Signal_Out, Weights] = ...

 LMS(Adapt, Reset, Noise_In, Signal_In)

b Update the extrinsic call.

coder.extrinsic('lms_03');

c Update the call to the LMS algorithm.

% Compute LMS:

[~, Signal_Out, Weights] = ...

 lms_03(Noise_In, Signal_In, Reset, Adapt);

d Close the MATLAB Function Block Editor.

 Filter Audio Signal Using MATLAB Code

37-207

The lms_03 function inputs Reset and Adapt now appear as input ports to the
MATLAB Function block.

4 Open the design_templates model.

5 Copy the Settings block from this model to your noise_cancel_02 model:

a From the design_templates model menu, select Edit > Select All.
b Select Edit > Copy.
c From the noise_cancel_02 model menu, select Edit > Paste.

6 Connect the Adapt and Reset outputs of the Settings subsystem to the corresponding
inputs on the MATLAB Function block. Your model should now appear as follows.

37 Using the MATLAB Function Block

37-208

7 Save the model as noise_cancel_03.

Simulating the Model with Adapt and Reset Controls

To simulate the model and see the effect of the Adapt and Reset controls:

1 In the noise_cancel_03 model, view the Convergence scope:

a Double-click the Analysis and Visualization subsystem.
b Double-click the Convergence scope.

2 In the Simulink model window, select Simulation > Run.

Simulink runs the model as before. While the model is running, toggle the Adapt and
Reset controls and view the Convergence scope to see their effect on the filter.

The filter converges when Adapt is ON and Reset is OFF, then resets when you
toggleReset. The results might look something like this:

 Filter Audio Signal Using MATLAB Code

37-209

3 Stop the simulation.

Generating Code

You have proved that your algorithm works in Simulink. Next you generate code for your
model. Before generating code, you must ensure that your MATLAB code is suitable for
code generation. For code generation, you must remove the extrinsic call to your code.

Making Your Code Suitable for Code Generation

To modify the model and code yourself, work through the exercises in this section.
Otherwise, open the supplied model noise_cancel_04 and file lms_04.m in your
solutions subfolder to see the modifications.

1 Rename the MATLAB Function block to LMS_Filter. Select the annotation
MATLAB Function below the MATLAB Function block and replace the text with
LMS_Filter.

37 Using the MATLAB Function Block

37-210

When you generate code for the MATLAB Function block, Simulink Coder uses
the name of the block in the generated code. It is good practice to use a meaningful
name.

2 In your noise_cancel_03 model, double-click the MATLAB Function block.

The MATLAB Function Block Editor opens.
3 Delete the extrinsic declaration.

% Extrinsic:

coder.extrinsic('lms_03');

4 Delete the preallocation of outputs.

% Outputs:

Signal_Out = zeros(size(Signal_In));

Weights = zeros(32,1);

5 Modify the call to the filter algorithm.

% Compute LMS:

[~, Signal_Out, Weights] = ...

 lms_04(Noise_In, Signal_In, Reset, Adapt);

6 Save the model as noise_cancel_04.
7 Open lms_03.m

a Modify the function name to lms_04.
b Turn on error checking specific to code generation by adding the %#codegen

compilation directive after the function declaration.

function [signal_out, err, weights_out] = ...

 lms_04(signal_in, desired, reset, adapt) %#codegen

The code analyzer message indicator in the top right turns red to indicate
that the code analyzer has detected code generation issues. The code analyzer
underlines the offending code in red and places a red marker to the right of it.

8 Move your pointer over the first red marker to view the error information.

The code analyzer detects that code generation requires signal_out to be fully
defined before subscripting it and does not support growth of variable size data
through indexing.

 Filter Audio Signal Using MATLAB Code

37-211

9 Move your pointer over the second red marker and note that the code analyzer
detects the same errors for err.

10 To address these errors, preallocate the outputs signal_out and err. Add this code
after the filter setup.

 % Output Arguments:

 % Pre-allocate output and error signals:

 signal_out = zeros(FrameSize,ChannelCount);

 err = zeros(FrameSize,ChannelCount);

Why Preallocate the Outputs?

You must preallocate outputs here because code generation does not support
increasing the size of an array over time. Repeatedly expanding the size of an array
over time can adversely affect the performance of your program. See “Preallocating
Memory”.

The red error markers for the two lines of code disappear. The code analyzer
message indicator in the top right edge of the code turns green, which indicates that
you have fixed all the errors and warnings detected by the code analyzer.

11 Save the file as lms_04.m.

Generating Code for noise_cancel_04

1 Before generating code, ensure that Simulink Coder creates a code generation report.
This HTML report provides easy access to the list of generated files with a summary
of the configuration settings used to generate the code.

a In the Simulink model window, select Simulation > Model Configuration
Parameters.

b In the left pane of the Configuration Parameters dialog box, select Code
Generation > Report.

c In the right pane, select Create code generation report.

The Launch report automatically option is also selected.
d Click Apply and close the Configuration Parameters dialog box.
e Save your model.

2 To generate code for the LMS Filter subsystem:

37 Using the MATLAB Function Block

37-212

a In your model, select the LMS Filter subsystem.
b From the Build Model tool menu, select Build Selected Subsystem.

The Build code for subsystem dialog box appears. Click the Build button.

The Simulink Coder software generates C code for the subsystem and launches
the code generation report.

For more information on using the code generation report, see “Generate a Code
Generation Report” in the Simulink Coder documentation.

c In the left pane of the code generation report, click the LMS_Filter.c link to
view the generated C code. Note that the lms_04 function has no code because
inlining is enabled by default.

3 Modify your filter algorithm to disable inlining:

a In lms_04.m, after the function declaration, add:

coder.inline('never')

b Change the function name to lms_05 and save the file as lms_05.m in the
current folder.

c In your noise_cancel_04 model, double-click the MATLAB Function block.

The MATLAB Function Block Editor opens.
d Modify the call to the filter algorithm to call lms_05.

% Compute LMS:

[~, Signal_Out, Weights] = ...

 lms_05(Noise_In, Signal_In, Reset, Adapt);

e Save the model as noise_cancel_05.
4 Generate code for the updated model.

a In the model, select the LMS Filter subsystem.

 Filter Audio Signal Using MATLAB Code

37-213

b From the Build Model tool menu, select Build Selected Subsystem.

The Build code for subsystem dialog box appears.
c Click the Build button.

The Simulink Coder software generates C code for the subsystem and launches
the code generation report.

d In the left pane of the code generation report, click the LMS_Filter.c link to
view the generated C code.

This time the lms_05 function has code because you disabled inlining.

/* Forward declaration for local functions */

 static void LMS_Filter_lms_05 ...

 (const real_T signal_in[64],const real_T ...

 desired[64], real_T reset, real_T adapt, ...

 real_T signal_out[64], ...

 real_T err[64], real_T weights_out[32]);

/* Function for MATLAB Function Block: 'root/LMS_Filter' */

 static void LMS_Filter_lms_05 ...

 (const real_T signal_in[64], const real_T ...

 desired[64], real_T reset, real_T adapt, ...

 real_T signal_out[64], ...

 real_T err[64], real_T weights_out[32])

Optimizing the LMS Filter Algorithm

This part of the tutorial demonstrates when and how to preallocate memory for a
variable without incurring the overhead of initializing memory in the generated code.

In lms_05.m, the MATLAB code not only declares signal_out and err to be a
FrameSize-by-ChannelCount vector of real doubles, but also initializes each element
of signal_out and err to zero. These signals are initialized to zero in the generated C
code.

MATLAB Code Generated C Code

% Pre-allocate output and error signals:

signal_out =

zeros(FrameSize,ChannelCount);

err = zeros(FrameSize,ChannelCount);

/* Pre-allocate output and error

signals: */

79 for (i = 0; i < 64; i++) {

80 signal_out[i] = 0.0;

37 Using the MATLAB Function Block

37-214

MATLAB Code Generated C Code

81 err[i] = 0.0;

82 }

This forced initialization is unnecessary because both signal_out and err are explicitly
initialized in the MATLAB code before they are read.

Note: You should not use coder.nullcopy when declaring the variables weights
and fifo because these variables need to be initialized in the generated code. Neither
variable is explicitly initialized in the MATLAB code before they are read.

Use coder.nullcopy in the declaration of signal_out and err to eliminate the
unnecessary initialization of memory in the generated code:

1 In lms_05.m, preallocate signal_out and err using coder.nullcopy:

% Pre-allocate output and error signals:

signal_out = coder.nullcopy(zeros(FrameSize, ChannelCount));

err = coder.nullcopy(zeros(FrameSize, ChannelCount));

Caution After declaring a variable with coder.nullcopy, you must explicitly
initialize the variable in your MATLAB code before reading it. Otherwise, you might
get unpredictable results.

2 Change the function name to lms_06 and save the file as lms_06.m in the current
folder.

3 In your noise_cancel_05 model, double-click the MATLAB Function block.

The MATLAB Function Block Editor opens.
4 Modify the call to the filter algorithm.

% Compute LMS:

[~, Signal_Out, Weights] = ...

 lms_06(Noise_In, Signal_In, Reset, Adapt);

5 Save the model as noise_cancel_06.

Generate code for the updated model.

1 Select the LMS Filter subsystem.

 Filter Audio Signal Using MATLAB Code

37-215

2 From the Build Model tool menu, select Build Selected Subsystem.

The Build code for subsystem dialog box appears. Click the Build button.

The Simulink Coder software and generates C code for the subsystem and launches
the code generation report.

3 In the left pane of the code generation report, click the LMS_Filter.c link to view
the generated C code.

In the generated C code, this time there is no initialization to zero of signal_out
and err.

37 Using the MATLAB Function Block

37-216

Encapsulating the Interface to External Code

Use the coder.ExternalDependency class to encapsulate the interface between
external code and MATLAB code intended for code generation. With the encapsulation,
you can separate the details of the interface from your MATLAB code. The methods of
coder.ExternalDependency:

• specify the location of external files
• update build information
• define the programming interface for external functions

In your MATLAB code, you can call the external code without providing build
information.

The workflow is:

1 Write a class definition file for a class that derives from
coder.ExternalDependency.

2 Store the class definition file in a folder on the MATLAB path.
3 In your MATLAB code, use a method of the class to call an external function.
4 Generate code from your MATLAB code.

See Also
coder.ExternalDependency

Related Examples
• “Encapsulate Interface to an External C Library” on page 37-217

More About
• “Best Practices for Using coder.ExternalDependency” on page 37-220

 Encapsulate Interface to an External C Library

37-217

Encapsulate Interface to an External C Library
This example shows how to encapsulate the interface to an external C dynamic linked
library using coder.ExternalDependency.

Write a function adder that returns the sum of its inputs.

function c = adder(a,b)

 %#codegen

 c = a + b;

end

Generate a library that contains adder.

codegen('adder','-args', {-2,5}, '-config:dll', '-report');

Write the class definition file AdderAPI.m to encapsulate the library interface.

%==

% This class abstracts the API to an external Adder library.

% It implements static methods for updating the build information

% at compile time and build time.

%==

classdef AdderAPI < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'AdderAPI';

 end

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('adder library not available for this target');

 end

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo();

 % Header files

37 Using the MATLAB Function Block

37-218

 hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');

 buildInfo.addIncludePaths(hdrFilePath);

 % Link files

 linkFiles = strcat('adder', linkLibExt);

 linkPath = hdrFilePath;

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 % Non-build files

 nbFiles = 'adder';

 nbFiles = strcat(nbFiles, execLibExt);

 buildInfo.addNonBuildFiles(nbFiles,'','');

 end

 %API for library function 'adder'

 function c = adder(a, b)

 if coder.target('MATLAB')

 % running in MATLAB, use built-in addition

 c = a + b;

 else

 % running in generated code, call library function

 coder.cinclude('adder.h');

 % Because MATLAB Coder generated adder, use the

 % housekeeping functions before and after calling

 % adder with coder.ceval.

 % Call initialize function before calling adder for the

 % first time.

 coder.ceval('adder_initialize');

 c = 0;

 c = coder.ceval('adder', a, b);

 % Call the terminate function after

 % calling adder for the last time.

 coder.ceval('adder_terminate');

 end

 Encapsulate Interface to an External C Library

37-219

 end

 end

end

Write a function adder_main that calls the external library function adder.

function y = adder_main(x1, x2)

%#codegen

 y = AdderAPI.adder(x1, x2);

end

Generate a MEX function for adder_main. The MEX Function exercises the
coder.ExternalDependency methods.

codegen('adder_main', '-args', {7,9}, '-report')

Copy the library to the current folder using the file extension for your platform.

For Windows, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.dll'));

For Linux, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.so'));

Run the MEX function and verify the result.

adder_main_mex(2,3)

See Also
coder.BuildConfig | coder.ExternalDependency | error

More About
• “Encapsulating the Interface to External Code” on page 37-216

37 Using the MATLAB Function Block

37-220

Best Practices for Using coder.ExternalDependency

In this section...

“Terminate Code Generation for Unsupported External Dependency” on page 37-220
“Parameterize Methods for MATLAB and Generated Code” on page 37-220
“Parameterize updateBuildInfo for Multiple Platforms” on page 37-221

Terminate Code Generation for Unsupported External Dependency

The isSupportedContext method returns true if the external code interface is
supported in the build context. If the external code interface is not supported, do not
return false. Instead, use error to terminate code generation with an error message. For
example:

function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('MyLibrary is not available for this target');

 end

end

Parameterize Methods for MATLAB and Generated Code

Parameterize methods that call external functions so that the methods run in MATLAB.
For example:

...

if coder.target('MATLAB')

 % running in MATLAB, use built-in addition

 c = a + b;

else

 % running in generated code, call library function

 coder.ceval('adder_initialize');

end

...

 Best Practices for Using coder.ExternalDependency

37-221

Parameterize updateBuildInfo for Multiple Platforms

Parameterize the updateBuildInfo method to support multiple platforms. For
example, use coder.BuildConfig.getStdLibInfo to get the platform-specific library
file extensions.

...

 [~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo()

% Link files

linkFiles = strcat('adder', linkLibExt);

buildInfo.addLinkObjects(linkFiles, linkPath, linkPriority, ...

 linkPrecompiled, linkLinkOnly, group);

...

See Also
coder.BuildConfig | coder.ExternalDependency | error

Related Examples
• “Encapsulate Interface to an External C Library” on page 37-217

37 Using the MATLAB Function Block

37-222

Update Build Information from MATLAB code

You can choose to control aspects of the build process that occur after code generation but
before compilation. For example, you can specify compiler or linker options.

To customize the build from your MATLAB code:

1 In your MATLAB code, call coder.updateBuildInfo to update the build
information object. You specify a build information object method and the input
arguments for the method.

2 Generate code from your MATLAB code.

See Also
coder.updateBuildInfo

38

System Objects

• “What Are System Objects?” on page 38-2
• “System Design and Simulation in Simulink” on page 38-4
• “System Objects in MATLAB Code Generation” on page 38-5
• “System Objects Methods That Support Code Generation” on page 38-11
• “System Objects in Simulink” on page 38-13
• “System Object Methods” on page 38-14
• “System Design in Simulink Using System Objects” on page 38-17

38 System Objects

38-2

What Are System Objects?

A System object is a specialized kind of MATLAB object. System Toolboxes include
System objects and most System Toolboxes also have MATLAB functions and Simulink
blocks. System objects are designed specifically for implementing and simulating
dynamic systems with inputs that change over time. Many signal processing,
communications, and controls systems are dynamic. In a dynamic system, the values
of the output signals depend on both the instantaneous values of the input signals and
on the past behavior of the system. System objects use internal states to store that past
behavior, which is used in the next computational step. As a result, System objects are
optimized for iterative computations that process large streams of data, such as video
and audio processing systems.

For example, you could use System objects in a system that reads data from a file,
filters that data and then writes the filtered output to another file. Typically, a specified
amount of data is passed to the filter in each loop iteration. The file reader object uses
a state to keep track of where in the file to begin the next data read. Likewise, the file
writer object keeps tracks of where it last wrote data to the output file so that data is not
overwritten. The filter object maintains its own internal states to assure that the filtering
is performed correctly. This diagram represents a single loop of the system.

Many System objects support:

• Fixed-point arithmetic (requires a Fixed-Point Designer license)
• C code generation (requires a MATLAB Coder or Simulink Coder license)
• HDL code generation (requires an HDL Coder license)
• Executable files or shared libraries generation (requires a MATLAB Compiler™

license)

Note: Check your product documentation to confirm fixed-point, code generation, and
MATLAB Compiler support for the specific System objects you want to use.

 What Are System Objects?

38-3

In addition to the System objects provided with System Toolboxes, you can also create
your own System objects. See “Define System Objects”.

38 System Objects

38-4

System Design and Simulation in Simulink

You can use System objects in your model to simulate in Simulink.

1 Create a System object to be used in your model. See “Define New Kinds of System
Objects for Use in Simulink” on page 38-17 for information.

2 Test your new System object in MATLAB. See “Test New System Objects in
MATLAB” on page 38-22

3 Add the System object to your model using the MATLAB System block. See “Add
System Objects to Your Simulink Model” on page 38-23 for information.

4 Add other Simulink blocks as needed and connect the blocks to construct your
system.

5 Run the system

 System Objects in MATLAB Code Generation

38-5

System Objects in MATLAB Code Generation

In this section...

“System Objects in Generated Code” on page 38-5
“System Objects in codegen” on page 38-9
“System Objects in the MATLAB Function Block” on page 38-10
“System Objects in the MATLAB System Block” on page 38-10
“System Objects and MATLAB Compiler Software” on page 38-10

System Objects in Generated Code

You can generate C/C++ code in MATLAB from your system that contains System objects
by using the MATLAB Coder product. Using this product, you can generate efficient
and compact code for deployment in desktop and embedded systems and accelerate
fixed-point algorithms. You do not need the MATLAB Coder product to generate code in
Simulink.

System Objects Code with Persistent Objects for Code Generation

This example shows how to use System objects to make MATLAB code suitable for code
generation. The example highlights key factors to consider, such as passing property
values and using extrinsic functions. It also shows that by using persistent objects, the
object states are maintained between calls.

function w = lmssystem(x, d)

% LMSSYSTEMIDENTIFICATION System identification using

% LMS adaptive filter

% #codegen

 % Declare System objects as persistent

 persistent hlms;

 % Initialize persistent System objects only once.

 % Do this with 'if isempty(persistent variable).'

 % This condition will be false after the first time.

 if isempty(hlms)

 % Create LMS adaptive filter used for system

 % identification. Pass property value arguments

38 System Objects

38-6

 % as constructor arguments. Property values must

 % be constants during compile time.

 hlms = dsp.LMSFilter(11,'StepSize',0.01);

 end

 [~,~,w] = step(hlms,x,d); % Filter weights

end

This example shows how to compile the lmssystem function and produce a MEX file
with the same name in the current directory.

% LMSSYSTEMIDENTIFICATION System identification using

% LMS adaptive filter

coefs = fir1(10,.25);

hfilt = dsp.FIRFilter('Numerator', coefs);

x = randn(1000,1); % Input signal

hSrc = dsp.SignalSource(x,100); % Use x as input-signal with

 % 100 samples per frame

% Generate code for lmssystem

codegen lmssystem -args {ones(100,1),ones(100,1)}

while ~isDone(hSrc)

 in = step(hSrc);

 d = step(hfilt,in) + 0.01*randn(100,1); % Desired signal

 w = lmssystem_mex(in,d); % Call generated mex file

 stem([coefs.',w]);

end

For another detailed code generation example, see “Generate Code for MATLAB Handle
Classes and System Objects” in the MATLAB Coder product documentation.

Usage Rules and Limitations for System Objects for Generating Code

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

 System Objects in MATLAB Code Generation

38-7

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of 32 inputs. A maximum of 8 dimensions per input
is supported.

• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

Tunable and Nontunable Properties

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties
at construction time or using dot notation during code generation. For

38 System Objects

38-8

getNumInputsImpl and getNumOutputsImpl methods, if you set the
return argument from an object property, that object property must have the
Nontunable attribute.

• Objects cannot be used as default values for properties.
• In MATLAB simulations, default values are shared across all instances of an object.

Two instances of a class can access the same default value if that property has not
been overwritten by either instance.

Cell Arrays and Global Variables

• System objects can contain cell arrays, but cell arrays cannot contain System objects.
• Global variables are allowed in a System object, unless you will be using that System

object in Simulink via the MATLAB System block. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• isLocked

• release

• reset

• set (for tunable properties)
• step

• For System objects that you define,

Code generation support is available only for these methods:

• getDiscreteStateImpl

• getNumInputsImpl

 System Objects in MATLAB Code Generation

38-9

• getNumOutputsImpl

• infoImpl

• isDoneImpl

• isInputDirectFeedThroughImpl

• outputImpl

• processTunedPropertiesImpl

• releaseImpl — Code is not generated automatically for the this method. To
release an object, you must explicitly call the release method in your code.

• resetImpl

• setupImpl

• stepImpl

• updateImpl

• validateInputsImpl

• validatePropertiesImpl

• Code generation support for using dot notation depends on whether the System object
is predefined in the software or is one that you defined.

• For System objects that are predefined in the software, you cannot use dot
notation to call methods.

• For System objects that you define, you can use dot notation or function call
notation, with the System object as first argument, to call methods.

System Objects in codegen

You can include System objects in MATLAB code in the same way you include any
other elements. You can then compile a MEX file from your MATLAB code by using
the codegen command, which is available if you have a MATLAB Coder license. This
compilation process, which involves a number of optimizations, is useful for accelerating
simulations. See “Getting Started with MATLAB Coder” and “MATLAB Classes” for
more information.

Note: Most, but not all, System objects support code generation. Refer to the particular
object’s reference page for information.

38 System Objects

38-10

System Objects in the MATLAB Function Block

Using the MATLAB Function block, you can include any System object and any
MATLAB language function in a Simulink model. This model can then generate
embeddable code. System objects provide higher-level algorithms for code generation
than do most associated blocks. For more information, see “What Is a MATLAB Function
Block?” on page 37-5 in the Simulink documentation.

System Objects in the MATLAB System Block

Using the MATLAB System block, you can include in a Simulink model individual
System objects that you create with a class definition file . The model can then generate
embeddable code. For more information, see “What Is the MATLAB System Block?” on
page 40-2 in the Simulink documentation.

System Objects and MATLAB Compiler Software

MATLAB Compiler software supports System objects for use inside MATLAB functions.
The compiler product does not support System objects for use in MATLAB scripts.

 System Objects Methods That Support Code Generation

38-11

System Objects Methods That Support Code Generation

In this section...

“Code Generation Supported System Objects Methods” on page 38-11
“Simulation-Only System Objects Methods” on page 38-11

Code Generation Supported System Objects Methods

Only the following methods are supported in code generation.

• getDiscreteStateImpl
• getNumInputsImpl
• getNumOutputsImpl
• isDoneImpl
• infoImpl
• isInputDirectFeedthroughImpl
• outputImpl
• processTunedPropertiesImpl
• releaseImpl — Code is not generated automatically for the this method. To release an

object, you must explicitly call the release method in your code.
• resetImpl
• setupImpl
• stepImpl
• updateImpl
• validateInputsImpl
• validatePropertiesImpl

Simulation-Only System Objects Methods

The following methods are for simulation only and do not support code generation.

• getDiscreteStateSpecificationImpl
• getHeaderImpl

38 System Objects

38-12

• getInputNamesImpl
• getIconImpl
• getOutputDataTypeImpl
• getOutputNamesImpl
• getOutputSizeImpl
• getPropertyGroupsImpl
• isInactivePropertyImpl
• isOutputComplexImpl
• loadObjectImpl
• propagatedInputComplexity
• propagatedInputDataType
• propagatedInputFixedSize
• propagatedInputSize
• saveObjectImpl
• supportsMultipleInstanceImpl

 System Objects in Simulink

38-13

System Objects in Simulink

In this section...

“System Objects in the MATLAB Function Block” on page 38-13
“System Objects in the MATLAB System Block” on page 38-13

System Objects in the MATLAB Function Block

You can include System object code in Simulink models using the MATLAB Function
block. Your function can include one or more System objects. Portions of your system may
be easier to implement in the MATLAB environment than directly in Simulink. Many
System objects have Simulink block counterparts with equivalent functionality. Before
writing MATLAB code to include in a Simulink model, check for existing blocks that
perform the desired operation.

System Objects in the MATLAB System Block

You can include individual System objects that you create with a class definition file
into Simulink using the MATLAB System block. This provides one way to add your
own algorithm blocks into your Simulink models. For information, see “System Object
Integration” in the Simulink documentation.

38 System Objects

38-14

System Object Methods

In this section...

“What Are System Object Methods?” on page 38-14
“The Step Method” on page 38-14
“Common Methods” on page 38-15

What Are System Object Methods?

After you create a System object, you use various object methods to process data or
obtain information from or about the object. All methods that are applicable to an object
are described in the reference pages for that object. System object method names begin
with a lowercase letter and class and property names begin with an uppercase letter.
The syntax for using methods is <method>(<handle>), such as step(H), plus possible
extra input arguments.

System objects use a minimum of two commands to process data—a constructor to
create the object and the step method to run data through the object. This separation
of declaration from execution lets you create multiple, persistent, reusable objects,
each with different settings. Using this approach avoids repeated input validation
and verification, allows for easy use within a programming loop, and improves overall
performance. In contrast, MATLAB functions must validate parameters every time you
call the function.

These advantages make System objects particularly well suited for processing streaming
data, where segments of a continuous data stream are processed iteratively. This ability
to process streaming data provides the advantage of not having to hold large amounts of
data in memory. Use of streaming data also allows you to use simplified programs that
use loops efficiently.

The Step Method

The step method is the key System object method. You use step to process data using
the algorithm defined by that object. The step method performs other important tasks
related to data processing, such as initialization and handling object states. Every
System object has its own customized step method, which is described in detail on the
step reference page for that object. For more information about the step method and
other available methods, see the descriptions in “Common Methods” on page 38-15.

 System Object Methods

38-15

Common Methods

All System objects support the following methods, each of which is described in a method
reference page associated with the particular object. In cases where a method is not
applicable to a particular object, calling that method has no effect on the object.

Method Description

step Processes data using the algorithm defined by the object. As
part of this processing, it initializes needed resources, returns
outputs, and updates the object states. After you call the
step method, you cannot change any input specifications (i.e.,
dimensions, data type, complexity). During execution, you can
change only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)
release Releases any special resources allocated by the object, such

as file handles and device drivers, and unlocks the object.
For System objects, use the release method instead of a
destructor.

reset Resets the internal states of a locked object to the initial values
for that object and leaves the object locked

getNumInputs Returns the number of inputs (excluding the object itself)
expected by the step method. This number varies for an object
depending on whether any properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending on
whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure. If the
object is unlocked (when the object is first created and before
you have run the step method on it or after you have released
the object), the states are empty. If the object has no discrete
states, getDiscreteState returns an empty structure.

clone Creates another object of the same type with the same property
values

isLocked Returns a logical value indicating whether the object is locked.

38 System Objects

38-16

Method Description

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached the end of
the data file. If a particular object does not have end-of-data
capability, this method value returns false.

info Returns a structure containing characteristic information
about the object. The fields of this structure vary depending on
the object. If a particular object does not have characteristic
information, the structure is empty.

For a complete list of methods for writing new System objects, see “System Objects
Methods for Defining New Objects” on page 39-3.

 System Design in Simulink Using System Objects

38-17

System Design in Simulink Using System Objects
In this section...

“Define New Kinds of System Objects for Use in Simulink” on page 38-17
“Test New System Objects in MATLAB” on page 38-22
“Add System Objects to Your Simulink Model” on page 38-23

Define New Kinds of System Objects for Use in Simulink

• “Define System Object with Block Customizations” on page 38-17
• “Define System Object with Nondirect Feedthrough” on page 38-20

A System object is a component you can use to create your system in MATLAB. You can
write the code in MATLAB and use that code to create a block in Simulink. To define
your own System object, you write a class definition file, which is a text-based MATLAB
file that contains the code defining your object. See “System Object Integration” in the
Simulink documentation.

Define System Object with Block Customizations

This example shows how to create a System object for use in Simulink. The example
performs system identification using a least mean squares (LMS) adaptive filter and is
similar to the System Identification Using MATLAB System Blocks Simulink example.

This example shows how to create a class definition text file to define your System
object. The code in this example creates a least mean squares (LMS) filter and includes
customizations to the block icon and dialog appearance.

Note: Instead of manually creating your class definition file, you can use the New >
System Object > Simulink Extension menu option to open a template. This template
includes customizations of the System object for use in the Simulink MATLAB System
block. You edit the template file, using it as guideline, to create your own System object.

On the first line of the class definition file, specify the name of your System object and
subclass from both matlab.System and matlab.system.mixin.CustomIcon. The
matlab.System base class enables you to use all the basic System object methods and
specify the block input and output names, title, and property groups. The CustomIcon
mixin class enables the method that lets you specify the block icon.

38 System Objects

38-18

Add the appropriate basic System object methods to set up, reset, set the number of
inputs and outputs, and run your algorithm. See the reference pages for each method and
the full class definition file below for the implementation of each of these methods.

• Use the setupImpl method to perform one-time calculations and initialize variables.
• Use the stepImpl method to implement the block’s algorithm.
• Use the resetImpl method to reset the state properties or DiscreteState

properties.
• Use the getNumInputsImpl and getNumOutputsImpl methods to specify the

number of inputs and outputs, respectively.

Add the appropriate CustomIcon methods to define the appearance of the MATLAB
System block in Simulink. See the reference pages for each method and the full class
definition file below for the implementation of each of these methods.

• Use the getHeaderImpl method to specify the title and description to display on the
block dialog.

• Use the getPropertyGroupsImpl method to specify groups of properties to display
on the block dialog.

• Use the getIconImpl method to specify the text to display on the block icon.
• Use the getInputNamesImpl and getOutputNamesImpl methods to specify the

labels to display for the block input and output ports.

The full class definition file for the least mean squares filter is:

classdef lmsSysObj < matlab.System &...

 matlab.system.mixin.CustomIcon

 % lmsSysObj Least mean squares (LMS) adaptive filtering.

 % #codegen

 properties

 % Mu Step size

 Mu = 0.005;

 end

 properties (Nontunable)

 % Weights Filter weights

 Weights = 0;

 % N Number of filter weights

 N = 32;

 end

 System Design in Simulink Using System Objects

38-19

 properties (DiscreteState)

 X;

 H;

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.X = zeros(obj.N,1);

 obj.H = zeros(obj.N,1);

 end

 function [y, e_norm] = stepImpl(obj,d,u)

 tmp = obj.X(1:obj.N-1);

 obj.X(2:obj.N,1) = tmp;

 obj.X(1,1) = u;

 y = obj.X'*obj.H;

 e = d-y;

 obj.H = obj.H + obj.Mu*e*obj.X;

 e_norm = norm(obj.Weights'-obj.H);

 end

 function resetImpl(obj)

 obj.X = zeros(obj.N,1);

 obj.H = zeros(obj.N,1);

 end

 end

 % Block icon and dialog customizations

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header(...

 'lmsSysObj', ...

 'Title', 'LMS Adaptive Filter');

 end

 function groups = getPropertyGroupsImpl

 upperGroup = matlab.system.display.SectionGroup(...

 'Title','General',...

 'PropertyList',{'Mu'});

 lowerGroup = matlab.system.display.SectionGroup(...

 'Title','Coefficients', ...

 'PropertyList',{'Weights','N'});

38 System Objects

38-20

 groups = [upperGroup,lowerGroup];

 end

 end

 methods (Access = protected)

 function icon = getIconImpl(~)

 icon = sprintf('LMS Adaptive\nFilter');

 end

 function [in1name, in2name] = getInputNamesImpl(~)

 in1name = 'Desired';

 in2name = 'Actual';

 end

 function [out1name, out2name] = getOutputNamesImpl(~)

 out1name = 'Output';

 out2name = 'EstError';

 end

 end

end

Define System Object with Nondirect Feedthrough

This example shows how to create a System object for use in Simulink. The example
performs system identification using a least mean squares (LMS) adaptive filter and
uses feedback loops. It is similar to the System Identification Using MATLAB System
Blocks Simulink example. For information on feedback loops, see “Use System Objects in
Feedback Loops” on page 40-14.

This example shows how to create a class definition text file to define your System object.
The code in this example creates an integer delay and includes customizations to the
block icon. It implements a System object that you can use for nondirect feedthrough.

On the first line of the class definition file, subclass from matlab.System and
matlab.system.mixin.CustomIcon. The matlab.System base class enables you to
use all the basic System object methods and specify the block input and output names,
title, and property groups. The CustomIcon mixin class enables the method that lets you
specify the block icon. The Nondirect mixin enables the methods that let you specify
how the block is updated and what it outputs.

Add the appropriate basic System object methods to set up and reset the object and set
and validate the properties. Since this object supports nondirect feedthrough, you do not
implement the stepImpl method. You implement the updateImpl and outputImpl

 System Design in Simulink Using System Objects

38-21

methods instead. See the reference pages for each method and the full class definition file
below for the implementation of each of these methods.

• Use the setupImpl method to initialize some of the object’s properties.
• Use the resetImpl method to reset the property states.
• Use the validatePropertiesImpl method to check that the property values are

valid.

Add the following Nondirect mixin class methods instead of the stepImpl method to
specify how the block updates its state and its output. See the reference pages and the
full class definition file below for the implementation of each of these methods.

• Use the outputImpl method to implement code to calculate the block output.
• Use the updateImpl method to implement code to update the block’s internal states.
• Use the isInputDirectFeedthroughImpl method to specify that the block is not

direct feedthrough. Its inputs do not directly affect its outputs.

Add the getIconImpl method to define the block icon when it is used in Simulink via
the MATLAB System block. See the reference page and the full class definition file below
for the implementation of this method.

The full class definition file for the delay is:

classdef intDelaySysObj < matlab.System &...

 matlab.system.mixin.Nondirect &...

 matlab.system.mixin.CustomIcon

 % intDelaySysObj Delay input by specified number of samples.

 % #codegen

 properties

 % InitialOutput Initial output

 InitialOutput = 0;

 end

 properties (Nontunable)

 % NumDelays Number of delays

 NumDelays = 1;

 end

 properties (DiscreteState)

 PreviousInput;

 end

38 System Objects

38-22

 methods (Access = protected)

 function setupImpl(obj, ~)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function [y] = outputImpl(obj, ~)

 % Output does not directly depend on input

 y = obj.PreviousInput(end);

 end

 function updateImpl(obj, u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

 end

 function flag = isInputDirectFeedthroughImpl(~,~)

 flag = false;

 end

 function validatePropertiesImpl(obj)

 if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))

 error('Number of delays must be positive non-zero scalar value.');

 end

 if (numel(obj.InitialOutput)>1)

 error('Initial output must be scalar value.');

 end

 end

 function resetImpl(obj)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function icon = getIconImpl(~)

 icon = sprintf('Integer\nDelay');

 end

 end

end

Test New System Objects in MATLAB

1 Create an instance of your new System object. For example, create an instance of the
lmsSysObj.

s = lmsSysObj;

 System Design in Simulink Using System Objects

38-23

2 Run the step method on the object multiple times with different inputs. This tests for
syntax errors and other possible issues before you add it to Simulink. For example,

desired = 0;

actual = 0.2;

step(s,desired,actual);

Add System Objects to Your Simulink Model

1 Add your System objects to your Simulink model by using the MATLAB System block
as described in “Mapping System Objects to Block Dialog Box” on page 40-18.

2 Add other Simulink blocks, connect them, and configure any needed parameters to
complete your model as described in the Simulink documentation. See the System
Identification for an FIR System Using MATLAB System Blocks Simulink example.

3 Run your model in the same way you run any Simulink model.

39

Define New System Objects

• “System Objects Methods for Defining New Objects” on page 39-3
• “Define Basic System Objects” on page 39-5
• “Change Number of Step Inputs or Outputs” on page 39-7
• “Specify System Block Input and Output Names” on page 39-11
• “Validate Property and Input Values” on page 39-13
• “Initialize Properties and Setup One-Time Calculations” on page 39-16
• “Set Property Values at Construction Time” on page 39-19
• “Reset Algorithm State” on page 39-21
• “Define Property Attributes” on page 39-23
• “Hide Inactive Properties” on page 39-27
• “Limit Property Values to Finite String Set” on page 39-29
• “Process Tuned Properties” on page 39-32
• “Release System Object Resources” on page 39-34
• “Define Composite System Objects” on page 39-36
• “Define Finite Source Objects” on page 39-39
• “Save System Object” on page 39-41
• “Load System Object” on page 39-45
• “Define System Object Information” on page 39-49
• “Define System Block Icon” on page 39-51
• “Add Header to System Block Dialog” on page 39-53
• “Add Property Groups to System Object and Block Dialog” on page 39-55
• “Control Simulation Type in System Block Dialog” on page 39-60
• “Add Button to System Block Dialog Box” on page 39-62
• “Specify Locked Input Size” on page 39-65
• “Set Output Size” on page 39-67

39 Define New System Objects

39-2

• “Set Output Data Type” on page 39-70
• “Set Output Complexity” on page 39-74
• “Specify Whether Output Is Fixed- or Variable-Size” on page 39-76
• “Specify Discrete State Output Specification” on page 39-82
• “Use Update and Output for Nondirect Feedthrough” on page 39-84
• “Enable For Each Subsystem Support” on page 39-87
• “Methods Timing” on page 39-89
• “System Object Input Arguments and ~ in Code Examples” on page 39-92
• “What Are Mixin Classes?” on page 39-93
• “Best Practices for Defining System Objects” on page 39-94

 System Objects Methods for Defining New Objects

39-3

System Objects Methods for Defining New Objects

The following Impl methods comprise the System objects API for defining new System
objects. For more information see “Define System Objects”“Define System Objects”.

• getDiscreteStateImpl
• getDiscreteStateSpecificationImpl
• getHeaderImpl
• getIconImpl
• getInputNamesImpl
• getNumInputsImpl
• getNumOutputsImpl
• getOutputDataTypeImpl
• getOutputNamesImpl
• getOutputSizeImpl
• isInputSizeLockedImpl
• getPropertyGroupsImpl
• getSimulateUsingImpl
• isDoneImpl
• infoImpl
• isInactivePropertyImpl
• isInputDirectFeedthroughImpl
• isOutputComplexImpl
• isOutputFixedSizeImpl
• loadObjectImpl
• outputImpl
• processTunedPropertiesImpl
• propagatedInputComplexity
• propagatedInputDataType
• propagatedInputFixedSize
• propagatedInputSize
• releaseImpl

39 Define New System Objects

39-4

• resetImpl
• setProperties
• setupImpl
• showSimulateUsingImpl
• stepImpl
• supportsMultipleInstanceImpl
• updateImpl
• validateInputsImpl
• validatePropertiesImpl

 Define Basic System Objects

39-5

Define Basic System Objects

This example shows how to create a basic System object that increments a number by
one.

The class definition file contains the minimum elements required to define a System
object.

Create the Class Definition File

1 Create a MATLAB file named AddOne.m to contain the definition of your System
object.

edit AddOne.m

2 Subclass your object from matlab.System. Insert this line as the first line of your
file.

classdef AddOne < matlab.System

3 Add the stepImpl method, which contains the algorithm that runs when users call
the step method on your object. You always set the stepImpl method access to
protected because it is an internal method that users do not directly call or run.

All methods, except static methods, expect the System object handle as the first
input argument. You can use any name for your System object handle.

In this example, instead of passing in the object handle, ~ is used to indicate that
the object handle is not used in the function. Using ~ instead of an object handle
prevents warnings about unused variables from occurring.

By default, the number of inputs and outputs are both one. To change the number
of inputs or outputs, use the getNumInputsImpl or getNumOutputsImpl method,
respectively.

methods (Access = protected)

 function y = stepImpl(~,x)

 y = x + 1;

 end

end

Note: Instead of manually creating your class definition file, you can use an option on
the New > System Object menu to open a template. The Basic template opens a simple

39 Define New System Objects

39-6

System object template. The Advanced template includes more advanced features of
System objects, such as backup and restore. The Simulink Extension template includes
additional customizations of the System object for use in the Simulink MATLAB System
block. You then can edit the template file, using it as guideline, to create your own
System object.

Complete Class Definition File for Basic System Object

classdef AddOne < matlab.System

% ADDONE Compute an output value one greater than the input value

 % All methods occur inside a methods declaration.

 % The stepImpl method has protected access

 methods (Access = protected)

 function y = stepImpl(~,x)

 y = x + 1;

 end

 end

end

See Also
matlab.System | getNumInputsImpl | getNumOutputsImpl | stepImpl

Related Examples
• “Change Number of Step Inputs or Outputs” on page 39-7

 Change Number of Step Inputs or Outputs

39-7

Change Number of Step Inputs or Outputs

This example shows how to specify two inputs and two outputs for the step method.

If you specify the inputs and outputs to the stepImpl method, you do not need to
specify the getNumInputsImpl and getNumOutputsImpl methods. If you have a
variable number of inputs or outputs (using varargin or varargout), include the
getNumInputsImpl or getNumOutputsImpl method, respectively, in your class
definition file.

Note: You should only use getNumInputsImpl or getNumOutputsImpl methods to
change the number of System object inputs or outputs. Do not use any other handle
objects within a System object to change the number of inputs or outputs.

You always set the getNumInputsImpl and getNumOutputsImpl methods access to
protected because they are internal methods that users do not directly call or run.

Update the Algorithm for Multiple Inputs and Outputs

Update the stepImpl method to specify two inputs and two outputs. You do not need to
implement associated getNumInputsImpl or getNumOutputsImpl methods.

methods (Access = protected)

 function [y1,y2] = stepImpl(~,x1,x2)

 y1 = x1 + 1

 y2 = x2 + 1;

 end

end

Update the Algorithm and Associated Methods

Update the stepImpl method to use varargin and varargout. In this case, you must
implement the associated getNumInputsImpl and getNumOutputsImpl methods to
specify two or three inputs and outputs.

methods (Access = protected)

 function varargout = stepImpl(obj,varargin)

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 if (obj.numInputsOutputs == 3)

 varargout{3} = varargin{3}+1;

39 Define New System Objects

39-8

 end

 end

 function validatePropertiesImpl(obj)

 if ~((obj.numInputsOutputs == 2) ||...

 (obj.numInputsOutputs == 3))

 error('Only 2 or 3 input and outputs allowed.');

 end

 end

 function numIn = getNumInputsImpl(obj)

 numIn = 3;

 if (obj.numInputsOutputs == 2)

 numIn = 2;

 end

 end

 function numOut = getNumOutputsImpl(obj)

 numOut = 3;

 if (obj.numInputsOutputs == 2)

 numOut = 2;

 end

 end

end

Use this syntax to run the algorithm with two inputs and two outputs.

x1 = 3;

x2 = 7;

[y1,y2] = step(AddOne,x1,x2);

To change the number of inputs or outputs, you must release the object before rerunning
it.

release(AddOne)

x1 = 3;

x2 = 7;

x3 = 10

[y1,y2,y3] = step(AddOne,x1,x2,x3);

Complete Class Definition File with Multiple Inputs and Outputs

 classdef AddOne < matlab.System

% ADDONE Compute output values one greater than the input values

 Change Number of Step Inputs or Outputs

39-9

 % This property is nontunable and cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 numInputsOutputs = 3; % Default value

 end

 % All methods occur inside a methods declaration.

 % The stepImpl method has protected access

 methods (Access = protected)

 function varargout = stepImpl(obj,varargin)

 if (obj.numInputsOutputs == 2)

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 else

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 varargout{3} = varargin{3}+1;

 end

 end

 function validatePropertiesImpl(obj)

 if ~((obj.numInputsOutputs == 2) ||...

 (obj.numInputsOutputs == 3))

 error('Only 2 or 3 input and outputs allowed.');

 end

 end

 function numIn = getNumInputsImpl(obj)

 numIn = 3;

 if (obj.numInputsOutputs == 2)

 numIn = 2;

 end

 end

 function numOut = getNumOutputsImpl(obj)

 numOut = 3;

 if (obj.numInputsOutputs == 2)

 numOut = 2;

 end

 end

 end

39 Define New System Objects

39-10

end

See Also
getNumInputsImpl | getNumOutputsImpl

Related Examples
• “Validate Property and Input Values” on page 39-13
• “Define Basic System Objects” on page 39-5

More About
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

 Specify System Block Input and Output Names

39-11

Specify System Block Input and Output Names

This example shows how to specify the names of the input and output ports of a System
object–based block implemented using a MATLAB System block.

Define Input and Output Names

This example shows how to use getInputNamesImpl and getOutputNamesImpl to
specify the names of the input port as “source data” and the output port as “count.”

If you do not specify the getInputNamesImpl and getOutputNamesImpl methods, the
object uses the stepImpl method input and output variable names for the input and
output port names, respectively. If the stepImpl method uses varargin and varargout
instead of variable names, the port names default to empty strings.

methods (Access = protected)

 function inputName = getInputNamesImpl(~)

 inputName = 'source data';

 end

 function outputName = getOutputNamesImpl(~)

 outputName = 'count';

 end

end

Complete Class Definition File with Named Inputs and Outputs

classdef MyCounter < matlab.System

 % MyCounter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods

 function obj = MyCounter(varargin)

 setProperties (obj,nargin,varargin{:});

 end

 end

39 Define New System Objects

39-12

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function inputName = getInputNamesImpl(~)

 inputName = 'source data';

 end

 function outputName = getOutputNamesImpl(~)

 outputName = 'count';

 end

 end

end

See Also
getInputNamesImpl | getNumInputsImpl | getNumOutputsImpl |
getOutputNamesImpl

Related Examples
• “Change Number of Step Inputs or Outputs” on page 39-7

More About
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

 Validate Property and Input Values

39-13

Validate Property and Input Values

This example shows how to verify that the user’s inputs and property values are valid.

Validate Properties

This example shows how to validate the value of a single property using
set.PropertyName syntax. In this case, the PropertyName is Increment.

 methods

 % Validate the properties of the object

 function set.Increment(obj,val)

 if val >= 10

 error('The increment value must be less than 10');

 end

 obj.Increment = val;

 end

 end

This example shows how to validate the value of two interdependent properties using the
validatePropertiesImpl method. In this case, the UseIncrement property value
must be true and the WrapValue property value must be less than the Increment
property value.

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.UseIncrement && obj.WrapValue > obj.Increment

 error('Wrap value must be less than increment value');

 end

 end

 end

Validate Inputs

This example shows how to validate that the first input is a numeric value.

methods (Access = protected)

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

39 Define New System Objects

39-14

end

Complete Class Definition File with Property and Input Validation

classdef AddOne < matlab.System

% ADDONE Compute an output value by incrementing the input value

 % All properties occur inside a properties declaration.

 % These properties have public access (the default)

 properties (Logical)

 UseIncrement = true

 end

 properties (PositiveInteger)

 Increment = 1

 WrapValue = 10

 end

 methods

 % Validate the properties of the object

 function set.Increment(obj,val)

 if val >= 10

 error('The increment value must be less than 10');

 end

 obj.Increment = val;

 end

 end

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.UseIncrement && obj.WrapValue > obj.Increment

 error('Wrap value must be less than increment value');

 end

 end

 % Validate the inputs to the object

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

 function out = stepImpl(obj,in)

 if obj.UseIncrement

 out = in + obj.Increment;

 Validate Property and Input Values

39-15

 else

 out = in + 1;

 end

 end

 end

end

Note: See “Change Input Complexity or Dimensions” for more information.

See Also
validateInputsImpl | validatePropertiesImpl

Related Examples
• “Define Basic System Objects” on page 39-5

More About
• “Methods Timing” on page 39-89
• “Property Set Methods”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-16

Initialize Properties and Setup One-Time Calculations

This example shows how to write code to initialize and set up a System object.

In this example, you allocate file resources by opening the file so the System object can
write to that file. You do these initialization tasks one time during setup, rather than
every time you call the step method.

Define Public Properties to Initialize

In this example, you define the public Filename property and specify the value of that
property as the nontunable string, default.bin. Users cannot change nontunable
properties after the setup method has been called. Refer to the Methods Timing section
for more information.

properties (Nontunable)

 Filename = 'default.bin'

end

Define Private Properties to Initialize

Users cannot access private properties directly, but only through methods of the System
object. In this example, you define the pFileID property as a private property. You also
define this property as hidden to indicate it is an internal property that never displays to
the user.

properties (Hidden,Access = private)

 pFileID;

end

Define Setup

You use the setupImpl method to perform setup and initialization tasks. You should
include code in the setupImpl method that you want to execute one time only. The
setupImpl method is called once during the first call to the step method. In this
example, you allocate file resources by opening the file for writing binary data.

methods

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

 Initialize Properties and Setup One-Time Calculations

39-17

 end

 end

end

Although not part of setup, you should close files when your code is done using them. You
use the releaseImpl method to release resources.

Complete Class Definition File with Initialization and Setup

classdef MyFile < matlab.System

% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 Filename = 'default.bin' % the name of the file to create

 end

 % These properties are private. Customers can only access

 % these properties through methods on this object

 properties (Hidden,Access = private)

 pFileID; % The identifier of the file to open

 end

 methods (Access = protected)

 % In setup allocate any resources, which in this case

 % means opening the file.

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 % This System object™ writes the input to the file.

 function stepImpl(obj,data)

 fwrite(obj.pFileID,data);

 end

 % Use release to close the file to prevent the

 % file handle from being left open.

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

 end

39 Define New System Objects

39-18

end

See Also
releaseImpl | setupImpl | stepImpl

Related Examples
• “Release System Object Resources” on page 39-34
• “Define Property Attributes” on page 39-23

More About
• “Methods Timing” on page 39-89

 Set Property Values at Construction Time

39-19

Set Property Values at Construction Time

This example shows how to define a System object constructor and allow it to accept
name-value property pairs as input.

Set Properties to Use Name-Value Pair Input

Define the System object constructor, which is a method that has the same name as
the class (MyFile in this example). Within that method, you use the setProperties
method to make all public properties available for input when the user constructs the
object. nargin is a MATLAB function that determines the number of input arguments.
varargin indicates all of the object’s public properties.

methods

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:});

 end

end

Complete Class Definition File with Constructor Setup

classdef MyFile < matlab.System

% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 Filename ='default.bin' % the name of the file to create

 Access = 'wb' % The file access string (write, binary)

 end

 % These properties are private. Customers can only access

 % these properties through methods on this object

 properties (Hidden,Access = private)

 pFileID; % The identifier of the file to open

 end

 methods

 % You call setProperties in the constructor to let

 % a user specify public properties of object as

 % name-value pairs.

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:});

 end

39 Define New System Objects

39-20

 end

 methods (Access = protected)

 % In setup allocate any resources, which in this case is

 % opening the file.

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,obj.Access);

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 % This System object™ writes the input to the file.

 function stepImpl(obj,data)

 fwrite(obj.pFileID,data);

 end

 % Use release to close the file to prevent the

 % file handle from being left open.

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

 end

end

See Also
nargin | setProperties

Related Examples
• “Define Property Attributes” on page 39-23
• “Release System Object Resources” on page 39-34

 Reset Algorithm State

39-21

Reset Algorithm State

This example shows how to reset an object state.

Reset Counter to Zero

pCount is an internal counter property of the System object obj. The user calls the
reset method on the locked object, which calls the resetImpl method. In this example ,
pCount resets to 0.

Note: When resetting an object’s state, make sure you reset the size, complexity, and
data type correctly.

methods (Access = protected)

 function resetImpl(obj)

 obj.pCount = 0;

 end

end

Complete Class Definition File with State Reset

classdef Counter < matlab.System

% Counter System object™ that increments a counter

 properties (Access = private)

 pCount

 end

 methods (Access = protected)

 % In step, increment the counter and return

 % its value as an output

 function c = stepImpl(obj)

 obj.pCount = obj.pCount + 1;

 c = obj.pCount;

 end

 % Reset the counter to zero.

 function resetImpl(obj)

 obj.pCount = 0;

 end

 end

39 Define New System Objects

39-22

end

See “Methods Timing” on page 39-89 for more information.

See Also
resetImpl

More About
• “Methods Timing” on page 39-89

 Define Property Attributes

39-23

Define Property Attributes

This example shows how to specify property attributes.

Property attributes, which add details to a property, provide a layer of control to your
properties. In addition to the MATLAB property attributes, System objects can use these
three additional attributes—nontunable, logical, and positiveInteger. To specify
multiple attributes, separate them with commas.

Specify Property as Nontunable

Use the nontunable attribute for a property when the algorithm depends on the value
being constant once data processing starts. Defining a property as nontunable may
improve the efficiency of your algorithm by removing the need to check for or react to
values that change. For code generation, defining a property as nontunable allows the
memory associated with that property to be optimized. You should define all properties
that affect the number of input or output ports as nontunable.

System object users cannot change nontunable properties after the setup or step
method has been called. In this example, you define the InitialValue property, and set
its value to 0.

properties (Nontunable)

 InitialValue = 0;

end

Specify Property as Logical

Logical properties have the value, true or false. System object users can enter 1 or
0 or any value that can be converted to a logical. The value, however, displays as true
or false. You can use sparse logical values, but they must be scalar values. In this
example, the Increment property indicates whether to increase the counter. By default,
Increment is tunable property. The following restrictions apply to a property with the
Logical attribute,

• Cannot also be Dependent or PositiveInteger
• Default value must be true or false. You cannot use 1 or 0 as a default value.

properties (Logical)

 Increment = true

end

39 Define New System Objects

39-24

Specify Property as Positive Integer

In this example, the private property MaxValue is constrained to accept only real,
positive integers. You cannot use sparse values. The following restriction applies to a
property with the PositiveInteger attribute,

• Cannot also be Dependent or Logical

properties (PositiveInteger)

 MaxValue

end

Specify Property as DiscreteState

If your algorithm uses properties that hold state, you can assign those properties the
DiscreteState attribute . Properties with this attribute display their state values
when users call getDiscreteStateImpl via the getDiscreteState method. The
following restrictions apply to a property with the DiscreteState attribute,

• Numeric, logical, or fi value, but not a scaled double fi value
• Does not have any of these attributes: Nontunable, Dependent, Abstract,

Constant, or Transient.
• No default value
• Not publicly settable
• GetAccess = Public by default
• Value set only using the setupImpl method or when the System object is locked

during resetImpl or stepImpl

In this example, you define the Count property.

properties (DiscreteState)

 Count;

end

Complete Class Definition File with Property Attributes

classdef Counter < matlab.System

% Counter Increment a counter to a maximum value

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 Define Property Attributes

39-25

 % The inital value of the counter

 InitialValue = 0

 end

 properties (Nontunable, PositiveInteger)

 % The maximum value of the counter

 MaxValue = 3

 end

 properties (Logical)

 % Whether to increment the counter

 Increment = true

 end

 properties (DiscreteState)

 % Count state variable

 Count

 end

 methods (Access = protected)

 % In step, increment the counter and return its value

 % as an output

 function c = stepImpl(obj)

 if obj.Increment && (obj.Count < obj.MaxValue)

 obj.Count = obj.Count + 1;

 else

 disp(['Max count, ' num2str(obj.MaxValue) ',reached'])

 end

 c = obj.Count;

 end

 % Setup the Count state variable

 function setupImpl(obj)

 obj.Count = 0;

 end

 % Reset the counter to one.

 function resetImpl(obj)

 obj.Count = obj.InitialValue;

 end

 end

39 Define New System Objects

39-26

end

More About
• “Class Attributes”
• “Property Attributes”
• “Methods Timing” on page 39-89

 Hide Inactive Properties

39-27

Hide Inactive Properties

This example shows how to hide the display of a property that is not active for a
particular object configuration.

Hide an inactive property

You use the isInactivePropertyImpl method to hide a property from displaying. If
the isInactiveProperty method returns true to the property you pass in, then that
property does not display.

methods (Access = protected)

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

end

Complete Class Definition File with Hidden Inactive Property

classdef Counter < matlab.System

 % Counter Increment a counter

 % These properties are nontunable. They cannot be changed

 % after the setup or step method has been called.

 properties (Nontunable)

 % Allow the user to set the initial value

 UseRandomInitialValue = true

 InitialValue = 0

 end

 % The private count variable, which is tunable by default

 properties (Access = private)

 pCount

 end

 methods (Access = protected)

 % In step, increment the counter and return its value

 % as an output

 function c = stepImpl(obj)

 obj.pCount = obj.pCount + 1;

39 Define New System Objects

39-28

 c = obj.pCount;

 end

 % Reset the counter to either a random value or the initial

 % value.

 function resetImpl(obj)

 if obj.UseRandomInitialValue

 obj.pCount = rand();

 else

 obj.pCount = obj.InitialValue;

 end

 end

 % This method controls visibility of the object's properties

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

 end

end

See Also
isInactivePropertyImpl

 Limit Property Values to Finite String Set

39-29

Limit Property Values to Finite String Set

This example shows how to limit a property to accept only a finite set of string values.

Specify a Set of Valid String Values

String sets use two related properties. You first specify the user-visible property name
and default string value. Then, you specify the associated hidden property by appending
“Set” to the property name. You must use a capital “S” in “Set.”

In the “Set” property, you specify the valid string values as a cell array of the
matlab.system.Stringset class. This example uses Color and ColorSet as the
associated properties.

properties

 Color = 'blue'

end

properties (Hidden,Transient)

 ColorSet = matlab.system.StringSet({'red','blue','green'});

end

Complete Class Definition File with String Set

classdef Whiteboard < matlab.System

% Whiteboard Draw lines on a figure window

%

% This System object™ illustrates the use of StringSets

 properties

 Color = 'blue'

 end

 properties (Hidden,Transient)

 % Let them choose a color

 ColorSet = matlab.system.StringSet({'red','blue','green'});

 end

 methods (Access = protected)

 function stepImpl(obj)

 h = Whiteboard.getWhiteboard();

 plot(h, ...

 randn([2,1]),randn([2,1]), ...

 'Color',obj.Color(1));

39 Define New System Objects

39-30

 end

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 end

 end

 methods (Static)

 function a = getWhiteboard()

 h = findobj('tag','whiteboard');

 if isempty(h)

 h = figure('tag','whiteboard');

 hold on

 end

 a = gca;

 end

 end

end

String Set System Object Example

%%

% Each call to step draws lines on a whiteboard

%% Construct the System object

hGreenInk = Whiteboard;

hBlueInk = Whiteboard;

% Change the color

% Note: Press tab after typing the first single quote to

% display all enumerated values.

hGreenInk.Color = 'green';

hBlueInk.Color = 'blue';

% Take a few steps

for i=1:3

 hGreenInk.step();

 hBlueInk.step();

end

%% Clear the whiteboard

hBlueInk.release();

%% Display System object used in this example

 Limit Property Values to Finite String Set

39-31

type('Whiteboard.m');

See Also
matlab.system.StringSet

39 Define New System Objects

39-32

Process Tuned Properties

This example shows how to specify the action to take when a tunable property value
changes during simulation.

The processTunedPropertiesImpl method is useful for managing actions to prevent
duplication. In many cases, changing one of multiple interdependent properties causes
an action. With the processTunedPropertiesImpl method, you can control when that
action is taken so it is not repeated unnecessarily.

Control When a Lookup Table Is Generated

This example of processTunedPropertiesImpl causes the pLookupTable to be
regenerated when either the NumNotes or MiddleC property changes.

methods (Access = protected)

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,obj.NumNotes)||...

 isChangedProperty(obj,obj.MiddleC)

 if propChange

 obj.pLookupTable = obj.MiddleC *...

 (1+log(1:obj.NumNotes)/log(12));

 end

 endend

Complete Class Definition File with Tuned Property Processing

classdef TuningFork < matlab.System

 % TuningFork Illustrate the processing of tuned parameters

 %

 properties

 MiddleC = 440

 NumNotes = 12

 end

 properties (Access = private)

 pLookupTable

 end

 methods (Access = protected)

 function resetImpl(obj)

 obj.MiddleC = 440;

 obj.pLookupTable = obj.MiddleC * ...

 Process Tuned Properties

39-33

 (1+log(1:obj.NumNotes)/log(12));

 end

 function hz = stepImpl(obj,noteShift)

 % A noteShift value of 1 corresponds to obj.MiddleC

 hz = obj.pLookupTable(noteShift);

 end

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,obj.NumNotes)||...

 isChangedProperty(obj,obj.MiddleC)

 if propChange

 obj.pLookupTable = obj.MiddleC *...

 (1+log(1:obj.NumNotes)/log(12));

 end

 end

end

See Also
processTunedPropertiesImpl

39 Define New System Objects

39-34

Release System Object Resources

This example shows how to release resources allocated and used by the System object.
These resources include allocated memory, files used for reading or writing, etc.

Release Memory by Clearing the Object

This method allows you to clear the axes on the Whiteboard figure window while keeping
the figure open.

methods

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 end

end

Complete Class Definition File with Released Resources

classdef Whiteboard < matlab.System

% Whiteboard Draw lines on a figure window

%

% This System object™ shows the use of StringSets

%

 properties

 Color = 'blue'

 end

 properties (Hidden)

 % Let user choose a color

 ColorSet = matlab.system.StringSet({'red','blue','green'});

 end

 methods (Access = protected)

 function stepImpl(obj)

 h = Whiteboard.getWhiteboard();

 plot(h, ...

 randn([2,1]), randn([2,1]), ...

 'Color',obj.Color(1));

 end

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 Release System Object Resources

39-35

 end

 end

 methods (Static)

 function a = getWhiteboard()

 h = findobj('tag','whiteboard');

 if isempty(h)

 h = figure('tag','whiteboard');

 hold on

 end

 a = gca;

 end

 end

end

See Also
releaseImpl

Related Examples
• “Initialize Properties and Setup One-Time Calculations” on page 39-16

39 Define New System Objects

39-36

Define Composite System Objects

This example shows how to define System objects that include other System objects.

This example defines a bandpass filter System object from separate highpass and
lowpass filter System objects.

Store System Objects in Properties

To define a System object from other System objects, store those other objects in your
class definition file as properties. In this example, the highpass and lowpass filters are
the separate System objects defined in their own class-definition files.

properties (Access = private)

 % Properties that hold filter System objects

 pLowpass

 pHighpass

end

Complete Class Definition File of Bandpass Filter Composite System Object

classdef BandpassFIRFilter < matlab.System

% Implements a bandpass filter using a cascade of eighth-order lowpass

% and eighth-order highpass FIR filters.

 properties (Access = private)

 % Properties that hold filter System objects

 pLowpass

 pHighpass

 end

 methods (Access = protected)

 function setupImpl(obj)

 % Setup composite object from constituent objects

 obj.pLowpass = LowpassFIRFilter;

 obj.pHighpass = HighpassFIRFilter;

 end

 function y = stepImpl(obj,u)

 yLow = step(obj.pLowpass,u);

 yHigh = step(obj.pHighpass,yLow);

 end

 function resetImpl(obj)

 Define Composite System Objects

39-37

 reset(obj.pLowpass);

 reset(obj.pHighpass);

 end

 end

end

Class Definition File for Lowpass FIR Component of Bandpass Filter

classdef LowpassFIRFilter < matlab.System

% Implements eighth-order lowpass FIR filter with 0.6pi cutoff

 properties (Nontunable)

 % Filter coefficients

 Numerator = [0.006,-0.0133,-0.05,0.26,0.6,0.26,-0.05,-0.0133,0.006];

 end

 properties (DiscreteState)

 State

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 function y = stepImpl(obj,u)

 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);

 end

 function resetImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 end

end

Class Definition File for Highpass FIR Component of Bandpass Filter

classdef HighpassFIRFilter < matlab.System

% Implements eighth-order highpass FIR filter with 0.4pi cutoff

 properties (Nontunable)

 % Filter coefficients

 Numerator = [0.006,0.0133,-0.05,-0.26,0.6,-0.26,-0.05,0.0133,0.006];

 end

 properties (DiscreteState)

 State

39 Define New System Objects

39-38

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 function y = stepImpl(obj,u)

 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);

 end

 function resetImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 end

end

See Also
nargin

 Define Finite Source Objects

39-39

Define Finite Source Objects

This example shows how to define a System object that performs a specific number of
steps or specific number of reads from a file.

Use the FiniteSource Class and Specify End of the Source

1 Subclass from finite source class.

 classdef RunTwice < matlab.System & ...

 matlab.system.mixin.FiniteSource

2 Specify the end of the source with the isDoneImpl method. In this example, the
source has two iterations.

 methods (Access = protected)

 function bDone = isDoneImpl(obj)

 bDone = obj.NumSteps==2

 end

Complete Class Definition File with Finite Source

classdef RunTwice < matlab.System & ...

 matlab.system.mixin.FiniteSource

 % RunTwice System object that runs exactly two times

 %

 properties (Access = private)

 NumSteps

 end

 methods (Access = protected)

 function resetImpl(obj)

 obj.NumSteps = 0;

 end

 function y = stepImpl(obj)

 if ~obj.isDone()

 obj.NumSteps = obj.NumSteps + 1;

 y = obj.NumSteps;

 else

 y = 0;

 end

 end

 function bDone = isDoneImpl(obj)

39 Define New System Objects

39-40

 bDone = obj.NumSteps==2;

 end

 end

end

See Also
matlab.system.mixin.FiniteSource

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

 Save System Object

39-41

Save System Object

This example shows how to save a System object.

Save System Object and Child Object

Define a saveObjectImpl method to specify that more than just public properties
should be saved when the user saves a System object. Within this method, use the
default saveObjectImpl@matlab.System to save public properties to the struct,
s. Use the saveObject method to save child objects. Save protected and dependent
properties, and finally, if the object is locked, save the object’s state.

methods (Access = protected)

 function s = saveObjectImpl(obj)

 s = saveObjectImpl@matlab.System(obj);

 s.child = matlab.System.saveObject(obj.child);

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 if isLocked(obj)

 s.state = obj.state;

 end

 end

end

Complete Class Definition Files with Save and Load

The Counter class definition file sets up an object with a count property. This counter is
used in the MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System

 properties(DiscreteState)

 Count

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u)

 if u > 0

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

39 Define New System Objects

39-42

 end

end

classdef MySaveLoader < matlab.System

 properties (Access = private)

 child

 pdependentprop = 1

 end

 properties (Access = protected)

 protectedprop = rand;

 end

 properties (DiscreteState = true)

 state

 end

 properties (Dependent)

 dependentprop

 end

 methods

 function obj = MySaveLoader(varargin)

 obj@matlab.System();

 setProperties(obj,nargin,varargin{:});

 end

 function set.dependentprop(obj, value)

 obj.pdependentprop = min(value, 5);

 end

 function value = get.dependentprop(obj)

 value = obj.pdependentprop;

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.state = 42;

 obj.child = Counter;

 end

 function out = stepImpl(obj,in)

 obj.state = in + obj.state + obj.protectedprop + obj.pdependentprop;

 out = step(obj.child, obj.state);

 Save System Object

39-43

 end

 end

 % Serialization

 methods (Access = protected)

 function s = saveObjectImpl(obj)

 % Call the base class method

 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects

 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object locked

 if isLocked(obj)

 s.state = obj.state;

 end

 end

 function loadObjectImpl(obj,s,wasLocked)

 % Load child System objects

 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object locked

 if wasLocked

 obj.state = s.state;

 end

 % Call base class method to load public properties

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

 end

end

See Also
loadObjectImpl | saveObjectImpl

39 Define New System Objects

39-44

Related Examples
• “Load System Object” on page 39-45

 Load System Object

39-45

Load System Object

This example shows how to load and save a System object.

Load System Object and Child Object

Define a loadObjectImpl method to load a previously saved System object. Within
this method, use the matlab.System.loadObject to load the child System object,
load protected and private properties, load the state if the object is locked, and use
loadObjectImpl from the base class to load public properties.

methods (Access = protected)

 function loadObjectImpl(obj,s,wasLocked)

 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 if wasLocked

 obj.state = s.state;

 end

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

end

Complete Class Definition Files with Save and Load

The Counter class definition file sets up an object with a count property. This counter is
used in the MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System

 properties(DiscreteState)

 Count

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u)

 if u > 0

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

39 Define New System Objects

39-46

 end

 end

end

classdef MySaveLoader < matlab.System

 properties (Access = private)

 child

 pdependentprop = 1

 end

 properties (Access = protected)

 protectedprop = rand;

 end

 properties (DiscreteState = true)

 state

 end

 properties (Dependent)

 dependentprop

 end

 methods

 function obj = MySaveLoader(varargin)

 obj@matlab.System();

 setProperties(obj,nargin,varargin{:});

 end

 function set.dependentprop(obj, value)

 obj.pdependentprop = min(value, 5);

 end

 function value = get.dependentprop(obj)

 value = obj.pdependentprop;

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.state = 42;

 obj.child = Counter;

 end

 function out = stepImpl(obj,in)

 obj.state = in + obj.state + obj.protectedprop + obj.pdependentprop;

 Load System Object

39-47

 out = step(obj.child, obj.state);

 end

 end

 % Serialization

 methods (Access = protected)

 function s = saveObjectImpl(obj)

 % Call the base class method

 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects

 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object locked

 if isLocked(obj)

 s.state = obj.state;

 end

 end

 function loadObjectImpl(obj,s,wasLocked)

 % Load child System objects

 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object locked

 if wasLocked

 obj.state = s.state;

 end

 % Call base class method to load public properties

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

 end

39 Define New System Objects

39-48

end

See Also
loadObjectImpl | saveObjectImpl

Related Examples
• “Save System Object” on page 39-41

 Define System Object Information

39-49

Define System Object Information

This example shows how to define information to display for a System object.

Define System Object Info

You can define your own info method to display specific information for your
System object. The default infoImpl method returns an empty struct. This
infoImpl method returns detailed information when the info method is called using
info(x,'details') or only count information if it is called using info(x).

methods (Access = protected)

 function s = infoImpl(obj,varargin)

 if nargin>1 && strcmp('details',varargin(1))

 s = struct('Name','Counter',...

 'Properties', struct('CurrentCount', ...

 obj.pCount,'Threshold',obj.Threshold));

 else

 s = struct('Count',obj.pCount);

 end

 end

end

Complete Class Definition File with InfoImpl

classdef Counter < matlab.System

 % Counter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

39 Define New System Objects

39-50

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function s = infoImpl(obj,varargin)

 if nargin>1 && strcmp('details',varargin(1))

 s = struct('Name','Counter',...

 'Properties', struct('CurrentCount', ...

 obj.pCount,'Threshold',obj.Threshold));

 else

 s = struct('Count',obj.pCount);

 end

 end

end

See Also
infoImpl

 Define System Block Icon

39-51

Define System Block Icon

This example shows how to define the block icon of a System object–based block
implemented using a MATLAB System block.

Use the CustomIcon Class and Define the Icon

1 Subclass from custom icon class.

 classdef MyCounter < matlab.System & ...

 matlab.system.mixin.CustomIcon

2 Use getIconImpl to specify the block icon as New Counter with a line break (\n)
between the two words.

methods (Access = protected)

 function icon = getIconImpl(~)

 icon = sprintf('New\nCounter');

 end

end

Complete Class Definition File with Defined Icon

classdef MyCounter < matlab.System & ...

 matlab.system.mixin.CustomIcon

 % MyCounter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods

 function obj = MyCounter(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

39 Define New System Objects

39-52

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function icon = getIconImpl(~)

 icon = sprintf('New\nCounter');

 end

 end

end

See Also
matlab.system.mixin.CustomIcon | getIconImpl

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

 Add Header to System Block Dialog

39-53

Add Header to System Block Dialog

This example shows how to add a header panel to a System object–based block
implemented using a MATLAB System block.

Define Header Title and Text

This example shows how to use getHeaderImpl to specify a panel title and text for the
MyCounter System object.

If you do not specify the getHeaderImpl, the block does not display any title or text for
the panel.

You always set the getHeaderImpl method access to protected because it is an
internal method that end users do not directly call or run.

methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header('MyCounter',...

 'Title','My Enhanced Counter');

 end

end

Complete Class Definition File with Defined Header

 classdef MyCounter < matlab.System

 % MyCounter Count values

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header('MyCounter',...

 'Title','My Enhanced Counter',...

 'Text', 'This counter is an enhanced version.');

 end

 end

39 Define New System Objects

39-54

 methods (Access = protected)

 function setupImpl(obj,u)

 obj.Count = 0;

 end

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 end

end

See Also
matlab.system.display.Header | getHeaderImpl

 Add Property Groups to System Object and Block Dialog

39-55

Add Property Groups to System Object and Block Dialog

This example shows how to define property sections and section groups for System object
display. The sections and section groups display as panels and tabs, respectively, in the
MATLAB System block dialog.

Define Section of Properties

This example shows how to use matlab.system.display.Section and
getPropertyGroupsImpl to define two property group sections by specifying their
titles and property lists.

If you do not specify a property in getPropertyGroupsImpl, the block does not display
that property.

 methods (Static, Access = protected)

 function groups = getPropertyGroupsImpl

 valueGroup = matlab.system.display.Section(...

 'Title','Value parameters',...

 'PropertyList',{'StartValue','EndValue'});

 thresholdGroup = matlab.system.display.Section(...

 'Title','Threshold parameters',...

 'PropertyList',{'Threshold','UseThreshold'});

 groups = [valueGroup,thresholdGroup];

 end

 end

Define Group of Sections

This example shows how to use matlab.system.display.SectionGroup,
matlab.system.display.Section, and getPropertyGroupsImpl to define two
tabs, each containing specific properties.

methods (Static, Access = protected)

 function groups = getPropertyGroupsImpl

 upperGroup = matlab.system.display.Section(...

 'Title', 'Upper threshold', ...

 'PropertyList',{'UpperThreshold'});

 lowerGroup = matlab.system.display.Section(...

 'Title','Lower threshold', ...

 'PropertyList',{'UseLowerThreshold','LowerThreshold'});

 thresholdGroup = matlab.system.display.SectionGroup(...

39 Define New System Objects

39-56

 'Title', 'Parameters', ...

 'Sections', [upperGroup,lowerGroup]);

 valuesGroup = matlab.system.display.SectionGroup(...

 'Title', 'Initial conditions', ...

 'PropertyList', {'StartValue'});

 groups = [thresholdGroup, valuesGroup];

 end

end

Complete Class Definition File with Property Group and Separate Tab

classdef EnhancedCounter < matlab.System

 % EnhancedCounter Count values considering thresholds

 properties

 UpperThreshold = 1;

 LowerThreshold = 0;

 end

 properties (Nontunable)

 StartValue = 0;

 end

 properties(Logical,Nontunable)

 % Count values less than lower threshold

 UseLowerThreshold = true;

 end

 properties (DiscreteState)

 Count;

 end

 methods (Static, Access = protected)

 function groups = getPropertyGroupsImpl

 upperGroup = matlab.system.display.Section(...

 'Title', 'Upper threshold', ...

 'PropertyList',{'UpperThreshold'});

 lowerGroup = matlab.system.display.Section(...

 'Title','Lower threshold', ...

 'PropertyList',{'UseLowerThreshold','LowerThreshold'});

 thresholdGroup = matlab.system.display.SectionGroup(...

 'Title', 'Parameters', ...

 Add Property Groups to System Object and Block Dialog

39-57

 'Sections', [upperGroup,lowerGroup]);

 valuesGroup = matlab.system.display.SectionGroup(...

 'Title', 'Initial conditions', ...

 'PropertyList', {'StartValue'});

 groups = [thresholdGroup, valuesGroup];

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = obj.StartValue;

 end

 function y = stepImpl(obj,u)

 if obj.UseLowerThreshold

 if (u > obj.UpperThreshold) || ...

 (u < obj.LowerThreshold)

 obj.Count = obj.Count + 1;

 end

 else

 if (u > obj.UpperThreshold)

 obj.Count = obj.Count + 1;

 end

 end

 y = obj.Count;

 end

 function resetImpl(obj)

 obj.Count = obj.StartValue;

 end

 function flag = isInactivePropertyImpl(obj, prop)

 flag = false;

 switch prop

 case 'LowerThreshold'

 flag = ~obj.UseLowerThreshold;

 end

 end

 end

39 Define New System Objects

39-58

end

 Add Property Groups to System Object and Block Dialog

39-59

See Also
matlab.system.display.Section | matlab.system.display.SectionGroup |
getPropertyGroupsImpl

More About
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-60

Control Simulation Type in System Block Dialog

This example shows how to specify a simulation type and whether theSimulate using
parameter appears on the Simulink MATLAB System block dialog box. The simulation
options are 'Code generation' and 'Interpreted mode'.

If you do not include the getSimulateUsingImpl method in your class definition file,
the System object allows both simulation modes and defaults to 'Code generation'.
If you do not include the showSimulateUsingImpl method, the Simulate using
parameter appears on the block dialog box.

You must set the getSimulateUsingImpl and showSimulateUsingImpl methods to
static and the access for these methods to protected.

Use getSimulateUsingImpl to specify that only interpreted execution is allowed for
the System object.

methods(Static,Access = protected)

 function simMode = getSimulateUsingImpl

 simMode = 'Interpreted execution';

 end

end

View the method in the complete class definition file.

classdef PlotRamp < matlab.System

 % Display a button to launch a plot figure.

 properties (Nontunable)

 RampLimit = 10;

 end

 methods(Static, Access=protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

 function simMode = getSimulateUsingImpl

 simMode = 'Interpreted execution';

 end

 end

 Control Simulation Type in System Block Dialog

39-61

 methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj)

 figure;

 d = 1:obj.RampLimit;

 plot(d);

 end

 methods(Static,Access = protected)

 end

 end

end

See Also
getSimulateUsingImp | showSimulateUsingImpl

More About
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-62

Add Button to System Block Dialog Box

This example shows how to add a button to the MATLAB System block dialog box. This
button launches a figure that plots a ramp function.

Define Action for Dialog Button

This example shows how to use matlab.system.display.Action to define the
MATLAB function or code associated with a button in the MATLAB System block dialog.
The example also shows how to set button options.

methods(Static,Access = protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

end

methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj)

 figure;

 d = 1:obj.RampLimit;

 plot(d);

 end

end

Complete Class Definition File for Dialog Button

Define a property group and a second tab in the class definition file.

classdef PlotRamp < matlab.System

 % Display a button to launch a plot figure.

 properties (Nontunable)

 RampLimit = 10;

 end

 methods(Static, Access=protected)

 Add Button to System Block Dialog Box

39-63

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

 end

 methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj)

 figure;

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

end

See Also
getPropertyGroupsImpl

39 Define New System Objects

39-64

More About
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

 Specify Locked Input Size

39-65

Specify Locked Input Size

This example shows how to specify whether the size of a System object input is locked.
The size of a locked input cannot change until the System object is unlocked. Use the
step method and run the object to lock it. Use release to unlock the object.

Use the isInputSizeLockedImpl method to specify that the input size is locked.

methods (Access = protected)

 function flag = isInputSizeLockedImpl(~,~)

 flag = true;

 end

end

View the method in the complete class definition file.

classdef Counter < matlab.System

 %Counter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods

 function obj = Counter(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access=protected)

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u1)

 if (any(u1 >= obj.Threshold))

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

39 Define New System Objects

39-66

 function flag = isInputSizeLockedImpl(~,~)

 flag = true;

 end

 end

end

See Also
isInputSizeLockedImpl

 Set Output Size

39-67

Set Output Size

This example shows how to specify the size of a System object output using the
getOutputSizeImpl method. Use this method when Simulink cannot infer the output
size from the inputs during model compilation.

Note: For variable-size inputs, the propagated input size from
propagatedInputSizeImpl differs depending on the environment.

• MATLAB — When you first run step on an object, it uses the actual sizes of the
inputs.

• Simulink — The maximum of all the input sizes is set before the model runs and does
not change during the run.

Subclass from both the matlab.System base class and the Propagates mixin class.

 classdef CounterReset < matlab.System & ...

 matlab.system.mixin.Propagates

Use the getOutputSizeImpl method to specify the output size.

methods (Access = protected)

 function sizeout = getOutputSizeImpl(~)

 sizeout = [1 1];

 end

end

View the method in the complete class definition file.

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates

 % CounterReset Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

39 Define New System Objects

39-68

 function setupImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj,u1,u2)

 % Add to count if u1 is above threshold

 % Reset if u2 is true

 if (u2)

 obj.Count = 0;

 elseif (any(u1 > obj.Threshold))

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 if strcmp(name,'Count')

 sz = [1 1];

 dt = 'double';

 cp = false;

 else

 error(['Error: Incorrect State Name: ' name '.']);

 end

 end

 function dataout = getOutputDataTypeImpl(~)

 dataout = 'double';

 end

 function sizeout = getOutputSizeImpl(~)

 sizeout = [1 1];

 end

 function cplxout = isOutputComplexImpl(~)

 cplxout = false;

 end

 function fixedout = isOutputFixedSizeImpl(~)

 fixedout = true;

 end

 function inLocked = isInputSizeLockedImpl(~,idx)

 if idx == 1

 inLocked = false;

 else

 Set Output Size

39-69

 inLocked = true;

 end

 end

 end

end

See Also
matlab.system.mixin.Propagates | getOutputSizeImpl

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-70

Set Output Data Type

This example shows how to specify the data type of a System object output using the
getOutputDataTypeImpl method. A second example shows how to specify a gain
object with bus output. Use this method when Simulink cannot infer the data type
from the inputs during model compilation or when you want bus output. To use bus
output, you must include a property to define the bus name and you must include the
getOutputDataTypeImpl method in your class definition file.

For both examples, subclass from both the matlab.System base class and the
matlab.system.mixin.Propagates mixin class.

 classdef CounterReset < matlab.System & ...

 matlab.system.mixin.Propagates

Use the getOutputDataTypeImpl method to specify the output data type as a double.

methods (Access = protected)

 function dataout = getOutputDataTypeImpl(~)

 dataout = 'double';

 end

end

View the method in the complete class definition file.

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates

 % CounterReset Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 Set Output Data Type

39-71

 function y = stepImpl(obj,u1,u2)

 % Add to count if u1 is above threshold

 % Reset if u2 is true

 if (u2)

 obj.Count = 0;

 elseif (u1 > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 if strcmp(name,'Count')

 sz = [1 1];

 dt = 'double';

 cp = false;

 else

 error(['Error: Incorrect State Name: 'name'.']);

 end

 end

 function dataout = getOutputDataTypeImpl(~)

 dataout = 'double';

 end

 function sizeout = getOutputSizeImpl(~)

 sizeout = [1 1];

 end

 function cplxout = isOutputComplexImpl(~)

 cplxout = false;

 end

 function fixedout = isOutputFixedSizeImpl(~)

 fixedout = true;

 end

 end

end

Use the getOutputDataTypeImpl method to specify the output data type as a bus.
Specify the bus name in a property.

properties(Nontunable)

 OutputBusName = 'bus_name';

end

methods (Access = protected)

 function out = getOutputDataTypeImpl(obj)

39 Define New System Objects

39-72

 out = obj.OutputBusName;

 end

end

View the method in the complete class definition file. This class definition file also
includes code to implement a custom icon for this object in the MATLAB System block

classdef busGain < matlab.System & matlab.system.mixin.Propagates

% busGain Apply a gain of two to bus input.

 properties

 GainK = 2;

 end

 properties(Nontunable)

 OutputBusName = 'bus_name';

 end

 methods (Access=protected)

 function out = stepImpl(obj,in)

 out.a = obj.GainK * in.a;

 out.b = obj.GainK * in.b;

 end

 function out = getOutputSizeImpl(obj)

 out = propagatedInputSize(obj, 1);

 end

 function out = isOutputComplexImpl(obj)

 out = propagatedInputComplexity(obj, 1);

 end

 function out = getOutputDataTypeImpl(obj)

 out = obj.OutputBusName;

 end

 function out = isOutputFixedSizeImpl(obj)

 out = propagatedInputFixedSize(obj,1);

 end

 end

end

See Also
matlab.system.mixin.Propagates | getOutputDataTypeImpl

 Set Output Data Type

39-73

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-74

Set Output Complexity

This example shows how to specify whether a System object output is complex or real
using the isOutputComplexImpl method. Use this method when Simulink cannot infer
the output complexity from the inputs during model compilation.

Subclass from both the matlab.System base class and the Propagates mixin class.

 classdef CounterReset < matlab.System & ...

 matlab.system.mixin.Propagates

Use the isOutputComplexImpl method to specify that the output is real.

methods (Access = protected)

 function cplxout = isOutputComplexImpl(~)

 cplxout = false;

 end

end

View the method in the complete class definition file.

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates

 % CounterReset Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj,u1,u2)

 % Add to count if u1 is above threshold

 % Reset if u2 is true

 Set Output Complexity

39-75

 if (u2)

 obj.Count = 0;

 elseif (u1 > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 if strcmp(name,'Count')

 sz = [1 1];

 dt = 'double';

 cp = false;

 else

 error(['Error: Incorrect State Name: 'name'.']);

 end

 end

 function dataout = getOutputDataTypeImpl(~)

 dataout = 'double';

 end

 function sizeout = getOutputSizeImpl(~)

 sizeout = [1 1];

 end

 function cplxout = isOutputComplexImpl(~)

 cplxout = false;

 end

 function fixedout = isOutputFixedSizeImpl(~)

 fixedout = true;

 end

 end

end

See Also
matlab.system.mixin.Propagates | isOutputComplexImpl

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-76

Specify Whether Output Is Fixed- or Variable-Size
This example shows how to specify that System object output is fixed- or variable-size.

This example shows how to specify that a System object output is fixed-size. Use the
isOutputFixedSizeImpl method when Simulink cannot infer the output type from the
inputs during model compilation.

Subclass from both the matlab.System base class and the
matlab.system.mixin.Propagates mixin class.

 classdef CounterReset < matlab.System & ...

 matlab.system.mixin.Propagates

Use the isOutputFixedSizeImpl method to specify that the output is fixed size.

methods (Access = protected)

 function fixedout = isOutputFixedSizeImpl(~)

 fixedout = true;

 end

end

View the method in the complete class definition file.

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates

 % CounterReset Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj,u1,u2)

 Specify Whether Output Is Fixed- or Variable-Size

39-77

 % Add to count if u1 is above threshold

 % Reset if u2 is true

 if (u2)

 obj.Count = 0;

 elseif (u1 > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 if strcmp(name,'Count')

 sz = [1 1];

 dt = 'double';

 cp = false;

 else

 error(['Error: Incorrect State Name: 'name'.']);

 end

 end

 function dataout = getOutputDataTypeImpl(~)

 dataout = 'double';

 end

 function sizeout = getOutputSizeImpl(~)

 sizeout = [1 1];

 end

 function cplxout = isOutputComplexImpl(~)

 cplxout = false;

 end

 function fixedout = isOutputFixedSizeImpl(~)

 fixedout = true;

 end

 end

end

This example shows how to specify that a System object output is variable-size. Use the
isOutputFixedSizeImpl method when Simulink cannot infer the output type from the
inputs during model compilation.

Subclass from both the matlab.System base class and the
matlab.system.mixin.Propagates mixin class.

 classdef CounterReset < matlab.System & ...

 matlab.system.mixin.Propagates

Use the isOutputFixedSizeImpl method to .

39 Define New System Objects

39-78

methods (Access = protected)

 function xxx = isOutputFixedSizeImpl(~)

 xxx = true;

 end

end

View the method in the complete class definition file.

classdef SimpleVarSize < matlab.System

 % untitled Add summary here

 %

 % This template includes the minimum set of functions required

 % to define a System object with discrete state.

 properties

 % Public, tunable properties.

 end

 properties (DiscreteState)

 end

 properties (Access = private)

 % Pre-computed constants.

 end

 methods (Access = protected)

 function y = stepImpl(obj,u)

 % Implement algorithm. Calculate y as a function of

 % input u and discrete states.

 y = u;

 end

 end

end

% % We start with a simple System object, SimpleVarSize Variable sized

% vectors in System objects simply means that the system object can support

% different sized vectors at its input for example

obj = SimpleVarSize

% obj =

% System: SimpleVarSize

%% First call to step gives the same output because the object only copies

 Specify Whether Output Is Fixed- or Variable-Size

39-79

% the input to the output.

y = obj.step(1:5)

% y =

% 1 2 3 4 5

%% and then call with a vector of a different size

y = obj.step((1:3)')

% y =

% 1

% 2

% 3

%% By default System objects accept vectors of different sizes if the

% object's algorithm allows. If a System object author chooses to disallow

% variable size vectors, he/she can implement the isInputSizeLockedImpl

% method. isInputSizeLockedImpl accepts the port index and returns true

% if the input size is locked (variable sized vectors are disallowed) and

% false if the input size is not locked (variable sized vectors are

% allowed).

obj2 = SimpleLockedSize

%% Executing step the first time sets the input size for the System object

y = obj2.step(1:5)

%y =

% 1 2 3 4 5

%% Executing step again with a different size throws an error

y = obj2.step((1:5)')

% Error using SimpleLockedSize

% Changing the size on input 1 is not allowed without first calling

% the release() method.

%% System objects can accept structures

% We can create structures as inputs to System objects

s.field1 = 1:5

s.field2 = (1:3)'

% s =

% field1: [1 2 3 4 5]

% field2: [3x1 double]

%% step accepts structures as inputs

sout = obj2.step(s)

% sout =

39 Define New System Objects

39-80

% field1: [1 2 3 4 5]

% field2: [3x1 double]

%% Since all structures are considered the same by System objects, they accept

% changes in structure field sizes and new fields regardless of the

% return of isInputSizeLocked

s2.field1 = s.field2

s2.field3 = s.field1

% s2 =

% field1: [3x1 double]

% field3: [1 2 3 4 5]s2.field3 = s.field1

sout2 = obj2.step(s2)

% sout2 =

% field1: [3x1 double]

% field3: [1 2 3 4 5]

%% System objects can accept cell arrays

% We can create cell arrays as inputs to System objects

c = {'cars','trucks'}

% c =

% 'cars' 'trucks'

%% step will not accept cells after accepting structures as they are a

% different data type.

cout = obj2.step(c)

% Error using SimpleLockedSize

% Changing the size or datatype on input 1 is not allowed without

% first calling the release() method.

% Calling release to unlock the System object allows it to accept input of

% a new data type.

obj2.release

cout = obj2.step(c)

% cout =

% 'cars' 'trucks'

%% Since cell arrays have size just like other arrays, changes in size

% is detected by System objects.

c2 = c'

% c2 =

% 'cars'

% 'trucks'

cout2 = obj2.step(c2)

 Specify Whether Output Is Fixed- or Variable-Size

39-81

% Error using SimpleLockedSize

% Changing the size on input 1 is not allowed without first calling

% the release() method.

% Note that obj2 is configured to lock its input size.

%% Calling release on the System object allows accept different size cells

obj2.release

cout2 = obj2.step(c2)

% cout2 =

% 'cars'

% 'trucks'

%% An object which does not lock its input size, such as SimpleVarSize,

% can accept cell arrays with different sizes.

obj3 = SimpleVarSize

cout3 = obj3.step(c)

% cout3 =

% 'cars' 'trucks'

cout4 = obj3.step(c2)

% cout4 =

% 'cars'

% 'trucks'

See Also
matlab.system.mixin.Propagates | isOutputFixedSizeImpl

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-82

Specify Discrete State Output Specification

This example shows how to specify the size, data type, and complexity of a discrete
state property using the getDiscreteStateSpecificationImpl method. Use this
method when your System object has a property with the DiscreteState attribute and
Simulink cannot infer the output specifications during model compilation.

Subclass from both the matlab.System base class and from the Propagates mixin
class.

 classdef CounterReset < matlab.System & ...

 matlab.system.mixin.Propagates

Use the getDiscreteStateSpecificationImpl method to specify the size and data
type. Also specify the complexity of a discrete state property, which is used in the counter
reset example.

methods (Access = protected)

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 sz = [1 1];

 dt = 'double';

 cp = false;

 end

end

View the method in the complete class definition file.

classdef CounterReset < matlab.System & matlab.system.mixin.Propagates

 % CounterReset Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 Specify Discrete State Output Specification

39-83

 obj.Count = 0;

 end

 function y = stepImpl(obj,u1,u2)

 % Add to count if u1 is above threshold

 % Reset if u2 is true

 if (u2)

 obj.Count = 0;

 elseif (u1 > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(~,name)

 sz = [1 1];

 dt = 'double';

 cp = false;

 end

 function dataout = getOutputDataTypeImpl(~)

 dataout = 'double';

 end

 function sizeout = getOutputSizeImpl(~)

 sizeout = [1 1];

 end

 function cplxout = isOutputComplexImpl(~)

 cplxout = false;

 end

 function fixedout = isOutputFixedSizeImpl(~)

 fixedout = true;

 end

 end

end

See Also
matlab.system.mixin.Propagates | getDiscreteStateSpecificationImpl

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

39 Define New System Objects

39-84

Use Update and Output for Nondirect Feedthrough

This example shows how to implement nondirect feedthrough for a System object using
the updateImpl, outputImpl and isInputDirectFeedthroughImpl methods.
In nondirect feedthrough, the object’s outputs depend only on the internal states and
properties of the object, rather than the input at that instant in time. You use these
methods to separate the output calculation from the state updates of a System object.
This enables you to use that object in a feedback loop and prevent algebraic loops.

Subclass from the Nondirect Mixin Class

To use the updateImpl, outputImpl, and isInputDirectFeedthroughImpl
methods, you must subclass from both the matlab.System base class and the
Nondirect mixin class.

 classdef IntegerDelaySysObj < matlab.System & ...

 matlab.system.mixin.Nondirect

Implement Updates to the Object

Implement an updateImpl method to update the object with previous inputs.

methods (Access = protected)

 function updateImpl(obj,u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

 end

end

Implement Outputs from Object

Implement an outputImpl method to output the previous, not the current input.

methods (Access = protected)

 function [y] = outputImpl(obj,~)

 y = obj.PreviousInput(end);

 end

end

Implement Whether Input Is Direct Feedthrough

Implement an isInputDirectFeedthroughImpl method to indicate that the input is
nondirect feedthrough.

methods (Access = protected)

 Use Update and Output for Nondirect Feedthrough

39-85

 function flag = isInputDirectFeedthroughImpl(~,~)

 flag = false;

 end

end

Complete Class Definition File with Update and Output

classdef intDelaySysObj < matlab.System &...

 matlab.system.mixin.Nondirect &...

 matlab.system.mixin.CustomIcon

 % intDelaySysObj Delay input by specified number of samples.

 properties

 InitialOutput = 0;

 end

 properties (Nontunable)

 NumDelays = 1;

 end

 properties (DiscreteState)

 PreviousInput;

 end

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if ((numel(obj.NumDelays)>1) || (obj.NumDelays <= 0))

 error('Number of delays must be positive non-zero scalar value.');

 end

 if (numel(obj.InitialOutput)>1)

 error('Initial Output must be scalar value.');

 end

 end

 function setupImpl(obj)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function resetImpl(obj)

 obj.PreviousInput = ones(1,obj.NumDelays)*obj.InitialOutput;

 end

 function [y] = outputImpl(obj,~)

 y = obj.PreviousInput(end);

 end

 function updateImpl(obj, u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

39 Define New System Objects

39-86

 end

 function flag = isInputDirectFeedthroughImpl(~,~)

 flag = false;

 end

 end

end

See Also
matlab.system.mixin.Nondirect | isInputDirectFeedthroughImpl | outputImpl |
updateImpl

More About
• “What Are Mixin Classes?” on page 39-93
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 39-92

 Enable For Each Subsystem Support

39-87

Enable For Each Subsystem Support

This example shows how to enable using a System object in a Simulink For Each
subsystem. Include the supportsMultipleInstanceImpl method in your class
definition file. This method applies only when the System object is used in Simulink via
the MATLAB System block.

Use the supportsMultipleInstanceImpl method and have it return true to indicate
that the System object supports multiple calls in a Simulink For Each subsystem.

methods (Access = protected)

 function flag = supportsMultipleInstanceImpl(obj)

 flag = true;

 end

end

View the method in the complete class definition file.

classdef RandSeed < matlab.System

% RANDSEED Random noise with seed for use in For Each subsystem

 properties (DiscreteState)

 count;

 end

 properties (Nontunable)

 seed = 20;

 end

 properties (Nontunable,Logical)

 useSeed = false;

 end

 methods (Access = protected)

 function y = stepImpl(obj,u1)

 % Initial use after reset/setup

 % and use the seed

 if (obj.useSeed && ~obj.count)

 rng(obj.seed);

 end

 obj.count = obj.count + 1;

 [m,n] = size(u1);

 % Uses default rng seed

 y = rand(m,n) + u1;

39 Define New System Objects

39-88

 end

 function setupImpl(obj)

 obj.count = 0;

 end

 function resetImpl(obj)

 obj.count = 0;

 end

 function flag = supportsMultipleInstanceImpl(obj)

 flag = obj.useSeed;

 end

 end

end

See Also
matlab.System | supportsMultipleInstanceImpl

 Methods Timing

39-89

Methods Timing

In this section...

“Setup Method Call Sequence” on page 39-89
“Step Method Call Sequence” on page 39-90
“Reset Method Call Sequence” on page 39-90
“Release Method Call Sequence” on page 39-91

The call sequence diagrams show the order in which actions are performed when you run
the specified method. The background color or each action indicates the method type.

• White background — Sealed method
• Green background — User-implemented method
• White and green background — Sealed method that calls a user-implemented method

Setup Method Call Sequence

This hierarchy shows the actions performed when you call the setup method.

39 Define New System Objects

39-90

Step Method Call Sequence

This hierarchy shows the actions performed when you call the step method.

Reset Method Call Sequence

This hierarchy shows the actions performed when you call the reset method.

 Methods Timing

39-91

Release Method Call Sequence

This hierarchy shows the actions performed when you call the release method.

See Also
releaseImpl | resetImpl | setupImpl | stepImpl

Related Examples
• “Release System Object Resources” on page 39-34
• “Reset Algorithm State” on page 39-21
• “Set Property Values at Construction Time” on page 39-19
• “Define Basic System Objects” on page 39-5

More About
• “What Are System Object Methods?” on page 38-14
• “The Step Method” on page 38-14
• “Common Methods” on page 38-15
• “Simulink Engine Interaction with System Object Methods” on page 40-25

39 Define New System Objects

39-92

System Object Input Arguments and ~ in Code Examples

All methods, except static methods, expect the System object handle as the first input
argument. You can use any name for your System object handle. In many examples,
instead of passing in the object handle, ~ is used to indicate that the object handle is
not used in the function. Using ~ instead of an object handle prevents warnings about
unused variables.

 What Are Mixin Classes?

39-93

What Are Mixin Classes?

Mixin classes are partial classes that you can combine in various combinations to form
desired behaviors using multiple inheritance. System objects are composed of a base
class, matlab.System and may include one or more mixin classes. You specify the base
class and mixin classes on the first line of your class definition file.

The following mixin classes are available for use with System objects.

• matlab.system.mixin.CustomIcon — Defines a block icon for System objects in
the MATLAB System block

• matlab.system.mixin.FiniteSource — Adds the isDone method to System
objects that are sources

• matlab.system.mixin.Nondirect — Allows the System object, when used in the
MATLAB System block, to support nondirect feedthrough by making the runtime
callback functions, output and update available

• matlab.system.mixin.Propagates — Enables System objects to operate in the
MATLAB System block using the interpreted execution

39 Define New System Objects

39-94

Best Practices for Defining System Objects

A System object is a specialized kind of MATLAB object that is optimized for iterative
processing. Use System objects when you need to call the step method multiple times
or process data in a loop. When defining your own System object, use the following
suggestions to help your code run efficiently.

• Define all one-time calculations in the setupImpl method and cache the results in a
private property. Use the stepImpl method for repeated calculations.

• If properties are accessed more than once in the stepImpl method, cache those
properties as local variables inside the method. A typical example of multiple property
access is a loop. Iterative calculations using cached local variables run faster than
calculations that must access the properties of an object. When the calculations for
the method complete, you can save the local cached results back to the properties of
that System object. Copy frequently used tunable properties into private properties.
This best practice also applies to the updateImpl and outputImpl methods.

In this example, k is accessed multiple times in each loop iteration, but is saved to the
object property only once.

function y = stepImpl(obj,x)

 k = obj.MyProp;

 for p=1:100

 y = k * x;

 k = k + 0.1;

 end

 obj.MyProp = k;

end

• Do not use string comparisons or string-based switch statements in the stepImpl
method. Instead, create a method handle in setupImpl. This handle points to a
method in the same class definition file. Use that handle in a loop in stepImpl.

This example shows how to use method handles and cached local variables in a loop
to implement an efficient object. In setupImpl, choose myMethod1 or myMethod2
based on a string comparison and assign the method handle to the pMethodHandle
property. Because there is a loop in stepImpl, assign the pMethodHandle property
to a local method handle, myFun, and then use myFun inside the loop.

classdef MyClass < matlab.System

 function setupImpl(obj)

 if strcmp(obj.Method, 'Method1')

 Best Practices for Defining System Objects

39-95

 obj.pMethodHandle = @myMethod1;

 else

 obj.pMethodHandle = @myMethod2;

 end

 end

 function y = stepImpl(obj,x)

 myFun = obj.pMethodHandle;

 for p=1:1000

 y = myFun(obj,x)

 end

 end

 end

 function y = myMethod1(x)

 y = x+1;

 end

 function y = myMethod2(x)

 y = x-1;

 end

end

• If the number of System object inputs does not change, do not implement the
getNumInputsImpl method. Also do not implement the getNumInputsImpl
method when you explicitly list the inputs in the stepImpl method instead of using
varargin. The same caveats apply to the getNumOutputsImpl and varargout
outputs.

• For the getNumInputsImpl and getNumOutputsImpl methods, if you set the return
argument from an object property, that object property must have the Nontunable
attribute.

• If the variables in a method do not need to retain their values between calls use local
scope for those variables in that method.

• For properties that do not change, define them in as Nontunable properties.
Tunable properties have slower access times than Nontunable properties

• Use the protected or private attribute instead of the public attribute for a
property, whenever possible. Some public properties have slower access times than
protected and private properties.

• Avoid using customized step, get, or set methods, whenever possible.
• Avoid using string comparisons within customized step, get, or set methods,

whenever possible. Use setupImpl for string comparisons instead.
• Specify Boolean values using true or false instead of 1 or 0, respectively.

40

System Objects in Simulink

• “What Is the MATLAB System Block?” on page 40-2
• “Implement a MATLAB System Block” on page 40-7
• “Change Blocks Implemented with System Objects” on page 40-10
• “Change Block Icon and Port Labels” on page 40-11
• “Nonvirtual buses and MATLAB System Block” on page 40-13
• “Use System Objects in Feedback Loops” on page 40-14
• “Simulation Modes” on page 40-16
• “Mapping System Objects to Block Dialog Box” on page 40-18
• “Considerations for Using System Objects in Simulink” on page 40-23
• “Simulink Engine Interaction with System Object Methods” on page 40-25
• “Add and Implement Propagation Methods” on page 40-28
• “Troubleshoot System Objects in Simulink” on page 40-31

40 System Objects in Simulink

40-2

What Is the MATLAB System Block?

In this section...

“Why Use the MATLAB System Block?” on page 40-2
“Choosing the Right Block Type” on page 40-2
“System Objects” on page 40-3
“Interpreted Execution or Code Generation” on page 40-3
“MATLAB System Block Limitations” on page 40-4
“MATLAB System and System Objects Examples” on page 40-5

Why Use the MATLAB System Block?

System objects let you implement algorithms using the MATLAB language. The MATLAB
System block enables you to use System objects in Simulink.

The MATLAB System block lets you:

• Share the same System object in MATLAB and Simulink
• Dedicate integration of System objects with Simulink
• Unit test your algorithm in MATLAB before using it in Simulink
• Customize dialog box customization
• Simulate efficiently with better initialization
• Handle states
• Customize block icons with port labels
• Access two simulation modes

Choosing the Right Block Type

There are several mechanisms for including MATLAB algorithms in Simulink, such as:

• MATLAB System block
• MATLAB Function block

 What Is the MATLAB System Block?

40-3

• Interpreted MATLAB Function block
• Level-2 MATLAB S-Function block
• Fcn block

For more information, see “Types of Custom Blocks” on page 35-3 and “Comparison of
Custom Block Functionality” on page 35-7.

System Objects

Before you use a MATLAB System block, you must have a System object to associate with
the block. A System object is a specialized kind of MATLAB class. System objects are
designed specifically for implementing and simulating dynamic systems with inputs that
change over time.

For more information on creating System objects, see “Define System Objects”.

Note: To use your System object in the Simulink environment, it must have a constructor
that you can call with no arguments. By default, the System object constructor has this
capability and you do not need to define your own constructor. However, if you create
your own System object constructor, you must be able to call it with no arguments.

System objects exist in other MATLAB products. MATLAB System block supports only
the System objects written in the MATLAB language. In addition, if a System object has
a corresponding Simulink block, you cannot implement a MATLAB System block for it.

Interpreted Execution or Code Generation

You can use MATLAB System blocks in Simulink models for simulation via interpreted
execution or code generation.

• With interpreted execution, the model simulates the block using the MATLAB
execution engine.

• With code generation, the model simulates the block using code generation (requires
the use the subset of MATLAB code supported for code generation). For a list of
supported functions, see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List” on page 42-2.

40 System Objects in Simulink

40-4

MATLAB System Block Limitations

These capabilities are currently not supported.

Category Limitation Description Workaround

System Objects Tunable logical and string properties
of the System object are nontunable
parameters in the MATLAB System
block.

—

Data Types • The MATLAB System block does
not support virtual buses as
input or output.

• The MATLAB System block does
not support nonvirtual buses that
contain variable-size signals.

• System objects cannot use the
enumerated data type.

• System objects cannot use fixed-
point signals with nonbinary
point scaling or nonzero bias.

• System objects cannot use user-
defined opaque data types.

—

Sample Time Cannot use MATLAB System
blocks to model continuous time or
multirate systems.

—

Linearizations Cannot use Jacobian based
linearization.

—

Global Variables Global variables defined in the
model Configuration Parameters
Simulation Target > Custom
Code pane and referenced by
the System object are not shared
with Stateflow and the MATLAB
Function block.

—

Debugging MATLAB debugging for code-
generation-based simulation.

Set the MATLAB System block
Simulate using parameter to

 What Is the MATLAB System Block?

40-5

Category Limitation Description Workaround

Interpreted execution, and
then debug. When you are done,
set Simulate using back to Code
generation.

Fixed-Point Tool The Fixed-Point Tool does not return
design min/max, min/max logging,
and autoscaling information for
MATLAB System blocks.

—

Model coverage
analysis (Simulink
Verification and
Validation software)

Simulink Verification and
Validation cannot perform model
analysis for MATLAB System block
with Simulate using parameter set
to Interpreted execution.

—

Check model
compatibility
(Simulink Design
Verifier software)

Simulink Design Verifier cannot
perform compatibility checks for a
model or subsystem that contains a
MATLAB System block.

—

MATLAB System and System Objects Examples

For examples of MATLAB System and System objects, see:

Example Description

System Identification for an FIR System Using
MATLAB System Blocks

This example shows how to use the MATLAB
System block to implement Simulink blocks
using a System object. It highlights two
MATLAB System blocks. Access the MATLAB
source code for each System object by clicking
the Source code link from the block dialog box.

Variable-Size Input and Output Signals Using
MATLAB System Blocks

This example shows how to use the MATLAB
System block to implement Simulink blocks with
variable-size input and output signals. Due to
the use of variable-size signals, the example uses
propagation methods.

Illustration of Law of Large Numbers Using
MATLAB System Blocks

This example shows how to use MATLAB
System blocks to illustrate the law of large

40 System Objects in Simulink

40-6

Example Description

numbers. Due to the use of MATLAB functions
not supported for code generation, the example
uses propagation methods and interpreted
execution.

Using Buses with MATLAB System Blocks This example shows how to use MATLAB
System blocks with nonvirtual buses at input
or output. Due to the use Simulink buses,
the example uses propagation methods. The
example defines the bus types in the MATLAB
base workspace using model callbacks.

 Implement a MATLAB System Block

40-7

Implement a MATLAB System Block

Implement a block and assign a System object to it. You can then explore the block to see
the effect.

1 Create a new model and add the MATLAB System block from the User-Defined
Functions library.

2 In the block dialog box, from the New list, select Basic, Advanced, or Simulink
Extension if you want to create a new System object from a template. Modify the
template according to your needs and save the System object.

3 Enter the full path name for the System object in the System object name. Click
the list arrow. If valid System objects exist in the current folder, the names appear in
the list.

The MATLAB System block icon and port labels update to those of the corresponding
System object. For example, suppose you selected a System object named lmsSysObj
in your current folder. The block updates as shown in the figure:

Note: After you associate the block with a System object class name, you cannot assign a
new System object using the same MATLAB System block dialog box. Instead, right-click
the MATLAB System block, select Block Parameters (MATLABSystem) and enter a
new class name in System object name.

40 System Objects in Simulink

40-8

Understanding the MATLAB System Block

1 Double-click the block. The MATLAB System dialog box reflects the System object
parameters. The dialog box usually includes a Source code link that leads to the
System object class file. For example:

The Source code link appears if the System object uses MATLAB language. It does
not appear if you have:

• Converted the System object to P-code
• Overridden the default behavior using the getHeaderImpl method

2 Click Source code and observe that the public and active properties in the System
object appear in the MATLAB System block dialog box as block parameters.

3 Select how you want the model to simulate the block using the Simulate using
parameter. (This parameter appears at the bottom of each MATLAB System block if
there is only one tab, or the bottom of the first of multiple tabs.)

You might want to add that note about not being able to get to the MATLAB System
block dialog box the same way after you've associated the block with a System object.
Look under mask is one way you can get to it.

Related Examples
• “System Identification for an FIR System Using MATLAB System Blocks”

 Implement a MATLAB System Block

40-9

More About
• “Mapping System Objects to Block Dialog Box” on page 40-18
• “Simulation Modes” on page 40-16

40 System Objects in Simulink

40-10

Change Blocks Implemented with System Objects

To implement a block with another System object, right-click the MATLAB System
block and select Block Parameters (MATLABSystem). Then, use the block dialog box
to identify a new class name in System object name. For more information, see
“Implement a MATLAB System Block” on page 40-7.

 Change Block Icon and Port Labels

40-11

Change Block Icon and Port Labels

To change the icon appearance of your block, you must use the
matlab.system.mixin.CustomIcon class. You can define port labels using System
object methods.

1 Add the matlab.system.mixin.CustomIcon class name to the System object,
after the matlab.System class. For example:
classdef lmsSysObj < matlab.System & matlab.system.mixin.CustomIcon

This code subclasses from the matlab.system.mixin.CustomIcon class in
addition to the matlab.System base class.

2 To define the icon, implement the getIconImpl method.
3 To define the port labels, implement the following optional methods

to change the input and output port labels. You do not need the
matlab.system.mixin.CustomIcon class to use these methods.

getInputNamesImpl

getOutputNamesImpl

If you do not implement these methods, the System object uses the input
and output port names from the stepImpl method. If you are using the
matlab.system.mixin.Nondirect class and do not implement these methods, the
System object uses the input names from updateImpl and the output port names from
OutputImpl.

Modify MATLAB System Block Dialog

To change the MATLAB System block dialog, implement the methods for the following
classes:

Description matlab.system.display Methods

Define header text for
property group.

matlab.system.display.Header

Group properties together. matlab.system.display.Section

Group properties into a
separate tab.

matlab.system.display.SectionGroup

40 System Objects in Simulink

40-12

Related Examples
• “System Identification for an FIR System Using MATLAB System Blocks”

More About
• “Icon and Dialog”

 Nonvirtual buses and MATLAB System Block

40-13

Nonvirtual buses and MATLAB System Block

The MATLAB System block supports nonvirtual buses as input and output signals. The
corresponding System object input or output must be a MATLAB structure whose fields
match those defined by the nonvirtual bus. If the System object output is a MATLAB
structure, it must define propagator methods. In addition, the getOutputDataTypeImpl
method must return the name of the corresponding bus object. This bus object must exist
in the base workspace or a data dictionary linked to the model.

Note: If the output is the same bus type as the input, do not use the
propagatedInputDataType method to obtain the name of the bus object. Instead, you
must return the name of the bus object directly.

Related Examples
• Using Buses with MATLAB System Blocks

More About
• “Output Specifications”

40 System Objects in Simulink

40-14

Use System Objects in Feedback Loops

If your algorithm needs to process nondirect feedthrough data through the System object,
use the matlab.system.mixin.Nondirect class. This class uses the output and
update methods to process nondirect feedthrough data through a System object.

Most System objects use direct feedthrough, where the object’s input is needed to
generate the output. For these direct feedthrough objects, the step method calculates
the output and updates the state values. For nondirect feedthrough, however, the object’s
output depends on internal states and not directly on the inputs. The inputs, or a subset
of the inputs, are used to update the object states. For these objects, calculating the
output is separated from updating the state values. This enables you to use an object as a
feedback element in a feedback loop.

A delay object is an example of a nondirect feedthrough object.

1 Add the matlab.system.mixin.Nondirect class to the top of the parent class file
for the System object, after the matlab.System class. For example:
IntegerDelaySysObj < matlab.System & matlab.system.mixin.Nondirect

This step subclasses from the matlab.system.mixin.Nondirect class in addition
to the matlab.System base class.

2 Implement the following methods:

outputImpl

updateImpl

When implementing the outputImpl method, do not access the System object
inputs for which the direct feedthrough flag is false.

3 If the System object supports code generation and does not inherit from
matlab.system.mixin.Propagates, Simulink can automatically infer
the direct feedthrough settings from the System object MATLAB code.
However, if the System object does not support code generation, the default
isInputDirectFeedthroughImpl method returns false (no direct feedthrough). In
this case, override this method if you want nondefault behavior.

The processing of the nondirect feedthrough changes the way that the software calls the
System object methods within the context of the Simulink engine.

 Use System Objects in Feedback Loops

40-15

Related Examples
• “System Identification for an FIR System Using MATLAB System Blocks”

More About
• “Simulink Engine Interaction with System Object Methods” on page 40-25
• “Nondirect Feedthrough”

40 System Objects in Simulink

40-16

Simulation Modes

Interpreted Execution vs. Code Generation

You can use MATLAB System block in Simulink models for simulation via interpreted
execution or code generation. Implementing a MATLAB System block with a valid
System object class name enables the Simulate using parameter. This parameter
appears at the bottom of each MATLAB System block if there is only one tab, or the
bottom of the first of multiple tabs. Use the Simulate using parameter to control how
the block simulates. The table describes how to choose the right value for your purpose.

• With interpreted execution, the model simulates the block using the MATLAB
execution engine.

Note: With interpreted execution, if you set the Optimization > Use division for
fixed-point net slope computation parameter to ‘On’ or ‘Use division for
reciprocals of integers only’ in the Configuration Parameters dialog box,
you might get unoptimized numeric results. This is because MATLAB code does not
support this parameter.

• With code generation, the model simulates the block using code generation, using the
subset of MATLAB code supported for code generation.

Action Select Pros Cons

Upon first model run,
simulate and generate
code for MATLAB
System using only the
subset of MATLAB
functions supported
for code generation.
Choosing this option
causes the simulation
to run the generated
code.

Code

generation

(default)

Potentially better
performance.

System object is limited to the
subset of MATLAB functions
supported for code generation.
Simulation may start more
slowly.

Simulate model
using all supported
MATLAB functions.

Interpreted

execution

System object can
contain any supported

Potentially slower performance.
If the MATLAB functions
in the System object do not

 Simulation Modes

40-17

Action Select Pros Cons

Choosing this option
can slow simulation
performance.

MATLAB function.
Faster startup time.

support code generation, the
System object must contain
propagation methods.

To take advantage of faster performance, consider using propagation methods in your
System object. For more information, see “Add and Implement Propagation Methods” on
page 40-28.

Simulation Using Code Generation

While simulating and generating code for one or more simulation targets (in this case,
System object blocks), the model displays status messages in the bottom left of the
Simulink Editor window. A model can have multiple copies of the same block, where
blocks are considered the same if they

• Use the same System object.
• Have inputs and tunable parameters that have identical signals, data types, and

complexities.
• Have nontunable parameters that have the same value.

When the model has multiple copies of the same block, the software does not regenerate
the code for each block. It reuses the code from the first time that code was generated for
one of these blocks. The status messages reflect this and do not show status messages for
each of these blocks.

When the code generation process is complete, Simulink creates a MEX-file for the
generated code.

40 System Objects in Simulink

40-18

Mapping System Objects to Block Dialog Box

The System object source code controls the appearance of the block dialog box.
This section describes System object to block dialog box mapping using the System
Identification for an FIR System Using MATLAB System Blocks example. This example
uses two System objects, one that uses default System object to block dialog box mapping,
and one that uses a custom mapping.

In this section...

“System Object to Block Dialog Box Default Mapping” on page 40-18
“System Object to Block Dialog Box Custom Mapping” on page 40-20

System Object to Block Dialog Box Default Mapping

The following figure shows how the source code corresponds to the dialog box elements if
you do not customize the dialog using the getHeaderImpl or getPropertyGroupsImpl
methods. (The link to open the source code and the Simulate using parameter appear
on all MATLAB System block dialog boxes.)

 Mapping System Objects to Block Dialog Box

40-19

Property type

and default value from

property attributes

Simulate mode widget

included in all dialogs

Header description from

class help summary

Labels from

property help summary

Header title from

class name

Link to open source

MATLAB code

The Delay block from the System Identification for an FIR System Using MATLAB
System Blocks is an example of a block that uses a System object that draws the dialog
box using the default mapping. This block has one input and one output.

This block uses a System object that has direct feedthrough set to false (nondirect
feedthrough). This setting means that the System object does not directly use the input
to compute the output, enabling the model to use this block safely in a feedback system
without introducing an algebraic loop. For more information on nondirect feedthrough,
see “Use System Objects in Feedback Loops” on page 40-14.

40 System Objects in Simulink

40-20

For an example of a custom block dialog box, see “System Object to Block Dialog Box
Custom Mapping” on page 40-20.

System Object to Block Dialog Box Custom Mapping

The LMS Adaptive block is an example of a block with a custom header and
property groups. The System object code uses the getHeaderImpl method from
matlab.system.display.Header and getPropertyGroupsImpl method from
matlab.system.display.SectionGroup to customize these block dialog elements.

The LMS Adaptive Filter block estimates the coefficients of an unknown system (formed
by the Unknown System and Delay blocks). Its inputs are the desired signal and the
actual signal. Its outputs are the estimated signal and the vector norm of the error in the
estimated coefficients. It uses the lmsSysObj System object.

 Mapping System Objects to Block Dialog Box

40-21

Header description from
class help summary

Specified header title
overrides class name

Tabs from SectionGroups

Label from

product help summary

The source code for this System object also defines two input and output ports for the
block.

40 System Objects in Simulink

40-22

More About
• “Change Block Icon and Port Labels” on page 40-11
• “Modify MATLAB System Block Dialog” on page 40-11

 Considerations for Using System Objects in Simulink

40-23

Considerations for Using System Objects in Simulink

In this section...

“System Objects in Simulink” on page 40-23
“System Objects in For Each Subsystems” on page 40-24

System Objects in Simulink

There are differences in how you can use System objects in a MATLAB System block
in Simulink versus using the same object in MATLAB. You see these differences when
working with variable-size signals and tunable parameters and when using System
objects as properties.

Variable-Size Signals

To use variable-size signals in a System object, you must implement
matlab.system.mixin.Propagates methods. In particular, use the
isOutputFixedSizeImpl method to specify if an output is variable-size or fixed-size. This
is true for interpreted execution and code generation simulation methods.

Tunable Parameters

Simulink registers public tunable properties of a System object as tunable parameters
of the corresponding MATLAB System block. If a System object property is tunable, it is
also tunable in the MATLAB System block. At runtime, you can change the parameter
using one of the following approaches. The change applies at the top of the simulation
loop.

• At the MATLAB command line, use the set_param to change the parameter value.
• In the Simulink editor, edit the MATLAB System block dialog box to change the

parameter value, and then update the block diagram.

You cannot change public tunable properties from System object internal methods such
as stepImpl.

During simulation, setting an invalid value on a tunable parameter causes an error
message and stops simulation.

40 System Objects in Simulink

40-24

System Objects as Properties

The MATLAB System block allows a System object to have other System objects as public
or private properties. However:

• System objects and other MATLAB objects stored as public properties are read only.
As a result, you cannot set the value of the parameter, you can only get the value of a
parameter.

• System objects stored as property values appear dimmed in the MATLAB System
block dialog box.

Default Property Values

MATLAB does not require that objects assign default values to properties. However,
in Simulink, if your System object has properties with no assigned default values, the
associated dialog box parameter requires that the value data type be a built-in Simulink
data type.

System Objects in For Each Subsystems

To use the MATLAB System block within a For Each Subsystem block, implement
the matlab.system supportsMultipleInstanceImpl method. This method should return
true. The MATLAB System block clones the System object for each For Each Subsystem
iteration.

 Simulink Engine Interaction with System Object Methods

40-25

Simulink Engine Interaction with System Object Methods

Simulink Engine Phases Mapped to System Object Methods

This diagram shows a process view of the order in which the MATLAB System block
invokes System object methods within the context of the Simulink engine.

40 System Objects in Simulink

40-26

setupImpl

processTunedPropertiesImpl

stepImpl (or outputImpl)

updateImpl

releaseImpl

Initialization

S
im

u
lin

k
 E

n
g

in
e

End simulation

getOutputSizeImpl

getOutputDataTypeImpl

isOutputComplexImpl

getDiscreteStateSpecificationImpl

isOutputFixedSizeImpl

validateInputsImpl

Constructor

validatePropertiesImpl

getNumOutputsImpl

getNumInputsImpl

Model

compile

phase

Model

edit

phase

Model

execution

phase

validateInputsImpl

Simulink engine might

call validateInputsImpl

again for variable-size

signals.

Simulink engine calls

when using

matlab.system.mixin.Nondirect.

Simulink engine replaces stepImpl

with outputimpl when using

matlab.system.mixin.Nondirect.

isInputDirectFeedthroughImpl

resetImpl

Called at least once. May also be

called when the block states

need to be reset, for example in

enabled subsystems.

Note the following:

• Simulink calls the stepImpl, outputImpl, and updateImpl methods multiple times
during simulation at each time step. Simulink typically calls other methods once per
simulation.

 Simulink Engine Interaction with System Object Methods

40-27

• The Simulink engine calls the isOutputFixedSizeImpl,
getDiscreteStateSpecificationImpl, isOutputComplexImpl,
getOutputDataTypeImpl, getOutputSizeImpl when using
matlab.system.mixin.Propagates.

• Simulink calls saveObjectImpl and loadObjectImpl for saving and restoring
SimState, the Simulation Stepper, and Fast Restart.

• Default implementations save and restore all properties with public access, including
DiscreteState.

40 System Objects in Simulink

40-28

Add and Implement Propagation Methods

In this section...

“When to Use Propagation Methods” on page 40-28
“Add Propagation Methods to System Objects” on page 40-28
“Implement Propagation Methods” on page 40-29

When to Use Propagation Methods

Propagation methods define output specifications. Use them when the output
specifications cannot be inferred directly from the inputs during Simulink model
compilation.

Consider using propagation methods in your System object when:

• The System object requires access to all MATLAB functions that do not support code
generation, which means that you cannot generate code for simulation. You must use
propagation methods in this case. Use these methods to specify information for the
outputs.

• You want to use variable-size signals.
• You do not care whether code is generated, but you want to improve startup

performance. Use propagation methods to specify information for the inputs and
outputs, enabling quicker startup time.

At startup, the Simulink software tries to evaluate the input and output ports of the
model blocks for signal attribute propagation. In the case of MATLAB System blocks, if
the software cannot perform this evaluation, it displays a message prompting you to add
propagation methods to the System object.

Add Propagation Methods to System Objects

Propagation methods are in the class matlab.system.mixin.Propagates. To add
these methods to the System object, add the matlab.system.mixin.Propagates class
to the top of the parent class file for the System object, after the matlab.System class.
For example:
classdef Counter < matlab.System & matlab.system.mixin.Propagates

 Add and Implement Propagation Methods

40-29

Implement Propagation Methods

Simulink evaluates the uses of the propagation methods to evaluate the input and output
ports of the MATLAB System block for startup.

Each method has a default implementation, listed in the Default Implementation
Should Suffice if column. If your System object does not use the default
implementation, you must implement a version of the propagation method for your
System object.

Description Propagation Method Default Implementation
Should Suffice if

Example

Gets
dimensions of
output ports.
The associated
method is
getOutputSize.

getOutputSizeImpl • Only one input
• Only one output
• An input size that

is the same as the
output size

• FindIfFixedInput or
FindIfVarSizeInput
block in MATLAB
System Block with
Variable-Size Input
and Output Signals

• Analysis block in
Illustration of Law of
Large Numbers

Gets data types
of output ports.
The associated
method is
getOutputData-

Type.

getOutputDataTypeImpl • Only one input
• Only one output
• Output data type

always the same as
the input data type

• FindIfFixedInput or
FindIfVarSizeInput
block in MATLAB
System Block with
Variable-Size Input
and Output Signals

• Analysis block in
Illustration of Law of
Large Numbers

Indicates
whether output
ports are
complex or not.
The associated
method is
isOutput-

Complex.

isOutputComplexImpl • Only one input
• Only one output
• Output complexity

always the same as th
input complexity

• FindIfFixedInput or
FindIfVarSizeInput
block in MATLAB
System Block with
Variable-Size Input
and Output Signals

40 System Objects in Simulink

40-30

Description Propagation Method Default Implementation
Should Suffice if

Example

• Analysis block in
Illustration of Law of
Large Numbers

Whether
output ports
are fixed size.
The associated
method is
isOutputFixed-

Size.

isOutputFixedSizeImpl • Only one input
• Only one output
• Output and input are

fixed-size

• FindIfFixedInput or
FindIfVarSizeInput
block in MATLAB
System Block with
Variable-Size Input
and Output Signals

• Analysis block in
Illustration of Law of
Large Numbers

Gets the size,
data type, and
complexity
of a discrete
state property.
The associated
method is
getDiscrete-

State-

Specification.

getDiscreteState-

SpecificationImpl

No DiscreteState
properties

N/A

More About
• “Output Specifications”

 Troubleshoot System Objects in Simulink

40-31

Troubleshoot System Objects in Simulink

In this section...

“Class Not Found” on page 40-31
“Error Invoking Object Method” on page 40-31
“Performance” on page 40-32

Class Not Found

The MATLAB System block System object name parameter requires that you enter the
full path to the System object class. In addition:

• Check that the System object class is on your MATLAB path.
• Check capitalization to make sure it matches.
• Check that the class name is a supported System object.
• Do not include the file extension.

Error Invoking Object Method

The MATLAB System block supports only System objects written in the MATLAB
language. If the software can identify an alternative block, it suggests that block in the
error message, for example:

This message indicates that there is an existing dedicated and optimized block that you
should use.

40 System Objects in Simulink

40-32

Performance

For fastest performance, set the block Simulate using parameter to Code generation.
This setting allows the MATLAB System block to run as fast as it can. The parameter is
set to this value by default.

This setting causes a slower startup time, as the software generates C code and creates
a MEX-file from it. However, after code generation, later simulations have better
performance. When the block uses generated code to simulate, performance is typically
better than simulation without generated code.

In some cases, the implementation of your System object does not allow you to generate
code, which requires you to set Simulate using to Interpreted execution.
For example, your System object can require MATLAB functions beyond the subset
supported for code generation. In this case, use propagation methods to specify the block
input and output port information. The MATLAB System block then propagates this
signal attribution information.

More About
• “Add and Implement Propagation Methods” on page 40-28

41

Design Considerations for C/C++
Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 41-2
• “Which Code Generation Feature to Use” on page 41-4
• “Prerequisites for C/C++ Code Generation from MATLAB” on page 41-5
• “MATLAB Code Design Considerations for Code Generation” on page 41-6
• “Differences in Behavior After Compiling MATLAB Code” on page 41-8
• “MATLAB Language Features Supported for C/C++ Code Generation” on page

41-13

41 Design Considerations for C/C++ Code Generation

41-2

When to Generate Code from MATLAB Algorithms

Generating code from MATLAB algorithms for desktop and embedded systems allows
you to perform your software design, implementation, and testing completely within the
MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation
• Generate efficient, readable, and compact C/C++ code automatically, which eliminates

the need to manually translate your MATLAB algorithms and minimizes the risk of
introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific requirements of
desktop and embedded applications, such as data type management, memory use, and
speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

• Accelerate MATLAB algorithms in certain applications.
• Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms

Do not generate code from MATLAB algorithms for the following applications. Use the
recommended MathWorks product instead.

To: Use:

Deploy an application that uses handle
graphics

MATLAB Compiler

Use Java MATLAB Compiler SDK™
Use toolbox functions that do not support
code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI applications
on a supported MATLAB host

MATLAB Compiler

Deploy web-based or Windows
applications

MATLAB Compiler SDK

 When to Generate Code from MATLAB Algorithms

41-3

To: Use:

Interface C code with MATLAB MATLAB mex function

41 Design Considerations for C/C++ Code Generation

41-4

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation at
the Command Line”.

MATLAB Coder app MATLAB Coder Try this in “C Code
Generation Using the
MATLAB Coder App”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder app MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms

codegen function MATLAB Coder
See “Accelerate
MATLAB Algorithms”.

Integrate MATLAB
code into Simulink

MATLAB Function
block

Simulink Try this in “Track Object
Using MATLAB Code”
on page 37-161.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and
Code Generation from
MATLAB”.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in “Specify
External File Locations”.

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder

Learn more at
www.mathworks.com/

products/

slhdlcoder.

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

 Prerequisites for C/C++ Code Generation from MATLAB

41-5

Prerequisites for C/C++ Code Generation from MATLAB

To generate C/C++ or MEX code from MATLAB algorithms, you must install the
following software:

• MATLAB Coder product
• C/C++ compiler

41 Design Considerations for C/C++ Code Generation

41-6

MATLAB Code Design Considerations for Code Generation

When writing MATLAB code that you want to convert into efficient, standalone C/C++
code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before use,
MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You can define
inputs, outputs, and local variables in MATLAB functions to represent data that
varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory allocation.

With dynamic memory allocation, you potentially use less memory at the expense
of time to manage the memory. With static memory, you get better speed, but with
higher memory usage. Most MATLAB code takes advantage of the dynamic sizing
features in MATLAB, therefore dynamic memory allocation typically enables you
to generate code from existing MATLAB code without modifying it much. Dynamic
memory allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and therefore is
suitable for applications where there is a limited amount of available memory, such as
embedded applications.

• Speed

Because embedded applications must run in real time, the code must be fast enough
to meet the required clock rate.

To improve the speed of the generated code:

• Choose a suitable C/C++ compiler. Do not use the default compiler that
MathWorks supplies with MATLAB for Windows 32-bit platforms.

• Consider disabling run-time checks.

 MATLAB Code Design Considerations for Code Generation

41-7

By default, for safety, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks result in more
generated code and slower simulation. Disabling run-time checks usually results
in streamlined generated code and faster simulation. Disable these checks only if
you have verified that array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”
• “Variable-Size Data”
• “Bounded Versus Unbounded Variable-Size Data” on page 46-4

41 Design Considerations for C/C++ Code Generation

41-8

Differences in Behavior After Compiling MATLAB Code

In this section...

“Why Are There Differences?” on page 41-8
“Character Size” on page 41-8
“Order of Evaluation in Expressions” on page 41-8
“Termination Behavior” on page 41-10
“Size of Variable-Size N-D Arrays” on page 41-10
“Size of Empty Arrays” on page 41-10
“Shape of Array When Index and Assigned Value Are Empty” on page 41-10
“Floating-Point Numerical Results” on page 41-11
“NaN and Infinity Patterns” on page 41-12
“Code Generation Target” on page 41-12
“MATLAB Class Initial Values” on page 41-12
“Variable-Size Support for Code Generation” on page 41-12
“Complex Numbers” on page 41-12

Why Are There Differences?

To convert MATLAB code to C/C++ code that works efficiently, the code generation
process introduces optimizations that intentionally cause the generated code to behave
differently — and sometimes produce different results — from the original source code.
This section describes these differences.

Character Size

MATLAB supports 16-bit characters, but the generated code represents characters in 8
bits, the standard size for most embedded languages like C. See “Code Generation for
Characters and Strings” on page 45-8.

Order of Evaluation in Expressions

Generated code does not enforce order of evaluation in expressions. For most expressions,
order of evaluation is not significant. However, for expressions with side effects, the

 Differences in Behavior After Compiling MATLAB Code

41-9

generated code may produce the side effects in different order from the original MATLAB
code. Expressions that produce side effects include those that:

• Modify persistent or global variables
• Display data to the screen
• Write data to files
• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical operators
that do not short circuit.

For more predictable results, it is good coding practice to split expressions that depend on
the order of evaluation into multiple statements.

• Rewrite

A = f1() + f2();

as

A = f1();

A = A + f2();

so that the generated code calls f1 before f2.
• Assign the outputs of a multi-output function call to variables that do not depend on

one another. For example, rewrite

[y, y.f, y.g] = foo;

as

[y, a, b] = foo;

y.f = a;

y.g = b;

• When you access the contents of multiple cells of a cell array, assign the results to
variables that do not depend on one another. For example, rewrite

[y, y.f, y.g] = z{:};

as

[y, a, b] = z{:};

41 Design Considerations for C/C++ Code Generation

41-10

y.f = a;

y.g = b;

Termination Behavior

Generated code does not match the termination behavior of MATLAB source code. For
example, optimizations remove infinite loops from generated code if they do not have side
effects. As a result, the generated code may terminate even though the corresponding
MATLAB code does not.

Size of Variable-Size N-D Arrays

For variable-size N-D arrays, the size function might return a different result in
generated code than in MATLAB source code. The size function sometimes returns
trailing ones (singleton dimensions) in generated code, but always drops trailing ones
in MATLAB. For example, for an N-D array X with dimensions [4 2 1 1], size(X)
might return [4 2 1 1] in generated code, but always returns [4 2] in MATLAB. See
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on
page 46-23.

Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB
source code. See “Incompatibility with MATLAB in Determining Size of Empty Arrays”
on page 46-24.

Shape of Array When Index and Assigned Value Are Empty

When X is an empty matrix, generated code does not match MATLAB for the following
MATLAB code:

A(X) = [];

In MATLAB, when X is not empty, A becomes a row vector. When X is empty, A does not
change. In the generated code, A always becomes a row vector, even when X is empty.

For example, consider the following function:

function A = myfunction()

 Differences in Behavior After Compiling MATLAB Code

41-11

A = magic(4);

coder.varsize('A',[20 20],[1 1]);

A([]) = [];

In MATLAB, the answer is:

 16 2 3 13

 5 11 10 8

 9 7 6 12

 4 14 15 1

In the generated code, the answer is:
16 5 9 4 2 11 7 14 3 10 6 15 13 8 12 1

Floating-Point Numerical Results

The generated code might not produce the same floating-point numerical results as
MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended precision floating-
point registers. Computation results might not match MATLAB calculations because of
different compiler optimization settings or different code surrounding the floating-point
calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain advanced
library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement svd to
accommodate a smaller footprint. Results might also vary according to matrix properties.
For example, MATLAB might detect symmetric or Hermitian matrices at run time and
switch to specialized algorithms that perform computations faster than implementations
in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions, generated C/C++ code uses reference
implementations of BLAS functions. These reference implementations can produce
different results from platform-specific BLAS implementations in MATLAB.

41 Design Considerations for C/C++ Code Generation

41-12

NaN and Infinity Patterns

The generated code might not produce exactly the same pattern of NaN and inf values
as MATLAB code when these values are mathematically meaningless. For example, if
MATLAB output contains a NaN, output from the generated code should also contain a
NaN, but not necessarily in the same place.

Code Generation Target

The coder.target function returns different values in MATLAB than in the generated
code. The intent is to help you determine whether your function is executing in MATLAB
or has been compiled for a simulation or code generation target. See coder.target.

MATLAB Class Initial Values

Before code generation, at class loading time, MATLAB computes class initial values.
The code generation software uses the value that MATLAB computes. It does not
recompute the initial value. If the initialization uses a function call to compute the
initial value, the code generation software does not execute this function. If the function
modifies a global state, for example, a persistent variable, code generation software
might provide a different initial value than MATLAB. For more information, see
“Defining Class Properties for Code Generation” on page 50-4.

Variable-Size Support for Code Generation

For incompatibilities with MATLAB in variable-size support for code generation, see:

• “Incompatibility with MATLAB for Scalar Expansion”
• “Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays”
• “Incompatibility with MATLAB in Determining Size of Empty Arrays”
• “Incompatibility with MATLAB in Vector-Vector Indexing”
• “Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation”

Complex Numbers

See “Code Generation for Complex Data” on page 45-4.

 MATLAB Language Features Supported for C/C++ Code Generation

41-13

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB Features That Code Generation Supports

Code generation from MATLAB supports the following language features:

• N-dimensional arrays (see “Array Size Restrictions for Code Generation” on page
45-9)

• Matrix operations, including deletion of rows and columns
• Variable-sized data (see “Variable-Size Data Definition for Code Generation” on page

46-3)
• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing Operations for

Code Generation” on page 46-26)
• Complex numbers (see “Code Generation for Complex Data” on page 45-4)
• Numeric classes (see “Supported Variable Types” on page 44-17)
• Double-precision, single-precision, and integer math
• Fixed-point arithmetic
• Program control statements if, switch, for, while, and break
• Arithmetic, relational, and logical operators
• Local functions
• Persistent variables (see “Define and Initialize Persistent Variables” on page

44-10)
• Global variables.
• Structures (see “Structure Definition for Code Generation” on page 47-2)
• Cell Arrays (see “Cell Arrays”)

Characters (see “Code Generation for Characters and Strings” on page 45-8)
• Function handles (see “Function Handle Definition for Code Generation” on page

51-2)
• Frames
• Variable length input and output argument lists
• Subset of MATLAB toolbox functions (see “Functions and Objects Supported for C and

C++ Code Generation — Alphabetical List” on page 42-2)

41 Design Considerations for C/C++ Code Generation

41-14

• Subset of functions and System objects in Aerospace Toolbox, Communications
System Toolbox, Computer Vision System Toolbox, DSP System Toolbox, Fixed-
Point Designer, Image Processing Toolbox™, Signal Processing Toolbox™, Phased
Array System Toolbox™, Statistics and Machine Learning Toolbox™ (see “Functions
and Objects Supported for C and C++ Code Generation — Category List” on page
42-147)

• MATLAB classes (see “MATLAB Classes Definition for Code Generation” on page
50-2)

• Function calls (see “Resolution of Function Calls for Code Generation” on page
53-2)

MATLAB Language Features That Code Generation Does Not Support

Code generation from MATLAB does not support the following frequently used MATLAB
constructs:

• Anonymous functions
• Categorical Arrays
• Date and Time Arrays
• Java
• Map Containers
• Nested functions
• Recursion
• Sparse matrices
• Tables
• Time Series objects
• try/catch statements

This list is not exhaustive. To see if a construct is supported for code generation, see
“MATLAB Features That Code Generation Supports” on page 41-13.

42

Functions, Classes, and System
Objects Supported for Code
Generation

• “Functions and Objects Supported for C and C++ Code Generation — Alphabetical
List” on page 42-2

• “Functions and Objects Supported for C and C++ Code Generation — Category List”
on page 42-147

42 Functions, Classes, and System Objects Supported for Code Generation

42-2

Functions and Objects Supported for C and C++ Code Generation
— Alphabetical List

You can generate efficient C and C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
function, classes, and System objects appear in alphabetical order in the following table.

To find supported functions, classes, and System objects by MATLAB category or toolbox,
see “Functions and Objects Supported for C and C++ Code Generation — Category List”
on page 42-147.

Note: For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB”.

Name Product Remarks and Limitations

abs MATLAB —
abs Fixed-Point

Designer
—

accumneg Fixed-Point
Designer

—

accumpos Fixed-Point
Designer

—

acos MATLAB When the input value x is real, but the output
should be complex, generates an error during
simulation and returns NaN in generated code.
To get the complex result, make the input value
complex by passing in complex(x).

acosd MATLAB —
acosh MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-3

Name Product Remarks and Limitations

acot MATLAB —
acotd MATLAB —
acoth MATLAB —
acsc MATLAB —
acscd MATLAB —
acsch MATLAB —
add Fixed-Point

Designer
Code generation in MATLAB does not support
the syntax F.add(a,b). You must use the
syntax add(F,a,b).

affine2d Image Processing
Toolbox

When generating code, you can only specify
single objects—arrays of objects are not
supported.

aictest Phased Array
System Toolbox

Does not support variable-size inputs.

albersheim Phased Array
System Toolbox

Does not support variable-size inputs.

all MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

all Fixed-Point
Designer

—

ambgfun Phased Array
System Toolbox

Does not support variable-size inputs.

and MATLAB —
angdiff Robotics System

Toolbox™
Supports MATLAB Function block: No

any MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

any Fixed-Point
Designer

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-4

Name Product Remarks and Limitations

aperture2gain Phased Array
System Toolbox

Does not support variable-size inputs.

asec MATLAB —
asecd MATLAB —
asech MATLAB —
asin MATLAB • Generates an error during simulation and

returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —
asinh MATLAB —
assert MATLAB • Generates specified error messages at

compile time only if all input arguments are
constants or depend on constants. Otherwise,
generates specified error messages at run
time.

• For standalone code generation, excluded
from the generated code.

assignDetections-

ToTracks

Computer Vision
System Toolbox

Compile-time constant input: No restriction.
Supports MATLAB Function block: Yes

atan MATLAB —
atan2 MATLAB —
atan2 Fixed-Point

Designer
—

atan2d MATLAB —
atand MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-5

Name Product Remarks and Limitations

atanh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

axang2quat Robotics System
Toolbox

Supports MATLAB Function block: No

axang2rotm Robotics System
Toolbox

Supports MATLAB Function block: No

axang2tform Robotics System
Toolbox

Supports MATLAB Function block: No

az2broadside Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uv Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

azelaxes Phased Array
System Toolbox

Does not support variable-size inputs.

bandwidth MATLAB —
barthannwin Signal Processing

Toolbox
Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

bartlett Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

bboxOverlapRatio Computer Vision
System Toolbox

Supports MATLAB Function block: No

42 Functions, Classes, and System Objects Supported for Code Generation

42-6

Name Product Remarks and Limitations

bbox2points Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

beat2range Phased Array
System Toolbox

Does not support variable-size inputs.

besselap Signal Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

beta MATLAB —
betacdf Statistics

and Machine
Learning Toolbox

—

betafit Statistics
and Machine
Learning Toolbox

—

betainc MATLAB Always returns a complex result.
betaincinv MATLAB Always returns a complex result.
betainv Statistics

and Machine
Learning Toolbox

—

betalike Statistics
and Machine
Learning Toolbox

—

betaln MATLAB —
betapdf Statistics

and Machine
Learning Toolbox

—

betarnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-7

Name Product Remarks and Limitations

betastat Statistics
and Machine
Learning Toolbox

—

bi2de Communications
System Toolbox

—

billingsleyicm Phased Array
System Toolbox

Does not support variable-size inputs.

bin2dec MATLAB • Does not support cell arrays.
• Does not match MATLAB when the input is

empty.
binaryFeatures Computer Vision

System Toolbox
—

binocdf Statistics
and Machine
Learning Toolbox

—

binoinv Statistics
and Machine
Learning Toolbox

—

binopdf Statistics
and Machine
Learning Toolbox

—

binornd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
binostat Statistics

and Machine
Learning Toolbox

—

bitand MATLAB —
bitand Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.

42 Functions, Classes, and System Objects Supported for Code Generation

42-8

Name Product Remarks and Limitations

bitandreduce Fixed-Point
Designer

—

bitcmp MATLAB —
bitcmp Fixed-Point

Designer
—

bitconcat Fixed-Point
Designer

—

bitget MATLAB —
bitget Fixed-Point

Designer
—

bitor MATLAB —
bitor Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitorreduce Fixed-Point

Designer
—

bitreplicate Fixed-Point
Designer

—

bitrevorder Signal Processing
Toolbox

—

bitrol Fixed-Point
Designer

—

bitror Fixed-Point
Designer

—

bitset MATLAB —
bitset Fixed-Point

Designer
—

bitshift MATLAB —
bitshift Fixed-Point

Designer
—

bitsliceget Fixed-Point
Designer

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-9

Name Product Remarks and Limitations

bitsll Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsra Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsrl Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitxor MATLAB —
bitxor Fixed-Point

Designer
• Not supported for slope-bias scaled fi

objects.
bitxorreduce Fixed-Point

Designer
—

blackman Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

blackmanharris Signal Processing
Toolbox

Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

blanks MATLAB —
blkdiag MATLAB —
bohmanwin Signal Processing

Toolbox
Window length must be a constant. Expressions
or variables are allowed if their values do not
change.

break MATLAB —
BRISKPoints Computer Vision

System Toolbox
Compile-time constant inputs: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

42 Functions, Classes, and System Objects Supported for Code Generation

42-10

Name Product Remarks and Limitations

broadside2az Phased Array
System Toolbox

Does not support variable-size inputs.

bsxfun MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

buttap Signal Processing
Toolbox

Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

butter Signal Processing
Toolbox

Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

buttord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

bwareaopen Image Processing
Toolbox

BW must be a 2-D binary image. N-D arrays are
not supported. conn can only be one of the two-
dimensional connectivities (4 or 8) or a 3-by-3
matrix. The 3-D connectivities (6, 18, and 26) are
not supported. Matrices of size 3-by-3-by-...-by-3
are not supported. conn must be a compile-time
constant.

bwdist Image Processing
Toolbox

The method argument must be a compile-time
constant. Input images must have fewer than 232

pixels.

Generated code for this function uses a
precompiled, platform-specific shared library.

bweuler Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library

bwlabel Image Processing
Toolbox

When generating code, the parameter n must be
a compile-time constant.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-11

Name Product Remarks and Limitations

bwlookup Image Processing
Toolbox

For best results, specify an input image of class
logical.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwmorph Image Processing
Toolbox

The text string specifying the operation must be
a constant and, for best results, specify an input
image of class logical.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwpack Image Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

bwperim Image Processing
Toolbox

Supports only 2-D images. Does not support any
no-output-argument syntaxes. The connectivity
matrix input argument, conn, must be a
compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwselect Image Processing
Toolbox

Supports only the 3 and 4 input argument
syntaxes: BW2 = bwselect(BW,c,r) and
BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-
time constant. In addition, with code generation,
bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or
[BW2, idx] = bwselect(___).

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

bwtraceboundary Image Processing
Toolbox

The dir, fstep, and conn arguments must be
compile-time constants.

42 Functions, Classes, and System Objects Supported for Code Generation

42-12

Name Product Remarks and Limitations

bwunpack Image Processing
Toolbox

Generated code for this function uses a
precompiled platform-specific shared library.

ca2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

cameraMatrix Computer Vision
System Toolbox

Supports MATLAB Function block: No

cameraParameters Computer Vision
System Toolbox

Supports MATLAB Function block: No

cameraPose Computer Vision
System Toolbox

Supports MATLAB Function block: No

cart2hom Robotics System
Toolbox

Supports MATLAB Function block: No

cart2pol MATLAB —
cart2sph MATLAB —
cart2sphvec Phased Array

System Toolbox
Does not support variable-size inputs.

cast MATLAB —
cat MATLAB • Does not support concatenation of cell arrays.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

cbfweights Phased Array
System Toolbox

Does not support variable-size inputs.

cdf Statistics
and Machine
Learning Toolbox

—

ceil MATLAB —
ceil Fixed-Point

Designer
—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-13

Name Product Remarks and Limitations

cell MATLAB “Cell Array Requirements and Limitations for
Code Generation” on page 48-5

cfirpm Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

char MATLAB Does not support cell arrays.
cheb1ap Signal Processing

Toolbox
All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

cheb1ord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

cheb2ap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

cheb2ord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

chebwin Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

cheby1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

cheby2 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

chi2cdf Statistics
and Machine
Learning Toolbox

—

chi2inv Statistics
and Machine
Learning Toolbox

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-14

Name Product Remarks and Limitations

chi2pdf Statistics
and Machine
Learning Toolbox

—

chi2rnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
chi2stat Statistics

and Machine
Learning Toolbox

—

chol MATLAB —
circpol2pol Phased Array

System Toolbox
Does not support variable-size inputs.

circshift MATLAB Does not support cell arrays for the first
argument.

cl2tf DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

class MATLAB —
colon MATLAB • Does not accept complex inputs.

• The input i cannot have a logical value.
• Does not accept vector inputs.
• Inputs must be constants.
• Uses single-precision arithmetic to produce

single-precision results.
comm.ACPR Communications

System Toolbox
“System Objects in MATLAB Code Generation”

comm.AGC Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-15

Name Product Remarks and Limitations

comm.AlgebraicDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.APPDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.AWGNChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BarkerCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BCHDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BCHEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Binary-
SymmetricChannel

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BlockDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BlockInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.BPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CarrierSynchronizer Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CCDF Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CoarseFrequency-
Compensator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ConstellationDiagram Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Convolutional-
Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-16

Name Product Remarks and Limitations

comm.ConvolutionalEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Convolutional-
Interleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPFSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPFSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMCarrier-
PhaseSynchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CPMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CRCDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.CRCGenerator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DBPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DBPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Descrambler Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DifferentialDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DifferentialEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DiscreteTimeVCO Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-17

Name Product Remarks and Limitations

comm.DPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DQPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.DQPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.ErrorRate Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.EVM Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMBroadcast-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMBroadcast-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.FSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAM-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAMTCM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GeneralQAMTCM-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-18

Name Product Remarks and Limitations

comm.GMSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GMSKTiming-
Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.GoldSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HadamardCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLCRCDetector Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLCRCGenerator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLRSDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HDLRSEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HelicalDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.HelicalInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.IntegrateAnd-
DumpFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.IQImbalance-
Compensator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.KasamiSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LDPCDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LDPCEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.LTEMIMOChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-19

Name Product Remarks and Limitations

comm.MatrixDeinterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixHelical-
ScanDeinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixHelical-
ScanInterLeaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MatrixInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Memoryless-
Nonlinearity

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MER Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MIMOChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MLSEEqualizer Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MSKTiming-
Synchronizer

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Multiplexed-
Deinterleaver

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.MultiplexedInterleaver Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OFDMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OFDMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OSTBCCombiner Communications
System Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-20

Name Product Remarks and Limitations

comm.OSTBCEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OQPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.OQPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PAMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PAMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PhaseRequencyOffset Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PhaseNoise Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PNSequence Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKCoarseFrequency-
Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKTCMDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.PSKTCMModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QAMCoarseFrequency-
Estimator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QPSKDemodulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.QPSKModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-21

Name Product Remarks and Limitations

comm.RaisedCosine-
ReceiveFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RaisedCosine-
TransmitFilter

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RayleighChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularModulator Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAMTCM-
Demodulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RectangularQAMTCM-
Modulator

Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RicianChannel Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RSDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.RSEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.Scrambler Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.SphereDecoder Communications
System Toolbox

Communications System Toolbox

comm.SymbolSynchronizer Communications
System Toolbox

Communications System Toolbox

comm.ThermalNoise Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.TurboDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.TurboEncoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-22

Name Product Remarks and Limitations

comm.ViterbiDecoder Communications
System Toolbox

“System Objects in MATLAB Code Generation”

comm.WalshCode Communications
System Toolbox

“System Objects in MATLAB Code Generation”

compan MATLAB —
complex MATLAB —
complex Fixed-Point

Designer
—

computer MATLAB • Information about the computer on which the
code generation software is running.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

cond MATLAB —
conj MATLAB —
conj Fixed-Point

Designer
—

conndef Image Processing
Toolbox

Input arguments must be compile-time
constants.

continue MATLAB —
conv MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-23

Name Product Remarks and Limitations

conv Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

conv2 MATLAB —
convergent Fixed-Point

Designer
—

convn MATLAB —
cordicabs Fixed-Point

Designer
• Variable-size signals are not supported.

cordicangle Fixed-Point
Designer

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccexp Fixed-Point
Designer

• Variable-size signals are not supported.

42 Functions, Classes, and System Objects Supported for Code Generation

42-24

Name Product Remarks and Limitations

cordiccos Fixed-Point
Designer

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Designer

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsin Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Designer

• Variable-size signals are not supported.

cornerPoints Computer Vision
System Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —
cos Fixed-Point

Designer
—

cosd MATLAB —
cosh MATLAB —
cot MATLAB —
cotd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
coth MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-25

Name Product Remarks and Limitations

cov MATLAB • “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
cross MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

csc MATLAB —
cscd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
csch MATLAB —
ctranspose MATLAB —
ctranspose Fixed-Point

Designer
—

cummin MATLAB —
cummax MATLAB —
cumprod MATLAB Does not support logical inputs. Cast input to

double first.
cumsum MATLAB Does not support logical inputs. Cast input to

double first.
cumtrapz MATLAB —
db2pow Signal Processing

Toolbox
—

42 Functions, Classes, and System Objects Supported for Code Generation

42-26

Name Product Remarks and Limitations

dct Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

de2bi Communications
System Toolbox

—

deal MATLAB —
deblank MATLAB • Supports only inputs from the char class.

Does not support cell arrays.
• Input values must be in the range 0-127.

dec2bin MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support,
n must be at least 52 for double, 23 for
single, 16 for char, 32 for int32, 16 for
int16, and so on.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-27

Name Product Remarks and Limitations

dec2hex MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant,
and n is large enough that the output has a
fixed number of columns regardless of the
input values, this function requires variable-
sizing support. Without variable-sizing
support, n must be at least 13 for double,
6 for single, 4 for char, 8 for int32, 4 for
int16, and so on.

dechirp Phased Array
System Toolbox

Does not support variable-size inputs.

deconv MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

del2 MATLAB —
delayseq Phased Array

System Toolbox
Does not support variable-size inputs.

depressionang Phased Array
System Toolbox

Does not support variable-size inputs.

det MATLAB —
detectBRISKFeatures Computer Vision

System Toolbox
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-28

Name Product Remarks and Limitations

detectCheckerboard-

Points

Computer Vision
System Toolbox

Supports MATLAB Function block: No
Code generation will not support specifying
images as file names or cell arrays of file names.
It supports only checkerboard detection in
a single image or stereo pair of images. For
example, these syntaxes are supported:

• detectCheckerboardPoints(I1)

• detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.
detectFASTFeatures Computer Vision

System Toolbox
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectHarrisFeatures Computer Vision
System Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMinEigenFeatures Computer Vision
System Toolbox

Compile-time constant input: FilterSize
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Computer Vision
System Toolbox

Compile-time constant input: No restriction
Supports MATLAB Function block: No
For code generation, the function outputs
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.

detectSURFFeatures Computer Vision
System Toolbox

Compile-time constant input: No restrictions
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-29

Name Product Remarks and Limitations

detrend MATLAB • If supplied and not empty, the input
argument bp must satisfy the following
requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the

interval [1, n-2]. n is the number of
elements in a column of input argument X
, or the number of elements in X when X is
a row vector.

• Contain all unique values.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

42 Functions, Classes, and System Objects Supported for Code Generation

42-30

Name Product Remarks and Limitations

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

• For variable-size inputs that are variable-
length vectors (1-by-: or :-by-1), diag:

• Treats the input as a vector input.
• Returns a matrix with the given vector

along the specified diagonal.

• For variable-size inputs that are not variable-
length vectors, diag:

• Treats the input as a matrix.
• Does not support inputs that are vectors

at run time.
• Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and
has shape 0-by-0 at run time, the output is
0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-
length vectors (1-by-: or :-by-1), diag treats
the input as a matrix from which to extract
a diagonal vector. This behavior occurs even
if the input array is a vector at run time. To
force diag to build a matrix from variable-
size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-31

Name Product Remarks and Limitations

diag Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

disparity Computer Vision
System Toolbox

Compile-time constant input: Method.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

divide Fixed-Point
Designer

• Any non-fi input must be constant. Its value
must be known at compile time so that it can
be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not
supported.

dop2speed Phased Array
System Toolbox

Does not support variable-size inputs.

dopsteeringvec Phased Array
System Toolbox

Does not support variable-size inputs.

dot MATLAB —
double MATLAB —
double Fixed-Point

Designer
—

downsample Signal Processing
Toolbox

—

dpss Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-32

Name Product Remarks and Limitations

dsp.AdaptiveLatticeFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AffineProjectionFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AllpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

The System object supports code generation only
when the Structure property is set to Minimum
multiplier or Lattice.

dsp.AllpoleFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Denominator property is tunable
for code generation.

dsp.AnalyticSignal DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayPlot DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorAdder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorDivider DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorMultiplier DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ArrayVectorSubtractor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioFileReader DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioRecorder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioFileWriter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.AudioPlayer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-33

Name Product Remarks and Limitations

dsp.Autocorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BiquadFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgAREstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.BurgSpectrumEstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CepstralToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICCompensation-
Decimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICCompensation-
Interpolator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CICInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Convolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Counter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Crosscorrelator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CrossSpectrumEstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CumulativeProduct DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.CumulativeSum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DCBlocker DSP System
Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-34

Name Product Remarks and Limitations

dsp.DCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Delay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DelayLine DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalDownConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalUpConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.DigitalFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• The SOSMatrix and Scalevalues
properties are not supported for code
generation.

dsp.FarrowRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FastTransversalFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FFT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FilterCascade DSP System
Toolbox

• You cannot generate code directly from
dsp.FilterCascade. You can use the
generateFilteringCode method to
generate a MATLAB function. You can
generate C/C++ code from this MATLAB
function.

“System Objects in MATLAB Code Generation”
dsp.FilteredXLMSFilter DSP System

Toolbox
“System Objects in MATLAB Code Generation”

dsp.FIRDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-35

Name Product Remarks and Limitations

dsp.FIRFilter DSP System
Toolbox

• “System Objects in MATLAB Code
Generation”

• Only the Numerator property is tunable for
code generation.

dsp.FIRHalfbandDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRHalfbandInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FIRRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.FrequencyDomain-
AdaptiveFilter

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.HighpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Histogram DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.IDCT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IFFT DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IIRFilter DSP System
Toolbox

• Only the Numerator and Denominator
properties are tunable for code generation.

• “System Objects in MATLAB Code
Generation”

dsp.IIRHalfbandDecimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.IIRHalfbandInterpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-36

Name Product Remarks and Limitations

dsp.Interpolator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.KalmanFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LDLFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LevinsonSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LMSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowerTriangularSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LowpassFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToCepstral DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSF DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToLSP DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LPCToRC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSFToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LSPToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.LUFactor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Maximum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-37

Name Product Remarks and Limitations

dsp.Mean DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Median DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Minimum DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.NCO DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Normalizer DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakFinder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakToPeak DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PeakToRMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseExtractor DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.PhaseUnwrapper DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToAutocorrelation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RCToLPC DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RMS DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.RLSFilter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SampleRateConverter DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.ScalarQuantizerDecoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-38

Name Product Remarks and Limitations

dsp.ScalarQuantizerEncoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SignalSource DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.SineWave DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumAnalyzer DSP System
Toolbox

This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.SpectrumEstimator DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.StandardDeviation DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.StateLevels DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.TimeScope DSP System
Toolbox

This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.TransferFunction-
Estimator

DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UDPReceiver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UDPSender DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.UpperTriangularSolver DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableFractionDelay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VariableIntegerDelay DSP System
Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-39

Name Product Remarks and Limitations

dsp.Variance DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizerDecoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.VectorQuantizerEncoder DSP System
Toolbox

“System Objects in MATLAB Code Generation”

dsp.Window DSP System
Toolbox

• This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.ZeroCrossingDetector DSP System
Toolbox

“System Objects in MATLAB Code Generation”

edge Image Processing
Toolbox

The method, direction, and sigma arguments
must be a compile-time constants. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntax edge(im), where edge
does not return a value but displays an image
instead, is not supported.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

effearthradius Phased Array
System Toolbox

Does not support variable-size inputs.

42 Functions, Classes, and System Objects Supported for Code Generation

42-40

Name Product Remarks and Limitations

eig MATLAB • For code generation,QZ algorithm is
used in all cases. MATLAB can use
different algorithms for different inputs.
Consequently, V might represent a different
basis of eigenvectors. The eigenvalues in
D might not be in the same order as in
MATLAB.

• With one input, [V,D] = eig(A), the
results are similar to those obtained using
[V,D] = eig(A,eye(size(A)),'qz') in
MATLAB, except that for code generation,
the columns of V are normalized.

• Options 'balance', and 'nobalance' are
not supported for the standard eigenvalue
problem. 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.
• Does not support the option to calculate left

eigenvectors.
ellip Signal Processing

Toolbox
Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

ellipap Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

ellipke MATLAB —
ellipord Signal Processing

Toolbox
All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

end MATLAB —
end Fixed-Point

Designer
—

epipolarLine Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-41

Name Product Remarks and Limitations

eps MATLAB —
eps Fixed-Point

Designer
• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi

single and fi double signals.
eq MATLAB —
eq Fixed-Point

Designer
Not supported for fixed-point signals with
different biases.

erf MATLAB —
erfc MATLAB —
erfcinv MATLAB —
erfcx MATLAB —
erfinv MATLAB —
error MATLAB For standalone code generation, excluded from

the generated code.
espritdoa Phased Array

System Toolbox
Does not support variable-size inputs.

estimateFundamental-

Matrix

Computer Vision
System Toolbox

Compile-time constant input: Method,
OutputClass, DistanceType, and
ReportRuntimeError.
Supports MATLAB Function block: Yes

estimateGeometric-

Transform

Computer Vision
System Toolbox

Compile-time constant input: transformType
Supports MATLAB Function block: No

estimateUncalibrated-

Rectification

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

eul2quat Robotics System
Toolbox

Supports MATLAB Function block: No

eul2rotm Robotics System
Toolbox

Supports MATLAB Function block: No

eul2tform Robotics System
Toolbox

Supports MATLAB Function block: No

42 Functions, Classes, and System Objects Supported for Code Generation

42-42

Name Product Remarks and Limitations

evcdf Statistics
and Machine
Learning Toolbox

—

evinv Statistics
and Machine
Learning Toolbox

—

evpdf Statistics
and Machine
Learning Toolbox

—

evrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
evstat Statistics

and Machine
Learning Toolbox

—

exp MATLAB —
expcdf Statistics

and Machine
Learning Toolbox

—

expint MATLAB —
expinv Statistics

and Machine
Learning Toolbox

—

expm MATLAB —
expm1 MATLAB —
exppdf Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-43

Name Product Remarks and Limitations

exprnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
expstat Statistics

and Machine
Learning Toolbox

—

extractFeatures Computer Vision
System Toolbox

Generates platform-dependent library: Yes for
BRISK, FREAK, and SURF methods only.
Compile-time constant input restrictions:
'Method'

Supports MATLAB Function block: Yes for
Block method only.
Generated code for this function uses a
precompiled platform-specific shared library.

extractHOGFeatures Computer Vision
System Toolbox

Supports MATLAB Function block: No

extractLBPFeatures Computer Vision
System Toolbox

Generates platform-dependent library: No
Supports MATLAB Function block: Yes

extrinsics Computer Vision
System Toolbox

Supports MATLAB Function block: No

eye MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
eye method for other classes. For example,
eye(m, n, 'myclass’) does not invoke
myclass.eye(m,n).

• Size arguments must have a fixed size.
factor MATLAB • The maximum double precision input is

2^33.
• The maximum single precision input is 2^25.
• The input n cannot have type int64 or

uint64.

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-44

Name Product Remarks and Limitations

factorial MATLAB —
false MATLAB • Dimensions must be real, nonnegative,

integers.
fcdf Statistics

and Machine
Learning Toolbox

—

fclose MATLAB —
feof MATLAB —
fft MATLAB • The length of the input vector must be a

power of 2.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

fft2 MATLAB • The length of the input matrix dimensions
must each be a power of 2.

fftn MATLAB • The siz argument must have a fixed size.
• The length of the input matrix dimensions

must each be a power of 2.
fftshift MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-45

Name Product Remarks and Limitations

fi Fixed-Point
Designer

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without input
arguments is not supported.

• The rand
fi('PropertyName',PropertyValue...)

is not supported. To use property name/
property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• If the input value is not known at
compile time, you must provide complete
numerictype information.

• All properties related to data type must be
constant for code generation.

• numerictype object information must be
available for non-fixed-point Simulink inputs.

fieldnames MATLAB Does not support objects. The input must be a
structure.

filter MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

filter Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

filter2 MATLAB —
filtfilt Signal Processing

Toolbox
Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

42 Functions, Classes, and System Objects Supported for Code Generation

42-46

Name Product Remarks and Limitations

fimath Fixed-Point
Designer

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

• If the ProductMode property of the
fimath object is set to anything other than
FullPrecision, the ProductWordLength
and ProductFractionLength properties
must be constant.

• If the SumMode property of the fimath
object is set to anything other than
FullPrecision, the SumWordLength and
SumFractionLength properties must be
constant.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-47

Name Product Remarks and Limitations

find MATLAB • Issues an error if a variable-size input
becomes a row vector at run time.

Note: This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-size inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends on
the upper bounds of the size of the input. The
output might not match MATLAB when the
input array is a scalar or [] at run time. If the
input is a variable-length row vector, the size
of an empty output is 1-by-0, otherwise it is
0-by-1.

• Always returns a variable-length vector.
Even when you provide the output vector k,
the output cannot be fixed-size because the
output can contain fewer than k elements.
For example, find(x,1) returns a variable-
length vector with 1 or 0 elements.

findpeaks Signal Processing
Toolbox

—

finv Statistics
and Machine
Learning Toolbox

—

fir1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

fir2 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

firceqrip DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

42 Functions, Classes, and System Objects Supported for Code Generation

42-48

Name Product Remarks and Limitations

fircls Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

fircls1 Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

fireqint DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firgr DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firls Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

firminphase DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-49

Name Product Remarks and Limitations

firpm Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

firpmord Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

fitgeotrans Image Processing
Toolbox

The transformtype argument must be
a compile-time constant. The function
supports the following transformation
types: 'nonreflectivesimilarity',
'similarity', 'affine', or 'projective'.

fix MATLAB —
fix Fixed-Point

Designer
—

fixed.Quantizer Fixed-Point
Designer

—

flattopwin Signal Processing
Toolbox

All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

flintmax MATLAB —
flip MATLAB Does not support cell arrays for the first

argument.
flip Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

flipdim MATLAB Does not support cell arrays for the first
argument.

fliplr MATLAB Does not support cell arrays.
fliplr Fixed-Point

Designer
—

flipud MATLAB Does not support cell arrays.
flipud Fixed-Point

Designer
—

42 Functions, Classes, and System Objects Supported for Code Generation

42-50

Name Product Remarks and Limitations

floor MATLAB —
floor Fixed-Point

Designer
—

fminsearch MATLAB • Ignores the Display option. Does not print
status information during execution. Test the
exitflag output for the exit condition.

• The output structure does not include the
algorithm or message fields.

• Ignores the OutputFcn and PlotFcns
options.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-51

Name Product Remarks and Limitations

fopen MATLAB • Does not support:

• machineformat, encoding, or fileID
inputs

• message output
• fopen('all')

• If you disable extrinsic calls, you cannot
return fileIDs created with fopen to
MATLAB or extrinsic functions. You can use
such fileIDs only internally.

• When generating C/C++ executables, static
libraries, or dynamic libraries, you can open
up to 20 files.

• The generated code does not report errors
from invalid file identifiers. Write your own
file open error handling in your MATLAB
code. Test whether fopen returns -1,
which indicates that the file open failed. For
example:

...

fid = fopen(filename, 'r');

if fid == -1

 % fopen failed

else

% fopen successful, okay to call fread

A = fread(fid);

...

• The behavior of the generated code for fread
is compiler-dependent if you:

1 Open a file using fopen with a
permission of a+.

2 Read the file using fread before calling
an I/O function, such as fseek or

42 Functions, Classes, and System Objects Supported for Code Generation

42-52

Name Product Remarks and Limitations

frewind, that sets the file position
indicator.

for MATLAB —
for Fixed-Point

Designer
—

fpdf Statistics
and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-53

Name Product Remarks and Limitations

fprintf MATLAB • Does not support:

• b and t subtypes on %u, %o %x, and %X
formats.

• $ flag for reusing input arguments.
• printing arrays.

• There is no automatic casting. Input
arguments must match their format types for
predictable results.

• Escaped characters are limited to the decimal
range of 0–127.

• A call to fprintf with fileID equal to 1 or
2 becomes printf in the generated C/C++
code in the following cases:

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When the MATLAB behavior differs from the
C compiler behavior, fprintf matches the C
compiler behavior in the following cases:

• The format specifier has a corresponding
C format specifier, for example, %e or %E.

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When you call fprintf with the format
specifier %s, do not put a null character
in the middle of the input string. Use
fprintf(fid, '%c', char(0)) to write a
null character.

• When you call fprintf with an integer
format specifier, the type of the integer
argument must be a type that the target
hardware can represent as a native C type.
For example, if you call fprintf('%d',

42 Functions, Classes, and System Objects Supported for Code Generation

42-54

Name Product Remarks and Limitations

int64(n)), the target hardware must
have a native C type that supports a 64-bit
integer.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-55

Name Product Remarks and Limitations

fread MATLAB • precision must be a constant.
• The source and output that precision

specifies cannot have values long, ulong,
unsigned long, bitN, or ubitN.

• You cannot use the machineformat input.
• If the source or output that precision

specifies is a C type, for example, int, the
target and production sizes for that type
must:

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies
must map directly to a C type on the target
hardware.

• If the fread call reads the entire file, all
of the data must fit in the largest array
available for code generation.

• If sizeA is not constant or contains a
nonfinite element, then dynamic memory
allocation is required.

• Treats a char value for source or output
as a signed 8-bit integer. Use values between
0 and 127 only.

• The generated code does not report file
read errors. Write your own file read error
handling in your MATLAB code. Test that
the number of bytes read matches the
number of bytes that you requested. For
example:

...

N = 100;

[vals, numRead] = fread(fid, N, '*double');

if numRead ~= N

 % fewer elements read than expected

42 Functions, Classes, and System Objects Supported for Code Generation

42-56

Name Product Remarks and Limitations
end

...

freqspace MATLAB —
freqz Signal Processing

Toolbox
• Does not support variable-size inputs.
• When called with no output arguments,

and without a semicolon at the end, freqz
returns the complex frequency response of
the input filter, evaluated at 512 points.

If the semicolon is added, the function
produces a plot of the magnitude and phase
response of the filter.

See “freqz With No Output Arguments”.
frewind MATLAB —
frnd Statistics

and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
fspecial Image Processing

Toolbox
Inputs must be compile-time constants.
Expressions or variables are allowed if their
values do not change.

fspl Phased Array
System Toolbox

Does not support variable-size inputs.

fstat Statistics
and Machine
Learning Toolbox

—

full MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-57

Name Product Remarks and Limitations

fzero MATLAB • The first argument must be a function
handle. Does not support structure, inline
function, or string inputs for the first
argument.

• Supports up to three output arguments. Does
not support the fourth output argument (the
output structure).

gain2aperture Phased Array
System Toolbox

Does not support variable-size inputs.

gamcdf Statistics
and Machine
Learning Toolbox

—

gaminv Statistics
and Machine
Learning Toolbox

—

gamma MATLAB —
gammainc MATLAB Output is always complex.
gammaincinv MATLAB Output is always complex.
gammaln MATLAB —
gampdf Statistics

and Machine
Learning Toolbox

—

gamrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gamstat Statistics

and Machine
Learning Toolbox

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-58

Name Product Remarks and Limitations

gausswin Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

gccphat Phased Array
System Toolbox

Does not support variable-size inputs.

gcd MATLAB —
ge MATLAB —
ge Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
generateCheckerboard-

Points

Computer Vision
System Toolbox

Supports MATLAB Function block: No

geocdf Statistics
and Machine
Learning Toolbox

—

geoinv Statistics
and Machine
Learning Toolbox

—

geomean Statistics
and Machine
Learning Toolbox

—

geopdf Statistics
and Machine
Learning Toolbox

—

geornd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
geostat Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-59

Name Product Remarks and Limitations

get Fixed-Point
Designer

• The syntax structure = get(o) is not
supported.

getlsb Fixed-Point
Designer

—

getmsb Fixed-Point
Designer

—

getrangefromclass Image Processing
Toolbox

—

gevcdf Statistics
and Machine
Learning Toolbox

—

gevinv Statistics
and Machine
Learning Toolbox

—

gevpdf Statistics
and Machine
Learning Toolbox

—

gevrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gevstat Statistics

and Machine
Learning Toolbox

—

global2localcoord Phased Array
System Toolbox

Does not support variable-size inputs.

gpcdf Statistics
and Machine
Learning Toolbox

—

gpinv Statistics
and Machine
Learning Toolbox

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-60

Name Product Remarks and Limitations

gppdf Statistics
and Machine
Learning Toolbox

—

gprnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
gpstat Statistics

and Machine
Learning Toolbox

—

gradient MATLAB —
grayconnected Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

grazingang Phased Array
System Toolbox

Does not support variable-size inputs.

gt MATLAB —
gt Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
hadamard MATLAB n must be a fixed-size scalar.
hamming Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

hankel MATLAB —
hann Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

harmmean Statistics
and Machine
Learning Toolbox

—

hdl.RAM MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-61

Name Product Remarks and Limitations

hex2dec MATLAB Does not support cell arrays.
hex2num MATLAB • Does not support cell arrays.

• For n = hex2num(S), size(S,2) <=
length(num2hex(0))

hilb MATLAB —
hist MATLAB • Histogram bar plotting not supported. Call

with at least one output argument.
• If supplied, the second argument x must be a

scalar constant.
• Inputs must be real.

For the syntax [nout, xout] = hist(y,x):

• When y is a fixed-size vector or variable-
length vector:

• nout is always a row vector.
• If x is a vector, xout is a vector with the

same orientation as x.
• If x is a scalar (fixed-size), xout is a row

vector.
• nout and xout are column vectors when the

following conditions are true:

• y is a matrix
• size(y,1) and size(y,2) do not have

fixed length 1
• One of size(y,1) and size(y,2) has

length 1 at run time
• A variable-size x is interpreted as a vector

input even if it is a scalar at run time.
• If at least one of the inputs is empty, vector

orientations in the output can differ from
MATLAB.

42 Functions, Classes, and System Objects Supported for Code Generation

42-62

Name Product Remarks and Limitations

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

histeq Image Processing
Toolbox

All the syntaxes that include indexed images are
not supported. This includes all syntaxes that
accept map as input and return newmap.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

hom2cart Robotics System
Toolbox

Supports MATLAB Function block: No

horizonrange Phased Array
System Toolbox

Does not support variable-size inputs.

horzcat Fixed-Point
Designer

—

hough Image Processing
Toolbox

The optional parameter names 'Theta' and
'RhoResolution' must be compile-time string
constants. The optional Theta vector must have
a bounded size.

houghlines Image Processing
Toolbox

The optional parameter names 'FillGap'
and 'MinLength' must be compile-time string
constants. Their associated values need not be
compile-time constants.

houghpeaks Image Processing
Toolbox

The optional parameter names 'Threshold'
and 'NHoodSize' must be compile-time string
constants. Their associated values need not be
compile-time constants.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-63

Name Product Remarks and Limitations

hygecdf Statistics
and Machine
Learning Toolbox

—

hygeinv Statistics
and Machine
Learning Toolbox

—

hygepdf Statistics
and Machine
Learning Toolbox

—

hygernd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
hygestat Statistics

and Machine
Learning Toolbox

—

hypot MATLAB —
icdf Statistics

and Machine
Learning Toolbox

—

idct Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

if, elseif, else MATLAB —
idivide MATLAB • For efficient generated code, MATLAB rules

for divide by zero are supported only for the
'round' option.

42 Functions, Classes, and System Objects Supported for Code Generation

42-64

Name Product Remarks and Limitations

ifft MATLAB • The length of the input vector must be a
power of 2.

• Output of ifft block is complex.
• Does not support the 'symmetric' option.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

ifft2 MATLAB • The length of the input matrix dimensions
must each be a power of 2.

• Does not support the 'symmetric' option.
ifftn MATLAB • Does not support the 'symmetric' option.

• The siz argument must have a fixed size.
• The length of the input matrix dimensions

must each be a power of 2.
ifftshift MATLAB —
ifir DSP System

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iircomb DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-65

Name Product Remarks and Limitations

iirlpnormc DSP System
Toolbox

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirparameq DSP System
Toolbox

—

iirpeak DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

im2double MATLAB —
im2int16 Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

im2single Image Processing
Toolbox

—

im2uint8 Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

im2uint16 Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imabsdiff Image Processing
Toolbox

—

imadjust Image Processing
Toolbox

Does not support syntaxes that include indexed
images. This includes all syntaxes that accept
map as input and return newmap.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-66

Name Product Remarks and Limitations

imag MATLAB —
imag Fixed-Point

Designer
—

imaq.VideoDevice Image
Acquisition
Toolbox™

“Code Generation with VideoDevice System
Object”

imbothat Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imclearborder Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant. Supports only up to
3-D inputs.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imclose Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imcomplement Image Processing
Toolbox

Does not support int64 and uint64 data types.

imcrop Image Processing
Toolbox

The interactive syntaxes, such as I2 = imcrop,
are not supported. Indexed images are not
supported, including the noninteractive syntax
X2 = imcrop(X,map,rect);.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-67

Name Product Remarks and Limitations

imdilate Image Processing
Toolbox

The input image IM must be either 2-D or 3-
D image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must be a
single element—arrays of structuring elements
are not supported. To obtain the same result
as that obtained using an array of structuring
elements, call the function sequentially.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imerode Image Processing
Toolbox

The input image IM must be either 2-D or 3-
D image. The SE, PACKOPT, and SHAPE input
arguments must be a compile-time constant.
The structuring element argument SE must be a
single element—arrays of structuring elements
are not supported. To obtain the same result
as that obtained using an array of structuring
elements, call the function sequentially.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imextendedmax Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imextendedmin Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-68

Name Product Remarks and Limitations

imfill Image Processing
Toolbox

The optional input connectivity, conn and the
string 'holes' must be compile-time constants.

Supports only up to 3-D inputs.

The interactive mode to select points,
imfill(BW,0,CONN) is not supported in code
generation.

locations can be a P-by-1 vector, in which
case it contains the linear indices of the
starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row
contains the array indices of one of the starting
locations. Once you select a format at compile-
time, you cannot change it at run time. However,
the number of points in locations can be varied
at run time.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imfilter Image Processing
Toolbox

The input image can be either 2-D or 3-D. The
value of the input argument, options, must be
a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imgaborfilt Image Processing
Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-69

Name Product Remarks and Limitations

imhist Image Processing
Toolbox

The optional second input argument, n, must
be a compile-time constant. In addition,
nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist
displays the histogram are not supported.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imhmax Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imhmin Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imlincomb Image Processing
Toolbox

The output_class argument must be a
compile-time constant. You can specify up to
four input image arguments.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

immse Image Processing
Toolbox

—

imopen Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-70

Name Product Remarks and Limitations

imquantize Image Processing
Toolbox

—

imreconstruct Image Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imref2d Image Processing
Toolbox

The XWorldLimits, YWorldLimits and
ImageSize properties can be set only during
object construction. When generating code, you
can only specify single objects—arrays of objects
are not supported.

imref3d Image Processing
Toolbox

The XWorldLimits, YWorldLimits,
ZWorldLimits and ImageSize properties can
be set only during object construction. When
generating code, you can only specify single
objects—arrays of objects are not supported.

imregionalmax Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imregionalmin Image Processing
Toolbox

The optional second input argument, conn, must
be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imresize Image Processing
Toolbox

Does not support indexed images or custom
interpolation kernels. The Scale, OutputSize
and all parameter-value pair input arguments
must be compile-time constants.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-71

Name Product Remarks and Limitations

imrotate Image Processing
Toolbox

The angle, method, and bbox arguments must
be compile-time constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imtophat Image Processing
Toolbox

The input image IM must be either 2-D or 3-D
image. The structuring element input argument
SE must be a compile-time constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imtranslate Image Processing
Toolbox

The supports only 2-D translation vectors. 3-D
translations are not supported

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

imwarp Image Processing
Toolbox

The geometric transformation object
input, tform, must be either affine2d or
projective2d. Additionally, the interpolation
method and optional parameter names must be
string constants.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

inf MATLAB • Dimensions must be real, nonnegative,
integers.

42 Functions, Classes, and System Objects Supported for Code Generation

42-72

Name Product Remarks and Limitations

insertMarker Computer Vision
System Toolbox

Compile-time constant input: marker
Supports MATLAB Function block: Yes

insertShape Computer Vision
System Toolbox

Compile-time constant input: shape and
SmoothEdges

Supports MATLAB Function block: Yes
insertText Computer Vision

System Toolbox
Compile-time constant input: Font, FontSize
Supports non-ASCII characters: No
Supports MATLAB Function block: Yes

int8, int16, int32, int64 MATLAB No integer overflow detection for int64 in
MEX or MATLAB Function block simulation on
Windows 32-bit platforms.

int8, int16, int32, int64 Fixed-Point
Designer

—

integralBoxFilter Image Processing
Toolbox

The FilterSize input argument and the
'NormalizationFactor' parameter must be
compile-time constants.

integralImage Computer Vision
System Toolbox

Supports MATLAB Function block: Yes

interp1 MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

interp1q MATLAB Might not match MATLAB when some Y values
are Inf or NaN.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-73

Name Product Remarks and Limitations

interp2 MATLAB • Xq and Yq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.
• For the 'cubic' method, reports an error if

the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

• Use meshgrid to create the inputs Xq
and Yq.

• Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

interp3 MATLAB • Xq, Yq, and Zq must be the same size. Use
meshgrid to evaluate on a grid.

• For best results, provide X, Y, and Z as
vectors.

• For the 'cubic' method, reports an error if
the grid does not have uniform spacing. In
this case, use the 'spline' method.

• For best results when you use the 'spline'
method:

• Use meshgrid to create the inputs Xq,
Yq, and Zq.

• Use a small number of interpolation
points relative to the dimensions of V.
Interpolating over a large set of scattered
points can be inefficient.

42 Functions, Classes, and System Objects Supported for Code Generation

42-74

Name Product Remarks and Limitations

intersect MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-75

Name Product Remarks and Limitations

is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
45-4.

intfilt Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

intlut Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

intmax MATLAB —
intmin MATLAB —
inv MATLAB Singular matrix inputs can produce nonfinite

values that differ from MATLAB results.
invhilb MATLAB —
ipermute MATLAB • Does not support cell arrays for the first

argument.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

ipermute Fixed-Point
Designer

—

iptcheckconn Image Processing
Toolbox

Input arguments must be compile-time
constants.

iptcheckmap Image Processing
Toolbox

—

iqcoef2imbal Communications
System Toolbox

—

iqimbal2coef Communications
System Toolbox

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-76

Name Product Remarks and Limitations

iqr Statistics
and Machine
Learning Toolbox

—

isa MATLAB —
isbanded MATLAB —
iscell MATLAB —
iscellstr MATLAB —
ischar MATLAB —
iscolumn MATLAB —
iscolumn Fixed-Point

Designer
—

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for other targets
isdiag MATLAB —
isempty MATLAB —
isempty Fixed-Point

Designer
—

isEpipoleInImage Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

isequal MATLAB —
isequal Fixed-Point

Designer
—

isequaln MATLAB —
isfi Fixed-Point

Designer
—

isfield MATLAB • Does not support cell arrays for the second
argument

isfimath Fixed-Point
Designer

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-77

Name Product Remarks and Limitations

isfimathlocal Fixed-Point
Designer

—

isfinite MATLAB —
isfinite Fixed-Point

Designer
—

isfloat MATLAB —
ishermitian MATLAB —
isinf MATLAB —
isinf Fixed-Point

Designer
—

isinteger MATLAB —
isletter MATLAB • Input values from the char class must be in

the range 0-127.
islogical MATLAB —
ismac MATLAB • Returns true or false based on the MATLAB

version used for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
ismatrix MATLAB —
ismcc MATLAB

Compiler
• Returns true and false as appropriate for

MEX and SIM targets.
• Returns false for other targets.

ismember MATLAB • Does not support cell arrays for the first or
second arguments.

• The second input, B, must be sorted in
ascending order.

• Complex inputs must be single or double.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts” on page
45-4.

isnan MATLAB —

42 Functions, Classes, and System Objects Supported for Code Generation

42-78

Name Product Remarks and Limitations

isnan Fixed-Point
Designer

—

isnumeric MATLAB —
isnumeric Fixed-Point

Designer
—

isnumerictype Fixed-Point
Designer

—

isobject MATLAB —
ispc MATLAB • Returns true or false based on the MATLAB

version you use for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
isprime MATLAB • The maximum double precision input is

2^33.
• The maximum single precision input is 2^25.
• The input X cannot have type int64 or

uint64.
isreal MATLAB —
isreal Fixed-Point

Designer
—

isrow MATLAB —
isrow Fixed-Point

Designer
—

isscalar MATLAB —
isscalar Fixed-Point

Designer
—

issigned Fixed-Point
Designer

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-79

Name Product Remarks and Limitations

issorted MATLAB • Does not support cell arrays for the first
argument.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30.

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
45-4.

isspace MATLAB • Input values from the char class must be in
the range 0–127.

issparse MATLAB —
isstrprop MATLAB • Supports only inputs from char and

integer classes.
• Input values must be in the range 0-127.

isstruct MATLAB —
issymmetric MATLAB —
istrellis Communications

System Toolbox
—

istril MATLAB —
istriu MATLAB —
isunix MATLAB • Returns true or false based on the MATLAB

version used for code generation.
• Use only when the code generation target is

S-function (Simulation) or MEX-function.
isvector MATLAB —
isvector Fixed-Point

Designer
—

kaiser Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

kaiserord Signal Processing
Toolbox

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-80

Name Product Remarks and Limitations

kron MATLAB —
kmeans Statistics

and Machine
Learning Toolbox

• If the Start method uses random selections,
the initial centroid cluster positions might
not match MATLAB.

• If the number of rows in X is fixed, does not
remove rows of X that contain a NaN.

• The cluster centroid locations in C can
have a different order than in MATLAB. In
this case, the cluster indices in idx have
corresponding differences.

• If you provide Display, its value must be
'off'.

• If you provide Streams, it must be empty
and UseSubstreams must be false.

• When you set the UseParallel option to
true, some computations can execute in
parallel even when Replicates is 1. For
large data sets, when Replicates is 1,
consider setting the UseParallel option to
true.

kurtosis Statistics
and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-81

Name Product Remarks and Limitations

label2rgb Image Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix,
map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function or
a function handle of a colormap function.

• If you set the boundary color zerocolor
to the same color as one of the regions,
label2rgb does not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

lcm MATLAB —
lcmvweights Phased Array

System Toolbox
Does not support variable-size inputs.

ldivide MATLAB —
le MATLAB —
le Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
length MATLAB —
length Fixed-Point

Designer
—

levinson Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

lineToBorderPoints Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes

42 Functions, Classes, and System Objects Supported for Code Generation

42-82

Name Product Remarks and Limitations

linsolve MATLAB • The option structure must be a constant.
• Supports only a scalar option structure

input. It does not support arrays of option
structures.

• Only optimizes these cases:

• UT

• LT

• UHESS = true (the TRANSA can be either
true or false)

• SYM = true and POSDEF = true

Other options are equivalent to using
mldivide.

linspace MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-83

Name Product Remarks and Limitations

load MATLAB • Use only when generating MEX or code for
Simulink simulation. To load compile-time
constants, use coder.load.

• Does not support use of the function without
assignment to a structure or array. For
example, use S = load(filename), not
load(filename).

• The output S must be the name of a structure
or array without any subscripting. For
example, S(i) = load('myFile.mat') is
not allowed.

• Arguments to load must be compile-time
constant strings.

• Does not support loading objects.
• If the MAT-file contains

unsupported constructs, use
load(filename,variables) to load only
the supported constructs.

• You cannot use save in a function intended
for code generation. The code generation
software does not support the save
function. Furthermore, you cannot use
coder.extrinsic with save. Prior to
generating code, you can use save to save
the workspace data to a MAT-file.

You must use coder.varsize to explicitly
declare variable-size data loaded using the
load function.

local2globalcoord Phased Array
System Toolbox

Does not support variable-size inputs.

42 Functions, Classes, and System Objects Supported for Code Generation

42-84

Name Product Remarks and Limitations

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —
log10 MATLAB —
log1p MATLAB —
logical MATLAB —
logical Fixed-Point

Designer
—

logncdf Statistics
and Machine
Learning Toolbox

—

logninv Statistics
and Machine
Learning Toolbox

—

lognpdf Statistics
and Machine
Learning Toolbox

—

lognrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
lognstat Statistics

and Machine
Learning Toolbox

—

logspace MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-85

Name Product Remarks and Limitations

lower MATLAB • Supports only char inputs. Does not support
cell arrays.

• Input values must be in the range 0-127.
lowerbound Fixed-Point

Designer
—

lsb Fixed-Point
Designer

• Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi

single and double signals.
lsqnonneg MATLAB • You must enable support for variable-size

arrays.
• The message string in the output structure

output (the fifth output) is not translated.
lt MATLAB —
lteZadoffChuSeq Communications

System Toolbox
—

lt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

lu MATLAB —
mad Statistics

and Machine
Learning Toolbox

Input dim cannot be empty.

magic MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

matchFeatures Computer Vision
System Toolbox

Generates platform-dependent library: Yes for
MATLAB host. The function generates portable
C code for non-host target.
Compile-time constant input: Method and
Metric.
Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-86

Name Product Remarks and Limitations

max MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts” on page
45-4..

max Fixed-Point
Designer

—

maxflat Signal Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

mdltest Phased Array
System Toolbox

Does not support variable-size inputs.

mean MATLAB • Does not support the 'native' output class
option for integer types.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
mean Fixed-Point

Designer
N/A

mean2 Image Processing
Toolbox

—

medfilt2 Image Processing
Toolbox

The padopt argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-87

Name Product Remarks and Limitations

median MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts” on page
45-4.

median Fixed-Point
Designer

—

meshgrid MATLAB —
mfilename MATLAB —
min MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
• “Code Generation for Complex Data with

Zero-Valued Imaginary Parts” on page
45-4.

min Fixed-Point
Designer

—

minus MATLAB —
minus Fixed-Point

Designer
• Any non-fi input must be constant. Its value

must be known at compile time so that it can
be cast to a fi object.

42 Functions, Classes, and System Objects Supported for Code Generation

42-88

Name Product Remarks and Limitations

mkpp MATLAB • The output structure pp differs from the pp
structure in MATLAB. In MATLAB, ppval
cannot use the pp structure from the code
generation software. For code generation,
ppval cannot use a pp structure created by
MATLAB. unmkpp can use a MATLAB pp
structure for code generation.

To create a MATLAB pp structure from a
pp structure created by the code generation
software:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

• If you do not provide d, then coefs must be
two-dimensional and have a fixed number of
columns. In this case, the number of columns
is the order.

• To define a piecewise constant polynomial,
coefs must be a column vector or d must
have at least two elements.

• If you provide d and d is 1, d must be a
constant. Otherwise, if the input to ppval is
nonscalar, the shape of the output of ppval
can differ from ppval in MATLAB.

• If you provide d, it must have a fixed length.
One of the following sets of statements must
be true:

1 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,j) = d(j)

size(coefs,m+1) = npieces

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-89

Name Product Remarks and Limitations
size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be
fixed length.

2 Suppose that m = length(d) and
npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed
length.

• If you do not provide d, the following
statements must be true:

Suppose that m = length(d) and npieces
= length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.
mldivide MATLAB —
mnpdf Statistics

and Machine
Learning Toolbox

—

mod MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB due
to differences in rounding errors.

If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

mode MATLAB • Does not support third output argument C
(cell array).

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

42 Functions, Classes, and System Objects Supported for Code Generation

42-90

Name Product Remarks and Limitations

moment Statistics
and Machine
Learning Toolbox

If order is nonintegral and X is real, use
moment(complex(X), order).

mpower MATLAB If A is a 2-by-2 or larger matrix and B is Inf or -
Inf, mpower(A,B) returns a matrix of NaNs.

mpower Fixed-Point
Designer

• The exponent input, k, must be constant;
that is, its value must be known at compile
time.

• Variable-size inputs are supported only
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-size signals, you can see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
size signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-91

Name Product Remarks and Limitations

mpy Fixed-Point
Designer

• Code generation in MATLAB does not
support the syntax F.mpy(a,b). You must
use the syntax mpy(F,a,b).

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —
mrdivide Fixed-Point

Designer
—

MSERRegions Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: Yes
For code generation, you must specify both the
pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

mtimes MATLAB • Multiplication of pure imaginary numbers
by non-finite numbers might not match
MATLAB. The code generation software
does not specialize multiplication by pure
imaginary numbers—it does not eliminate
calculations with the zero real part. For
example, (Inf + 1i)*1i = (Inf*0 –
1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-92

Name Product Remarks and Limitations

mtimes Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

• In generated code, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath.

• In MATLAB, the output for variable-
sized signals is computed using the
SumMode property of the governing
fimath when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

multithresh Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

mvdrweights Phased Array
System Toolbox

Does not support variable-size inputs.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

nancov Statistics
and Machine
Learning Toolbox

If the input is variable-size and is [] at run
time, returns [] not NaN.

nanmax Statistics
and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-93

Name Product Remarks and Limitations

nanmean Statistics
and Machine
Learning Toolbox

—

nanmedian Statistics
and Machine
Learning Toolbox

—

nanmin Statistics
and Machine
Learning Toolbox

—

nanstd Statistics
and Machine
Learning Toolbox

—

nansum Statistics
and Machine
Learning Toolbox

—

nanvar Statistics
and Machine
Learning Toolbox

—

nargchk MATLAB • Output structure does not include stack
information.

Note: nargchk will be removed in a future
release.

nargin MATLAB —
narginchk MATLAB —
nargout MATLAB • For a function with no output arguments,

returns 1 if called without a terminating
semicolon.

Note: This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

42 Functions, Classes, and System Objects Supported for Code Generation

42-94

Name Product Remarks and Limitations

nargoutchk MATLAB —
nbincdf Statistics

and Machine
Learning Toolbox

—

nbininv Statistics
and Machine
Learning Toolbox

—

nbinpdf Statistics
and Machine
Learning Toolbox

—

nbinrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
nbinstat Statistics

and Machine
Learning Toolbox

—

ncfcdf Statistics
and Machine
Learning Toolbox

—

ncfinv Statistics
and Machine
Learning Toolbox

—

ncfpdf Statistics
and Machine
Learning Toolbox

—

ncfrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-95

Name Product Remarks and Limitations

ncfstat Statistics
and Machine
Learning Toolbox

—

nchoosek MATLAB • When the first input, x, is a scalar,
nchoosek returns a binomial coefficient. In
this case, x must be a nonnegative integer. It
cannot have type int64 or uint64.

• When the first input, x, is a vector,
nchoosek treats it as a set. In this case, x
can have type int64 or uint64.

• The second input, k, cannot have type int64
or uint64.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

nctcdf Statistics
and Machine
Learning Toolbox

—

nctinv Statistics
and Machine
Learning Toolbox

—

nctpdf Statistics
and Machine
Learning Toolbox

—

nctrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
nctstat Statistics

and Machine
Learning Toolbox

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-96

Name Product Remarks and Limitations

ncx2cdf Statistics
and Machine
Learning Toolbox

—

ncx2rnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
ncx2stat Statistics

and Machine
Learning Toolbox

—

ndgrid MATLAB —
ndims MATLAB —
ndims Fixed-Point

Designer
—

ne MATLAB —
ne Fixed-Point

Designer
• Not supported for fixed-point signals with

different biases.
nearest Fixed-Point

Designer
—

nextpow2 MATLAB —
nnz MATLAB —
noisepow Phased Array

System Toolbox
Does not support variable-size inputs.

nonzeros MATLAB —
norm MATLAB —
normcdf Statistics

and Machine
Learning Toolbox

—

normest MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-97

Name Product Remarks and Limitations

norminv Statistics
and Machine
Learning Toolbox

—

normpdf Statistics
and Machine
Learning Toolbox

—

normrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
normstat Statistics

and Machine
Learning Toolbox

—

not MATLAB —
npwgnthresh Phased Array

System Toolbox
Does not support variable-size inputs.

nthroot MATLAB —
null MATLAB • Might return a different basis than MATLAB

• Does not support rational basis option
(second input)

num2hex MATLAB —
numberofelements Fixed-Point

Designer
numberofelements will be removed in a future
release. Use numel instead.

numel MATLAB —
numel Fixed-Point

Designer
—

42 Functions, Classes, and System Objects Supported for Code Generation

42-98

Name Product Remarks and Limitations

numerictype Fixed-Point
Designer

• Fixed-point signals coming into a MATLAB
Function block from Simulink are assigned
a numerictype object that is populated
with the signal's data type and scaling
information.

• Returns the data type when the input is a
nonfixed-point signal.

• Use to create numerictype objects in the
generated code.

• All numerictype object properties related to
the data type must be constant.

nuttallwin Signal Processing
Toolbox

Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

ocr Computer Vision
System Toolbox

Compile-time constant input: TextLayout,
Language, and CharacterSet.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: No

ode23 MATLAB • All odeset option arguments must be
constant.

• Does not support a constant mass matrix in
the options structure. Provide a mass matrix
as a function .

• You must provide at least the two output
arguments T and Y.

• Input types must be homogeneous—all
double or all single.

• Variable-sizing support must be enabled.
Requires dynamic memory allocation when
tspan has two elements or you use event
functions.

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-99

Name Product Remarks and Limitations

ode45 MATLAB • All odeset option arguments must be
constant.

• Does not support a constant mass matrix in
the options structure. Provide a mass matrix
as a function .

• You must provide at least the two output
arguments T and Y.

• Input types must be homogeneous—all
double or all single.

• Variable-sizing support must be enabled.
Requires dynamic memory allocation when
tspan has two elements or you use event
functions.

odeget MATLAB The name argument must be constant.
odeset MATLAB All inputs must be constant.
ones MATLAB • Dimensions must be real, nonnegative

integers.
• The input optimfun must be a function

supported for code generation.
opticalFlow Computer Vision

System Toolbox
Supports MATLAB Function block: Yes

opticalFlowFarneback Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowHS Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLK Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLKDoG Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-100

Name Product Remarks and Limitations

optimget MATLAB Input parameter names must be constant.
optimset MATLAB • Does not support the syntax that has no

input or output arguments:

optimset

• Functions specified in the options must be
supported for code generation.

• The fields of the options structure oldopts
must be fixed-size fields.

• For code generation, optimization functions
ignore the Display option.

• Does not support the additional options in an
options structure created by the Optimization
Toolbox optimset function. If an input
options structure includes the additional
Optimization Toolbox options, the output
structure does not include them.

ordfilt2 Image Processing
Toolbox

The padopt argument must be a compile-time
constant.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

or MATLAB —
orth MATLAB • Can return a different basis than MATLAB
padarray Image Processing

Toolbox
• Support only up to 3-D inputs.
• Input arguments, padval and direction

are expected to be compile-time constants.
parfor MATLAB Treated as a for-loop in a MATLAB Function

block.
parzenwin Signal Processing

Toolbox
Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

pascal MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-101

Name Product Remarks and Limitations

pca Statistics
and Machine
Learning Toolbox

• Ignores the 'Display' value for 'Options'
when 'Algorithm' is 'als'.

• If supplied, 'Weights' and
'VariableWeights' must be real.

• Always returns the fifth output explained
as a column vector.

• Always returns the sixth output mu as a row
vector.

• If mu is empty, pca returns mu as a 1-by-0
array. pca does not convert mu to a 0-by-0
empty array.

• Does not treat an input matrix X that has all
NaN values as a special case. The outputs
have the sizes that they have when some of
the inputs are finite.

pchip MATLAB • Input x must be strictly increasing.
• Does not remove y entries with NaN values.
• If you generate code for the pp =

pchip(x,y) syntax, you cannot input pp to
the ppval function in MATLAB. To create a
MATLAB pp structure from a pp structure
created by the code generation software:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

pdf Statistics
and Machine
Learning Toolbox

—

pearsrnd Statistics
and Machine
Learning Toolbox

Matches MATLAB only when generated output
r is scalar.

42 Functions, Classes, and System Objects Supported for Code Generation

42-102

Name Product Remarks and Limitations

permute MATLAB • Does not support cell arrays for the first
argument.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

permute Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

phased.ADPCACanceller Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.AngleDoppler-
Response

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ArrayGain Phased Array
System Toolbox

• Does not support arrays containing
polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• “System Objects in MATLAB Code

Generation”
phased.ArrayResponse Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.BarrageJammer Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.BeamscanEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Beamscan-
Estimator2D

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Beamspace-
ESPRITEstimator

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.CFARDetector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Collector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-103

Name Product Remarks and Limitations

phased.ConformalArray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Constant-
GammaClutter

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Cosine-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Crossed-
DipoleAntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Custom-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.Custom-
MicrophoneElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.DPCACanceller Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ElementDelay Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ESPRITEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-104

Name Product Remarks and Limitations

phased.FMCWWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.FreeSpace Phased Array

System Toolbox
• Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.FrostBeamformer Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.GCCEstimator Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.Isotropic-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.LCMVBeamformer Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.LinearFMWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.MatchedFilter Phased Array

System Toolbox
• The CustomSpectrumWindow property is

not supported.
• “System Objects in MATLAB Code

Generation”
phased.MFSKWaveform Phased Array

System Toolbox
• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-105

Name Product Remarks and Limitations

phased.MVDRBeamformer Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.MVDREstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.MVDREstimator2D Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Omnidirectional-
MicrophoneElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.PartitionedArray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.PhaseCoded-
Waveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.PhaseShift-
Beamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Platform Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.RadarTarget Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Radiator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Range-
DopplerResponse

Phased Array
System Toolbox

• The CustomRangeWindow and the
CustomDopplerWindow properties are not
supported.

• “System Objects in MATLAB Code
Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-106

Name Product Remarks and Limitations

phased.Rectangular-
Waveform

Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.ReceiverPreamp Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.ReplicatedSubarray Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.RootMUSICEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.RootWSFEstimator Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.ShortDipole-
AntennaElement

Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.STAPSMI-
Beamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SteeringVector Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.SteppedFMWaveform Phased Array
System Toolbox

• plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.StretchProcessor Phased Array

System Toolbox
“System Objects in MATLAB Code Generation”

phased.Subband-
MVDRBeamformer

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.SubbandPhase-
ShiftBeamformer

Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-107

Name Product Remarks and Limitations

phased.SumDifference-
MonopulseTracker

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.SumDifference-
MonopulseTracker2D

Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.TimeDelay-
Beamformer

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

phased.TimeDelayLCMV-
Beamformer

Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”

phased.TimeVaryingGain Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.Transmitter Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.TwoRayChannel Phased Array
System Toolbox

“System Objects in MATLAB Code Generation”

phased.UCA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ULA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

42 Functions, Classes, and System Objects Supported for Code Generation

42-108

Name Product Remarks and Limitations

phased.URA Phased Array
System Toolbox

• pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.WidebandCollector Phased Array
System Toolbox

• Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• “System Objects in MATLAB Code
Generation”.

phased.WidebandFreeSpace Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phased.WidebandRadiator Phased Array
System Toolbox

See “System Objects in MATLAB Code
Generation”.

phitheta2azel Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uv Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

physconst Phased Array
System Toolbox

Does not support variable-size inputs.

pi MATLAB —
pilotcalib Phased Array

System Toolbox
Does not support variable-size inputs.

pinv MATLAB —
planerot MATLAB “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

plus MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-109

Name Product Remarks and Limitations

plus Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

poisscdf Statistics
and Machine
Learning Toolbox

—

poissinv Statistics
and Machine
Learning Toolbox

—

poisspdf Statistics
and Machine
Learning Toolbox

—

poissrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
poisstat Statistics

and Machine
Learning Toolbox

—

pol2cart MATLAB —
pol2circpol Phased Array

System Toolbox
Does not support variable-size inputs.

polellip Phased Array
System Toolbox

Does not support variable-size inputs.

polloss Phased Array
System Toolbox

Does not support variable-size inputs.

polratio Phased Array
System Toolbox

Does not support variable-size inputs.

polsignature Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.

42 Functions, Classes, and System Objects Supported for Code Generation

42-110

Name Product Remarks and Limitations

poly MATLAB • Does not discard nonfinite input values
• Complex input produces complex output
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

polyarea MATLAB —
poly2trellis Communications

System Toolbox
—

polyder MATLAB The output can contain fewer NaNs than the
MATLAB output. However, if the input contains
a NaN, the output contains at least one NaN.

polyfit MATLAB “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

polyint MATLAB —
polyval MATLAB —
polyvalm MATLAB —
pow2 Fixed-Point

Designer
—

pow2db
Signal Processing
Toolbox

—

power MATLAB • Generates an error during simulation. When
both X and Y are real, but power(X,Y) is
complex, returns NaN in the generated code.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation. When
both X and Y are real, but X .^ Y is complex,
returns NaN in generated code. To get the
complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-111

Name Product Remarks and Limitations

power Fixed-Point
Designer

• The exponent input, k, must be constant. Its
value must be known at compile time.

ppval MATLAB The size of output v does not match MATLAB
when both of the following statements are true:

• The input x is a variable-size array that is
not a variable-length vector.

• x becomes a row vector at run time.

The code generation software does not remove
the singleton dimensions. However, MATLAB
might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array
(the first dimension is variable size with an
upper bound of 4 and the second dimension is
variable size with an upper bound of 5). Suppose
that ppval(pp,0) returns a 2-by-3 fixed-size
array. v has size 2-by-3-by-:4-by-:5. At run time,
suppose that, size(x,1) =1 and size (x,2) = 5. In
the generated code, the size(v) is [2,3,1,5]. In
MATLAB, the size is [2,3,5].

prctile Statistics
and Machine
Learning Toolbox

• “Automatic dimension restriction”
• If the output Y is a vector, the orientation

of Y differs from MATLAB when all of the
following are true:

• You do not supply the dim input.
• X is a variable-size array.
• X is not a variable-length vector.
• X is a vector at run time.
• The orientation of the vector X does not

match the orientation of the vector p.

In this case, the output Y matches the
orientation of X not the orientation of p.

42 Functions, Classes, and System Objects Supported for Code Generation

42-112

Name Product Remarks and Limitations

primes MATLAB • The maximum double precision input is
2^32.

• The maximum single precision input is 2^24.
• The input n cannot have type int64 or

uint64.
prod MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

projective2d Image Processing
Toolbox

When generating code, you can only specify
single objects—arrays of objects are not
supported.

psi MATLAB —
psnr Image Processing

Toolbox
—

pulsint Phased Array
System Toolbox

Does not support variable-size inputs.

qr MATLAB —
quad2d MATLAB • Generates a warning if the size of the

internal storage arrays is not large enough.
If a warning occurs, a possible workaround is
to divide the region of integration into pieces
and sum the integrals over each piece.

quadgk MATLAB —
quantile Statistics

and Machine
Learning Toolbox

—

quantize Fixed-Point
Designer

—

quat2axang Robotics System
Toolbox

Supports MATLAB Function block: No

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-113

Name Product Remarks and Limitations

quat2eul Robotics System
Toolbox

Supports MATLAB Function block: No

quat2rotm Robotics System
Toolbox

Supports MATLAB Function block: No

quat2tform Robotics System
Toolbox

Supports MATLAB Function block: No

quatconj Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset™ software.

quatdivide Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatinv Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmod Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatmultiply Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnorm Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

quatnormalize Aerospace
Toolbox

Code generation for this function requires the
Aerospace Blockset software.

radareqpow Phased Array
System Toolbox

Does not support variable-size inputs.

radareqrng Phased Array
System Toolbox

Does not support variable-size inputs.

radareqsnr Phased Array
System Toolbox

Does not support variable-size inputs.

radarvcd Phased Array
System Toolbox

Does not support variable-size inputs.

radialspeed Phased Array
System Toolbox

Does not support variable-size inputs.

42 Functions, Classes, and System Objects Supported for Code Generation

42-114

Name Product Remarks and Limitations

rand MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
rand method for other classes. For example,
rand(sz,'myclass’) does not invoke
myclass.rand(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

randg Statistics
and Machine
Learning Toolbox

—

randi MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
randi method for other classes. For example,
randi(imax,sz,'myclass’) does not
invoke myclass.randi(imax,sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

randn MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
randn method for other classes. For example,
randn(sz,'myclass’) does not invoke
myclass.randn(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

random Statistics
and Machine
Learning Toolbox

—

randperm MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-115

Name Product Remarks and Limitations

randsample Statistics
and Machine
Learning Toolbox

When sampling without replacement, the order
of the output values might not match MATLAB.

range Fixed-Point
Designer

—

range2beat Phased Array
System Toolbox

Does not support variable-size inputs.

range2bw Phased Array
System Toolbox

Does not support variable-size inputs.

range2time Phased Array
System Toolbox

Does not support variable-size inputs.

rangeangle Phased Array
System Toolbox

Does not support variable-size inputs.

rank MATLAB —
raylcdf Statistics

and Machine
Learning Toolbox

—

raylinv Statistics
and Machine
Learning Toolbox

—

raylpdf Statistics
and Machine
Learning Toolbox

—

raylrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
raylstat Statistics

and Machine
Learning Toolbox

—

rcond MATLAB —

42 Functions, Classes, and System Objects Supported for Code Generation

42-116

Name Product Remarks and Limitations

rcosdesign Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

rdcoupling Phased Array
System Toolbox

Does not support variable-size inputs.

rdivide MATLAB —
rdivide Fixed-Point

Designer
—

real MATLAB —
real Fixed-Point

Designer
—

reallog MATLAB —
realmax MATLAB —
realmax Fixed-Point

Designer
—

realmin MATLAB —
realmin Fixed-Point

Designer
—

realpow MATLAB —
realsqrt MATLAB —
reconstructScene Computer Vision

System Toolbox
Supports MATLAB Function block: No

rectifyStereoImages Computer Vision
System Toolbox

Compile-time constant input restriction:
'interp' and 'OutputView'
Supports MATLAB Function block: No

rectint MATLAB —
recursiveAR System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-117

Name Product Remarks and Limitations

recursiveARMA System
Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.
recursiveARMAX System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.
recursiveARX System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.
recursiveBJ System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.
recursiveLS System

Identification
Toolbox

• For Simulink-based workflows, use
Recursive Least Squares Estimator.

• For limitations, see “Generate Code for
Online Parameter Estimation in MATLAB”.

recursiveOE System
Identification
Toolbox

• For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code for

Online Parameter Estimation in MATLAB”.
rectwin Signal Processing

Toolbox
All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

42 Functions, Classes, and System Objects Supported for Code Generation

42-118

Name Product Remarks and Limitations

regionprops Image Processing
Toolbox

Supports only 2-D images. Does not accept the
connected component structure (CC) returned
by bwconncomp. Use bwlabel to create a label
matrix, or pass the image to regionprops
directly. Does not support the table output type.
Does not accept cell arrays as input—use a
comma-separated list instead. Does not support
the properties ConvexArea, ConvexHull,
ConvexImage, Solidity, and SubarrayIdx.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

reinterpretcast Fixed-Point
Designer

—

rem MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB due
to differences in rounding errors.

• If one of the inputs has type int64 or
uint64, then both inputs must have the
same type.

removefimath Fixed-Point
Designer

—

repmat MATLAB Size arguments must have a fixed size.
repmat Fixed-Point

Designer
The dimensions argument must be a built-in
type; it cannot be a fi object.

resample Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

rescale Fixed-Point
Designer

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-119

Name Product Remarks and Limitations

reshape MATLAB • If the input is a compile-time empty cell
array, then the size arguments must be
constants.

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

reshape Fixed-Point
Designer

—

return MATLAB —
rgb2gray MATLAB —
rgb2ycbcr Image Processing

Toolbox
—

rng MATLAB • For library code generation targets,
executable code generation targets, and MEX
targets with extrinsic calls disabled:

• Does not support the 'shuffle' input.
• For the generator input, supports

'twister', 'v4', and 'v5normal'.

For these targets, the output of s=rng in the
generated code differs from the MATLAB
output. You cannot return the output of
s=rng from the generated code and pass it to
rng in MATLAB.

• For MEX targets, if extrinsic calls are
enabled, you cannot access the data in the
structure returned by rng.

robotics.PurePursuit Robotics System
Toolbox

Supports MATLAB Function block: No

robotics.VectorFieldHistogram Robotics System
Toolbox

Supports MATLAB Function block: No

42 Functions, Classes, and System Objects Supported for Code Generation

42-120

Name Product Remarks and Limitations

rocpfa Phased Array
System Toolbox

• Does not support variable-size inputs.
• The NonfluctuatingNoncoherent signal

type is not supported.
rocsnr Phased Array

System Toolbox
• Does not support variable-size inputs.
• Does not support the

NonfluctuatingNoncoherent signal type.
rootmusicdoa Phased Array

System Toolbox
Does not support variable-size inputs.

roots MATLAB • Output is variable size.
• Output is complex.
• Roots are not always in the same order as

MATLAB.
• Roots of poorly conditioned polynomials do

not always match MATLAB.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

rosser MATLAB —
rot90 MATLAB Does not support cell arrays for the first

argument.
rot90 Fixed-Point

Designer
In the syntax rot90(A,k), the argument k
must be a built-in type; it cannot be a fi object.

rotm2axang Robotics System
Toolbox

Supports MATLAB Function block: No

rotm2eul Robotics System
Toolbox

Supports MATLAB Function block: No

rotm2quat Robotics System
Toolbox

Supports MATLAB Function block: No

rotm2tform Robotics System
Toolbox

Supports MATLAB Function block: No

rotx Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-121

Name Product Remarks and Limitations

roty Phased Array
System Toolbox

Does not support variable-size inputs.

rotz Phased Array
System Toolbox

Does not support variable-size inputs.

round MATLAB Supports only the syntax Y = round(X).
round Fixed-Point

Designer
—

rsf2csf MATLAB —
schur MATLAB Can return a different Schur decomposition in

generated code than in MATLAB.
sec MATLAB —
secd MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
sech MATLAB —
selectStrongestBbox Computer Vision

System Toolbox
Compile-time constant input: No restriction
Supports MATLAB Function block: No

sensorcov Phased Array
System Toolbox

Does not support variable-size inputs.

sensorsig Phased Array
System Toolbox

Does not support variable-size inputs.

42 Functions, Classes, and System Objects Supported for Code Generation

42-122

Name Product Remarks and Limitations

setdiff MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• Do not use [] to represent the empty set.
Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' and
'rows' options, the output ia is a column
vector. If ia is empty, it is 0-by-1, never 0-
by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute
value). Suppose the real input

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-123

Name Product Remarks and Limitations

is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
45-4.

setfimath Fixed-Point
Designer

—

42 Functions, Classes, and System Objects Supported for Code Generation

42-124

Name Product Remarks and Limitations

setxor MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' flag, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-125

Name Product Remarks and Limitations

value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
45-4.

sfi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

sgolay Signal Processing
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

shiftdim MATLAB • Does not support cell arrays for the first
argument.

• Second argument must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

shiftdim Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

shnidman Phased Array
System Toolbox

Does not support variable-size inputs.

sign MATLAB —
sign Fixed-Point

Designer
—

sin MATLAB —
sin Fixed-Point

Designer
—

sind MATLAB —
single MATLAB —
single Fixed-Point

Designer
—

sinh MATLAB —

42 Functions, Classes, and System Objects Supported for Code Generation

42-126

Name Product Remarks and Limitations

size MATLAB —
size Fixed-Point

Designer
—

skewness Statistics
and Machine
Learning Toolbox

—

sort MATLAB • Does not support cell arrays for the first
argument.

• If the input is a complex type, sort orders
the output according to absolute value.
When x is a complex type that has all zero
imaginary parts, use sort(real(x)) to
compute the sort order for real types. See
“Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
45-4.

sort Fixed-Point
Designer

The dimensions argument must be a built-in
type; it cannot be a fi object.

sortrows MATLAB • Does not support cell arrays for the first
argument.

• If the input is a complex type, sortrows
orders the output according to absolute value.
When x is a complex type that has all zero
imaginary parts, use sortrows(real(x))
to compute the sort order for real types.
See “Code Generation for Complex Data
with Zero-Valued Imaginary Parts” on page
45-4.

sosfilt Signal Processing
Toolbox

—

speed2dop Phased Array
System Toolbox

Does not support variable-size inputs.

sph2cart MATLAB —

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-127

Name Product Remarks and Limitations

sph2cartvec Phased Array
System Toolbox

Does not support variable-size inputs.

spline MATLAB • Input x must be strictly increasing.
• Does not remove Y entries with NaN values.
• Does not report an error for infinite

endslopes in Y.
• If you generate code for the pp =

spline(x,Y) syntax, you cannot input pp
to the ppval function in MATLAB. To create
a MATLAB pp structure from a pp structure
created by the code generation software:

• In code generation, use unmkpp to return
the piecewise polynomial details to
MATLAB.

• In MATLAB, use mkpp to create the pp
structure.

spsmooth Phased Array
System Toolbox

Does not support variable-size inputs.

squeeze MATLAB Does not support cell arrays.
squeeze Fixed-Point

Designer
—

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

sqrt Fixed-Point
Designer

• Complex and [Slope Bias] inputs error out.
• Negative inputs yield a 0 result.

sqrtm MATLAB —

42 Functions, Classes, and System Objects Supported for Code Generation

42-128

Name Product Remarks and Limitations

std MATLAB • “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
steervec Phased Array

System Toolbox
Does not support variable-size inputs.

stereoParameters Computer Vision
System Toolbox

Supports MATLAB Function block: No

stokes Phased Array
System Toolbox

• Does not support variable-size inputs.
• Supported only when output arguments are

specified.
storedInteger Fixed-Point

Designer
—

storedIntegerToDouble Fixed-Point
Designer

—

str2double MATLAB • Does not support cell arrays.
• Always returns a complex result.

str2func MATLAB String must be constant/known at compile time.
strcmp MATLAB • When one input is a cell array and the other

input is a character array, the character
array must be a compile-time row vector.

• When both inputs are empty character arrays
that have different sizes, returns true.

strcmpi MATLAB • Input values from the char class must be in
the range 0-127.

• When one input is a cell array and the other
input is a character array, the character
array must be a compile-time row vector.

• When both inputs are empty character arrays
that have different sizes, returns true.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-129

Name Product Remarks and Limitations

strel Image Processing
Toolbox

Input arguments must be compile-time
constants. The following methods are not
supported for code generation: getsequence,
reflect, translate, disp, display,
loadobj. When generating code, you can only
specify single objects—arrays of objects are not
supported.

stretchfreq2rng Phased Array
System Toolbox

Does not support variable-size inputs.

stretchlim Image Processing
Toolbox

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

strfind MATLAB • Does not support cell arrays.
• If pattern does not exist in str, returns

zeros(1,0) not []. To check for an empty
return, use isempty.

• Inputs must be character row vectors.
strjoin MATLAB Always returns a string that has size 1-by-n. For

empty inputs, returns a 1-by-0 string not [].
strjust MATLAB Does not support a cell array of strings for the

first argument.
strncmp MATLAB When one input is a cell array and the other

input is a character array, the character array
must be a compile-time row vector.

strncmpi MATLAB • Input values from the char class must be in
the range 0-127.

• When one input is a cell array and the other
input is a character array, the character
array must be a compile-time row vector.

42 Functions, Classes, and System Objects Supported for Code Generation

42-130

Name Product Remarks and Limitations

strrep MATLAB • Does not support cell arrays.
• If oldSubstr does not exist in origStr,

returns blanks(0). To check for an empty
return, use isempty.

• Inputs must be character row vectors.
strtok MATLAB Does not support cell arrays for the first

argument.
strtrim MATLAB • Supports only inputs from the char class.

Does not support cell arrays.
• Input values must be in the range 0-127.

struct MATLAB • You cannot create a structure that contains a
cell array. For example, you cannot generate
code for:

s = struct('a',{{1 2}})

• If the value argument is a cell array, all
elements must have the same type.

struct2cell MATLAB • For a variable-size structure array, the
resulting cell array must be homogeneous. If
s is a variable-size structure array, the fields
must have the same type.

• If struct2cell cannot convert s to a
homogeneous cell array, the output cell array
is heterogeneous. A heterogeneous output cell
array can have a maximum of 1024 elements.

structfun MATLAB • Does not support the ErrorHandler option.
• The number of outputs must be less than or

equal to three.
sub Fixed-Point

Designer
Code generation in MATLAB does not support
the syntax F.sub(a,b). You must use the
syntax sub(F,a,b).

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-131

Name Product Remarks and Limitations

sub2ind MATLAB • The first argument must be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

subsasgn Fixed-Point
Designer

—

subspace MATLAB —
subsref Fixed-Point

Designer
—

sum MATLAB • Specify dim as a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
sum Fixed-Point

Designer
• Variable-sized inputs are only supported

when the SumMode property of the governing
fimath is set to Specify precision or
Keep LSB.

surfacegamma Phased Array
System Toolbox

Does not support variable-size inputs.

surfclutterrcs Phased Array
System Toolbox

Does not support variable-size inputs.

SURFPoints Computer Vision
System Toolbox

Compile-time constant input: No restrictions.
Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

42 Functions, Classes, and System Objects Supported for Code Generation

42-132

Name Product Remarks and Limitations

svd MATLAB Uses a different SVD implementation than
MATLAB. Because the singular value
decomposition is not unique, left and right
singular vectors might differ from those
computed by MATLAB.

swapbytes MATLAB Inheritance of the class of the input to
swapbytes in a MATLAB Function block is
supported only when the class of the input is
double. For non-double inputs, the input port
data types must be specified, not inherited.

switch, case, otherwise MATLAB • If all case expressions are scalar integer
values, generates a C switch statement.
At run time, if the switch value is not an
integer, generates an error.

• When the case expressions contain
noninteger or nonscalar values, the code
generation software generates C if
statements in place of a C switch statement.

systemp Phased Array
System Toolbox

Does not support variable-size inputs.

tan MATLAB —
tand MATLAB • In some cases, returns -Inf when MATLAB

returns Inf.
• In some cases, returns Inf when MATLAB

returns -Inf.
tanh MATLAB —
taylorwin Signal Processing

Toolbox
Inputs must be constant

tcdf Statistics
and Machine
Learning Toolbox

—

tf2ca DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-133

Name Product Remarks and Limitations

tf2cl DSP System
Toolbox

All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tform2axang Robotics System
Toolbox

Supports MATLAB Function block: No

tform2eul Robotics System
Toolbox

Supports MATLAB Function block: No

tform2quat Robotics System
Toolbox

Supports MATLAB Function block: No

tform2rotm Robotics System
Toolbox

Supports MATLAB Function block: No

tform2trvec Robotics System
Toolbox

Supports MATLAB Function block: No

time2range Phased Array
System Toolbox

Does not support variable-size inputs.

times MATLAB Multiplication of pure imaginary numbers by
non-finite numbers might not match MATLAB.
The code generation software does not specialize
multiplication by pure imaginary numbers—
it does not eliminate calculations with the zero
real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN

+ Infi.
times Fixed-Point

Designer
• Any non-fi input must be constant; that is,

its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

42 Functions, Classes, and System Objects Supported for Code Generation

42-134

Name Product Remarks and Limitations

tinv Statistics
and Machine
Learning Toolbox

—

toeplitz MATLAB —
tpdf Statistics

and Machine
Learning Toolbox

—

trace MATLAB —
transpose MATLAB —
transpose Fixed-Point

Designer
—

trapz MATLAB • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code

Generation of Toolbox Functions” on page
46-30

triang Signal Processing
Toolbox

Inputs must be constant

triangulate Computer Vision
System Toolbox

Supports MATLAB Function block: No

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-135

Name Product Remarks and Limitations

trnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
true MATLAB • Dimensions must be real, nonnegative,

integers.
trvec2tform Robotics System

Toolbox
Supports MATLAB Function block: No

tstat Statistics
and Machine
Learning Toolbox

—

tukeywin Signal Processing
Toolbox

Inputs must be constant.

typecast MATLAB • Value of string input argument type must be
lowercase.

• When you use typecast with inheritance of
input port data types in MATLAB Function
blocks, you can receive a size error. To avoid
this error, specify the block input port data
types explicitly.

• Integer input or result classes must map
directly to a C type on the target hardware.

• The input must be a variable-length vector or
a fixed-size vector. See

“Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

• The output vector always has the same
orientation as the input vector.

ufi Fixed-Point
Designer

• All properties related to data type must be
constant for code generation.

42 Functions, Classes, and System Objects Supported for Code Generation

42-136

Name Product Remarks and Limitations

uint8, uint16, uint32,
uint64

MATLAB No integer overflow detection for int64 in
MEX or MATLAB Function block simulation on
Windows 32-bit platforms.

uint8, uint16, uint32,
uint64

Fixed-Point
Designer

—

uminus MATLAB —
uminus Fixed-Point

Designer
—

undistortImage Computer Vision
System Toolbox

Compile-time constant input restriction:
'interp' and 'OutputView'
Supports MATLAB Function block: No

unidcdf Statistics
and Machine
Learning Toolbox

—

unidinv Statistics
and Machine
Learning Toolbox

—

unidpdf Statistics
and Machine
Learning Toolbox

—

unidrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
unidstat Statistics

and Machine
Learning Toolbox

—

unifcdf Statistics
and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-137

Name Product Remarks and Limitations

unifinv Statistics
and Machine
Learning Toolbox

—

unifpdf Statistics
and Machine
Learning Toolbox

—

unifrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.
unifstat Statistics

and Machine
Learning Toolbox

—

unigrid Phased Array
System Toolbox

Does not support variable-size inputs.

42 Functions, Classes, and System Objects Supported for Code Generation

42-138

Name Product Remarks and Limitations

union MATLAB • Does not support cell arrays for the first or
second arguments.

• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input[] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the inputs
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.
• When one input is complex and the other

input is real, do one of the following:

• Set setOrder to 'stable'.
• Sort the real input in complex

ascending order (by absolute

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-139

Name Product Remarks and Limitations

value). Suppose the real input
is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page
45-4.

unique MATLAB • Does not support cell arrays for the first
argument.

• When you do not specify the'rows' option:

• The input A must be a vector. If you
specify the 'legacy' option, the input A
must be a row vector.

• The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

• The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never 0-
by-0.

• When you specify both the 'rows' option
and the 'legacy'option, outputs ia and
ic are column vectors. If these outputs are
empty, they are 0-by-1, even if the output C is
0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the input
A must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

42 Functions, Classes, and System Objects Supported for Code Generation

42-140

Name Product Remarks and Limitations

unmkpp MATLAB • pp must be a valid piecewise polynomial
structure created by mkpp, spline, or
pchip in MATLAB or by the code generation
software.

• Does not support pp structures created by
interp1 in MATLAB.

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors

upfirdn Signal Processing
Toolbox

• Code generation for this function requires the
DSP System Toolbox software.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

uplus MATLAB —
uplus Fixed-Point

Designer
—

upper MATLAB • Supports only inputs from the char class.
Does not support cell arrays.

• Input values must be in the range 0-127.
upperbound Fixed-Point

Designer
—

upsample Signal Processing
Toolbox

Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

uv2azel Phased Array
System Toolbox

Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-141

Name Product Remarks and Limitations

uv2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

val2ind Phased Array
System Toolbox

Does not support variable-size inputs.

vander MATLAB —
var MATLAB • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code
Generation of Toolbox Functions” on page
46-30

• Does not support the nanflag argument.
vertcat Fixed-Point

Designer
—

vision.AlphaBlender Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autocorrelator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Autothresholder Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BlobAnalysis Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.BoundaryTracer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.CascadeObjectDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.ChromaResampler Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-142

Name Product Remarks and Limitations

vision.ColorSpaceConverter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Convolver Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ContrastAdjuster Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Crosscorrelator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DemosaicInterpolator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DCT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deinterlacer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deployable Computer Vision
System Toolbox

Generates code on Windows host only.
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.DeployableVideoPlayer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.FFT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ForegroundDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.GammaCorrector Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-143

Name Product Remarks and Limitations

vision.GeometricRotator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricScaler Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricShearer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricTransformer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.GeometricTranslator Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Histogram-
BasedTracker

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HistogramEqualizer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughLines Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughTransform Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IDCT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageComplementer Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageDataType-
Converter

Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImagePadder Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-144

Name Product Remarks and Limitations

vision.KalmanFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.LocalMaximaFinder Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Maximum Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Median Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Mean Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Minimum Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PeopleDetector Computer Vision
System Toolbox

Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.PointTracker Computer Vision
System Toolbox

Supports MATLAB Function block: No
“System Objects in MATLAB Code Generation”

vision.PSNR Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Pyramid Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.StandardDeviation Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Alphabetical List

42-145

Name Product Remarks and Limitations

vision.TextInserter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Variance Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.VideoFileReader Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.VideoFileWriter Computer Vision
System Toolbox

Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

watershed Image Processing
Toolbox

Supports only 2-D images. Supports only 4- or 8-
connectivity. Supports only up to 65,535 regions.
The output type is always uint16.

If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

wblcdf Statistics
and Machine
Learning Toolbox

—

wblinv Statistics
and Machine
Learning Toolbox

—

wblpdf Statistics
and Machine
Learning Toolbox

—

wblrnd Statistics
and Machine
Learning Toolbox

Can return a different sequence of numbers than
MATLAB if either of the following is true:

• The output is nonscalar.
• An input parameter is invalid for the

distribution.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-146

Name Product Remarks and Limitations

wblstat Statistics
and Machine
Learning Toolbox

—

while MATLAB —
wilkinson MATLAB n must be a fixed-size scalar.
xcorr Signal Processing

Toolbox
—

xor MATLAB —
ycbcr2rgb Image Processing

Toolbox
If you choose the generic MATLAB Host
Computer target platform, generated code uses
a precompiled, platform-specific shared library.

yulewalk Signal Processing
Toolbox

If specified, the order of recursion must be a
constant. Expressions or variables are allowed if
their values do not change.

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —
zscore Statistics

and Machine
Learning Toolbox

—

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-147

Functions and Objects Supported for C and C++ Code Generation
— Category List

You can generate efficient C and C++ code for a subset of MATLAB built-in functions and
toolbox functions, classes, and System objects that you call from MATLAB code. These
functions, classes, and System objects are listed by MATLAB category or toolbox category
in the following tables.

For an alphabetical list of supported functions, classes, and System objects, see
“Functions and Objects Supported for C and C++ Code Generation — Alphabetical List”
on page 42-2.

Note: For more information on code generation for fixed-point algorithms, refer to “Code
Acceleration and Code Generation from MATLAB”.

In this section...

“Aerospace Toolbox” on page 42-149
“Arithmetic Operations in MATLAB” on page 42-149
“Bit-Wise Operations MATLAB” on page 42-150
“Casting in MATLAB” on page 42-151
“Communications System Toolbox” on page 42-151
“Complex Numbers in MATLAB” on page 42-157
“Computer Vision System Toolbox” on page 42-158
“Control Flow in MATLAB” on page 42-167
“Data and File Management in MATLAB” on page 42-168
“Data Types in MATLAB” on page 42-171
“Desktop Environment in MATLAB” on page 42-172
“Discrete Math in MATLAB” on page 42-173
“DSP System Toolbox” on page 42-173
“Error Handling in MATLAB” on page 42-181
“Exponents in MATLAB” on page 42-181
“Filtering and Convolution in MATLAB” on page 42-182

42 Functions, Classes, and System Objects Supported for Code Generation

42-148

In this section...

“Fixed-Point Designer” on page 42-183
“HDL Coder” on page 42-193
“Histograms in MATLAB” on page 42-193
“Image Acquisition Toolbox” on page 42-194
“Image Processing in MATLAB” on page 42-194
“Image Processing Toolbox” on page 42-194
“Input and Output Arguments in MATLAB” on page 42-204
“Interpolation and Computational Geometry in MATLAB” on page 42-204
“Linear Algebra in MATLAB” on page 42-208
“Logical and Bit-Wise Operations in MATLAB” on page 42-209
“MATLAB Compiler” on page 42-210
“Matrices and Arrays in MATLAB” on page 42-210
“Neural Network Toolbox” on page 42-219
“Numerical Integration and Differentiation in MATLAB” on page 42-219
“Optimization Functions in MATLAB” on page 42-220
“Phased Array System Toolbox” on page 42-221
“Polynomials in MATLAB” on page 42-231
“Programming Utilities in MATLAB” on page 42-232
“Relational Operators in MATLAB” on page 42-232
“Robotics System Toolbox” on page 42-232
“Rounding and Remainder Functions in MATLAB” on page 42-233
“Set Operations in MATLAB” on page 42-234
“Signal Processing in MATLAB” on page 42-239
“Signal Processing Toolbox” on page 42-240
“Special Values in MATLAB” on page 42-245
“Specialized Math in MATLAB” on page 42-246
“Statistics in MATLAB” on page 42-246
“Statistics and Machine Learning Toolbox” on page 42-247
“String Functions in MATLAB” on page 42-257

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-149

In this section...

“System Identification Toolbox” on page 42-259
“Trigonometry in MATLAB” on page 42-260

Aerospace Toolbox

C and C++ code generation for the following Aerospace Toolbox quaternion functions
requires the Aerospace Blockset software.

Function Remarks and Limitations

quatconj —
quatdivide —
quatinv —
quatmod —
quatmultiply —
quatnorm —
quatnormalize —

Arithmetic Operations in MATLAB

See “Array vs. Matrix Operations” for detailed descriptions of the following operator
equivalent functions.

Function Remarks and Limitations

ctranspose —
idivide • For efficient generated code, MATLAB rules for divide by zero are

supported only for the 'round' option.
isa —
ldivide —
minus —
mldivide —

42 Functions, Classes, and System Objects Supported for Code Generation

42-150

Function Remarks and Limitations

mpower If A is a 2-by-2 or larger matrix and B is Inf or -Inf, mpower(A,B)
returns a matrix of NaNs.

mrdivide —
mtimes • Multiplication of pure imaginary numbers by non-finite numbers might

not match MATLAB. The code generation software does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 46-30

plus —
power • Generates an error during simulation. When both X and Y are real,

but power(X,Y) is complex, returns NaN in the generated code. To
get the complex result, make the input value X complex by passing in
complex(X). For example, power(complex(X),Y).

• Generates an error during simulation. When both X and Y are real, but
X .^ Y is complex, returns NaN in generated code. To get the complex
result, make the input value X complex by using complex(X). For
example, complex(X).^Y.

rdivide —
times Multiplication of pure imaginary numbers by non-finite numbers might

not match MATLAB. The code generation software does not specialize
multiplication by pure imaginary numbers—it does not eliminate
calculations with the zero real part. For example, (Inf + 1i)*1i =
(Inf*0 – 1*1) + (Inf*1 + 1*0)i = NaN + Infi.

transpose —
uminus —
uplus —

Bit-Wise Operations MATLAB

Function Remarks and Limitations

flintmax —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-151

Function Remarks and Limitations

swapbytes Inheritance of the class of the input to swapbytes in a MATLAB Function
block is supported only when the class of the input is double. For non-
double inputs, the input port data types must be specified, not inherited.

Casting in MATLAB

Function Remarks and Limitations

cast —
char Does not support cell arrays.
class —
double —
int8, int16, int32,
int64

No integer overflow detection for int64 in MEX or MATLAB Function
block simulation on Windows 32-bit platforms.

logical —
single —
typecast • Value of string input argument type must be lowercase.

• When you use typecast with inheritance of input port data types in
MATLAB Function blocks, you can receive a size error. To avoid this
error, specify the block input port data types explicitly.

• Integer input or result classes must map directly to a C type on the
target hardware.

• The input must be a variable-length vector or a fixed-size vector. See

“Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 46-30

• The output vector always has the same orientation as the input vector.
uint8, uint16,
uint32, uint64

No integer overflow detection for int64 in MEX or MATLAB Function
block simulation on Windows 32-bit platforms.

Communications System Toolbox

C and C++ code generation for the following functions and System objects requires the
Communications System Toolbox software.

42 Functions, Classes, and System Objects Supported for Code Generation

42-152

Name Remarks and Limitations

Input and Output
comm.BarkerCode “System Objects in MATLAB Code Generation”
comm.GoldSequence “System Objects in MATLAB Code Generation”
comm.HadamardCode “System Objects in MATLAB Code Generation”
comm.KasamiSequence “System Objects in MATLAB Code Generation”
comm.WalshCode “System Objects in MATLAB Code Generation”
comm.PNSequence “System Objects in MATLAB Code Generation”
lteZadoffChuSeq —
Signal and Delay Management
bi2de —
de2bi —
Display and Visual Analysis
comm.ConstellationDiagram “System Objects in MATLAB Code Generation”
dsp.ArrayPlot “System Objects in MATLAB Code Generation”
dsp.SpectrumAnalyzer “System Objects in MATLAB Code Generation”
dsp.TimeScope “System Objects in MATLAB Code Generation”
Source Coding
comm.DifferentialDecoder “System Objects in MATLAB Code Generation”
comm.DifferentialEncoder “System Objects in MATLAB Code Generation”
Cyclic Redundancy Check Coding
comm.CRCDetector “System Objects in MATLAB Code Generation”
comm.CRCGenerator “System Objects in MATLAB Code Generation”
comm.HDLCRCDetector “System Objects in MATLAB Code Generation”
comm.HDLCRCGenerator “System Objects in MATLAB Code Generation”
BCH Codes
comm.BCHDecoder “System Objects in MATLAB Code Generation”
comm.BCHEncoder “System Objects in MATLAB Code Generation”
Reed-Solomon Codes

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-153

Name Remarks and Limitations

comm.RSDecoder “System Objects in MATLAB Code Generation”
comm.RSEncoder “System Objects in MATLAB Code Generation”
comm.HDLRSDecoder “System Objects in MATLAB Code Generation”
comm.HDLRSEncoder “System Objects in MATLAB Code Generation”
LDPC Codes
comm.LDPCDecoder “System Objects in MATLAB Code Generation”
comm.LDPCEncoder “System Objects in MATLAB Code Generation”
Convolutional Coding
comm.APPDecoder “System Objects in MATLAB Code Generation”
comm.ConvolutionalEncoder “System Objects in MATLAB Code Generation”
comm.TurboDecoder “System Objects in MATLAB Code Generation”
comm.TurboEncoder “System Objects in MATLAB Code Generation”
comm.ViterbiDecoder “System Objects in MATLAB Code Generation”
istrellis —
poly2trellis —
Signal Operations
comm.Descrambler “System Objects in MATLAB Code Generation”
comm.Scrambler “System Objects in MATLAB Code Generation”
Interleaving
comm.AlgebraicDeinterleaver “System Objects in MATLAB Code Generation”
comm.AlgebraicInterleaver “System Objects in MATLAB Code Generation”
comm.BlockDeinterleaver “System Objects in MATLAB Code Generation”
comm.BlockInterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalDeinterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalInterleaver “System Objects in MATLAB Code Generation”
comm.HelicalDeinterleaver “System Objects in MATLAB Code Generation”
comm.HelicalInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixDeinterleaver “System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-154

Name Remarks and Limitations

comm.MatrixInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanInterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedDeinterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedInterleaver “System Objects in MATLAB Code Generation”
Frequency Modulation
comm.FSKDemodulator “System Objects in MATLAB Code Generation”
comm.FSKModulator “System Objects in MATLAB Code Generation”
Phase Modulation
comm.BPSKDemodulator “System Objects in MATLAB Code Generation”
comm.BPSKModulator “System Objects in MATLAB Code Generation”
comm.DBPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DBPSKModulator “System Objects in MATLAB Code Generation”
comm.DPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DPSKModulator “System Objects in MATLAB Code Generation”
comm.DQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DQPSKModulator “System Objects in MATLAB Code Generation”
comm.OQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.OQPSKModulator “System Objects in MATLAB Code Generation”
comm.PSKDemodulator “System Objects in MATLAB Code Generation”
comm.PSKModulator “System Objects in MATLAB Code Generation”
comm.QPSKDemodulator “System Objects in MATLAB Code Generation”
comm.QPSKModulator “System Objects in MATLAB Code Generation”
Amplitude Modulation
comm.GeneralQAMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMModulator “System Objects in MATLAB Code Generation”
comm.PAMDemodulator “System Objects in MATLAB Code Generation”
comm.PAMModulator “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-155

Name Remarks and Limitations

comm.RectangularQAMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMModulator “System Objects in MATLAB Code Generation”
Continuous Phase Modulation
comm.CPFSKDemodulator “System Objects in MATLAB Code Generation”
comm.CPFSKModulator “System Objects in MATLAB Code Generation”
comm.CPMDemodulator “System Objects in MATLAB Code Generation”
comm.CPMModulator “System Objects in MATLAB Code Generation”
comm.GMSKDemodulator “System Objects in MATLAB Code Generation”
comm.GMSKModulator “System Objects in MATLAB Code Generation”
comm.MSKDemodulator “System Objects in MATLAB Code Generation”
comm.MSKModulator “System Objects in MATLAB Code Generation”
Trellis Coded Modulation
comm.GeneralQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMTCMModulator “System Objects in MATLAB Code Generation”
comm.PSKTCMDemodulator “System Objects in MATLAB Code Generation”
comm.PSKTCMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMModulator “System Objects in MATLAB Code Generation”
Orthogonal Frequency-Division Modulation
comm.OFDMDemodulator “System Objects in MATLAB Code Generation”
comm.OFDMModulator “System Objects in MATLAB Code Generation”
Analog Baseband Modulation
comm.FMBroadcastDemodulator “System Objects in MATLAB Code Generation”
comm.FMBroadcastModulator “System Objects in MATLAB Code Generation”
comm.FMDemodulator “System Objects in MATLAB Code Generation”
comm.FMModulator “System Objects in MATLAB Code Generation”
Filtering
comm.IntegrateAndDumpFilter “System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-156

Name Remarks and Limitations

comm.RaisedCosineReceiveFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineTransmitFilter “System Objects in MATLAB Code Generation”
Carrier Phase Synchronization
comm.CarrierSynchronizer “System Objects in MATLAB Code Generation”
comm.CPMCarrierPhaseSynchronizer “System Objects in MATLAB Code Generation”
comm.CoarseFrequencyCompensator “System Objects in MATLAB Code Generation”
Timing Phase Synchronization
comm.SymbolSynchronizer “System Objects in MATLAB Code Generation”
comm.GMSKTimingSynchronizer “System Objects in MATLAB Code Generation”
comm.MSKTimingSynchronizer “System Objects in MATLAB Code Generation”
Synchronization Utilities
comm.DiscreteTimeVCO “System Objects in MATLAB Code Generation”
Equalization
comm.MLSEEqualizer “System Objects in MATLAB Code Generation”
MIMO
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.OSTBCCombiner “System Objects in MATLAB Code Generation”
comm.OSTBCEncoder “System Objects in MATLAB Code Generation”
comm.SphereDecoder “System Objects in MATLAB Code Generation”
Channel Modeling and RF Impairments
comm.AGC “System Objects in MATLAB Code Generation”
comm.AWGNChannel “System Objects in MATLAB Code Generation”
comm.BinarySymmetricChannel “System Objects in MATLAB Code Generation”
comm.IQImbalanceCompensator “System Objects in MATLAB Code Generation”
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MemorylessNonlinearity “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-157

Name Remarks and Limitations

comm.PhaseFrequencyOffset “System Objects in MATLAB Code Generation”
comm.PhaseNoise “System Objects in MATLAB Code Generation”
comm.RayleighChannel “System Objects in MATLAB Code Generation”
comm.RicianChannel “System Objects in MATLAB Code Generation”
comm.ThermalNoise “System Objects in MATLAB Code Generation”
comm.PSKCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
comm.QAMCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
iqcoef2imbal —
iqimbal2coef —
Measurements and Analysis
comm.ACPR “System Objects in MATLAB Code Generation”
comm.CCDF “System Objects in MATLAB Code Generation”
comm.ErrorRate “System Objects in MATLAB Code Generation”
comm.EVM “System Objects in MATLAB Code Generation”
comm.MER “System Objects in MATLAB Code Generation”

Complex Numbers in MATLAB

Function Remarks and Limitations

complex —
conj —
imag —
isnumeric —
isreal —
isscalar —
real —
unwrap • Row vector input is only supported when the first two inputs are vectors

and nonscalar

42 Functions, Classes, and System Objects Supported for Code Generation

42-158

Function Remarks and Limitations

• Performs arithmetic in the output class. Hence, results might not match
MATLAB due to different rounding errors

Computer Vision System Toolbox

C and C++ code generation for the following functions and System objects requires the
Computer Vision System Toolbox software.

Name Remarks and Limitations

Feature Detection, Extraction, and Matching
BRISKPoints Supports MATLAB Function block: No

To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

cornerPoints Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

detectBRISKFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectFASTFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectHarrisFeatures Compile-time constant input: 'FilterSize'
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-159

Name Remarks and Limitations

detectMinEigenFeatures Compile-time constant input: 'FilterSize'
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

detectMSERFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
For code generation, the function outputs
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.

detectSURFFeatures Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

extractFeatures Generates platform-dependent library: Yes for
BRISK, FREAK, and SURF methods only.
Compile-time constant input restrictions:
'Method'

Supports MATLAB Function block: Yes for
Block method only.
Generated code for this function uses a
precompiled platform-specific shared library.

extractHOGFeatures Supports MATLAB Function block: No
extractLBPFeatures Generates platform-dependent library: No

Supports MATLAB Function block: Yes
matchFeatures Generates platform-dependent library: Yes for

MATLAB host.
Generates portable C code for non-host target.
Compile-time constant input: 'Method‘ and
'Metric'.
Supports MATLAB Function block: Yes

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-160

Name Remarks and Limitations

MSERRegions Supports MATLAB Function block: Yes
For code generation, you must specify both the
pixellist cell array and the length of each
array, as the second input. The object outputs,
regions.PixelList as an array. The region
sizes are defined in regions.Lengths.
Generated code for this function uses a
precompiled platform-specific shared library.

SURFPoints Supports MATLAB Function block: No
To index locations with this object, use
the syntax: points.Location(idx,:),
for points object. See
visionRecovertformCodeGeneration_kernel.m,
which is used in the “Introduction to Code
Generation with Feature Matching and
Registration” example.

vision.BoundaryTracer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Image Registration and Geometric Transformations
estimateGeometricTransform Supports MATLAB Function block: No
vision.GeometricRotator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricScaler Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricShearer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricTransformer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GeometricTranslator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Object Detection and Recognition

http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-161

Name Remarks and Limitations

ocr Compile-time constant input: 'TextLayout',
'Language', and 'CharacterSet'.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

ocrText Supports MATLAB Function block: No
vision.PeopleDetector Supports MATLAB Function block: No

Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.CascadeObjectDetector Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Tracking and Motion Estimation
assignDetectionsToTracks Supports MATLAB Function block: Yes
opticalFlowFarneback Supports MATLAB Function block: No

Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowHS Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLKDoG Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlowLK Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

opticalFlow Supports MATLAB Function block: Yes

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-162

Name Remarks and Limitations

vision.ForegroundDetector Supports MATLAB Function block: No
Generates platform-dependent library: Yes for
MATLAB host.
Generates portable C code for non-host target.
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

vision.HistogramBasedTracker Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.KalmanFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.PointTracker Supports MATLAB Function block: No
“System Objects in MATLAB Code Generation”

vision.TemplateMatcher Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Camera Calibration and Stereo Vision
bboxOverlapRatio Supports MATLAB Function block: No
bbox2points Supports MATLAB® Function block: Yes
disparity Compile-time constant input restriction:

'Method'.
Supports MATLAB Function block: No
Generated code for this function uses a
precompiled platform-specific shared library.

cameraMatrix Supports MATLAB Function block: No
cameraPose Supports MATLAB Function block: No
cameraParameters Supports MATLAB Function block: No

Use the toStruct method to pass a
cameraParameters object into generated code.
See the “Code Generation for Depth Estimation
From Stereo Video” example.

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-163

Name Remarks and Limitations

detectCheckerboardPoints Supports MATLAB Function block: No
Code generation will not support specifying
images as file names or cell arrays of file names.
It supports only checkerboard detection in
a single image or stereo pair of images. For
example, these syntaxes are supported:

• detectCheckerboardPoints(I1)

• detectCheckerobarPoints(I1,I2)

I1 and I2 are single grayscale or RGB images.
generateCheckerboardPoints Supports MATLAB Function block: No
epipolarline Supports MATLAB Function block: Yes
estimateFundamentalMatrix Compile-time constant input restriction:

'Method', 'OutputClass', 'DistanceType',
and 'ReportRuntimeError'.
Supports MATLAB Function block: Yes

estimateUncalibratedRectification Supports MATLAB Function block: Yes
extrinsics Supports MATLAB Function block: No
isEpipoleInImage Supports MATLAB Function block: Yes
lineToBorderPoints Supports MATLAB Function block: Yes
reconstructScene Supports MATLAB Function block: No
rectifyStereoImages Compile-time constant input restriction:

'interp' and 'OutputView'
Supports MATLAB Function block: No

selectStrongestBbox Supports MATLAB Function block: No
stereoParameters Supports MATLAB Function block: No

Use the toStruct method to pass a
stereoParameters object into generated code.
See the “Code Generation for Depth Estimation
From Stereo Video” example.

triangulate Supports MATLAB Function block: No

42 Functions, Classes, and System Objects Supported for Code Generation

42-164

Name Remarks and Limitations

undistortImage Compile-time constant input restriction:
'interp' and 'OutputView'
Supports MATLAB Function block: No

Statistics
vision.Autocorrelator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.BlobAnalysis Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Crosscorrelator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Histogram Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.LocalMaximaFinder Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Maximum Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Mean Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Median Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Minimum Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.PSNR Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.StandardDeviation Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.Variance Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Filters, Transforms, and Enhancements
integralImage Supports MATLAB Function block: Yes
vision.Convolver Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-165

Name Remarks and Limitations

vision.ContrastAdjuster Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.DCT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Deinterlacer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.EdgeDetector Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.FFT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HistogramEqualizer Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughLines Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.HoughTransform Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IDCT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.IFFT Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ImageFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MedianFilter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.Pyramid Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Video Loading, Saving, and Streaming
vision.DeployableVideoPlayer Supports MATLAB Function block: Yes

Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

http://www.mathworks.com/support/sysreq/current_release/

42 Functions, Classes, and System Objects Supported for Code Generation

42-166

Name Remarks and Limitations

vision.VideoFileReader Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Does not generate code for reading compressed
images on the Mac.

vision.VideoFileWriter Supports MATLAB Function block: Yes
Generated code for this function uses a
precompiled platform-specific shared library.
“System Objects in MATLAB Code Generation”

Color Space Formatting and Conversions
vision.Autothresholder Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ChromaResampler Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ColorSpaceConverter Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.DemosaicInterpolator Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.GammaCorrector Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ImageComplementer Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ImageDataTypeConverter Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
vision.ImagePadder Supports MATLAB Function block: Yes

“System Objects in MATLAB Code Generation”
Graphics
insertMarker Compile-time constant input: 'Shape' and

'Color'

Supports MATLAB Function block: Yes

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-167

Name Remarks and Limitations

insertShape Compile-time constant input: 'Color' and
'SmoothEdges'

Supports MATLAB Function block: Yes
insertText Compile-time constant input: Font, FontSize

Supports non-ASCII characters: No
Supports MATLAB Function block: Yes

vision.AlphaBlender Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.MarkerInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.ShapeInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

vision.TextInserter Supports MATLAB Function block: Yes
“System Objects in MATLAB Code Generation”

Control Flow in MATLAB

Function Remarks and Limitations

break —
continue —
end —
for —
if, elseif, else —
parfor Treated as a for-loop in a MATLAB Function block.
return —
switch, case,

otherwise

• If all case expressions are scalar integer values, generates a C switch
statement. At run time, if the switch value is not an integer, generates
an error.

• When the case expressions contain noninteger or nonscalar values, the
code generation software generates C if statements in place of a C
switch statement.

while —

42 Functions, Classes, and System Objects Supported for Code Generation

42-168

Data and File Management in MATLAB

Function Remarks and Limitations

computer • Information about the computer on which the code generation software
is running.

• Use only when the code generation target is S-function (Simulation) or
MEX-function.

fclose —
feof —
fopen • Does not support:

• machineformat, encoding, or fileID inputs
• message output
• fopen('all')

• If you disable extrinsic calls, you cannot return fileIDs created with
fopen to MATLAB or extrinsic functions. You can use such fileIDs
only internally.

• When generating C/C++ executables, static libraries, or dynamic
libraries, you can open up to 20 files.

• The generated code does not report errors from invalid file identifiers.
Write your own file open error handling in your MATLAB code. Test
whether fopen returns -1, which indicates that the file open failed. For
example:

...

fid = fopen(filename, 'r');

if fid == -1

 % fopen failed

else

% fopen successful, okay to call fread

A = fread(fid);

...

• The behavior of the generated code for fread is compiler-dependent if
you:

1 Open a file using fopen with a permission of a+.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-169

Function Remarks and Limitations

2 Read the file using fread before calling an I/O function, such as
fseek or frewind, that sets the file position indicator.

fprintf • Does not support:

• b and t subtypes on %u, %o %x, and %X formats.
• $ flag for reusing input arguments.
• printing arrays.

• There is no automatic casting. Input arguments must match their
format types for predictable results.

• Escaped characters are limited to the decimal range of 0–127.
• A call to fprintf with fileID equal to 1 or 2 becomes printf in the

generated C/C++ code in the following cases:

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When the MATLAB behavior differs from the C compiler behavior,
fprintf matches the C compiler behavior in the following cases:

• The format specifier has a corresponding C format specifier, for
example, %e or %E.

• The fprintf call is inside a parfor loop.
• Extrinsic calls are disabled.

• When you call fprintf with the format specifier %s, do not put a null
character in the middle of the input string. Use fprintf(fid, '%c',
char(0)) to write a null character.

• When you call fprintf with an integer format specifier, the type of
the integer argument must be a type that the target hardware can
represent as a native C type. For example, if you call fprintf('%d',
int64(n)), the target hardware must have a native C type that
supports a 64-bit integer.

42 Functions, Classes, and System Objects Supported for Code Generation

42-170

Function Remarks and Limitations

fread • precision must be a constant.
• The source and output that precision specifies cannot have values

long, ulong, unsigned long, bitN, or ubitN.
• You cannot use the machineformat input.
• If the source or output that precision specifies is a C type, for

example, int, the target and production sizes for that type must:

• Match.
• Map directly to a MATLAB type.

• The source type that precision specifies must map directly to a C
type on the target hardware.

• If the fread call reads the entire file, all of the data must fit in the
largest array available for code generation.

• If sizeA is not constant or contains a nonfinite element, then dynamic
memory allocation is required.

• Treats a char value for source or output as a signed 8-bit integer. Use
values between 0 and 127 only.

• The generated code does not report file read errors. Write your own
file read error handling in your MATLAB code. Test that the number
of bytes read matches the number of bytes that you requested. For
example:

...

N = 100;

[vals, numRead] = fread(fid, N, '*double');

if numRead ~= N

 % fewer elements read than expected

end

...

frewind —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-171

Function Remarks and Limitations

load • Use only when generating MEX or code for Simulink simulation. To load
compile-time constants, use coder.load.

• Does not support use of the function without assignment to a
structure or array. For example, use S = load(filename), not
load(filename).

• The output S must be the name of a structure or array without any
subscripting. For example, S(i) = load('myFile.mat') is not
allowed.

• Arguments to load must be compile-time constant strings.
• Does not support loading objects.
• If the MAT-file contains unsupported constructs, use

load(filename,variables) to load only the supported constructs.
• You cannot use save in a function intended for code generation.

The code generation software does not support the save function.
Furthermore, you cannot use coder.extrinsic with save. Prior to
generating code, you can use save to save the workspace data to a MAT-
file.

You must use coder.varsize to explicitly declare variable-size data
loaded using the load function.

Data Types in MATLAB

Function Remarks and Limitations

cell “Cell Array Requirements and Limitations for Code Generation” on page
48-5

deal —
fieldnames Does not support objects. The input must be a structure.
iscell —
isfield Does not support cell arrays for the second argument.
isobject —
isstruct —
nargchk • Output structure does not include stack information.

42 Functions, Classes, and System Objects Supported for Code Generation

42-172

Function Remarks and Limitations

Note: nargchk will be removed in a future release.
narginchk —
nargoutchk —
str2func • String must be constant/known at compile time
struct • You cannot create a structure that contains a cell array. For example,

you cannot generate code for:

s = struct('a',{{1 2}})

• If the value argument is a cell array, all elements must have the same
type.

struct2cell • For a variable-size structure array, the resulting cell array must be
homogeneous. If s is a variable-size structure array, the fields must
have the same type.

• If struct2cell cannot convert s to a homogeneous cell array, the
output cell array is heterogeneous. A heterogeneous output cell array
can have a maximum of 1024 elements.

structfun • Does not support the ErrorHandler option.
• The number of outputs must be less than or equal to three.

Desktop Environment in MATLAB

Function Remarks and Limitations

ismac • Returns true or false based on the MATLAB version used for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

ispc • Returns true or false based on the MATLAB version you use for code
generation.

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

isunix • Returns true or false based on the MATLAB version used for code
generation.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-173

Function Remarks and Limitations

• Use only when the code generation target is S-function (Simulation)
or MEX-function.

Discrete Math in MATLAB

Function Remarks and Limitations

factor • The maximum double precision input is 2^33.
• The maximum single precision input is 2^25.
• The input n cannot have type int64 or uint64.

gcd —
isprime • The maximum double precision input is 2^33.

• The maximum single precision input is 2^25.
• The input X cannot have type int64 or uint64.

lcm —
nchoosek • When the first input, x, is a scalar, nchoosek returns a binomial

coefficient. In this case, x must be a nonnegative integer. It cannot have
type int64 or uint64.

• When the first input, x, is a vector, nchoosek treats it as a set. In this
case, x can have type int64 or uint64.

• The second input, k, cannot have type int64 or uint64.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
primes • The maximum double precision input is 2^32.

• The maximum single precision input is 2^24.
• The input n cannot have type int64 or uint64.

DSP System Toolbox

C code generation for the following functions and System objects requires the DSP
System Toolbox license. Many DSP System Toolbox functions require constant inputs for
code generation.

42 Functions, Classes, and System Objects Supported for Code Generation

42-174

Name Remarks and Limitations

Estimation
dsp.BurgAREstimator “System Objects in MATLAB Code Generation”
dsp.BurgSpectrumEstimator “System Objects in MATLAB Code Generation”
dsp.CepstralToLPC “System Objects in MATLAB Code Generation”
dsp.CrossSpectrumEstimator “System Objects in MATLAB Code Generation”
dsp.LevinsonSolver “System Objects in MATLAB Code Generation”
dsp.LPCToAutocorrelation “System Objects in MATLAB Code Generation”
dsp.LPCToCepstral “System Objects in MATLAB Code Generation”
dsp.LPCToLSF “System Objects in MATLAB Code Generation”
dsp.LPCToLSP “System Objects in MATLAB Code Generation”
dsp.LPCToRC “System Objects in MATLAB Code Generation”
dsp.LSFToLPC “System Objects in MATLAB Code Generation”
dsp.LSPToLPC “System Objects in MATLAB Code Generation”
dsp.RCToAutocorrelation “System Objects in MATLAB Code Generation”
dsp.RCToLPC “System Objects in MATLAB Code Generation”
dsp.SpectrumEstimator “System Objects in MATLAB Code Generation”
dsp.TransferFunctionEstimator “System Objects in MATLAB Code Generation”
Filters
ca2tf All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

cl2tf All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

dsp.AdaptiveLatticeFilter “System Objects in MATLAB Code Generation”
dsp.AffineProjectionFilter “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-175

Name Remarks and Limitations

dsp.AllpassFilter “System Objects in MATLAB Code Generation”

The System object supports code generation only
when the Structure property is set to Minimum
multiplier or Lattice.

dsp.AllpoleFilter • “System Objects in MATLAB Code
Generation”

• Only the Denominator property is tunable
for code generation.

dsp.BiquadFilter “System Objects in MATLAB Code Generation”
dsp.CICCompensationDecimator “System Objects in MATLAB Code Generation”
dsp.CICCompensationInterpolator “System Objects in MATLAB Code Generation”
dsp.CICDecimator “System Objects in MATLAB Code Generation”
dsp.CICInterpolator “System Objects in MATLAB Code Generation”
dsp.FarrowRateConverter “System Objects in MATLAB Code Generation”
dsp.FastTransversalFilter “System Objects in MATLAB Code Generation”
dsp.FilterCascade • You cannot generate code directly from

dsp.FilterCascade. You can use the
generateFilteringCode method to
generate a MATLAB function. You can
generate C/C++ code from this MATLAB
function.

• “System Objects in MATLAB Code
Generation”

dsp.FilteredXLMSFilter “System Objects in MATLAB Code Generation”
dsp.FIRDecimator “System Objects in MATLAB Code Generation”
dsp.FIRFilter • “System Objects in MATLAB Code

Generation”
• Only the Numerator property is tunable for

code generation.
dsp.FIRHalfbandDecimator “System Objects in MATLAB Code Generation”
dsp.FIRHalfbandInterpolator “System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-176

Name Remarks and Limitations

dsp.FIRInterpolator “System Objects in MATLAB Code Generation”
dsp.FIRRateConverter “System Objects in MATLAB Code Generation”
dsp.FrequencyDomainAdaptiveFilter “System Objects in MATLAB Code Generation”
dsp.HighpassFilter “System Objects in MATLAB Code Generation”
dsp.IIRFilter • Only the Numerator and Denominator

properties are tunable for code generation.
• “System Objects in MATLAB Code

Generation”
dsp.IIRHalfbandDecimator “System Objects in MATLAB Code Generation”
dsp.IIRHalfbandInterpolator “System Objects in MATLAB Code Generation”
dsp.KalmanFilter “System Objects in MATLAB Code Generation”
dsp.LMSFilter “System Objects in MATLAB Code Generation”
dsp.LowpassFilter “System Objects in MATLAB Code Generation”
dsp.RLSFilter “System Objects in MATLAB Code Generation”
dsp.SampleRateConverter “System Objects in MATLAB Code Generation”
firceqrip All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

fireqint All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firgr • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firhalfband All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-177

Name Remarks and Limitations

firlpnorm • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

firminphase All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firnyquist All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

firpr2chfb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

ifir All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iircomb All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirgrpdelay • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirlpnorm • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

42 Functions, Classes, and System Objects Supported for Code Generation

42-178

Name Remarks and Limitations

iirlpnormc • All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

• Does not support syntaxes that have cell
array input.

iirnotch All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

iirparameq —
iirpeak All inputs must be constant. Expressions or

variables are allowed if their values do not
change.

tf2ca All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

tf2cl All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Math Operations
dsp.ArrayVectorAdder “System Objects in MATLAB Code Generation”
dsp.ArrayVectorDivider “System Objects in MATLAB Code Generation”
dsp.ArrayVectorMultiplier “System Objects in MATLAB Code Generation”
dsp.ArrayVectorSubtractor “System Objects in MATLAB Code Generation”
dsp.CumulativeProduct “System Objects in MATLAB Code Generation”
dsp.CumulativeSum “System Objects in MATLAB Code Generation”
dsp.LDLFactor “System Objects in MATLAB Code Generation”
dsp.LevinsonSolver “System Objects in MATLAB Code Generation”
dsp.LowerTriangularSolver “System Objects in MATLAB Code Generation”
dsp.LUFactor “System Objects in MATLAB Code Generation”
dsp.Normalizer “System Objects in MATLAB Code Generation”
dsp.UpperTriangularSolver “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-179

Name Remarks and Limitations

Quantizers
dsp.ScalarQuantizerDecoder “System Objects in MATLAB Code Generation”
dsp.ScalarQuantizerEncoder “System Objects in MATLAB Code Generation”
dsp.VectorQuantizerDecoder “System Objects in MATLAB Code Generation”
dsp.VectorQuantizerEncoder “System Objects in MATLAB Code Generation”
Scopes
dsp.SpectrumAnalyzer This System object does not generate code. It is

automatically declared as an extrinsic variable
using the coder.extrinsic function.

dsp.TimeScope This System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

Signal Management
dsp.Counter “System Objects in MATLAB Code Generation”
dsp.DelayLine “System Objects in MATLAB Code Generation”
Signal Operations
dsp.Convolver “System Objects in MATLAB Code Generation”
dsp.DCBlocker “System Objects in MATLAB Code Generation”
dsp.Delay “System Objects in MATLAB Code Generation”
dsp.DigitalDownConverter “System Objects in MATLAB Code Generation”
dsp.DigitalUpConverter “System Objects in MATLAB Code Generation”
dsp.Interpolator “System Objects in MATLAB Code Generation”
dsp.NCO “System Objects in MATLAB Code Generation”
dsp.PeakFinder “System Objects in MATLAB Code Generation”
dsp.PhaseExtractor “System Objects in MATLAB Code Generation”
dsp.PhaseUnwrapper “System Objects in MATLAB Code Generation”
dsp.VariableFractionalDelay “System Objects in MATLAB Code Generation”
dsp.VariableIntegerDelay “System Objects in MATLAB Code Generation”

42 Functions, Classes, and System Objects Supported for Code Generation

42-180

Name Remarks and Limitations

dsp.Window • This object has no tunable properties for code
generation.

• “System Objects in MATLAB Code
Generation”

dsp.ZeroCrossingDetector “System Objects in MATLAB Code Generation”
Sinks
dsp.AudioPlayer “System Objects in MATLAB Code Generation”
dsp.AudioFileWriter “System Objects in MATLAB Code Generation”
dsp.UDPSender “System Objects in MATLAB Code Generation”
Sources
dsp.AudioFileReader “System Objects in MATLAB Code Generation”
dsp.AudioRecorder “System Objects in MATLAB Code Generation”
dsp.SignalSource “System Objects in MATLAB Code Generation”
dsp.SineWave • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”
dsp.UDPReceiver “System Objects in MATLAB Code Generation”
Statistics
dsp.Autocorrelator “System Objects in MATLAB Code Generation”
dsp.Crosscorrelator “System Objects in MATLAB Code Generation”
dsp.Histogram • This object has no tunable properties for code

generation.
• “System Objects in MATLAB Code

Generation”
dsp.Maximum “System Objects in MATLAB Code Generation”
dsp.Mean “System Objects in MATLAB Code Generation”
dsp.Median “System Objects in MATLAB Code Generation”
dsp.Minimum “System Objects in MATLAB Code Generation”

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-181

Name Remarks and Limitations

dsp.PeakToPeak “System Objects in MATLAB Code Generation”
dsp.PeakToRMS “System Objects in MATLAB Code Generation”
dsp.RMS “System Objects in MATLAB Code Generation”
dsp.StandardDeviation “System Objects in MATLAB Code Generation”
dsp.StateLevels “System Objects in MATLAB Code Generation”
dsp.Variance “System Objects in MATLAB Code Generation”
Transforms
dsp.AnalyticSignal “System Objects in MATLAB Code Generation”
dsp.DCT “System Objects in MATLAB Code Generation”
dsp.FFT “System Objects in MATLAB Code Generation”
dsp.IDCT “System Objects in MATLAB Code Generation”
dsp.IFFT “System Objects in MATLAB Code Generation”

Error Handling in MATLAB

Function Remarks and Limitations

assert • Generates specified error messages at compile time only if all input
arguments are constants or depend on constants. Otherwise, generates
specified error messages at run time.

• For standalone code generation, excluded from the generated code.
error For standalone code generation, excluded from the generated code.

Exponents in MATLAB

Function Remarks and Limitations

exp —
expm —
expm1 —
factorial —

42 Functions, Classes, and System Objects Supported for Code Generation

42-182

Function Remarks and Limitations

log • Generates an error during simulation and returns NaN in generated
code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

log2 —
log10 —
log1p —
nextpow2 —
nthroot —
reallog —
realpow —
realsqrt —
sqrt • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

Filtering and Convolution in MATLAB

Function Remarks and Limitations

conv —
conv2 —
convn —
deconv —
detrend • If supplied and not empty, the input argument bp must satisfy the

following requirements:

• Be real.
• Be sorted in ascending order.
• Restrict elements to integers in the interval [1, n-2]. n is the

number of elements in a column of input argument X , or the number
of elements in X when X is a row vector.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-183

Function Remarks and Limitations

• Contain all unique values.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30

filter —
filter2 —

Fixed-Point Designer

In addition to function-specific limitations listed in the table, the following general
limitations apply to the use of Fixed-Point Designer functions in generated code, with
fiaccel:

• fipref and quantizer objects are not supported.
• Word lengths greater than 128 bits are not supported.
• You cannot change the fimath or numerictype of a given fi variable after that

variable has been created.
• The boolean value of the DataTypeMode and DataType properties are not

supported.
• For all SumMode property settings other than FullPrecision, the CastBeforeSum

property must be set to true.
• You can use parallel for (parfor) loops in code compiled with fiaccel, but those

loops are treated like regular for loops.
• When you compile code containing fi objects with nontrivial slope and bias scaling,

you may see different results in generated code than you achieve by running the same
code in MATLAB.

• The general limitations of C/C++ code generated from MATLAB apply. For
more information, see “MATLAB Language Features Supported for C/C++ Code
Generation”.

Function Remarks/Limitations

abs N/A
accumneg N/A
accumpos N/A

42 Functions, Classes, and System Objects Supported for Code Generation

42-184

Function Remarks/Limitations

add • Code generation in MATLAB does not support the syntax
F.add(a,b). You must use the syntax add(F,a,b).

all N/A
any N/A
atan2 N/A
bitand Not supported for slope-bias scaled fi objects.
bitandreduce N/A
bitcmp N/A
bitconcat N/A
bitget N/A
bitor Not supported for slope-bias scaled fi objects.
bitorreduce N/A
bitreplicate N/A
bitrol N/A
bitror N/A
bitset N/A
bitshift N/A
bitsliceget N/A
bitsll Generated code may not handle out of range shifting.
bitsra Generated code may not handle out of range shifting.
bitsrl Generated code may not handle out of range shifting.
bitxor Not supported for slope-bias scaled fi objects.
bitxorreduce N/A
ceil N/A
complex N/A
conj N/A

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-185

Function Remarks/Limitations

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A
cordicabs Variable-size signals are not supported.
cordicangle Variable-size signals are not supported.
cordicatan2 Variable-size signals are not supported.
cordiccart2pol Variable-size signals are not supported.
cordiccexp Variable-size signals are not supported.
cordiccos Variable-size signals are not supported.
cordicpol2cart Variable-size signals are not supported.
cordicrotate Variable-size signals are not supported.
cordicsin Variable-size signals are not supported.
cordicsincos Variable-size signals are not supported.
cos N/A
ctranspose N/A
diag If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.

42 Functions, Classes, and System Objects Supported for Code Generation

42-186

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.
• Code generation in MATLAB does not support the syntax

T.divide(a,b).
double For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

end N/A
eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.
fi • The default constructor syntax without any input arguments is not

supported.
• If the numerictype is not fully specified, the input to fi must be a

constant, a fi, a single, or a built-in integer value. If the input is a
built-in double value, it must be a constant. This limitation allows
fi to autoscale its fraction length based on the known data type of
the input.

• All properties related to data type must be constant for code
generation.

• numerictype object information must be available for nonfixed-
point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-187

Function Remarks/Limitations

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.
• If the ProductMode property of the fimath object is set to

anything other than FullPrecision, the ProductWordLength
and ProductFractionLength properties must be constant.

• If the SumMode property of the fimath object is set to anything
other than FullPrecision, the SumWordLength and
SumFractionLength properties must be constant.

fix N/A
fixed.Quantizer N/A
flip The dimensions argument must be a built-in type; it cannot be a fi

object.
fliplr N/A
flipud N/A
floor N/A
for N/A
ge Not supported for fixed-point signals with different biases.
get The syntax structure = get(o) is not supported.
getlsb N/A
getmsb N/A
gt Not supported for fixed-point signals with different biases.
horzcat N/A
imag N/A
int8, int16, int32,
 int64

N/A

ipermute N/A
iscolumn N/A
isempty N/A

42 Functions, Classes, and System Objects Supported for Code Generation

42-188

Function Remarks/Limitations

isequal N/A
isfi Avoid using the isfi function in code that you intend to convert

using the automated workflow. The value returned by isfi in the
fixed-point code might differ from the value returned in the original
MATLAB algorithm. The behavior of the fixed-point code might differ
from the behavior of the original algorithm.

isfimath N/A
isfimathlocal N/A
isfinite N/A
isinf N/A
isnan N/A
isnumeric N/A
isnumerictype N/A
isreal N/A
isrow N/A
isscalar N/A
issigned N/A
isvector N/A
le Not supported for fixed-point signals with different biases.
length N/A
logical N/A
lowerbound N/A
lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.
max N/A
mean N/A
median N/A

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-189

Function Remarks/Limitations

min N/A
minus Any non-fi input must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
mpower • When the exponent k is a variable and the input is a scalar,

the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not scalar,
the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy • Code generation in MATLAB does not support the syntax
F.mpy(a,b). You must use the syntax mpy(F,a,b).

• When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

mrdivide N/A

42 Functions, Classes, and System Objects Supported for Code Generation

42-190

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

• In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

• In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
both inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A
ne Not supported for fixed-point signals with different biases.
nearest N/A
numberofelements numberofelements will be removed in a future release. Use numel

instead.
numel N/A
numerictype • Fixed-point signals coming in to a MATLAB Function block from

Simulink are assigned a numerictype object that is populated
with the signal's data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.
• Use to create numerictype objects in generated code.
• All numerictype object properties related to the data type must be

constant.
permute The dimensions argument must be a built-in type; it cannot be a fi

object.
plus Any non-fi inputs must be constant; that is, its value must be known

at compile time so that it can be cast to a fi object.
pow2 N/A

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-191

Function Remarks/Limitations

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

qr N/A
quantize N/A
range N/A
rdivide N/A
real N/A
realmax N/A
realmin N/A
reinterpretcast N/A
removefimath N/A
repmat The dimensions argument must be a built-in type; it cannot be a fi

object.
rescale N/A
reshape N/A
rot90 In the syntax rot90(A,k), the argument k must be a built-in type; it

cannot be a fi object.
round N/A
setfimath N/A
sfi • All properties related to data type must be constant for code

generation.
shiftdim The dimensions argument must be a built-in type; it cannot be a fi

object.
sign N/A
sin N/A
single For the automated workflow, do not use explicit double or single casts

in your MATLAB algorithm to insulate functions that do not support
fixed-point data types. The automated conversion tool does not support
these casts. Instead of using casts, supply a replacement function. For
more information, see “Function Replacements”.

42 Functions, Classes, and System Objects Supported for Code Generation

42-192

Function Remarks/Limitations

size N/A
sort The dimensions argument must be a built-in type; it cannot be a fi

object.
squeeze N/A
sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.
storedInteger N/A
storedIntegerToDouble N/A
sub • Code generation in MATLAB does not support the syntax

F.sub(a,b). You must use the syntax sub(F,a,b).
subsasgn N/A
subsref N/A
sum Variable-sized inputs are only supported when the SumMode property

of the governing fimath is set to Specify precision or Keep LSB.
times • Any non-fi input must be constant; that is, its value must be

known at compile time so that it can be cast to a fi object.
• When you provide complex inputs to the times function inside of

a MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A
tril If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
triu If supplied, the index, k, must be a real and scalar integer value that is

not a fi object.
ufi • All properties related to data type must be constant for code

generation.
uint8, uint16, uint32,
 uint64

N/A

uminus N/A

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-193

Function Remarks/Limitations

uplus N/A
upperbound N/A
vertcat N/A

HDL Coder

Function Remarks and Limitations

hdl.RAM This System object is available with MATLAB.

Histograms in MATLAB

Function Remarks and Limitations

hist • Histogram bar plotting not supported. Call with at least one output
argument.

• If supplied, the second argument x must be a scalar constant.
• Inputs must be real.

For the syntax [nout, xout] = hist(y,x):

• When y is a fixed-size vector or variable-length vector:

• nout is always a row vector.
• If x is a vector, xout is a vector with the same orientation as x.
• If x is a scalar (fixed-size), xout is a row vector.

• nout and xout are column vectors when the following conditions are
true:

• y is a matrix
• size(y,1) and size(y,2) do not have fixed length 1
• One of size(y,1) and size(y,2) has length 1 at run time

• A variable-sizex is interpreted as a vector input even if it is a scalar at
run time.

• If at least one of the inputs is empty, vector orientations in the output
can differ from MATLAB.

42 Functions, Classes, and System Objects Supported for Code Generation

42-194

Function Remarks and Limitations

histc • The output of a variable-size array that becomes a column vector at run
time is a column-vector, not a row-vector.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30

Image Acquisition Toolbox

If you install Image Acquisition Toolbox software, you can generate C and C++ code for
the VideoDevice System object. See imaq.VideoDevice and “Code Generation with
VideoDevice System Object”.

Image Processing in MATLAB

Function Remarks and Limitations

im2double —
rgb2gray —

Image Processing Toolbox

The following table lists the Image Processing Toolbox functions that have been enabled
for code generation. You must have the MATLAB Coder software installed to generate C
code from MATLAB for these functions.

Image Processing Toolbox provides three types of code generation support:

• Functions that generate C code.
• Functions that generate C code that depends on a platform-specific shared library

(.dll, .so, or .dylib). Use of a shared library preserves performance optimizations
in these functions, but this limits the target platforms for which you can generate
code. For more information, see “Code Generation for Image Processing”.

• Functions that generate C code or C code that depends on a shared library, depending
on which target platform you specify in MATLAB Coder. If you specify the generic
MATLAB Host Computer target platform, these functions generate C code that

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-195

depends on a shared library. If you specify any other target platform, these functions
generate C code.

In generated code, each supported toolbox function has the same name, arguments, and
functionality as its Image Processing Toolbox counterpart. However, some functions have
limitations. The following table includes information about code generation limitations
that might exist for each function. In the following table, all the functions generate C
code. The table identifies those functions that generate C code that depends on a shared
library, and those functions that can do both, depending on which target platform you
choose.

Function Remarks/Limitations

affine2d When generating code, you can only specify single objects—arrays of
objects are not supported.

bwareaopen BW must be a 2-D binary image. N-D arrays are not supported. conn
can only be one of the two-dimensional connectivities (4 or 8) or a 3-
by-3 matrix. The 3-D connectivities (6, 18, and 26) are not supported.
Matrices of size 3-by-3-by-...-by-3 are not supported. conn must be a
compile-time constant.

bwdist The method argument must be a compile-time constant. Input images
must have fewer than 232 pixels.

Generated code for this function uses a precompiled, platform-specific
shared library.

bweuler If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwlabel When generating code, the parameter n must be a compile-time
constant.

bwlookup For best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-196

Function Remarks/Limitations

bwpack Generated code for this function uses a precompiled platform-specific
shared library.

bwperim Supports only 2-D images. Does not support any no-output-argument
syntaxes. The connectivity matrix input argument, conn, must be a
compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwselect Supports only the 3 and 4 input argument syntaxes: BW2 =
bwselect(BW,c,r) and BW2 = bwselect(BW,c,r,n). The optional
fourth input argument, n, must be a compile-time constant. In addition,
with code generation, bwselect only supports only the 1 and 2 output
argument syntaxes: BW2 = bwselect(___) or [BW2, idx] =
bwselect(___).

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

bwtraceboundary The dir, fstep, and conn arguments must be compile-time constants.
bwunpack Generated code for this function uses a precompiled platform-specific

shared library.
conndef Input arguments must be compile-time constants.
edge The method, direction, and sigma arguments must be a compile-

time constants. In addition, nonprogrammatic syntaxes are not
supported. For example, the syntax edge(im), where edge does not
return a value but displays an image instead, is not supported.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

fitgeotrans The transformtype argument must be a compile-time constant.
The function supports the following transformation types:
'nonreflectivesimilarity', 'similarity', 'affine', or
'projective'.

fspecial Inputs must be compile-time constants. Expressions or variables are
allowed if their values do not change.

getrangefromclass —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-197

Function Remarks/Limitations

grayconnected If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

histeq All the syntaxes that include indexed images are not supported. This
includes all syntaxes that accept map as input and return newmap.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

hough The optional parameter names 'Theta' and 'RhoResolution' must
be compile-time string constants. The optional Theta vector must have
a bounded size.

houghlines The optional parameter names 'FillGap' and 'MinLength' must
be compile-time string constants. Their associated values need not be
compile-time constants.

houghpeaks The optional parameter names 'Threshold' and 'NHoodSize' must
be compile-time string constants. Their associated values need not be
compile-time constants.

im2int16 If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

im2uint8 If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

im2uint16 If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

im2single —
im2double —
imabsdiff —
imadjust Does not support syntaxes that include indexed images. This includes

all syntaxes that accept map as input and return newmap.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-198

Function Remarks/Limitations

imbothat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imclearborder The optional second input argument, conn, must be a compile-time
constant. Supports only up to 3-D inputs.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imclose The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imcomplement Does not support int64 and uint64 data types.
imcrop The interactive syntaxes, such as I2 = imcrop, are not supported.

Indexed images are not supported, including the noninteractive syntax
X2 = imcrop(X,map,rect);.

imdilate The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-199

Function Remarks/Limitations

imerode The input image IM must be either 2-D or 3-D image. The SE, PACKOPT,
and SHAPE input arguments must be a compile-time constant. The
structuring element argument SE must be a single element—arrays of
structuring elements are not supported. To obtain the same result as
that obtained using an array of structuring elements, call the function
sequentially.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imextendedmax The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imextendedmin The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imfill The optional input connectivity, conn and the string 'holes' must be
compile-time constants.

Supports only up to 3-D inputs.

The interactive mode to select points, imfill(BW,0,CONN) is not
supported in code generation.

locations can be a P-by-1 vector, in which case it contains the
linear indices of the starting locations. locations can also be a P-
by-ndims(I) matrix, in which case each row contains the array indices
of one of the starting locations. Once you select a format at compile-
time, you cannot change it at run time. However, the number of points
in locations can be varied at run time.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-200

Function Remarks/Limitations

imfilter The input image can be either 2-D or 3-D. The value of the input
argument, options, must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imgaborfilt —
imhist The optional second input argument, n, must be a compile-time

constant. In addition, nonprogrammatic syntaxes are not supported.
For example, the syntaxes where imhist displays the histogram are
not supported.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imhmax The optional third input argument, conn, must be a compile-time
constant

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imhmin The optional third input argument, conn, must be a compile-time
constant

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imlincomb The output_class argument must be a compile-time constant. You
can specify up to four input image arguments.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

immse —
imopen The input image IM must be either 2-D or 3-D image. The structuring

element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imquantize —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-201

Function Remarks/Limitations

imreconstruct The optional third input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imref2d The XWorldLimits, YWorldLimits and ImageSize properties can be
set only during object construction. When generating code, you can only
specify single objects—arrays of objects are not supported.

imref3d The XWorldLimits, YWorldLimits, ZWorldLimits and ImageSize
properties can be set only during object construction. When generating
code, you can only specify single objects—arrays of objects are not
supported.

imregionalmax The optional second input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imregionalmin The optional second input argument, conn, must be a compile-time
constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imresize Does not support indexed images or custom interpolation kernels. The
Scale, OutputSize and all parameter-value pair input arguments
must be compile-time constants.

imrotate The angle, method, and bbox arguments must be compile-time
constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imtophat The input image IM must be either 2-D or 3-D image. The structuring
element input argument SE must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-202

Function Remarks/Limitations

imtranslate The supports only 2-D translation vectors. 3-D translations are not
supported

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

imwarp The geometric transformation object input, tform, must be either
affine2d or projective2d. Additionally, the interpolation method
and optional parameter names must be string constants.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

integralBoxFilter The FilterSize input argument and the 'NormalizationFactor'
parameter must be compile-time constants

intlut If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

iptcheckconn Input arguments must be compile-time constants.
iptcheckmap —
label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.
mean2 —
medfilt2 The padopt argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-203

Function Remarks/Limitations

multithresh If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

ordfilt2 The padopt argument must be a compile-time constant.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

padarray Support only up to 3-D inputs.

Input arguments, padval and direction are expected to be compile-
time constants.

projective2d When generating code, you can only specify single objects—arrays of
objects are not supported.

psnr
regionprops Supports only 2-D images. Does not accept the connected component

structure (CC) returned by bwconncomp. Use bwlabel to create
a label matrix, or pass the image to regionprops directly. Does
not support the table output type. Does not accept cell arrays as
input—use a comma-separated list instead. Does not support the
properties ConvexArea, ConvexHull, ConvexImage, Solidity, and
SubarrayIdx.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

rgb2gray —
rgb2ycbcr If you choose the generic MATLAB Host Computer target platform,

generated code uses a precompiled, platform-specific shared library.
strel Input arguments must be compile-time constants. The following

methods are not supported for code generation: getsequence,
reflect, translate, disp, display, loadobj. When generating
code, you can only specify single objects—arrays of objects are not
supported.

stretchlim If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

42 Functions, Classes, and System Objects Supported for Code Generation

42-204

Function Remarks/Limitations

watershed Supports only 2-D images. Supports only 4- or 8-connectivity. Supports
only up to 65,535 regions. The output type is always uint16.

If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

ycbcr2rgb If you choose the generic MATLAB Host Computer target platform,
generated code uses a precompiled, platform-specific shared library.

Input and Output Arguments in MATLAB

Function Remarks and Limitations

nargin —
nargout • For a function with no output arguments,

returns 1 if called without a terminating
semicolon.

Note: This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

Interpolation and Computational Geometry in MATLAB

Function Remarks and Limitations

cart2pol —
cart2sph —
interp1 “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on

page 46-30
interp1q Might not match MATLAB when some Y values are Inf or NaN.
interp2 • Xq and Yq must be the same size. Use meshgrid to evaluate on a grid.

• For best results, provide X and Y as vectors.
• For the 'cubic' method, reports an error if the grid does not have

uniform spacing. In this case, use the 'spline' method.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-205

Function Remarks and Limitations

• For best results when you use the 'spline' method:

• Use meshgrid to create the inputs Xq and Yq.
• Use a small number of interpolation points relative to the dimensions

of V. Interpolating over a large set of scattered points can be
inefficient.

interp3 • Xq, Yq, and Zq must be the same size. Use meshgrid to evaluate on a
grid.

• For best results, provide X, Y, and Z as vectors.
• For the 'cubic' method, reports an error if the grid does not have

uniform spacing. In this case, use the 'spline' method.
• For best results when you use the 'spline' method:

• Use meshgrid to create the inputs Xq, Yq, and Zq.
• Use a small number of interpolation points relative to the dimensions

of V. Interpolating over a large set of scattered points can be
inefficient.

meshgrid —

42 Functions, Classes, and System Objects Supported for Code Generation

42-206

Function Remarks and Limitations

mkpp • The output structure pp differs from the pp structure in MATLAB. In
MATLAB, ppval cannot use the pp structure from the code generation
software. For code generation, ppval cannot use a pp structure
created by MATLAB. unmkpp can use a MATLAB pp structure for code
generation.

To create a MATLAB pp structure from a pp structure created by the
code generation software:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
• If you do not provide d, then coefs must be two-dimensional and have

a fixed number of columns. In this case, the number of columns is the
order.

• To define a piecewise constant polynomial, coefs must be a column
vector or d must have at least two elements.

• If you provide d and d is 1, d must be a constant. Otherwise, if the input
to ppval is nonscalar, the shape of the output of ppval can differ from
ppval in MATLAB.

• If you provide d, it must have a fixed length. One of the following sets of
statements must be true:

1 Suppose that m = length(d) and npieces = length(breaks)
- 1.

size(coefs,j) = d(j)

size(coefs,m+1) = npieces

size(coefs,m+2) = order

j = 1,2,...,m. The dimension m+2 must be fixed length.
2 Suppose that m = length(d) and npieces = length(breaks)

- 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.
• If you do not provide d, the following statements must be true:

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-207

Function Remarks and Limitations

Suppose that m = length(d) and npieces = length(breaks) - 1.

size(coefs,1) = prod(d)*npieces

size(coefs,2) = order

The second dimension must be fixed length.

pchip • Input x must be strictly increasing.
• Does not remove y entries with NaN values.
• If you generate code for the pp = pchip(x,y) syntax, you cannot

input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generation software:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
pol2cart —
polyarea —
ppval The size of output v does not match MATLAB when both of the following

statements are true:

• The input x is a variable-size array that is not a variable-length vector.
• x becomes a row vector at run time.

The code generation software does not remove the singleton dimensions.
However, MATLAB might remove singleton dimensions.

For example, suppose that x is a :4-by-:5 array (the first dimension is
variable size with an upper bound of 4 and the second dimension is variable
size with an upper bound of 5). Suppose that ppval(pp,0) returns a 2-
by-3 fixed-size array. v has size 2-by-3-by-:4-by-:5. At run time, suppose
that, size(x,1) =1 and size (x,2) = 5. In the generated code, the size(v) is
[2,3,1,5]. In MATLAB, the size is [2,3,5].

rectint —
sph2cart —

42 Functions, Classes, and System Objects Supported for Code Generation

42-208

Function Remarks and Limitations

spline • Input x must be strictly increasing.
• Does not remove Y entries with NaN values.
• Does not report an error for infinite endslopes in Y.
• If you generate code for the pp = spline(x,Y) syntax, you cannot

input pp to the ppval function in MATLAB. To create a MATLAB pp
structure from a pp structure created by the code generation software:

• In code generation, use unmkpp to return the piecewise polynomial
details to MATLAB.

• In MATLAB, use mkpp to create the pp structure.
unmkpp • pp must be a valid piecewise polynomial structure created by mkpp,

spline, or pchip in MATLAB or by the code generation software.
• Does not support pp structures created by interp1 in MATLAB.

Linear Algebra in MATLAB

Function Remarks and Limitations

bandwidth —
isbanded —
isdiag —
ishermitian —
istril —
istriu —
issymmetric —
linsolve • The option structure must be a constant.

• Supports only a scalar option structure input. It does not support arrays
of option structures.

• Only optimizes these cases:

• UT

• LT

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-209

Function Remarks and Limitations

• UHESS = true (the TRANSA can be either true or false)
• SYM = true and POSDEF = true

Other options are equivalent to using mldivide.

lsqnonneg • You must enable support for variable-size arrays.
• The message string in the output structure output (the fifth output) is

not translated.
null • Might return a different basis than MATLAB

• Does not support rational basis option (second input)
orth • Can return a different basis than MATLAB
rsf2csf —
schur Can return a different Schur decomposition in generated code than in

MATLAB.
sqrtm —

Logical and Bit-Wise Operations in MATLAB

Function Remarks and Limitations

and —
bitand —
bitcmp —
bitget —
bitor —
bitset —
bitshift —
bitxor —
not —
or —
xor —

42 Functions, Classes, and System Objects Supported for Code Generation

42-210

MATLAB Compiler

C and C++ code generation for the following functions requires the MATLAB Compiler
software.

Function Remarks and Limitations

isdeployed • Returns true and false as appropriate for MEX and SIM targets
• Returns false for other targets

ismcc • Returns true and false as appropriate for MEX and SIM targets.
• Returns false for other targets.

Matrices and Arrays in MATLAB

Function Remarks and Limitations

abs —
all “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
angle —
any “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
blkdiag —
bsxfun “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
cat • Does not support concatenation of cell arrays.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
circshift Does not support cell arrays for the first argument.
colon • Does not accept complex inputs.

• The input i cannot have a logical value.
• Does not accept vector inputs.
• Inputs must be constants.
• Uses single-precision arithmetic to produce single-precision results.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-211

Function Remarks and Limitations

compan —
cond “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
cov • “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
• Does not support the nanflag argument.

cross • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
cumprod Does not support logical inputs. Cast input to double first.
cumsum Does not support logical inputs. Cast input to double first.
det —

42 Functions, Classes, and System Objects Supported for Code Generation

42-212

Function Remarks and Limitations

diag • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

• For variable-size inputs that are variable-length vectors (1-by-: or :-
by-1), diag:

• Treats the input as a vector input.
• Returns a matrix with the given vector along the specified

diagonal.

• For variable-size inputs that are not variable-length vectors, diag:

• Treats the input as a matrix.
• Does not support inputs that are vectors at run time.
• Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and has shape 0-by-0 at run
time, the output is 0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

• For variable-size inputs that are not variable-length vectors (1-by-:
or :-by-1), diag treats the input as a matrix from which to extract
a diagonal vector. This behavior occurs even if the input array is a
vector at run time. To force diag to build a matrix from variable-
size inputs that are not 1-by-: or :-by-1, use:

• diag(x(:)) instead of diag(x)
• diag(x(:),k) instead of diag(x,k)

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30

diff • If supplied, the arguments representing the number of times
to apply diff and the dimension along which to calculate the
difference must be constants.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30

dot —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-213

Function Remarks and Limitations

eig • For code generation,QZ algorithm is used in all cases. MATLAB can
use different algorithms for different inputs. Consequently, V might
represent a different basis of eigenvectors. The eigenvalues in D
might not be in the same order as in MATLAB.

• With one input, [V,D] = eig(A), the results are similar to
those obtained using [V,D] = eig(A,eye(size(A)),'qz') in
MATLAB, except that for code generation, the columns of V are
normalized.

• Options 'balance', and 'nobalance' are not supported for the
standard eigenvalue problem. 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.
• Does not support the option to calculate left eigenvectors.

eye • classname must be a built-in MATLAB numeric type. Does not
invoke the static eye method for other classes. For example, eye(m,
n, 'myclass’) does not invoke myclass.eye(m,n).

• Size arguments must have a fixed size.
false • Dimensions must be real, nonnegative, integers.
find • Issues an error if a variable-size input becomes a row vector at run

time.

Note: This limitation does not apply when the input is scalar or a
variable-length row vector.

• For variable-size inputs, the shape of empty outputs, 0-by-0, 0-by-1,
or 1-by-0, depends on the upper bounds of the size of the input. The
output might not match MATLAB when the input array is a scalar
or [] at run time. If the input is a variable-length row vector, the size
of an empty output is 1-by-0, otherwise it is 0-by-1.

• Always returns a variable-length vector. Even when you provide
the output vector k, the output cannot be fixed-size because the
output can contain fewer than k elements. For example, find(x,1)
returns a variable-length vector with 1 or 0 elements.

flip Does not support cell arrays for the first argument.

42 Functions, Classes, and System Objects Supported for Code Generation

42-214

Function Remarks and Limitations

flipdim Does not support cell arrays for the first argument.
fliplr Does not support cell arrays.
flipud Does not support cell arrays.
full —
hadamard n must be a fixed-size scalar.
hankel —
hilb —
ind2sub • The first argument should be a valid size vector. Size vectors for

arrays with more than intmax elements are not supported.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
inv Singular matrix inputs can produce nonfinite values that differ from

MATLAB results.
invhilb —
ipermute • Does not support cell arrays for the first argument.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30

iscolumn —
isempty —
isequal —
isequaln —
isfinite —
isfloat —
isinf —
isinteger —
islogical —
ismatrix —
isnan —
isrow —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-215

Function Remarks and Limitations

issparse —
isvector —
kron —
length —
linspace —
logspace —
lu —
magic “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30.
max • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30.

• Does not support the nanflag argument.
• “Code Generation for Complex Data with Zero-Valued Imaginary

Parts” on page 45-4.
min • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30.

• Does not support the nanflag argument.
• “Code Generation for Complex Data with Zero-Valued Imaginary

Parts” on page 45-4.
ndgrid —
ndims —
nnz —
nonzeros —
norm —
normest —
numel —

42 Functions, Classes, and System Objects Supported for Code Generation

42-216

Function Remarks and Limitations

ones • Dimensions must be real, nonnegative integers.
• The input optimfun must be a function supported for code

generation.
pascal —
permute • Does not support cell arrays for the first argument.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30

pinv —
planerot “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
prod • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30

qr —
rand • classname must be a built-in MATLAB numeric type. Does not

invoke the static rand method for other classes. For example,
rand(sz,'myclass’) does not invoke myclass.rand(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
randi • classname must be a built-in MATLAB numeric type. Does

not invoke the static randi method for other classes. For
example, randi(imax,sz,'myclass’) does not invoke
myclass.randi(imax,sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-217

Function Remarks and Limitations

randn • classname must be a built-in MATLAB numeric type. Does not
invoke the static randn method for other classes. For example,
randn(sz,'myclass’) does not invoke myclass.randn(sz).

• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
randperm —
rank —
rcond —
repmat Size arguments must have a fixed size.
reshape • If the input is a compile-time empty cell array, then the size

arguments must be constants.
• Size arguments must have a fixed size.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
rng • For library code generation targets, executable code generation

targets, and MEX targets with extrinsic calls disabled:

• Does not support the 'shuffle' input.
• For the generator input, supports 'twister', 'v4', and

'v5normal'.

For these targets, the output of s=rng in the generated code differs
from the MATLAB output. You cannot return the output of s=rng
from the generated code and pass it to rng in MATLAB.

• For MEX targets, if extrinsic calls are enabled, you cannot access
the data in the structure returned by rng.

rosser —
rot90 Does not support cell arrays for the first argument.

42 Functions, Classes, and System Objects Supported for Code Generation

42-218

Function Remarks and Limitations

shiftdim • Does not support cell arrays for the first argument.
• Second argument must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
sign —
size —
sort • Does not support cell arrays for the first argument.

• If the input is a complex type, sort orders the output according
to absolute value. When x is a complex type that has all zero
imaginary parts, use sort(real(x)) to compute the sort order
for real types. See “Code Generation for Complex Data with Zero-
Valued Imaginary Parts” on page 45-4.

sortrows • Does not support cell arrays for the first argument.
• If the input is a complex type, sortrows orders the output

according to absolute value. When x is a complex type that has all
zero imaginary parts, use sortrows(real(x)) to compute the sort
order for real types. See “Code Generation for Complex Data with
Zero-Valued Imaginary Parts” on page 45-4.

squeeze Does not support cell arrays.
sub2ind • The first argument must be a valid size vector. Size vectors for

arrays with more than intmax elements are not supported.
• “Variable-Sizing Restrictions for Code Generation of Toolbox

Functions” on page 46-30
subspace —
sum • Specify dim as a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox
Functions” on page 46-30

• Does not support the nanflag argument.
toeplitz —
trace —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-219

Function Remarks and Limitations

tril • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

triu • If supplied, the argument representing the order of the diagonal
matrix must be a real and scalar integer value.

true • Dimensions must be real, nonnegative, integers.
vander —
wilkinson n must be a fixed-size scalar.
zeros • Dimensions must be real, nonnegative, integers.

Neural Network Toolbox

You can use genFunction in the Neural Network Toolbox™ to generate a standalone
MATLAB function for a trained neural network. You can generate C/C++ code from this
standalone MATLAB function. To generate Simulink blocks, use thegenSim function. See
“Deploy Neural Network Functions”.

Numerical Integration and Differentiation in MATLAB

Function Remarks and Limitations

cumtrapz —
del2 —
diff • If supplied, the arguments representing the number of times to apply

diff and the dimension along which to calculate the difference must be
constants.

gradient —
ode23 • All odeset option arguments must be constant.

• Does not support a constant mass matrix in the options structure.
Provide a mass matrix as a function .

• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Requires dynamic memory

allocation when tspan has two elements or you use event functions.

42 Functions, Classes, and System Objects Supported for Code Generation

42-220

Function Remarks and Limitations

ode45 • All odeset option arguments must be constant.
• Does not support a constant mass matrix in the options structure.

Provide a mass matrix as a function .
• You must provide at least the two output arguments T and Y.
• Input types must be homogeneous—all double or all single.
• Variable-sizing support must be enabled. Requires dynamic memory

allocation when tspan has two elements or you use event functions.
odeget The name argument must be constant.
odeset All inputs must be constant.
quad2d • Generates a warning if the size of the internal storage arrays is not

large enough. If a warning occurs, a possible workaround is to divide the
region of integration into pieces and sum the integrals over each piece.

quadgk —
trapz • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 46-30

Optimization Functions in MATLAB

Function Remarks and Limitations

fminsearch • Ignores the Display option. Does not print status information during
execution. Test the exitflag output for the exit condition.

• The output structure does not include the algorithm or message
fields.

• Ignores the OutputFcn and PlotFcns options.
fzero • The first argument must be a function handle. Does not support

structure, inline function, or string inputs for the first argument.
• Supports up to three output arguments. Does not support the fourth

output argument (the output structure).
optimget Input parameter names must be constant.
optimset • Does not support the syntax that has no input or output arguments:

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-221

Function Remarks and Limitations
optimset

• Functions specified in the options must be supported for code
generation.

• The fields of the options structure oldopts must be fixed-size fields.
• For code generation, optimization functions ignore the Display option.
• Does not support the additional options in an options structure created

by the Optimization Toolbox optimset function. If an input options
structure includes the additional Optimization Toolbox options, the
output structure does not include them.

Phased Array System Toolbox

C and C++ code generation for the following functions and System objects requires the
Phased Array System Toolbox software.

Name Remarks and Limitations

Antenna and Microphone Elements
aperture2gain Does not support variable-size inputs.
azel2phithetapat Does not support variable-size inputs.
azel2uvpat Does not support variable-size inputs.
circpol2pol Does not support variable-size inputs.
gain2aperture Does not support variable-size inputs.
phased.CosineAntennaElement • pattern, patternAzimuth,

patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CrossedDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

42 Functions, Classes, and System Objects Supported for Code Generation

42-222

Name Remarks and Limitations

phased.CustomAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.CustomMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.IsotropicAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.OmnidirectionalMicrophoneElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ShortDipoleAntennaElement • pattern, patternAzimuth,
patternElevation, and plotResponse
methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phitheta2azelpat Does not support variable-size inputs.
phitheta2uvpat Does not support variable-size inputs.
pol2circpol Does not support variable-size inputs.
polellip Does not support variable-size inputs.
polloss Does not support variable-size inputs.
polratio Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-223

Name Remarks and Limitations

polsignature • Does not support variable-size inputs.
• Supported only when output arguments are

specified.
stokes • Does not support variable-size inputs.

• Supported only when output arguments are
specified.

uv2azelpat Does not support variable-size inputs.
uv2phithetapat Does not support variable-size inputs.
Array Geometries and Analysis
az2broadside Does not support variable-size inputs.
broadside2az Does not support variable-size inputs.
pilotcalib Does not support variable-size inputs.
phased.ArrayGain • Does not support arrays containing

polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or
phased.CrossedDipoleAntennaElement

antennas.
• See “System Objects in MATLAB Code

Generation”.
phased.ArrayResponse See “System Objects in MATLAB Code

Generation”.
phased.ConformalArray • pattern, patternAzimuth,

patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ElementDelay See “System Objects in MATLAB Code
Generation”.

42 Functions, Classes, and System Objects Supported for Code Generation

42-224

Name Remarks and Limitations

phased.PartitionedArray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ReplicatedSubarray • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.UCA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.ULA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.URA • pattern, patternAzimuth,
patternElevation, plotResponse, and
viewArray methods are not supported.

• See “System Objects in MATLAB Code
Generation”.

Signal Radiation and Collection
phased.Collector See “System Objects in MATLAB Code

Generation”.
phased.Radiator See “System Objects in MATLAB Code

Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-225

Name Remarks and Limitations

phased.WidebandCollector • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.WidebandRadiator See “System Objects in MATLAB Code
Generation”.

sensorsig Does not support variable-size inputs.
Waveforms
ambgfun Does not support variable-size inputs.
phased.FMCWWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

.
phased.LinearFMWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.MFSKWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.PhaseCodedWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

phased.RectangularWaveform • plot method is not supported.
• See “System Objects in MATLAB Code

Generation”.
phased.SteppedFMWaveform • plot method is not supported.

• See “System Objects in MATLAB Code
Generation”.

range2bw Does not support variable-size inputs.

42 Functions, Classes, and System Objects Supported for Code Generation

42-226

Name Remarks and Limitations

range2time Does not support variable-size inputs.
time2range Does not support variable-size inputs.
unigrid Does not support variable-size inputs.
Transmitters and Receivers
delayseq Does not support variable-size inputs.
noisepow Does not support variable-size inputs.
phased.ReceiverPreamp See “System Objects in MATLAB Code

Generation”.
phased.Transmitter See “System Objects in MATLAB Code

Generation”.
systemp Does not support variable-size inputs.
Beamforming
cbfweights Does not support variable-size inputs.
lcmvweights Does not support variable-size inputs.
mvdrweights Does not support variable-size inputs.
phased.FrostBeamformer • Requires dynamic memory allocation. See

“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.LCMVBeamformer See “System Objects in MATLAB Code
Generation”.

phased.MVDRBeamformer See “System Objects in MATLAB Code
Generation”.

phased.PhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.SteeringVector See “System Objects in MATLAB Code
Generation”.

phased.SubbandMVDRBeamformer See “System Objects in MATLAB Code
Generation”.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-227

Name Remarks and Limitations

phased.SubbandPhaseShiftBeamformer See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.TimeDelayLCMVBeamformer • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

sensorcov Does not support variable-size inputs.
steervec Does not support variable-size inputs.
Direction of Arrival (DOA) Estimation
aictest Does not support variable-size inputs.
espritdoa Does not support variable-size inputs.
mdltest Does not support variable-size inputs.
phased.BeamscanEstimator See “System Objects in MATLAB Code

Generation”.
phased.BeamscanEstimator2D See “System Objects in MATLAB Code

Generation”.
phased.BeamspaceESPRITEstimator See “System Objects in MATLAB Code

Generation”.
phased.ESPRITEstimator See “System Objects in MATLAB Code

Generation”.
phased.GCCEstimator See “System Objects in MATLAB Code

Generation”.
phased.MVDREstimator See “System Objects in MATLAB Code

Generation”.
phased.MVDREstimator2D See “System Objects in MATLAB Code

Generation”.

42 Functions, Classes, and System Objects Supported for Code Generation

42-228

Name Remarks and Limitations

phased.RootMUSICEstimator See “System Objects in MATLAB Code
Generation”.

phased.RootWSFEstimator See “System Objects in MATLAB Code
Generation”.

phased.SumDifferenceMonopulseTracker See “System Objects in MATLAB Code
Generation”.

phased.SumDifferenceMonopulseTracker2D See “System Objects in MATLAB Code
Generation”.

rootmusicdoa Does not support variable-size inputs.
spsmooth Does not support variable-size inputs.
Space-Time Adaptive Processing (STAP)
dopsteeringvec Does not support variable-size inputs.
phased.ADPCACanceller See “System Objects in MATLAB Code

Generation”.
phased.AngleDopplerResponse See “System Objects in MATLAB Code

Generation”.
phased.DPCACanceller See “System Objects in MATLAB Code

Generation”.
phased.STAPSMIBeamformer See “System Objects in MATLAB Code

Generation”.
val2ind Does not support variable-size inputs.
Signal Propagation and Environment
billingsleyicm Does not support variable-size inputs.
depressionang Does not support variable-size inputs.
effearthradius Does not support variable-size inputs.
fspl Does not support variable-size inputs.
gccphat Does not support variable-size inputs.
grazingang Does not support variable-size inputs.
horizonrange Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-229

Name Remarks and Limitations

phased.BarrageJammer See “System Objects in MATLAB Code
Generation”.

phased.ConstantGammaClutter See “System Objects in MATLAB Code
Generation”.

phased.FreeSpace • Requires dynamic memory allocation. See
“Limitations for System Objects that Require
Dynamic Memory Allocation”.

• See “System Objects in MATLAB Code
Generation”.

phased.RadarTarget See “System Objects in MATLAB Code
Generation”.

phased.TwoRayChannel See “System Objects in MATLAB Code
Generation”.

phased.WidebandFreeSpace See “System Objects in MATLAB Code
Generation”.

physconst Does not support variable-size inputs.
surfacegamma Does not support variable-size inputs.
surfclutterrcs Does not support variable-size inputs.
Detection and System Analysis
albersheim Does not support variable-size inputs.
beat2range Does not support variable-size inputs.
dechirp Does not support variable-size inputs.
npwgnthresh Does not support variable-size inputs.
phased.CFARDetector See “System Objects in MATLAB Code

Generation”.
phased.MatchedFilter • The CustomSpectrumWindow property is

not supported.
• See “System Objects in MATLAB Code

Generation”.

42 Functions, Classes, and System Objects Supported for Code Generation

42-230

Name Remarks and Limitations

phased.RangeDopplerResponse • The CustomRangeWindow and the
CustomDopplerWindow properties are not
supported.

• See “System Objects in MATLAB Code
Generation”.

phased.StretchProcessor See “System Objects in MATLAB Code
Generation”.

phased.TimeVaryingGain See “System Objects in MATLAB Code
Generation”.

pulsint Does not support variable-size inputs.
radareqpow Does not support variable-size inputs.
radareqrng Does not support variable-size inputs.
radareqsnr Does not support variable-size inputs.
radarvcd Does not support variable-size inputs.
range2beat Does not support variable-size inputs.
rdcoupling Does not support variable-size inputs.
rocpfa • Does not support variable-size inputs.

• The NonfluctuatingNoncoherent signal
type is not supported.

rocsnr • Does not support variable-size inputs.
• The NonfluctuatingNoncoherent signal

type is not supported.
shnidman Does not support variable-size inputs.
stretchfreq2rng Does not support variable-size inputs.
Motion Modeling and Coordinate Systems
azel2phitheta Does not support variable-size inputs.
azel2uv Does not support variable-size inputs.
azelaxes Does not support variable-size inputs.
cart2sphvec Does not support variable-size inputs.
dop2speed Does not support variable-size inputs.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-231

Name Remarks and Limitations

global2localcoord Does not support variable-size inputs.
local2globalcoord Does not support variable-size inputs.
phased.Platform See “System Objects in MATLAB Code

Generation”.
phitheta2azel Does not support variable-size inputs.
phitheta2uv Does not support variable-size inputs.
radialspeed Does not support variable-size inputs.
rangeangle Does not support variable-size inputs.
rotx Does not support variable-size inputs.
roty Does not support variable-size inputs
rotz Does not support variable-size inputs.
speed2dop Does not support variable-size inputs.
sph2cartvec Does not support variable-size inputs.
uv2azel Does not support variable-size inputs.
uv2phitheta Does not support variable-size inputs.

Polynomials in MATLAB

Function Remarks and Limitations

poly • Does not discard nonfinite input values
• Complex input produces complex output
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
polyder The output can contain fewer NaNs than the MATLAB output. However, if

the input contains a NaN, the output contains at least one NaN.
polyfit “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on

page 46-30
polyint —
polyval —
polyvalm —

42 Functions, Classes, and System Objects Supported for Code Generation

42-232

Function Remarks and Limitations

roots • Output is variable size.
• Output is complex.
• Roots are not always in the same order as MATLAB.
• Roots of poorly conditioned polynomials do not always match MATLAB.

Programming Utilities in MATLAB

Function Remarks and Limitations

mfilename —

Relational Operators in MATLAB

Function Remarks and Limitations

eq —
ge —
gt —
le —
lt —
ne —

Robotics System Toolbox

C/C++ code generation for the following functions requires the Robotics System Toolbox
software.

Name Remarks and Limitations

Algorithm Design
robotics.PurePursuit Supports MATLAB Function block: No
robotics.VectorFieldHistogram Supports MATLAB Function block: No
Coordinate System Transformations
angdiff Supports MATLAB Function block: No
axang2quat Supports MATLAB Function block: No

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-233

Name Remarks and Limitations

axang2rotm Supports MATLAB Function block: No
axang2tform Supports MATLAB Function block: No
cart2hom Supports MATLAB Function block: No
eul2quat Supports MATLAB Function block: No
eul2rotm Supports MATLAB Function block: No
eul2tform Supports MATLAB Function block: No
hom2cart Supports MATLAB Function block: No
quat2axang Supports MATLAB Function block: No
quat2eul Supports MATLAB Function block: No
quat2rotm Supports MATLAB Function block: No
quat2tform Supports MATLAB Function block: No
rotm2axang Supports MATLAB Function block: No
rotm2eul Supports MATLAB Function block: No
rotm2quat Supports MATLAB Function block: No
rotm2tform Supports MATLAB Function block: No
tform2axang Supports MATLAB Function block: No
tform2eul Supports MATLAB Function block: No
tform2quat Supports MATLAB Function block: No
tform2rotm Supports MATLAB Function block: No
tform2trvec Supports MATLAB Function block: No
trvec2tform Supports MATLAB Function block: No

Rounding and Remainder Functions in MATLAB

Function Remarks and Limitations

ceil —
fix —
floor —

42 Functions, Classes, and System Objects Supported for Code Generation

42-234

Function Remarks and Limitations

mod • Performs the arithmetic using the output class. Results might not match
MATLAB due to differences in rounding errors.

If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

rem • Performs the arithmetic using the output class. Results might not match
MATLAB due to differences in rounding errors.

• If one of the inputs has type int64 or uint64, then both inputs must
have the same type.

round Supports only the syntax Y = round(X).

Set Operations in MATLAB

Function Remarks and Limitations

intersect • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-235

Function Remarks and Limitations

• When one input is complex and the other input is real, do one of the
following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 45-4.

ismember • Does not support cell arrays for the first or second arguments.
• The second input, B, must be sorted in ascending order.
• Complex inputs must be single or double.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”

on page 45-4.
issorted • Does not support cell arrays for the first argument.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 46-30.

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 45-4.

42 Functions, Classes, and System Objects Supported for Code Generation

42-236

Function Remarks and Limitations

setdiff • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors. If you specify the 'legacy' option,
inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• Do not use [] to represent the empty set. Use a 1-by-0 or 0-by-1
input, for example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' and 'rows' options, the output
ia is a column vector. If ia is empty, it is 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 45-4.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-237

Function Remarks and Limitations

setxor • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
flag, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 45-4.

42 Functions, Classes, and System Objects Supported for Code Generation

42-238

Function Remarks and Limitations

union • Does not support cell arrays for the first or second arguments.
• When you do not specify the 'rows' option:

• Inputs A and B must be vectors with the same orientation. If you
specify the 'legacy' option, inputs A and B must be row vectors.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example , zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'legacy' option and the 'rows' option, the
outputs ia and ib are column vectors. If these outputs are empty, they
are 0-by-1, never 0-by-0, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the inputs must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.
• When one input is complex and the other input is real, do one of the

following:

• Set setOrder to 'stable'.
• Sort the real input in complex ascending order (by absolute

value). Suppose the real input is x. Use sort(complex(x))or
sortrows(complex(x)).

• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”
on page 45-4.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-239

Function Remarks and Limitations

unique • Does not support cell arrays for the first argument.
• When you do not specify the'rows' option:

• The input A must be a vector. If you specify the 'legacy' option, the
input A must be a row vector.

• The first dimension of a variable-size row vector must have fixed
length 1. The second dimension of a variable-size column vector must
have fixed length 1.

• The input [] is not supported. Use a 1-by-0 or 0-by-1 input, for
example, zeros(1,0), to represent the empty set.

• If you specify the 'legacy' option, empty outputs are row vectors,
1-by-0, never 0-by-0.

• When you specify both the 'rows' option and the 'legacy'option,
outputs ia and ic are column vectors. If these outputs are empty, they
are 0-by-1, even if the output C is 0-by-0.

• When the setOrder is 'sorted' or when you specify the 'legacy'
option, the input A must already be sorted in ascending order. The first
output, C, is sorted in ascending order.

• Complex inputs must be single or double.

Signal Processing in MATLAB

Function Remarks and Limitations

chol —
conv —
fft • The length of the input vector must be a power of 2.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 46-30

fft2 • The length of the input matrix dimensions must each be a power of 2.
fftn • The siz argument must have a fixed size.

• The length of the input matrix dimensions must each be a power of 2.
fftshift —

42 Functions, Classes, and System Objects Supported for Code Generation

42-240

Function Remarks and Limitations

filter • If supplied, dim must be a constant.
• v

freqspace —
ifft • The length of the input vector must be a power of 2.

• Output of ifft block is complex.
• Does not support the 'symmetric' option.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
ifft2 • The length of the input matrix dimensions must each be a power of 2.

• Does not support the 'symmetric' option.
ifftn • Does not support the 'symmetric' option.

• The siz argument must have a fixed size.
• The length of the input matrix dimensions must each be a power of 2.

ifftshift —
svd Uses a different SVD implementation than MATLAB. Because the singular

value decomposition is not unique, left and right singular vectors might
differ from those computed by MATLAB.

zp2tf —

Signal Processing Toolbox

C and C++ code generation for the following functions requires the Signal Processing
Toolbox software. These functions do not support variable-size inputs, you must define
the size and type of the function inputs. For more information, see “Specifying Inputs in
Code Generation from MATLAB ”.

Note: Many Signal Processing Toolbox functions require constant inputs in generated
code. To specify a constant input for codegen, use coder.Constant.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-241

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are allowed
if their values do not change.

bartlett Window length must be a constant. Expressions or variables are allowed
if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —
blackman Window length must be a constant. Expressions or variables are allowed

if their values do not change.
blackmanharris Window length must be a constant. Expressions or variables are allowed

if their values do not change.
bohmanwin Window length must be a constant. Expressions or variables are allowed

if their values do not change.
buttap Filter order must be a constant. Expressions or variables are allowed if

their values do not change.
butter Filter coefficients must be constants. Expressions or variables are allowed

if their values do not change.
buttord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cfirpm All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb1ap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb2ap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb1ord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
cheb2ord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
chebwin All inputs must be constants. Expressions or variables are allowed if their

values do not change.

42 Functions, Classes, and System Objects Supported for Code Generation

42-242

Function Remarks/Limitations

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if their
values do not change.

db2pow —
dct C and C++ code generation for dct requires DSP System Toolbox

software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —
dpss All inputs must be constants. Expressions or variables are allowed if their

values do not change.
ellip Inputs must be constant. Expressions or variables are allowed if their

values do not change.
ellipap All inputs must be constants. Expressions or variables are allowed if their

values do not change.
ellipord All inputs must be constants. Expressions or variables are allowed if their

values do not change.
filtfilt Filter coefficients must be constants. Expressions or variables are allowed

if their values do not change.
findpeaks —
fir1 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fir2 All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fircls All inputs must be constants. Expressions or variables are allowed if their

values do not change.
fircls1 All inputs must be constants. Expressions or variables are allowed if their

values do not change.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-243

Function Remarks/Limitations

firls All inputs must be constants. Expressions or variables are allowed if their
values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if their
values do not change.

firpmord All inputs must be constants. Expressions or variables are allowed if their
values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if their
values do not change.

freqz • Does not support variable-size inputs.
• When called with no output arguments, and without a semicolon at

the end, freqz returns the complex frequency response of the input
filter, evaluated at 512 points.

If the semicolon is added, the function produces a plot of the
magnitude and phase response of the filter.

See “freqz With No Output Arguments”.
gausswin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
hamming All inputs must be constant. Expressions or variables are allowed if their

values do not change.
hann All inputs must be constant. Expressions or variables are allowed if their

values do not change.
idct C and C++ code generation for idct requires DSP System Toolbox

software.

Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if their
values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if their
values do not change.

kaiserord —

42 Functions, Classes, and System Objects Supported for Code Generation

42-244

Function Remarks/Limitations

levinson C and C++ code generation for levinson requires DSP System Toolbox
software.

If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

maxflat All inputs must be constant. Expressions or variables are allowed if their
values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if their
values do not change.

pow2db —
rcosdesign All inputs must be constant. Expressions or variables are allowed if their

values do not change.
rectwin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
resample The upsampling and downsampling factors must be specified as

constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if their
values do not change.

sosfilt —
taylorwin All inputs must be constant. Expressions or variables are allowed if their

values do not change.
triang All inputs must be constant. Expressions or variables are allowed if their

values do not change.
tukeywin All inputs must be constant. Expressions or variables are allowed if their

values do not change.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-245

Function Remarks/Limitations

upfirdn C and C++ code generation for upfirdn requires DSP System Toolbox
software.

Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values do not
change.

Variable-size inputs are not supported.
upsample Either declare input n as constant, or use the assert function in the

calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —
yulewalk If specified, the order of recursion must be a constant. Expressions or

variables are allowed if their values do not change.

Special Values in MATLAB

Function Remarks and Limitations

eps • Supported for scalar fixed-point signals only.
• Supported for scalar, vector, and matrix, fi single and fi double

signals.
inf • Dimensions must be real, nonnegative, integers.
intmax —
intmin —
NaN or nan • Dimensions must be real, nonnegative, integers.
pi —
realmax —
realmin —

42 Functions, Classes, and System Objects Supported for Code Generation

42-246

Specialized Math in MATLAB

Function Remarks and Limitations

beta —
betainc Always returns a complex result.
betaincinv Always returns a complex result.
betaln —
ellipke —
erf —
erfc —
erfcinv —
erfcx —
erfinv —
expint —
gamma —
gammainc Output is always complex.
gammaincinv Output is always complex.
gammaln —
psi —

Statistics in MATLAB

Function Remarks and Limitations

corrcoef • Row-vector input is only supported when the first two inputs are vectors
and nonscalar.

cummin —
cummax —
mean • Does not support the 'native' output class option for integer types.

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-247

Function Remarks and Limitations

• Does not support the nanflag argument.
median • If supplied, dim must be a constant.

• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”
on page 46-30

• Does not support the nanflag argument.
• “Code Generation for Complex Data with Zero-Valued Imaginary Parts”

on page 45-4.
mode • Does not support third output argument C (cell array).

• If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
std • “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
• Does not support the nanflag argument.

var • If supplied, dim must be a constant.
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions”

on page 46-30
• Does not support the nanflag argument.

Statistics and Machine Learning Toolbox

C and C++ code generation for the following functions requires the Statistics and
Machine Learning Toolbox software.

Function Remarks and Limitations

betacdf —
betafit —
betainv —
betalike —
betapdf —
betarnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

42 Functions, Classes, and System Objects Supported for Code Generation

42-248

Function Remarks and Limitations

• The output is nonscalar.
• An input parameter is invalid for the distribution.

betastat —
binocdf —
binoinv —
binopdf —
binornd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

binostat —
cdf —
chi2cdf —
chi2inv —
chi2pdf —
chi2rnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

chi2stat —
evcdf —
evinv —
evpdf —
evrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

evstat —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-249

Function Remarks and Limitations

expcdf —
expinv —
exppdf —
exprnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

expstat —
fcdf —
finv —
fpdf —
frnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

fstat —
gamcdf —
gaminv —
gampdf —
gamrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gamstat —
geocdf —
geoinv —
geomean —
geopdf —

42 Functions, Classes, and System Objects Supported for Code Generation

42-250

Function Remarks and Limitations

geornd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

geostat —
gevcdf —
gevinv —
gevpdf —
gevrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gevstat —
gpcdf —
gpinv —
gppdf —
gprnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

gpstat —
harmmean —
hygecdf —
hygeinv —
hygepdf —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-251

Function Remarks and Limitations

hygernd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

hygestat —
icdf —
iqr —
kmeans • If the Start method uses random selections, the initial centroid

cluster positions might not match MATLAB.
• If the number of rows in X is fixed, does not remove rows of X that

contain a NaN.
• The cluster centroid locations in C can have a different order than in

MATLAB. In this case, the cluster indices in idx have corresponding
differences.

• If you provide Display, its value must be 'off'.
• If you provide Streams, it must be empty and UseSubstreams must

be false.
• When you set the UseParallel option to true, some computations

can execute in parallel even when Replicates is 1. For large data
sets, when Replicates is 1, consider setting the UseParallel
option to true.

kurtosis —
logncdf —
logninv —
lognpdf —
lognrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

lognstat —

42 Functions, Classes, and System Objects Supported for Code Generation

42-252

Function Remarks and Limitations

mad Input dim cannot be empty.
mnpdf Input dim cannot be empty.
moment If order is nonintegral and X is real, use moment(complex(X),

order).
nancov If the input is variable-size and is [] at run time, returns [] not NaN.
nanmax —
nanmean —
nanmedian —
nanmin —
nanstd —
nansum —
nanvar —
nbincdf —
nbininv —
nbinpdf —
nbinrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

nbinstat —
ncfcdf —
ncfinv —
ncfpdf —
ncfrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

ncfstat —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-253

Function Remarks and Limitations

nctcdf —
nctinv —
nctpdf —
nctrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

nctstat —
ncx2cdf —
ncx2rnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

ncx2stat —
normcdf —
norminv —
normpdf —
normrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

normstat —

42 Functions, Classes, and System Objects Supported for Code Generation

42-254

Function Remarks and Limitations

pca • Ignores the 'Display' value for 'Options' when 'Algorithm' is
'als'.

• If supplied, 'Weights' and 'VariableWeights' must be real.
• Always returns the fifth output explained as a column vector.
• Always returns the sixth output mu as a row vector.
• If mu is empty, pca returns mu as a 1-by-0 array. pca does not

convert mu to a 0-by-0 empty array.
• Does not treat an input matrix X that has all NaN values as a special

case. The outputs have the sizes that they have when some of the
inputs are finite.

pdf —
pearsrnd Matches MATLAB only when generated output r is scalar.
poisscdf —
poissinv —
poisspdf —
poissrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

poisstat —

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-255

Function Remarks and Limitations

prctile • “Automatic dimension restriction”
• If the output Y is a vector, the orientation of Y differs from MATLAB

when all of the following are true:

• You do not supply the dim input.
• X is a variable-size array.
• X is not a variable-length vector.
• X is a vector at run time.
• The orientation of the vector X does not match the orientation of

the vector p.

In this case, the output Y matches the orientation of X not the
orientation of p.

quantile —
randg —
random —
randsample When sampling without replacement, the order of the output values

might not match MATLAB.
raylcdf —
raylinv —
raylpdf —
raylrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

raylstat —
skewness —
tcdf —
tinv —
tpdf —

42 Functions, Classes, and System Objects Supported for Code Generation

42-256

Function Remarks and Limitations

trnd Can return a different sequence of numbers than MATLAB if either of
the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

tstat —
unidcdf —
unidinv —
unidpdf —
unidrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

unidstat —
unifcdf —
unifinv —
unifpdf —
unifrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

unifstat —
wblcdf —
wblinv —
wblpdf —
wblrnd Can return a different sequence of numbers than MATLAB if either of

the following is true:

• The output is nonscalar.
• An input parameter is invalid for the distribution.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-257

Function Remarks and Limitations

wblstat —
zscore —

String Functions in MATLAB

Function Remarks and Limitations

bin2dec • Does not support cell arrays.
• Does not match MATLAB when the input is empty.

blanks —
char Does not support cell arrays.
deblank • Supports only inputs from the char class. Does not support cell arrays.

• Input values must be in the range 0-127.
dec2bin • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.
• Unless you specify input n to be constant and n is large enough that the

output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 52 for double, 23 for single, 16 for char,
32 for int32, 16 for int16, and so on.

dec2hex • If input d is double, d must be less than 2^52.
• If input d is single, d must be less than 2^23.
• Unless you specify input n to be constant, and n is large enough that the

output has a fixed number of columns regardless of the input values,
this function requires variable-sizing support. Without variable-sizing
support, n must be at least 13 for double, 6 for single, 4 for char, 8
for int32, 4 for int16, and so on.

hex2dec Does not support cell arrays.
hex2num • Does not support cell arrays.

• For n = hex2num(S), size(S,2) <= length(num2hex(0))
iscellstr —
ischar —

42 Functions, Classes, and System Objects Supported for Code Generation

42-258

Function Remarks and Limitations

isletter • Input values from the char class must be in the range 0-127.
isspace • Input values from the char class must be in the range 0–127.
isstrprop • Supports only inputs from char and integer classes.

• Input values must be in the range 0-127.
lower • Supports only char inputs. Does not support cell arrays.

• Input values must be in the range 0-127.
num2hex —
str2double • Does not support cell arrays.

• Always returns a complex result.
strcmp • When one input is a cell array and the other input is a character array,

the character array must be a compile-time row vector.
• When both inputs are empty character arrays that have different sizes,

returns true.
strcmpi • Input values from the char class must be in the range 0-127.

• When one input is a cell array and the other input is a character array,
the character array must be a compile-time row vector.

• When both inputs are empty character arrays that have different sizes,
returns true.

strfind • Does not support cell arrays.
• If pattern does not exist in str, returns zeros(1,0) not []. To check

for an empty return, use isempty.
• Inputs must be character row vectors.

strjoin Always returns a string that has size 1-by-n. For empty inputs, returns a 1-
by-0 string not [].

strjust Does not support a cell array of strings for the first argument.
strncmp When one input is a cell array and the other input is a character array, the

character array must be a compile-time row vector.
strncmpi • Input values from the char class must be in the range 0-127.

• When one input is a cell array and the other input is a character array,
the character array must be a compile-time row vector.

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-259

Function Remarks and Limitations

strrep • Does not support cell arrays.
• If oldSubstr does not exist in origStr, returns blanks(0). To check

for an empty return, use isempty.
• Inputs must be character row vectors.

strtok Does not support a cell arrays for the first argument.
strtrim • Supports only inputs from the char class. Does not support cell arrays.

• Input values must be in the range 0-127.
upper • Supports only inputs from the char class. Does not support cell arrays.

• Input values must be in the range 0-127.

System Identification Toolbox

C and C++ code generation for the following functions and System objects requires the
System Identification Toolbox software.

Name Remarks and Limitations

recursiveAR • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

recursiveARMA • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

recursiveARMAX • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.

42 Functions, Classes, and System Objects Supported for Code Generation

42-260

Name Remarks and Limitations

• For limitations, see “Generate Code
for Online Parameter Estimation in
MATLAB”.

recursiveARX • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

recursiveBJ • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

recursiveLS • For Simulink-based workflows,
use Recursive Least Squares
Estimator.

• For limitations, see “Generate Code
for Online Parameter Estimation in
MATLAB”.

recursiveOE • For Simulink-based workflows, use
Recursive Polynomial Model

Estimator.
• For limitations, see “Generate Code

for Online Parameter Estimation in
MATLAB”.

Trigonometry in MATLAB

Function Remarks and Limitations

acos When the input value x is real, but the output should be complex, generates
an error during simulation and returns NaN in generated code. To get the
complex result, make the input value complex by passing in complex(x).

 Functions and Objects Supported for C and C++ Code Generation — Category List

42-261

Function Remarks and Limitations

acosd —
acosh • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

acot —
acotd —
acoth —
acsc —
acscd —
acsch —
asec —
asecd —
asech —
asin • Generates an error during simulation and returns NaN in generated

code when the input value x is real, but the output should be complex.
To get the complex result, make the input value complex by passing in
complex(x).

asind —
asinh —
atan —
atan2 —
atan2d —
atand —
atanh Generates an error during simulation and returns NaN in generated code

when the input value x is real, but the output should be complex. To get the
complex result, make the input value complex by passing in complex(x).

cos —
cosd —
cosh —

42 Functions, Classes, and System Objects Supported for Code Generation

42-262

Function Remarks and Limitations

cot —
cotd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
coth —
csc —
cscd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
csch —
hypot —
sec —
secd • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
sech —
sin —
sind —
sinh —
tan —
tand • In some cases, returns -Inf when MATLAB returns Inf.

• In some cases, returns Inf when MATLAB returns -Inf.
tanh —

43

System Objects Supported for Code
Generation

43 System Objects Supported for Code Generation

43-2

Code Generation for System Objects

You can generate C and C++ code for a subset of System objects provided by the following
toolboxes.

Toolbox Name See

Communications System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

Computer Vision System Toolbox “System Objects in MATLAB Code
Generation” in the Computer Vision
System Toolbox documentation.

DSP System Toolbox “System Objects in MATLAB Code
Generation” in the DSP System Toolbox
documentation.

Image Acquisition Toolbox • imaq.VideoDevice.
• “Code Generation with VideoDevice

System Object” in the Image Acquisition
Toolbox documentation.

Phased Array System Toolbox “Code Generation” in the Phased Array
System Toolbox documentation.

System Identification Toolbox “Generate Code for Online Parameter
Estimation in MATLAB” in the System
Identification Toolbox documentation.

To use these System objects, you need to install the requisite toolbox. For a list of System
objects supported for C and C++ code generation, see “Functions and Objects Supported
for C and C++ Code Generation — Alphabetical List” on page 42-2 and “Functions and
Objects Supported for C and C++ Code Generation — Category List” on page 42-147.

System objects are MATLAB object-oriented implementations of algorithms. They
extend MATLAB by enabling you to model dynamic systems represented by time-varying
algorithms. System objects are well integrated into the MATLAB language, regardless of
whether you are writing simple functions, working interactively in the command window,
or creating large applications.

In contrast to MATLAB functions, System objects automatically manage state
information, data indexing, and buffering, which is particularly useful for iterative

 Code Generation for System Objects

43-3

computations or stream data processing. This enables efficient processing of long
data sets. For general information about MATLAB objects, see “Object-Oriented
Programming”.

44

Defining MATLAB Variables for C/C++
Code Generation

• “Variables Definition for Code Generation” on page 44-2
• “Best Practices for Defining Variables for C/C++ Code Generation” on page 44-3
• “Eliminate Redundant Copies of Variables in Generated Code” on page 44-7
• “Reassignment of Variable Properties” on page 44-9
• “Define and Initialize Persistent Variables” on page 44-10
• “Reuse the Same Variable with Different Properties” on page 44-11
• “Avoid Overflows in for-Loops” on page 44-15
• “Supported Variable Types” on page 44-17

44 Defining MATLAB Variables for C/C++ Code Generation

44-2

Variables Definition for Code Generation

In the MATLAB language, variables can change their properties dynamically at run time
so you can use the same variable to hold a value of any class, size, or complexity. For
example, the following code works in MATLAB:

function x = foo(c) %#codegen

if(c>0)

 x = 0;

else

 x = [1 2 3];

end

disp(x);

end

However, statically-typed languages like C must be able to determine variable properties
at compile time. Therefore, for C/C++ code generation, you must explicitly define the
class, size, and complexity of variables in MATLAB source code before using them. For
example, rewrite the above source code with a definition for x:

function x = foo(c) %#codegen

x = zeros(1,3);

if(c>0)

 x = 0;

else

 x = [1 2 3];

end

disp(x);

end

For more information, see “Best Practices for Defining Variables for C/C++ Code
Generation” on page 44-3.

 Best Practices for Defining Variables for C/C++ Code Generation

44-3

Best Practices for Defining Variables for C/C++ Code Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 44-3
“Use Caution When Reassigning Variables” on page 44-5
“Use Type Cast Operators in Variable Definitions” on page 44-5
“Define Matrices Before Assigning Indexed Variables” on page 44-6

Define Variables By Assignment Before Using Them

For C/C++ code generation, you should explicitly and unambiguously define the class,
size, and complexity of variables before using them in operations or returning them as
outputs. Define variables by assignment, but note that the assignment copies not only
the value, but also the size, class, and complexity represented by that value to the new
variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.
b = a; b with properties of a (real double scalar).
c = zeros(5,2); c as a real 5-by-2 array of doubles.
d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.
y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required execution paths
during C/C++ code generation (see Defining a Variable for Multiple Execution Paths).

The data that you assign to a variable can be a scalar, matrix, or structure. If your
variable is a structure, define the properties of each field explicitly (see Defining Fields in
a Structure).

Initializing the new variable to the value of the assigned data sometimes results in
redundant copies in the generated code. To avoid redundant copies, you can define
variables without initializing their values by using the coder.nullcopy construct as
described in “Eliminate Redundant Copies of Variables in Generated Code” on page
44-7.

44 Defining MATLAB Variables for C/C++ Code Generation

44-4

When you define variables, they are local by default; they do not persist between function
calls. To make variables persistent, see “Define and Initialize Persistent Variables” on
page 44-10.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...

if c > 0

 x = 11;

end

% Later in your code ...

if c > 0

 use(x);

end

...

Here, x is assigned only if c > 0 and used only when c > 0. This code works in
MATLAB, but generates a compilation error during code generation because it detects
that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;

...

if c > 0

 x = 11;

end

% Later in your code ...

if c > 0

 use(x);

end

...

Defining Fields in a Structure

Consider the following MATLAB code:

...

if c > 0

 s.a = 11;

 disp(s);

else

 s.a = 12;

 Best Practices for Defining Variables for C/C++ Code Generation

44-5

 s.b = 12;

end

% Try to use s

use(s);

...

Here, the first part of the if statement uses only the field a, and the else clause uses
fields a and b. This code works in MATLAB, but generates a compilation error during C/
C++ code generation because it detects a structure type mismatch. To prevent this error,
do not add fields to a structure after you perform certain operations on the structure. For
more information, see “Structure Definition for Code Generation” on page 47-2.

To make this code suitable for C/C++ code generation, define all fields of s before using it.

...

% Define all fields in structure s

s = struct(‘a’,0, ‘b’, 0);

if c > 0

 s.a = 11;

 disp(s);

else

 s.a = 12;

 s.b = 12;

end

% Use s

use(s);

...

Use Caution When Reassigning Variables

In general, you should adhere to the "one variable/one type" rule for C/C++ code
generation; that is, each variable must have a specific class, size and complexity.
Generally, if you reassign variable properties after the initial assignment, you get a
compilation error during code generation, but there are exceptions, as described in
“Reassignment of Variable Properties” on page 44-9.

Use Type Cast Operators in Variable Definitions

By default, constants are of type double. To define variables of other types, you can
use type cast operators in variable definitions. For example, the following code defines
variable y as an integer:

...

44 Defining MATLAB Variables for C/C++ Code Generation

44-6

x = 15; % x is of type double by default.

y = uint8(x); % y has the value of x, but cast to uint8.

...

Define Matrices Before Assigning Indexed Variables

When generating C/C++ code from MATLAB, you cannot grow a variable by writing into
an element beyond its current size. Such indexing operations produce run-time errors.
You must define the matrix first before assigning values to its elements.

For example, the following initial assignment is not allowed for code generation:

g(3,2) = 14.6; % Not allowed for creating g

 % OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with MATLAB in
Matrix Indexing Operations for Code Generation” on page 46-26.

 Eliminate Redundant Copies of Variables in Generated Code

44-7

Eliminate Redundant Copies of Variables in Generated Code

In this section...

“When Redundant Copies Occur” on page 44-7
“How to Eliminate Redundant Copies by Defining Uninitialized Variables” on page
44-7
“Defining Uninitialized Variables” on page 44-8

When Redundant Copies Occur

During C/C++ code generation, MATLAB checks for statements that attempt to access
uninitialized memory. If it detects execution paths where a variable is used but is
potentially not defined, it generates a compile-time error. To prevent these errors, define
variables by assignment before using them in operations or returning them as function
outputs.

Note, however, that variable assignments not only copy the properties of the assigned
data to the new variable, but also initialize the new variable to the assigned value.
This forced initialization sometimes results in redundant copies in C/C++ code. To
eliminate redundant copies, define uninitialized variables by using the coder.nullcopy
function, as described in “How to Eliminate Redundant Copies by Defining Uninitialized
Variables” on page 44-7.

How to Eliminate Redundant Copies by Defining Uninitialized Variables

1 Define the variable with coder.nullcopy.
2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its elements
before passing the array as an input to a function or operator — even if the function
or operator does not read from the uninitialized portion of the array.

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing uninitialized
data may lead to segmentation violations or nondeterministic program behavior
(different runs of the same program may yield inconsistent results).

44 Defining MATLAB Variables for C/C++ Code Generation

44-8

Defining Uninitialized Variables

In the following code, the assignment statement X = zeros(1,N) not only defines X to
be a 1-by-5 vector of real doubles, but also initializes each element of X to zero.

function X = fcn %#codegen

N = 5;

X = zeros(1,N);

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 X(i) = 0;

 end

end

This forced initialization creates an extra copy in the generated code. To eliminate this
overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;

X = coder.nullcopy(zeros(1,N));

for i = 1:N

 if mod(i,2) == 0

 X(i) = i;

 else

 X(i) = 0;

 end

end

 Reassignment of Variable Properties

44-9

Reassignment of Variable Properties

For C/C++ code generation, there are certain variables that you can reassign after the
initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but different sizes.
If the size of the initial assignment is not constant, the variable is dynamically sized in
generated code. For more information, see “Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the initial
assignment if each occurrence of the variable can have only one type. In this case, the
variable is renamed in the generated code to create multiple independent variables.
For more information, see “Reuse the Same Variable with Different Properties” on page
44-11.

44 Defining MATLAB Variables for C/C++ Code Generation

44-10

Define and Initialize Persistent Variables

Persistent variables are local to the function in which they are defined, but they retain
their values in memory between calls to the function. To define persistent variables for C/
C++ code generation, use the persistent statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the header and
comments, but before the first use of the variable. During code generation, the value of
the persistent variable is initialized to an empty matrix by default. You can assign your
own value after the definition by using the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen

persistent PROD_X

if isempty(PROD_X)

 PROD_X = 1;

end

PROD_X = PROD_X * inputvalue;

end

 Reuse the Same Variable with Different Properties

44-11

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on page 44-11
“When You Cannot Reuse Variables” on page 44-11
“Limitations of Variable Reuse” on page 44-14

When You Can Reuse the Same Variable with Different Properties

You can reuse (reassign) an input, output, or local variable with different class, size, or
complexity if MATLAB can unambiguously determine the properties of each occurrence
of this variable during C/C++ code generation. If so, MATLAB creates separate uniquely
named local variables in the generated code. You can view these renamed variables in
the code generation report (see “Viewing Variables in Your MATLAB Code” on page
37-50).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the variable t in an
if statement, where it holds a scalar double, then reuses t outside the if statement to
hold a vector of doubles.

function y = example1(u) %#codegen

if all(all(u>0))

 % First, t is used to hold a scalar double value

 t = mean(mean(u)) / numel(u);

 u = u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t, see
Variable Reuse in an if Statement.

When You Cannot Reuse Variables

You cannot reuse (reassign) variables if it is not possible to determine the class, size, and
complexity of an occurrence of a variable unambiguously during code generation. In this
case, variables cannot be renamed and a compilation error occurs.

44 Defining MATLAB Variables for C/C++ Code Generation

44-12

For example, the following example2 function assigns a fixed-point value to x in the if
statement and reuses x to store a matrix of doubles in the else clause. It then uses x
after the if-else statement. This function generates a compilation error because after
the if-else statement, variable x can have different properties depending on which if-
else clause executes.

function y = example2(use_fixpoint, data) %#codegen

 if use_fixpoint

 % x is fixed-point

 x = fi(data, 1, 12, 3);

 else

 % x is a matrix of doubles

 x = data;

 end

 % When x is reused here, it is not possible to determine its

 % class, size, and complexity

 t = sum(sum(x));

 y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen

if all(all(u>0))

 % First, t is used to hold a scalar double value

 t = mean(mean(u)) / numel(u);

 u = u - t;

end

% t is reused to hold a vector of doubles

t = find(u > 0);

y = sum(u(t(2:end-1)));

end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note: codegen requires a MATLAB Coder license.

 Reuse the Same Variable with Different Properties

44-13

When the compilation is complete, codegen generates a MEX function, example1x
in the current folder, and provides a link to the code generation report.

3 Open the code generation report.
4 In the MATLAB code pane of the code generation report, place your pointer over the

variable t inside the if statement.

The code generation report highlights both instances of t in the if statement
because they share the same class, size, and complexity. It displays the data type
information for t at this point in the code. Here, t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the variable t
outside the for-loop.

This time, the report highlights both instances of t outside the if statement. The
report indicates that t might hold up to 25 doubles. The size of t is :25, that is, a
column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

44 Defining MATLAB Variables for C/C++ Code Generation

44-14

The report displays a list of the variables in example1. There are two uniquely
named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if statement.
8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if statement.

Limitations of Variable Reuse

The following variables cannot be renamed in generated code:

• Persistent variables.
• Global variables.
• Variables passed to C code using coder.ref, coder.rref, coder.wref.
• Variables whose size is set using coder.varsize.
• Variables whose names are controlled using coder.cstructname.
• The index variable of a for-loop when it is used inside the loop body.
• The block outputs of a MATLAB Function block in a Simulink model.
• Chart-owned variables of a MATLAB function in a Stateflow chart.

 Avoid Overflows in for-Loops

44-15

Avoid Overflows in for-Loops

When memory integrity checks are enabled, if the code generation software detects that a
loop variable might overflow on the last iteration of the for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the error Workaround

• The loop counter increments by 1
• The end value equals the maximum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the maximum value of the
integer type. For example, replace:

N=intmax('int16')

for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1
• The end value equals the minimum

value of the integer type
• The loop is not covering the full range of

the integer type

Rewrite the loop so that the end value is
not equal to the minimum value of the
integer type. For example, replace:

N=intmin('int32')

for k=N+10:-1:N

with:

for k=10:-1:1

• The loop counter increments or
decrements by 1

• The start value equals the minimum or
maximum value of the integer type

• The end value equals the maximum or
minimum value of the integer type

The loop covers the full range of the integer
type.

Rewrite the loop casting the type of the
loop counter start, step, and end values to
a bigger integer or to double For example,
rewrite:

M= intmin('int16');

N= intmax('int16');

for k=M:N

 % Loop body

end

to

M= intmin('int16');

N= intmax('int16');

for k=int32(M):int32(N)

 % Loop body

44 Defining MATLAB Variables for C/C++ Code Generation

44-16

Loop conditions causing the error Workaround
end

• The loop counter increments or
decrements by a value not equal to 1

• On last loop iteration, the loop variable
value is not equal to the end value

Note: The software error checking is
conservative. It may incorrectly report a
loop as being potentially infinite.

Rewrite the loop so that the loop variable
on the last loop iteration is equal to the end
value.

 Supported Variable Types

44-17

Supported Variable Types

You can use the following data types for C/C++ code generation from MATLAB:

Type Description

char Character array (string)
complex Complex data. Cast function takes real and imaginary

components
double Double-precision floating point
int8, int16, int32,
int64

Signed integer

logical Boolean true or false
single Single-precision floating point
struct Structure
uint8, uint16,
uint32, uint64

Unsigned integer

Fixed-point See “Fixed-Point Data Types”.

45

Defining Data for Code Generation

• “Data Definition for Code Generation” on page 45-2
• “Code Generation for Complex Data” on page 45-4
• “Code Generation for Characters and Strings” on page 45-8
• “Array Size Restrictions for Code Generation” on page 45-9
• “Code Generation for Constants in Structures and Arrays” on page 45-10

45 Defining Data for Code Generation

45-2

Data Definition for Code Generation

To generate efficient standalone code, you must define the following types and classes
of data differently than you normally would when running your code in the MATLAB
environment:

Data What's Different More Information

Arrays Maximum number of
elements is restricted

“Array Size Restrictions for
Code Generation” on page
45-9

Complex numbers • Complexity of variables
must be set at time of
assignment and before
first use

• Expressions containing
a complex number or
variable evaluate to a
complex result, even if
the result is zero

Note: Because MATLAB
does not support complex
integer arithmetic, you
cannot generate code for
functions that use complex
integer arithmetic

“Code Generation for
Complex Data” on page
45-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters and Strings” on
page 45-8

Enumerated data • Supports integer-based
enumerated types only

• Restricted use in
switch statements and
for-loops

“Enumerated Data”

Function handles • Same bound variable
cannot reference

“Function Handles”

 Data Definition for Code Generation

45-3

Data What's Different More Information

different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

45 Defining Data for Code Generation

45-4

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 45-4
“Code Generation for Complex Data with Zero-Valued Imaginary Parts” on page
45-4
“Results of Expressions That Have Complex Operands” on page 45-7

Restrictions When Defining Complex Variables

For code generation, you must set the complexity of variables at the time of assignment.
Assign a complex constant to the variable or use the complex function. For example:

x = 5 + 6i; % x is a complex number by assignment.

y = complex(5,6); % y is the complex number 5 + 6i.

After assignment, you cannot change the complexity of a variable. Code generation for
the following function fails because x(k) = 3 + 4i changes the complexity of x.

function x = test1()

x = zeros(3,3); % x is real

for k = 1:numel(x)

 x(k) = 3 + 4i;

end

end

To resolve this issue, assign a complex constant to x.

function x = test1()

x = zeros(3,3)+ 0i; %x is complex

for k = 1:numel(x)

 x(k) = 3 + 4i;

end

end

Code Generation for Complex Data with Zero-Valued Imaginary Parts

For code generation, complex data that has all zero-valued imaginary parts remains
complex. This data does not become real. This behavior has the following implications:

 Code Generation for Complex Data

45-5

• In some cases, results from functions that sort complex data by absolute value can
differ from the MATLAB results. See “Functions That Sort Complex Values by
Absolute Value” on page 45-5.

• For functions that require that complex inputs are sorted by absolute value, complex
inputs with zero-valued imaginary parts must be sorted by absolute value. These
functions include ismember, union, intersect, setdiff, and setxor.

Functions That Sort Complex Values by Absolute Value

Functions that sort complex values by absolute value include sort, issorted,
sortrows, median, min, and max. These functions sort complex numbers by absolute
value even when the imaginary parts are zero. In general, sorting the absolute values
produces a different result than sorting the real parts. Therefore, when inputs to these
functions are complex with zero-valued imaginary parts in generated code, but real
in MATLAB, the generated code can produce different results than MATLAB. In the
following examples, the input to sort is real in MATLAB, but complex with zero-valued
imaginary parts in the generated code:

• You Pass Real Inputs to a Function Generated for Complex Inputs

1 Write this function:

function myout = mysort(A)

myout = sort(A);

end

2 Call mysort in MATLAB.

A = -2:2;

mysort(A)

ans =

 -2 -1 0 1 2

3 Generate a MEX function for complex inputs.

A = -2:2;

codegen mysort -args {complex(A)} -report

4 Call the MEX Function with real inputs.

mysort_mex(A)

ans =

45 Defining Data for Code Generation

45-6

 0 1 -1 2 -2

You generated the MEX function for complex inputs, therefore, it treats the
real inputs as complex numbers with zero-valued imaginary parts. It sorts the
numbers by the absolute values of the complex numbers. Because the imaginary
parts are zero, the MEX function returns the results to the MATLAB workspace
as real numbers.

• Input to sort Is Output from a Function That Returns Complex in Generated Code

1 Write this function:

function y = myfun(A)

x = eig(A);

y = sort(x,'descend');

The output from eig is the input to sort. In generated code, eig returns a
complex result. Therefore, in the generated code, x is complex.

2 Call myfun in MATLAB.

A = [2 3 5;0 5 5;6 7 4];

myfun(A)

ans =

 12.5777

 2.0000

 -3.5777

The result of eig is real. Therefore, the inputs to sort are real.
3 Generate a MEX function for complex inputs.

codegen myfun -args {complex(A)}

4 Call the MEX function.

myfun_mex(A)

ans =

 12.5777

 -3.5777

 2.0000

 Code Generation for Complex Data

45-7

In the MEX function, eig returns a complex result. Therefore, the inputs to
sort are complex. The MEX function sorts the inputs in descending order of the
absolute values.

Results of Expressions That Have Complex Operands

In general, expressions that contain one or more complex operands produce a complex
result in generated code, even if the value of the result is zero. Consider the following line
of code:

z = x + y;

Suppose that at run time, x has the value 2 + 3i and y has the value 2 - 3i. In
MATLAB, this code produces the real result z = 4. During code generation, the types
for x and y are known, but their values are not known. Because either or both operands
in this expression are complex, z is defined as a complex variable requiring storage for a
real and an imaginary part. z equals the complex result 4 + 0i in generated code, not 4,
as in MATLAB code.

Exceptions to this behavior are:

• Functions that take complex arguments but produce real results return real values.

y = real(x); % y is the real part of the complex number x.

y = imag(x); % y is the real-valued imaginary part of x.

y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return complex
values.

z = complex(x,y); % z is a complex number for a real x and y.

45 Defining Data for Code Generation

45-8

Code Generation for Characters and Strings

The code generation software translates the 16-bit Unicode encoding of a character in
MATLAB to an 8-bit encoding that the locale setting determines. The code generation
software does not support characters that require more than 1 byte in MATLAB. This
restriction applies to constant strings and strings that are passed between MATLAB and
the code generation software. For example, the restriction applies to entry-point function
inputs and to outputs from extrinsic calls. For code generation, some MATLAB functions
accept only 7-bit ASCII strings. See “Functions and Objects Supported for C and C++
Code Generation — Alphabetical List” on page 42-2.

If a character is not in the 7-bit ASCII codeset, casting the character to a numeric type,
such as double, produces a different result in the generated code than in MATLAB. A
best practice for code generation is to avoid performing arithmetic with characters.

More About
• “Locale Settings for MATLAB Process”

 Array Size Restrictions for Code Generation

45-9

Array Size Restrictions for Code Generation

For code generation, the maximum number of elements of an array is constrained by the
code generation software and the target hardware. The maximum number of elements is
the smaller of:

• intmax('int32').
• The largest integer that fits in the C int data type on the target hardware.

These restrictions apply even on a 64-bit platform.

For a fixed-size array, if the number of elements exceeds the maximum, the code
generation software reports an error at compile time. For a variable-size array, if the
number of elements exceeds the maximum during simulation, the software reports an
error. Generated standalone code cannot report array size violations.

See Also

• “Variable-Size Data”

45 Defining Data for Code Generation

45-10

Code Generation for Constants in Structures and Arrays

The code generation software does not recognize constant structure fields or array
elements in the following cases:

Fields or elements are assigned inside control constructs

In the following code, the code generation software recognizes that the structure fields
s.a and s.b are constants.

function y = mystruct()

s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If any structure field is assigned inside a control construct, the code generation software
does not recognize the constant fields. This limitation also applies to arrays with constant
elements. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1

 s.b = 4;

else

 s.b = 5;

end

y = zeros(s.a,s.b);

The code generation software does not recognize that s.a and s.b are constant. If
variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is
disabled, the code generation software reports an error.

Constants are assigned to array elements using non-scalar indexing

In the following code, the code generation software recognizes that a(1) is constant.

function y = myarray()

a = zeros(1,3);

a(1) = 20;

y = coder.const(a(1));

In the following code, because a(1) is assigned using non-scalar indexing, the code
generation software does not recognize that a(1) is constant.

 Code Generation for Constants in Structures and Arrays

45-11

function y = myarray()

a = zeros(1,3);

a(1:2) = 20;

y = coder.const(a(1));

A function returns a structure or array that has constant and nonconstant elements

For an output structure that has both constant and nonconstant fields, the code
generation software does not recognize the constant fields. This limitation also applies to
arrays that have constant and nonconstant elements. Consider the following code:

function y = mystruct_out(x)

s = create_structure(x);

y = coder.const(s.a);

function s = create_structure(x)

s.a = 10;

s.b = x;

Because create_structure returns a structure s that has one constant field and one
nonconstant field, the code generation software does not recognize that s.a is constant.
The coder.const call fails because s.a is not constant.

46

Code Generation for Variable-Size
Data

• “What Is Variable-Size Data?” on page 46-2
• “Variable-Size Data Definition for Code Generation” on page 46-3
• “Bounded Versus Unbounded Variable-Size Data” on page 46-4
• “Specify Variable-Size Data Without Dynamic Memory Allocation” on page 46-5
• “Variable-Size Data in Code Generation Reports” on page 46-7
• “Define Variable-Size Data for Code Generation” on page 46-9
• “C Code Interface for Arrays” on page 46-15
• “Diagnose and Fix Variable-Size Data Errors” on page 46-17
• “Incompatibilities with MATLAB in Variable-Size Support for Code Generation” on

page 46-21
• “Variable-Sizing Restrictions for Code Generation of Toolbox Functions” on page

46-30

46 Code Generation for Variable-Size Data

46-2

What Is Variable-Size Data?

Variable-size data is data whose size can change at run time. By contrast, fixed-size data
is data whose size is known and locked at compile time and, therefore, cannot change at
run time.

For example, in the following MATLAB function nway, B is a variable-size array; its
length is not known at compile time.

function B = nway(A,n)

% Compute average of every N elements of A and put them in B.

if ((mod(numel(A),n) == 0) && (n >= 1 && n <= numel(A)))

 B = ones(1,numel(A)/n);

 k = 1;

 for i = 1 : numel(A)/n

 B(i) = mean(A(k + (0:n-1)));

 k = k + n;

 end

else

 error('n <= 0 or does not divide number of elements evenly');

end

 Variable-Size Data Definition for Code Generation

46-3

Variable-Size Data Definition for Code Generation

In the MATLAB language, data can vary in size. By contrast, the semantics of generated
code constrains the class, complexity, and shape of every expression, variable, and
structure field. Therefore, for code generation, you must use each variable consistently.
Each variable must:

• Be either complex or real (determined at first assignment)
• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB. For
example, if size(A) == [4 5], the shape of variable A is 4 x 5. For variable-size
data, the shape can be abstract. That is, one or more dimensions can be unknown
(such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed attributes
after initial assignments, and flags these occurrences as errors during code generation.
However, you can override this behavior by defining variables or structure fields as
variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data” on page
46-4

46 Code Generation for Variable-Size Data

46-4

Bounded Versus Unbounded Variable-Size Data

Bounded variable-size data has fixed upper bounds. Unbounded variable-size data
does not have fixed upper bounds; this data must be allocated on the heap and requires
dynamic memory allocation. You cannot use dynamic memory allocation for variable-size
data in MATLAB Function blocks. Use bounded instead of unbounded variable-size data.

 Specify Variable-Size Data Without Dynamic Memory Allocation

46-5

Specify Variable-Size Data Without Dynamic Memory Allocation

In this section...

“Fixing Upper Bounds Errors” on page 46-5
“Specifying Upper Bounds for Variable-Size Data” on page 46-5

Fixing Upper Bounds Errors

If MATLAB cannot determine or compute the upper bound, you must specify an upper
bound. See “Specifying Upper Bounds for Variable-Size Data” on page 46-5 and
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 46-19

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 46-5
• “Specifying Upper Bounds for Local Variable-Size Data” on page 46-5
• “Using a Matrix Constructor with Nonconstant Dimensions” on page 46-6

When to Specify Upper Bounds for Variable-Size Data

When using static allocation on the stack during code generation, MATLAB must be able
to determine upper bounds for variable-size data. Specify the upper bounds explicitly for
variable-size data from external sources, such as inputs and outputs.

Specifying Upper Bounds for Local Variable-Size Data

When using static allocation, MATLAB uses a sophisticated analysis to calculate the
upper bounds of local data at compile time. However, when the analysis fails to detect an
upper bound or calculates an upper bound that is not precise enough for your application,
you need to specify upper bounds explicitly for local variables.

Constraining the Value of a Variable That Specifies Dimensions of Variable-Size Data

Use the assert function with relational operators to constrain the value of variables
that specify the dimensions of variable-size data. For example:

function y = dim_need_bound(n) %#codegen

assert (n <= 5);

L= ones(n,n);

46 Code Generation for Variable-Size Data

46-6

M = zeros(n,n);

M = [L; M];

y = M;

This assert statement constrains input n to a maximum size of 5, defining L and M as
variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable

Use the coder.varsize function to specify the upper bounds for all instances of a local
variable in a function. For example:

function Y = example_bounds1(u) %#codegen

Y = [1 2 3 4 5];

coder.varsize('Y',[1 10]);

if (u > 0)

 Y = [Y Y+u];

else

 Y = [Y Y*u];

end

The second argument of coder.varsize specifies the upper bound for each instance
of the variable specified in the first argument. In this example, the argument [1 10]
indicates that for every instance of Y:

• First dimension is fixed at size 1
• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

Using a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For code in a MATLAB Function block, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

 Variable-Size Data in Code Generation Reports

46-7

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 46-7
“How Size Appears in Code Generation Reports” on page 46-8
“How to Generate a Code Generation Report” on page 46-8

What Reports Tell You About Size

Code generation reports:

• Differentiate fixed-size from variable-size data
• Identify variable-size data with unknown upper bounds
• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions of this
array in the code, the report appends * to the size of the variable. In the generated C
code, this variable appears as a variable-size array, but the size of its dimensions does
not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

46 Code Generation for Variable-Size Data

46-8

How Size Appears in Code Generation Reports

:? means variable size,
unknown upper bound

No colon prefix (:)
 means fixed size

:100 means variable size,
upper bound = 100

* means that you declared y as variable size,
but subsequently fixed its dimensions

How to Generate a Code Generation Report

When you build a Simulink model that contains MATLAB Function blocks, Simulink
automatically generates a report in HTML format for each MATLAB Function block in
your model. See “MATLAB Function Reports” on page 37-46

 Define Variable-Size Data for Code Generation

46-9

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 46-9
“Using a Matrix Constructor with Nonconstant Dimensions” on page 46-9
“Inferring Variable Size from Multiple Assignments” on page 46-10
“Defining Variable-Size Data Explicitly Using coder.varsize” on page 46-11

When to Define Variable-Size Data Explicitly

For code generation, you must assign variables to have a specific class, size, and
complexity before using them in operations or returning them as outputs. Generally, you
cannot reassign variable properties after the initial assignment. Therefore, attempts to
grow a variable or structure field after assigning it a fixed size might cause a compilation
error. In these cases, you must explicitly define the data as variable sized using one of
these methods:

Method See

Assign the data from a variable-size matrix
constructor such as

• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
46-9

Assign multiple, constant sizes to the
same variable before using (reading) the
variable.

“Inferring Variable Size from Multiple
Assignments” on page 46-10

Define all instances of a variable to be
variable sized

“Defining Variable-Size Data Explicitly
Using coder.varsize” on page 46-11

Using a Matrix Constructor with Nonconstant Dimensions

You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For code in a MATLAB Function block, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

46 Code Generation for Variable-Size Data

46-10

function y = var_by_assign(u) %#codegen

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

Inferring Variable Size from Multiple Assignments

You can define variable-size data by assigning multiple, constant sizes to the same
variable before you use (read) the variable in your code. When MATLAB uses static
allocation on the stack for code generation, it infers the upper bounds from the largest
size specified for each dimension. When you assign the same size to a given dimension
across all assignments, MATLAB assumes that the dimension is fixed at that size. The
assignments can specify different shapes as well as sizes.

Inferring Upper Bounds from Multiple Definitions with Different Shapes

function y = var_by_multiassign(u) %#codegen

if (u > 0)

 y = ones(3,4,5);

else

 y = zeros(3,1);

end

When static allocation is used, this function infers that y is a matrix with three
dimensions, where:

• First dimension is fixed at size 3
• Second dimension is variable with an upper bound of 4
• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

 Define Variable-Size Data for Code Generation

46-11

Defining Variable-Size Data Explicitly Using coder.varsize

Use the function coder.varsize to define one or more variables or structure fields as
variable-size data. Optionally, you can also specify which dimensions vary along with
their upper bounds (see “Specifying Which Dimensions Vary” on page 46-11). For
example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an upper bound
of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all dimensions of
B can vary and that the upper bound is size(B).

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary

You can use the function coder.varsize to specify which dimensions vary. For
example, the following statement defines B as a row vector whose first dimension is fixed
at 2, but whose second dimension can grow to an upper bound of 16:

coder.varsize('B',[2, 16],[0 1])

The third argument specifies which dimensions vary. This argument must be a logical
vector or a double vector containing only zeros and ones. Dimensions that correspond to
zeros or false have fixed size; dimensions that correspond to ones or true vary in size.
coder.varsize usually treats dimensions of size 1 as fixed (see “Defining Variable-Size
Matrices with Singleton Dimensions” on page 46-12).

For more information about the syntax, see the coder.varsize reference page.

Allowing a Variable to Grow After Defining Fixed Dimensions

Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first use
(where the statement Y = Y + u reads from Y). However, coder.varsize defines Y
as a variable-size matrix, allowing it to change size based on decision logic in the else
clause:

function Y = var_by_if(u) %#codegen

46 Code Generation for Variable-Size Data

46-12

if (u > 0)

 Y = zeros(2,2);

 coder.varsize('Y');

 if (u < 10)

 Y = Y + u;

 end

else

 Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix and
generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions

A singleton dimension is a dimension for which size(A,dim) = 1. Singleton dimensions
are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen

Y = [1 2];

coder.varsize('Y', [1 10]);

if (u > 0)

 Y = [Y 3];

else

 Y = [Y u];

end

• You initialize variable-size data with singleton dimensions using matrix constructor
expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only their
second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen

Y = ones(1,3);

X = [1 4];

coder.varsize('Y','X');

if (u > 0)

 Y = [Y u];

else

 Define Variable-Size Data for Code Generation

46-13

 X = [X u];

end

You can override this behavior by using coder.varsize to specify explicitly that
singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen

Y = [1 2];

coder.varsize('Y', [1 10], [1 1]);

if (u > 0)

 Y = [Y Y+u];

else

 Y = [Y Y*u];

end

In this example, the third argument of coder.varsize is a vector of ones, indicating
that each dimension of Y varies in size. For more information, see the coder.varsize
reference page.

Defining Variable-Size Structure Fields

To define structure fields as variable-size arrays, use colon (:) as the index expression.
The colon (:) indicates that all elements of the array are variable sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);

data = repmat(d, [3 3]);

coder.varsize('data(:).values');

for i = 1:numel(data)

 data(i).color = rand-0.5;

 data(i).values = 1:i;

end

y = 0;

for i = 1:numel(data)

 if data(i).color > 0

 y = y + sum(data(i).values);

 end;

end

The expression coder.varsize('data(:).values') defines the field values inside
each element of matrix data to be variable sized.

46 Code Generation for Variable-Size Data

46-14

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each element of
matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each element of
matrix data to be variable sized.

 C Code Interface for Arrays

46-15

C Code Interface for Arrays

C Code Interface for Statically Allocated Arrays

For statically allocated arrays, the generated code contains the definition of the array
and the size of the array.

For example, consider the MATLAB function myuniquetol.

function B = myuniquetol(A, tol) %#codegen

A = sort(A);

coder.varsize('B', [1 100], [0 1]);

B = A(1);

k = 1;

for i = 2:length(A)

 if abs(A(k) - A(i)) > tol

 B = [B A(i)];

 k = i;

 end

end

The statement coder.varsize('B', [1 100], [0 1]) specifies that B is a variable-
size array whose first dimension is fixed at 1 and second dimension can vary up to 100
elements. Without this statement, B is a dynamically allocated array.

Generate code for myuniquetol specifying that input A is a variable-size real double
vector whose first dimension is fixed at 1 and second dimension can vary up to 100
elements.

codegen -config:lib -report myuniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void myuniquetol(const double A_data[], const int A_size[2], double tol,

 double B_data[], int B_size[2])

The function signature declares the input argument A and the output argument
B. A_size contains the size of A. B_size contains the size of B after the call to
myuniquetol. Use B_size to determine the number of elements of B that you can access
after the call to myuniquetol. B_size[0] contains the size of the first dimension.
B_size[1] contains the size of the second dimension. Therefore, the number of elements

46 Code Generation for Variable-Size Data

46-16

of B is B_size[0]*B_Size[1]. Even though B has 100 elements in the C code, only
B_size[0]*B_Size[1] elements contain valid data.

The following C main function shows how to call myuniquetol.

void main()

{

 double A[100], B[100];

 int A_size[2] = { 1, 100 };

 int B_size[2];

 int i;

 for (i = 0; i < 100; i++) {

 A[i] = (double)1/i;

 }

 myuniquetol(A, A_size, 0.1, B, B_size);

}

 Diagnose and Fix Variable-Size Data Errors

46-17

Diagnose and Fix Variable-Size Data Errors

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 46-17
“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 46-19

Diagnosing and Fixing Size Mismatch Errors

Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated code.
Consider this example:

function Y = example_mismatch1(n) %#codegen

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side

but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen

coder.varsize('A');

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

46 Code Generation for Variable-Size Data

46-18

Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert statement:

function Y = example_mismatch1_fix2(n) %#codegen

coder.varsize('A');

assert(n == 3)

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B;

end

Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen

assert(n < 10);

B = ones(n,n);

A = magic(3);

A(1) = mean(A(:));

if (n == 3)

 A = B(1:3, 1:3);

end

Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might silently reshape
the data in generated code to match a coder.varsize specification. For example:

function Y = test(u) %#codegen

Y = [];

coder.varsize(‘Y’, [1 10]);

if u < 0

 Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10 elements,
so its first dimension is fixed at size 1. The statement Y = [] designates the first
dimension of Y as 0, creating a mismatch. The right hand side of the assignment is an
empty matrix and the left hand side is a variable-size vector. In this case, MATLAB
reshapes the empty matrix Y = [] in generated code to Y = zeros(1,0) so it matches
the coder.varsize specification.

 Diagnose and Fix Variable-Size Data Errors

46-19

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes. Operands have
different sizes if one has fixed dimensions and the other has variable dimensions. For
example:

function z = mismatch_operands(n) %#codegen

assert(n >= 3 && n < 10);

x = ones(n,n);

y = magic(3);

z = x + y;

When you compile this function, you get an error because y has fixed dimensions (3 x 3),
but x has variable dimensions. Fix this problem by using explicit indexing to make x the
same size as y:

function z = mismatch_operands_fix(n) %#codegen

assert(n >= 3 && n < 10);

x = ones(n,n);

y = magic(3);

z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper Bounds

Check your code for these issues:

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with nonconstant
dimensions. For example:

function y = dims_vary(u) %#codegen

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

However, compiling this function generates an error because you did not specify an upper
bound for u.

To fix the problem, add an assert statement before the first use of u:

function y = dims_vary_fix(u) %#codegen

46 Code Generation for Variable-Size Data

46-20

assert (u < 20);

if (u > 0)

 y = ones(3,u);

else

 y = zeros(3,1);

end

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

46-21

Incompatibilities with MATLAB in Variable-Size Support for Code
Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 46-21
“Incompatibility with MATLAB in Determining Size of Variable-Size N-D Arrays” on
page 46-23
“Incompatibility with MATLAB in Determining Size of Empty Arrays” on page 46-24
“Incompatibility with MATLAB in Determining Class of Empty Arrays” on page
46-25
“Incompatibility with MATLAB in Vector-Vector Indexing” on page 46-26
“Incompatibility with MATLAB in Matrix Indexing Operations for Code Generation” on
page 46-26
“Incompatibility with MATLAB in Concatenating Variable-Size Matrices” on page
46-27
“Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside
Concatenation Returns No Elements” on page 46-27
“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks” on page
46-29

Incompatibility with MATLAB for Scalar Expansion

Scalar expansion is a method of converting scalar data to match the dimensions of vector
or matrix data. Except for some matrix operators, MATLAB arithmetic operators work
on corresponding elements of arrays with equal dimensions. For vectors and rectangular
arrays, both operands must be the same size unless one is a scalar. If one operand is a
scalar and the other is not, MATLAB applies the scalar to every element of the other
operand—this property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules apply except
when operating on two variable-size expressions. In this case, both operands must be
the same size. The generated code does not perform scalar expansion even if one of the
variable-size expressions turns out to be scalar at run time. Instead, it generates a size
mismatch error at run time for MEX functions. Run-time error checking does not occur
for non-MEX builds; the generated code will have unspecified behavior.

46 Code Generation for Variable-Size Data

46-22

For example, in the following function, z is scalar for the switch statement case 0 and
case 1. MATLAB applies scalar expansion when evaluating y(:) = z; for these two
cases.

function y = scalar_exp_test_err1(u) %#codegen

y = ones(3);

switch u

 case 0

 z = 0;

 case 1

 z = 1;

 otherwise

 z = zeros(3);

end

y(:) = z;

When you generate code for this function, the code generation software determines that z
is variable size with an upper bound of 3.

If you run the MEX function with u equal to zero or one, even though z is scalar at run
time, the generated code does not perform scalar expansion and a run-time error occurs.

scalar_exp_test_err1_mex(0)

Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

46-23

y(:) = z;

Workaround

Use indexing to force z to be a scalar value:

function y = scalar_exp_test_err1(u) %#codegen

y = ones(3);

switch u

 case 0

 z = 0;

 case 1

 z = 1;

 otherwise

 z = zeros(3);

end

y(:) = z(1);

Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays

For variable-size N-D arrays, the size function can return a different result in generated
code than in MATLAB. In generated code, size(A) returns a fixed-length output
because it does not drop trailing singleton dimensions of variable-size N-D arrays. By
contrast, size(A) in MATLAB returns a variable-length output because it drops trailing
singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A) returns:

• Three-element vector in generated code
• Two-element vector in MATLAB code

Workarounds

If your application requires generated code to return the same size of variable-size N-D
arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and MATLAB
code.

• Rewrite size(A):

46 Code Generation for Variable-Size Data

46-24

B = size(A);

X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot pass
a variable-size X to matrix constructors such as zeros that require a fixed-size
argument.

Incompatibility with MATLAB in Determining Size of Empty Arrays

The size of an empty array in generated code might be different from its size in MATLAB
source code. The size might be 1x0 or 0x1 in generated code, but 0x0 in MATLAB.
Therefore, you should not write code that relies on the specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen

x = [];

i = 0;

while (i < 10)

 x = [5 x];

 i = i + 1;

end

if n > 0

 x = [];

end

y = size(x);

end

Concatenation requires its operands to match on the size of the dimension that is not
being concatenated. In the preceding concatenation the scalar value has size 1x1 and x
has size 0x0. To support this use case, the code generation software determines the size
for x as [1 x :?]. Because there is another assignment x = [] after the concatenation,
the size of x in the generated code is 1x0 instead of 0x0.

Workaround

If your application checks whether a matrix is empty, use one of these workarounds:

• Rewrite your code to use the isempty function instead of the size function.
• Instead of using x=[] to create empty arrays, create empty arrays of a specific size

using zeros. For example:

function y = test_empty(n) %#codegen

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

46-25

x = zeros(1,0);

i=0;

while (i < 10)

 x = [5 x];

 i = i + 1;

end

if n > 0

 x = zeros(1,0);

end

y=size(x);

end

Incompatibility with MATLAB in Determining Class of Empty Arrays

The class of an empty array in generated code can be different from its class in MATLAB
source code. Therefore, do not write code that relies on the class of empty matrices.

For example, consider the following code:

function y = fun(n)

x = [];

if n > 1

 x = ['a' x];

end

y=class(x);

end

fun(0) returns double in MATLAB, but char in the generated code. When the
statement n > 1 is false, MATLAB does not execute x = ['a' x]. The class of x is
double, the class of the empty array. However, the code generation software considers
all execution paths. It determines that based on the statement x = ['a' x], the class of
x is char.

Workaround

Instead of using x=[] to create an empty array, create an empty array of a specific class.
For example, use blanks(0) to create an empty array of characters.

function y = fun(n)

x = blanks(0);

if n > 1

 x = ['a' x];

end

y=class(x);

end

46 Code Generation for Variable-Size Data

46-26

Incompatibility with MATLAB in Vector-Vector Indexing

In vector-vector indexing, you use one vector as an index into another vector. When
either vector is variable sized, you might get a run-time error during code generation.
Consider the index expression A(B). The general rule for indexing is that size(A(B))
== size(B). However, when both A and B are vectors, MATLAB applies a special rule:
use the orientation of A as the orientation of the output. For example, if size(A) == [1
5] and size(B) == [3 1], then size(A(B)) == [1 3].

In this situation, if the code generation software detects that both A and B are vectors
at compile time, it applies the special rule and gives the same result as MATLAB.
However, if either A or B is a variable-size matrix (has shape ?x?) at compile time, the
code generation software applies only the general indexing rule. Then, if both A and B
become vectors at run time, the code generation software reports a run-time error when
you run the MEX function. Run-time error checking does not occur for non-MEX builds;
the generated code will have unspecified behavior. It is best practice to generate and test
a MEX function before generating C code.

Workaround

Force your data to be a vector by using the colon operator for indexing: A(B(:)). For
example, suppose your code intentionally toggles between vectors and regular matrices at
run time. You can do an explicit check for vector-vector indexing:

...

if isvector(A) && isvector(B)

 C = A(:);

 D = C(B(:));

else

 D = A(B);

end

...

The indexing in the first branch specifies that C and B(:) are compile-time vectors. As a
result, the code generation software applies the standard vector-vector indexing rule.

Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation

The following limitations apply to matrix indexing operations for code generation:

• Initialization of the following style:

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

46-27

for i = 1:10

 M(i) = 5;

end

In this case, the size of M changes as the loop is executed. Code generation does not
support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M = zeros(1,10);

for i = 1:10

 M(i) = 5;

end

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of the
expressions that change as the program executes. To implement this behavior, use
for-loops as shown in the following example:

...

M = ones(10,10);

for i = 1:10

 for j = i:10

 M(i,j) = 2*M(i,j);

 end

end

...

Note: The matrix M must be defined before entering the loop, as shown in the
highlighted code.

Incompatibility with MATLAB in Concatenating Variable-Size Matrices

For code generation, when you concatenate variable-size arrays, the dimensions that are
not being concatenated must match exactly.

Differences When Curly-Brace Indexing of Variable-Size Cell Array Inside
Concatenation Returns No Elements

Suppose that:

46 Code Generation for Variable-Size Data

46-28

• c is a variable-size cell array.
• You access the contents of c by using curly braces. For example, c{2:4}.
• You include the results in concatenation. For example, [a c{2:4} b].
• c{I} returns no elements. Either c is empty or the indexing inside the curly braces

produces an empty result.

For these conditions, MATLAB omits c{I} from the concatenation. For example, [a
c{I} b] becomes [a b]. The code generation software treats c{I} as the empty
array [c{I}]. The concatenation becomes [...[c{i}]...]. This concatenation then
omits the array [c{I}]. So that the properties of [c{I}] are compatible with the
concatenation [...[c{i}]...], the code generation software assigns the class, size,
and complexity of [c{I}] according to these rules:

• The class and complexity are the same as the base type of the cell array.
• The size of the second dimension is always 0.
• For the rest of the dimensions, the size of Ni depends on whether the corresponding

dimension in the base type is fixed or variable size.

• If the corresponding dimension in the base type is variable size, the dimension has
size 0 in the result.

• If the corresponding dimension in the base type is fixed size, the dimension has
that size in the result.

Suppose that c has a base type with class int8 and size:10x7x8x:?. In the generated
code, the class of [c{I}] is int8. The size of [c{I}] is 0x0x8x0. The second dimension
is 0. The first and last dimensions are 0 because those dimensions are variable size in the
base type. The third dimension is 8 because the size of the third dimension of the base
type is a fixed size 8.

Inside concatenation, if curly-brace indexing of a variable-size cell array returns no
elements, the generated code can have the following differences from MATLAB:

• The class of [...c{i}...] in the generated code can differ from the class in
MATLAB.

When c{I} returns no elements, MATLAB removes c{I} from the concatenation.
Therefore, c{I} does not affect the class of the result. MATLAB determines the class
of the result based on the classes of the remaining arrays, according to a precedence
of classes. See “Valid Combinations of Unlike Classes”. In the generated code, the

 Incompatibilities with MATLAB in Variable-Size Support for Code Generation

46-29

class of [c{I}] affects the class of the result of the overall concatenation [...
[c{I}]...] because the code generation software treats c{I} as [c{I}]. The
previously described rules determine the class of [c{I}].

• In the generated code, the size of [c{I}] can differ from the size in MATLAB.

In MATLAB, the concatenation [c{I}] is a 0x0 double. In the generated code, the
previously described rules determine the size of [c{I}].

Dynamic Memory Allocation Not Supported for MATLAB Function Blocks

You cannot use dynamic memory allocation for variable-size data in MATLAB Function
blocks. Use bounded instead of unbounded variable-size data.

46 Code Generation for Variable-Size Data

46-30

Variable-Sizing Restrictions for Code Generation of Toolbox
Functions

In this section...

“Common Restrictions” on page 46-30
“Toolbox Functions with Variable Sizing Restrictions” on page 46-31

Common Restrictions

The following common restrictions apply to multiple toolbox functions, but only for code
generation. To determine which of these restrictions apply to specific library functions,
see the table in “Toolbox Functions with Variable Sizing Restrictions” on page 46-31.

Variable-length vector restriction

Inputs to the library function must be variable-length vectors or fixed-size vectors.
A variable-length vector is a variable-size array that has the shape 1x:n or :nx1
(one dimension is variable sized and the other is fixed at size 1). Other shapes are not
permitted, even if they are vectors at run time.

Automatic dimension restriction

When the function selects the working dimension automatically, it bases the selection
on the upper bounds for the dimension sizes. In the case of the sum function, sum(X)
selects its working dimension automatically, while sum(X, dim) uses dim as the explicit
working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x) behaves
like sum(X,2) in generated code. In MATLAB, it behaves like sum(X,2) provided
size(X,2) is not 1. In MATLAB, when size(X,2) is 1, sum(X) behaves like
sum(X,3). Consequently, you get a run-time error if an automatically selected working
dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as a constant value.

Array-to-vector restriction

The function issues an error when a variable-size array that is not a variable-length
vector assumes the shape of a vector at run time. To avoid the issue, specify the input
explicitly as a variable-length vector instead of a variable-size array.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

46-31

Array-to-scalar restriction

The function issues an error if a variable-size array assumes a scalar value at run time.
To avoid this issue, specify scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions

The following restrictions apply to specific toolbox functions, but only for code generation.

Function Restrictions with Variable-Size Data

all • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun • Dimensions expand only where one input array or the
other has a fixed length of 1.

cat • Dimension argument must be a constant.
• An error occurs if variable-size inputs are empty at run

time.
conv • See “Variable-length vector restriction” on page

46-30.
• Input vectors must have the same orientation, either

both row vectors or both column vectors.
cov • For cov(X), see“Array-to-vector restriction” on page

46-30.
cross • Variable-size array inputs that become vectors at run

time must have the same orientation.
deconv • For both arguments, see“Variable-length vector

restriction” on page 46-30.
detrend • For first argument for row vectors only, see “Array-to-

vector restriction” on page 46-30 .

46 Code Generation for Variable-Size Data

46-32

Function Restrictions with Variable-Size Data

diag • See “Array-to-vector restriction” on page 46-30 .
diff • See “Automatic dimension restriction” on page

46-30.
• Length of the working dimension must be greater than

the difference order input when the input is variable
sized. For example, if the input is a variable-size matrix
that is 3-by-5 at run time, diff(x,2,1) works but
diff(x,5,1) generates a run-time error.

fft • See “Automatic dimension restriction” on page
46-30.

filter • For first and second arguments, see “Variable-length
vector restriction” on page 46-30.

• See “Automatic dimension restriction” on page
46-30.

hist • For second argument, see “Variable-length vector
restriction” on page 46-30.

• For second input argument, see“Array-to-scalar
restriction” on page 46-31.

histc • See “Automatic dimension restriction” on page
46-30.

ifft • See “Automatic dimension restriction” on page
46-30.

ind2sub • First input (the size vector input) must be fixed size.
interp1 • For the Y input and xi input, see“Array-to-vector

restriction” on page 46-30.
• Y input can become a column vector dynamically.
• A run-time error occurs if Y input is not a variable-

length vector and becomes a row vector at run time.
ipermute • Order input must be fixed size.
issorted • For optional rows input, see “Variable-length vector

restriction” on page 46-30.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

46-33

Function Restrictions with Variable-Size Data

magic • Argument must be a constant.
• Output can be fixed-size matrices only.

max • See “Automatic dimension restriction” on page
46-30.

mean • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

median • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

min • See “Automatic dimension restriction” on page
46-30.

mode • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

mtimes • When an input is variable-size, MATLAB determines
whether to generate code for a general matrix*matrix
multiplication or a scalar*matrix multiplication, based
on whether one of the arguments is a fixed-size scalar.
If neither argument is a fixed-size scalar, the inner
dimensions of the two arguments must agree even if a
variable-size matrix input is a scalar at run time.

nchoosek • The second input, k, must be a fixed-size scalar.
• The second input, k, must be a constant for static

allocation..
• You cannot create a variable-size array by passing in a

variable, k, .
permute • Order input must be fixed-size.

46 Code Generation for Variable-Size Data

46-34

Function Restrictions with Variable-Size Data

planerot • Input must be a fixed-size, two-element column vector.
It cannot be a variable-size array that takes on the size
2-by-1 at run time.

poly • See “Variable-length vector restriction” on page
46-30.

polyfit • For first and second arguments, see “Variable-length
vector restriction” on page 46-30.

prod • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass as the first argument a
variable-size matrix that is 0-by-0 at run time.

rand • For an upper-bounded variable N, rand(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, rand([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

randi • For an upper-bounded variable N, randi(imax,1,N)
produces a variable-length vector of 1x:M where M is the
upper bound on N.

• For an upper-bounded variable N, randi(imax,[1 N])
may produce a variable-length vector of :1x:M where M
is the upper bound on N.

randn • For an upper-bounded variable N, randn(1,N) produces
a variable-length vector of 1x:M where M is the upper
bound on N.

• For an upper-bounded variable N, randn([1 N]) may
produce a variable-length vector of :1x:M where M is the
upper bound on N.

 Variable-Sizing Restrictions for Code Generation of Toolbox Functions

46-35

Function Restrictions with Variable-Size Data

reshape • If the input is a variable-size array and the output
array has at least one fixed-length dimension, do not
specify the output dimension sizes in a size vector sz.
Instead, specify the output dimension sizes as scalar
values, sz1,...,szN. Specify fixed-size dimensions as
constants.

• When the input is a variable-size empty array, the
maximum dimension size of the output array (also
empty) cannot be larger than that of the input.

roots • See “Variable-length vector restriction” on page
46-30.

shiftdim • If you do not supply the second argument, the number
of shifts is determined at compilation time by the upper
bounds of the dimension sizes. Consequently, at run
time the number of shifts is constant.

• An error occurs if the dimension that is shifted to the
first dimension has length 1 at run time. To avoid the
error, supply the number of shifts as the second input
argument (must be a constant).

• First input argument must have the same number of
dimensions when you supply a positive number of shifts.

std • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass a variable-size matrix with
0-by-0 dimensions at run time.

sub2ind • First input (the size vector input) must be fixed size.
sum • See “Automatic dimension restriction” on page

46-30.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.
trapz • See “Automatic dimension restriction” on page

46-30.
• An error occurs if you pass as the first argument a

variable-size matrix that is 0-by-0 at run time.

46 Code Generation for Variable-Size Data

46-36

Function Restrictions with Variable-Size Data

typecast • See “Variable-length vector restriction” on page
46-30 on first argument.

var • See “Automatic dimension restriction” on page
46-30.

• An error occurs if you pass a variable-size matrix with
0-by-0 dimensions at run time.

47

Code Generation for MATLAB
Structures

• “Structure Definition for Code Generation” on page 47-2
• “Structure Operations Allowed for Code Generation” on page 47-3
• “Define Scalar Structures for Code Generation” on page 47-4
• “Define Arrays of Structures for Code Generation” on page 47-6
• “Make Structures Persistent” on page 47-8
• “Index Substructures and Fields” on page 47-9
• “Assign Values to Structures and Fields” on page 47-11
• “Pass Large Structures as Input Parameters” on page 47-13

47 Code Generation for MATLAB Structures

47-2

Structure Definition for Code Generation

To generate efficient standalone code for structures, you must define and use structures
differently than you normally would when running your code in the MATLAB
environment:

What's Different More Information

Use a restricted set of operations. “Structure Operations Allowed for Code
Generation” on page 47-3

Observe restrictions on properties and
values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 47-4

Make structures uniform in arrays. “Define Arrays of Structures for Code
Generation” on page 47-6

Reference structure fields individually
during indexing.

“Index Substructures and Fields” on page
37-76

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and Fields” on
page 37-79

 Structure Operations Allowed for Code Generation

47-3

Structure Operations Allowed for Code Generation

To generate efficient standalone code for MATLAB structures, you are restricted to the
following operations:

• Define structures as local and persistent variables by assignment and using the
struct function

• Index structure fields using dot notation
• Define primary function inputs as structures
• Pass structures to local functions

47 Code Generation for MATLAB Structures

47-4

Define Scalar Structures for Code Generation

In this section...

“Restrictions When Defining Scalar Structures by Assignment” on page 47-4
“Adding Fields in Consistent Order on Each Control Flow Path” on page 47-4
“Restriction on Adding New Fields After First Use” on page 47-5

Restrictions When Defining Scalar Structures by Assignment

When you define a scalar structure by assigning a variable to a preexisting structure,
you do not need to define the variable before the assignment. However, if you already
defined that variable, it must have the same class, size, and complexity as the structure
you assign to it. In the following example, p is defined as a structure that has the same
properties as the predefined structure S:

...

S = struct('a', 0, 'b', 1, 'c', 2);

p = S;

...

Adding Fields in Consistent Order on Each Control Flow Path

When you create a structure, you must add fields in the same order on each control flow
path. For example, the following code generates a compiler error because it adds the
fields of structure x in a different order in each if statement clause:

function y = fcn(u) %#codegen

if u > 0

 x.a = 10;

 x.b = 20;

else

 x.b = 30; % Generates an error (on variable x)

 x.a = 40;

end

y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if statement
clause, but the assignments appear in reverse order in the else clause. Here is the
corrected code:

 Define Scalar Structures for Code Generation

47-5

function y = fcn(u) %#codegen

if u > 0

 x.a = 10;

 x.b = 20;

else

 x.a = 40;

 x.b = 30;

end

y = x.a + x.b;

Restriction on Adding New Fields After First Use

You cannot add fields to a structure after you perform the following operations on the
structure:

• Reading from the structure
• Indexing into the structure array
• Passing the structure to a function

For example, consider this code:

...

x.c = 10; % Defines structure and creates field c

y = x; % Reads from structure

x.d = 20; % Generates an error

...

In this example, the attempt to add a new field d after reading from structure x
generates an error.

This restriction extends across the structure hierarchy. For example, you cannot add
a field to a structure after operating on one of its fields or nested structures, as in this
example:

function y = fcn(u) %#codegen

x.c = 10;

y = x.c;

x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading from the
structure's field c generates an error.

47 Code Generation for MATLAB Structures

47-6

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 47-6
“Using repmat to Define an Array of Structures with Consistent Field Properties” on
page 47-6
“Defining an Array of Structures by Using struct” on page 47-7
“Defining an Array of Structures Using Concatenation” on page 47-7

Ensuring Consistency of Fields

For code generation, when you create an array of MATLAB structures, corresponding
fields in the array elements must have the same size, type, and complexity.

Once you have created the array of structures, you can make the structure fields
variable-size using coder.varsize. For more information, see “Declare a Variable-Size
Structure Field.”.

Using repmat to Define an Array of Structures with Consistent Field
Properties

You can create an array of structures from a scalar structure by using the MATLAB
repmat function, which replicates and tiles an existing scalar structure:

1 Create a scalar structure, as described in “Define Scalar Structures for Code
Generation” on page 47-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.
3 Assign values to each structure using standard array indexing and structure dot

notation.

For example, the following code creates X, a 1-by-3 array of scalar structures. Each
element of the array is defined by the structure s, which has two fields, a and b:

...

s.a = 0;

s.b = 0;

X = repmat(s,1,3);

 Define Arrays of Structures for Code Generation

47-7

X(1).a = 1;

X(2).a = 2;

X(3).a = 3;

X(1).b = 4;

X(2).b = 5;

X(3).b = 6;

...

Defining an Array of Structures by Using struct

To create an array of structures using the struct function, specify the field value
arguments as cell arrays. Each cell array element is the value of the field in the
corresponding structure array element. For code generation, corresponding fields in
the structures must have the same type. Therefore, the elements in a cell array of field
values must have the same type.

For example, the following code creates a 1-by-3 structure array. For each structure in
the array of structures, a has type double and b has type char.

s = struct('a', {1 2 3}, 'b', {'a' 'b' 'c'});

Defining an Array of Structures Using Concatenation

To create a small array of structures, you can use the concatenation operator, square
brackets ([]), to join one or more structures into an array (see “Concatenating
Matrices”). For code generation, the structures that you concatenate must have the same
size, class, and complexity.

For example, the following code uses concatenation and a local function to create the
elements of a 1-by-3 structure array:

...

W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)

 s.a = a;

 s.b = b;

...

47 Code Generation for MATLAB Structures

47-8

Make Structures Persistent

To make structures persist, you define them to be persistent variables and initialize
them with the isempty statement, as described in “Define and Initialize Persistent
Variables” on page 44-10.

For example, the following function defines structure X to be persistent and initializes its
fields a and b:

function f(u) %#codegen

persistent X

if isempty(X)

 X.a = 1;

 X.b = 2;

end

 Index Substructures and Fields

47-9

Index Substructures and Fields

Use these guidelines when indexing substructures and fields for code generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields and
substructures:

...

substruct1.a1 = 15.2;

substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),

 'ele3',substruct1);

substruct2 = mystruct;

substruct2.ele3.a2 = 2*(substruct1.a2);

...

The generated code indexes elements of the structures in this example by resolving
symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1
substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure

substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the array to
the structure of interest and then reference that structure's field individually using dot
notation, as in this example:

...

y = X(1).a % Extracts the value of field a

 % of the first structure in array X

...

47 Code Generation for MATLAB Structures

47-10

To reference all the values of a particular field for each structure in an array, use this
notation in a for loop, as in this example:

...

s.a = 0;

s.b = 0;

X = repmat(s,1,5);

for i = 1:5

 X(i).a = i;

 X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each with two
fields a and b as defined by s. See “Define Arrays of Structures for Code Generation” on
page 47-6 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which express the
field as a variable expression that MATLAB evaluates at run time (see “Generate Field
Names from Variables”).

 Assign Values to Structures and Fields

47-11

Assign Values to Structures and Fields

When assigning values to a structure, substructure, or field for code generation, use
these guidelines:

Field properties must be consistent across structure-to-structure assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a substructure
of a different structure and vice versa.

Define the structure with the same
number, type, and size of fields as the
substructure.

Assigning an element of one structure to an
element of another structure.

The elements must have the same type and
size.

For structures with constant fields, do not assign field values inside control flow constructs

In the following code, the code generation software recognizes that the structure fields
s.a and s.b are constants.

function y = mystruct()

s.a = 3;

s.b = 5;

y = zeros(s.a,s.b);

If a field of a structure is assigned inside a control flow construct, the code generation
software does not recognize that s.a and s.b are constant. Consider the following code:

function y = mystruct(x)

s.a = 3;

if x > 1

 s.b = 4;

else

 s.b = 5;

end

y = zeros(s.a,s.b);

If variable-sizing is enabled, y is treated as a variable-size array. If variable-sizing is
disabled, y, the code generation software reports an error.

47 Code Generation for MATLAB Structures

47-12

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to known types
before code generation (see “Working with mxArrays” on page 53-17).

Do not assign classes to structure fields

You cannot assign classes to structure fields.

Do not assign cell arrays to structure fields

You cannot assign cell arrays to structure fields.

 Pass Large Structures as Input Parameters

47-13

Pass Large Structures as Input Parameters

If you generate a MEX function for a MATLAB function that takes a large structure as
an input parameter, for example, a structure containing fields that are matrices, the
MEX function might fail to load. This load failure occurs because, when you generate a
MEX function from a MATLAB function that has input parameters, the code generation
software allocates memory for these input parameters on the stack. To avoid this issue,
pass the structure by reference to the MATLAB function. For example, if the original
function signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)

48

Code Generation for Cell Arrays

• “Homogeneous vs. Heterogeneous Cell Arrays” on page 48-2
• “Control Whether a Cell Array is Homogeneous or Heterogeneous” on page 48-4
• “Cell Array Requirements and Limitations for Code Generation” on page 48-5
• “Cell Arrays in Code Generation Reports” on page 48-8

48 Code Generation for Cell Arrays

48-2

Homogeneous vs. Heterogeneous Cell Arrays

The code generation software classifies a cell array as homogeneous or heterogeneous.
This classification determines how a cell array is represented in the generated C/C++
code. It also determines how you can use the cell array in MATLAB code from which you
generate C/C++ code.

A homogeneous cell array has the following characteristics:

• The cell array is represented as a C array in the generated code.
• All elements have the same properties. The type associated with the cell array

specifies the properties of all elements rather than the properties of individual
elements.

• The cell array can be variable size.
• You can index into the cell array using an index whose value is determined at run

time.

A heterogeneous cell array has the following characteristics:

• The cell array is represented as a C structure in the generated code. Each element is
represented as a field of the structure.

• The elements can have different properties. The type associated with the cell array
specifies the properties of each element individually.

• The cell array cannot be variable size.
• You must index into the cell array using a constant index or using for-loops with

constant bounds.

The code generation software uses heuristics to determine the classification of a
cell array as homogeneous or heterogeneous. It considers the properties (class, size,
complexity) of the elements and other factors such as how you use the cell array in your
program. A particular cell array can be homogeneous in one case and heterogeneous in
another case. For example, consider the cell array {1 [2 3]}. This cell array can be
a heterogeneous 1x2 cell array whose first element is double scalar and whose second
element is a 1x2 array of doubles. However, if you index into this cell array with an index
whose value is determined at run time, the cell array is a homogeneous cell array. The
elements are variable-size arrays of doubles with an upper bound of 2.

To see whether a cell array is homogeneous or heterogeneous, view the variable in the
code generation report. See “Cell Arrays in Code Generation Reports” on page 48-8.

 Homogeneous vs. Heterogeneous Cell Arrays

48-3

For more information, see “Control Whether a Cell Array is Homogeneous or
Heterogeneous” on page 48-4.

More About
• “Cell Array Requirements and Limitations for Code Generation” on page 48-5

48 Code Generation for Cell Arrays

48-4

Control Whether a Cell Array is Homogeneous or Heterogeneous

As long as you do not specify conflicting requirements, you can control whether a cell
array is homogeneous or heterogeneous.

• If you use coder.varsize with the cell array, the cell array is homogeneous.
• If you index the cell array with an index whose value is determined at run time, the

cell array is homogeneous.
• If you use coder.cstructname with the cell array, the cell array is heterogeneous.
• If the elements have different classes, the cell array is heterogeneous.

If the code generation software detects conflicting requirements for a cell array, the code
generation fails. For example, you cannot use coder.varsize with a cell array whose
elements have different classes.

See Also
coder.cstructname | coder.varsize

More About
• “Homogeneous vs. Heterogeneous Cell Arrays” on page 48-2

 Cell Array Requirements and Limitations for Code Generation

48-5

Cell Array Requirements and Limitations for Code Generation

Cell Array Definition

• You must completely assign cell arrays at compile time. You must assign each cell
array element on all execution paths.

If you use cell to create a cell array, you must assign values to all elements of the
cell array. The following code is not allowed because y{2} is not assigned.

function y = foo()

y = cell(1,3);

y{1} = 1;

y{3} = 3;

end

Even if the element is not used, you must assign a value so that the code generation
software can determine whether the cell array is homogeneous or heterogeneous.
Assign a value that is consistent with how you plan to use the cell array. See
“Homogeneous vs. Heterogeneous Cell Arrays” on page 48-2.

In the preceding example, if y{2} is double, y is homogeneous. If y{2} is empty, its
size is 0x0 not 1x1 like the other elements. In this case, y is heterogeneous.

• The assignment must be consistent on all execution paths. The following code is not
allowed because y{2} is double on one execution path and char on the other execution
path.

function y = foo(n)

y = cell(1,3)

if n > 1;

 y{1} = 1

 y{2} = 2;

 y{3} = 3;

else

 y{1} = 10;

 y{2} = 'a';

 y{3} = 30;

end

48 Code Generation for Cell Arrays

48-6

Cell Array Indexing

• You cannot index cell arrays by using smooth parentheses(). Instead, consider
indexing cell arrays by using curly braces{} to access the contents of the cell.

• You must index into heterogeneous cell arrays by using constant indexes or by using
for-loops with constant bounds.

For example, the following code is not allowed:

x = {1, 'mystring'};

disp(x{randi});

If the index A and B are constant, the following code is allowed:

x = {1, 'mystring'};

for i = A:B

 disp(x{i});

When the for-loop has constant bounds, it is unrolled. For large cell arrays, the
unrolling can increase compile time and generate inefficient code.

Variable-Size Cell Arrays

• Heterogeneous cell arrays cannot be variable size.
• You cannot use the cell function to create a variable-size cell array. For example, the

following code is not allowed:

function y = foo(n)

y = cell(1,n);

Instead, use repmat. For example:

function y = foo(n)

y = repmat({1}, [1 n];)

• If you use the cell function to create a cell array, you cannot use coder.varsize
with that cell array.

Cell Array Contents

• Cell arrays cannot contain mxarrays. In a cell array, you cannot store a value that an
extrinsic function returns.

 Cell Array Requirements and Limitations for Code Generation

48-7

• Cell arrays cannot contain classes or System objects.
• Cell arrays cannot contain function handles.

Cell Arrays in Structures

Structures cannot contain cell arrays.

Passing to External C/C++ Functions

You cannot pass a cell array to coder.ceval. If a variable is an input argument to
coder.ceval, define the variable as an array or structure instead of as a cell array.

Use in MATLAB Function Block

You can use cells arrays inside a MATLAB Function block. You cannot use cell arrays for
Simulink signals, parameters, or data store memory.

More About
• “Differences in Behavior After Compiling MATLAB Code” on page 41-8

48 Code Generation for Cell Arrays

48-8

Cell Arrays in Code Generation Reports

Cell Array Variable in the MATLAB Code Pane

When you place your cursor over a cell array variable in the MATLAB code pane, the
report shows that the variable has class cell.

If the cell array has all constant elements, or some constant and some nonconstant
elements, the variable name is orange. When you place your cursor over the variable, the
report shows the values of the elements. The report displays a nonconstant element as an
empty array. If you export the cell array variable to the base workspace, a nonconstant
element is an empty array in the base workspace. See “Viewing Variables in Your
MATLAB Code” on page 37-50.

Cell Array Variable on the Variables Tab

On the Variables tab, for a cell array, the report shows class cell. By default, the
report collapses the list of cell array elements. To see the properties of the elements,
expand the list.

For a homogeneous cell array, the report has one entry that specifies the properties of all
elements. The notation {:} indicates that all elements of the cell array have the same
properties.

 Cell Arrays in Code Generation Reports

48-9

For a heterogeneous cell array, the report has an entry for each element. For example, for
a heterogeneous cell array c with two elements, the entry for c{1} shows the properties
for the first element. The entry for c{2} shows the properties for the second element.

More About
• “Homogeneous vs. Heterogeneous Cell Arrays” on page 48-2
• “MATLAB Function Reports” on page 37-46

49

Code Generation for Enumerated
Data

• “Enumerated Data Definition for Code Generation” on page 49-2
• “Customize Enumerated Types for MATLAB Function Blocks” on page 49-3
• “Restrictions on Use of Enumerated Data in for-Loops” on page 49-4
• “Toolbox Functions That Support Enumerated Types for Code Generation” on page

49-5

49 Code Generation for Enumerated Data

49-2

Enumerated Data Definition for Code Generation

To generate efficient standalone code for enumerated data, you must define and use
enumerated types differently than you do in the MATLAB environment:

Difference More Information

Supports integer-based enumerated types
only

“Enumerated Types Supported in MATLAB
Function Blocks” on page 37-97

Each enumerated data type must be
defined in a separate file on the MATLAB
path

“Define Enumerated Data Types for
MATLAB Function Blocks” on page 37-100

Restricted set of operations “Operations on Enumerated Data” on page
37-110

Restricted use in for-loops “Restrictions on Use of Enumerated Data
in for-Loops” on page 49-4

 Customize Enumerated Types for MATLAB Function Blocks

49-3

Customize Enumerated Types for MATLAB Function Blocks

To customize an enumerated type that you use in a MATLAB Function block, use the
same techniques that work with MATLAB classes, as described in Modifying Superclass
Methods and Properties. For more information, see “Customize Simulink Enumeration”
on page 56-9.

49 Code Generation for Enumerated Data

49-4

Restrictions on Use of Enumerated Data in for-Loops

Do not use enumerated data as the loop counter variable in for- loops

To iterate over a range of enumerated data with consecutive values, in the loop counter,
cast the enumerated data to a built-in integer type. The size of the built-in integer type
must be big enough to contain the enumerated value.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef ColorCodes < int32

 enumeration

 Red(1),

 Blue(2),

 Green(3),

 Yellow(4),

 Purple(5)

 end

end

Because the enumerated values are consecutive, you can use ColorCodes data in a
for-loop like this:

...

for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

 c = ColorCodes(i);

 ...

end

 Toolbox Functions That Support Enumerated Types for Code Generation

49-5

Toolbox Functions That Support Enumerated Types for Code
Generation

The following MATLAB toolbox functions support enumerated types for code generation:

• cast

• cat

• circshift

• fliplr

• flipud

• histc

• intersect

• ipermute

• isequal

• isequaln

• isfinite

• isinf

• ismember

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• setdiff

• setxor

• shiftdim

• sort

• sortrows

• squeeze

49 Code Generation for Enumerated Data

49-6

• union

• unique

50

Code Generation for MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 50-2
• “Classes That Support Code Generation” on page 50-8
• “Generate Code for MATLAB Value Classes” on page 50-9
• “Generate Code for MATLAB Handle Classes and System Objects” on page 50-14
• “MATLAB Classes in Code Generation Reports” on page 50-16
• “Troubleshooting Issues with MATLAB Classes” on page 50-19
• “Handle Object Limitations for Code Generation” on page 50-21
• “System Objects Requirements and Limitations for Code Generation” on page

50-24

50 Code Generation for MATLAB Classes

50-2

MATLAB Classes Definition for Code Generation

To generate efficient standalone code for MATLAB classes, you must use classes
differently than when running your code in the MATLAB environment.

What’s Different More Information

Class must be in a single file. Because
of this limitation, code generation is not
supported for a class definition that uses an
@-folder.

“Create a Single, Self-Contained Class
Definition File”

Restricted set of language features. “Language Limitations” on page 50-2
Restricted set of code generation features. “Code Generation Features Not Compatible

with Classes” on page 50-3
Definition of class properties. “Defining Class Properties for Code

Generation” on page 50-4
Use of handle classes. “Generate Code for MATLAB Handle

Classes and System Objects” on page
50-14

“Handle Object Limitations for Code
Generation” on page 50-21

Calls to base class constructor. “Calls to Base Class Constructor” on page
50-5

Global variables containing MATLAB
objects are not supported for code
generation.

N/A

Inheritance from built-in MATLAB classes
is not supported.

“Inheritance from Built-In MATLAB
Classes Not Supported” on page 50-6

Language Limitations

Although code generation support is provided for common features of classes such
as properties and methods, there are a number of advanced features which are not
supported, such as:

• Events

 MATLAB Classes Definition for Code Generation

50-3

• Listeners
• Arrays of objects
• Recursive data structures

• Linked lists
• Trees
• Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref, subsassign, and
subsindex methods. Code generation does not support classes that have their own
definitions of these methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an empty
array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

• addlistener

• delete

• eq

• findobj

• findpro

• The AbortSet property attribute

Code Generation Features Not Compatible with Classes

• You can generate code for entry-point MATLAB functions that use classes, but you
cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code by
executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a MATLAB class,
you cannot generate code for this function.

50 Code Generation for MATLAB Classes

50-4

For example, if function foo takes one input, a, that is a MATLAB object, you cannot
generate code for foo by executing:

codegen foo -args {a}

• Code generation does not support classes in matrices or structures.
• Code generation does not support assigning an object of a value class into a

nontunable property. For example, obj.prop=v; is invalid when prop is a
nontunable property and v is an object based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.
• You cannot pass a MATLAB class to the coder.ceval function.
• If you use classes in code in the MATLAB Function block, you cannot use the

debugger to view class information.
• The coder.nullcopy function does not support MATLAB classes as inputs.

Defining Class Properties for Code Generation

For code generation, you must define class properties differently than you normally
would when running your code in the MATLAB environment:

• After defining a property, do not assign it an incompatible type. Do not use a property
before attempting to grow it.

When you define class properties for code generation, consider the same factors that
you take into account when defining variables. In the MATLAB language, variables
can change their class, size, or complexity dynamically at run time so you can use
the same variable to hold a value of varying class, size, or complexity. C and C++ use
static typing. Before using variables, to determine their type, the code generation
software requires a complete assignment to each variable. Similarly, before using
properties, you must explicitly define their class, size, and complexity.

• Initial values:

• If the property does not have an explicit initial value, the code generation software
assumes that it is undefined at the beginning of the constructor. The code
generation software does not assign an empty matrix as the default.

• If the property does not have an initial value and the code generation software
cannot determine that the property is assigned prior to first use, the software
generates a compilation error.

 MATLAB Classes Definition for Code Generation

50-5

• For System objects, if a nontunable property is a structure, you must completely
assign the structure. You cannot do partial assignment using subscripting.

For example, for a nontunable property, you can use the following assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;

mySystemObject.nonTunableProperty.fieldB = b;

• If dynamic memory allocation is enabled, code generation supports variable-size
properties for handle classes. Without dynamic memory allocation, you cannot
generate code for handle classes that have variable-size properties.

• coder.varsize is not supported for class properties.
• MATLAB computes class initial values at class loading time before code generation.

If you use persistent variables in MATLAB class property initialization, the value of
the persistent variable computed when the class loads belongs to MATLAB; it is not
the value used at code generation time. If you use coder.target in MATLAB class
property initialization, coder.target('MATLAB') returns true (1).

Calls to Base Class Constructor

If a class constructor contains a call to the constructor of the base class, the call to the
base class constructor must come before for, if, return, switch or while statements.

For example, if you define a class B based on class A:

classdef B < A

 methods

 function obj = B(varargin)

 if nargin == 0

 a = 1;

 b = 2;

 elseif nargin == 1

 a = varargin{1};

 b = 1;

 elseif nargin == 2

 a = varargin{1};

 b = varargin{2};

 end

50 Code Generation for MATLAB Classes

50-6

 obj = obj@A(a,b);

 end

 end

end

Because the class definition for B uses an if statement before calling the base class
constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB

x = B;

y1 = x.p1;

y2 = x.p2;

end

However, you can generate code for callB if you define class B as:

classdef B < A

 methods

 function obj = NewB(varargin)

 [a,b] = getaandb(varargin{:});

 obj = obj@A(a,b);

 end

 end

end

function [a,b] = getaandb(varargin)

if nargin == 0

 a = 1;

 b = 2;

elseif nargin == 1

 a = varargin{1};

 b = 1;

elseif nargin == 2

 a = varargin{1};

 b = varargin{2};

end

end

Inheritance from Built-In MATLAB Classes Not Supported

You cannot generate code for classes that inherit from built-in MATLAB classes. For
example, you cannot generate code for the following class:

 MATLAB Classes Definition for Code Generation

50-7

classdef myclass < double

50 Code Generation for MATLAB Classes

50-8

Classes That Support Code Generation

You can generate code for MATLAB value and handle classes and user-defined System
objects. Your class can have multiple methods and properties and can inherit from
multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 50-9

Handle classes including user-defined
System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
50-14

For more information, see:

• “Role of Classes in MATLAB”
• “MATLAB Classes Definition for Code Generation” on page 50-2

 Generate Code for MATLAB Value Classes

50-9

Generate Code for MATLAB Value Classes

This example shows how to generate code for a MATLAB value class and then view the
generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code as
Shape.m.

classdef Shape

% SHAPE Create a shape at coordinates

% centerX and centerY

 properties

 centerX;

 centerY;

 end

 properties (Dependent = true)

 area;

 end

 methods

 function out = get.area(obj)

 out = obj.getarea();

 end

 function obj = Shape(centerX,centerY)

 obj.centerX = centerX;

 obj.centerY = centerY;

 end

 end

 methods(Abstract = true)

 getarea(obj);

 end

 methods(Static)

 function d = distanceBetweenShapes(shape1,shape2)

 xDist = abs(shape1.centerX - shape2.centerX);

 yDist = abs(shape1.centerY - shape2.centerY);

 d = sqrt(xDist^2 + yDist^2);

 end

 end

end

2 In the same folder, create a class, Square, that is a subclass of Shape. Save the code
as Square.m.

classdef Square < Shape

% Create a Square at coordinates center X and center Y

50 Code Generation for MATLAB Classes

50-10

% with sides of length of side

 properties

 side;

 end

 methods

 function obj = Square(side,centerX,centerY)

 obj@Shape(centerX,centerY);

 obj.side = side;

 end

 function Area = getarea(obj)

 Area = obj.side^2;

 end

 end

end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape. Save the
code as Rhombus.m.

classdef Rhombus < Shape

 properties

 diag1;

 diag2;

 end

 methods

 function obj = Rhombus(diag1,diag2,centerX,centerY)

 obj@Shape(centerX,centerY);

 obj.diag1 = diag1;

 obj.diag2 = diag2;

 end

 function Area = getarea(obj)

 Area = 0.5*obj.diag1*obj.diag2;

 end

 end

end

4 Write a function that uses this class.

function [TotalArea, Distance] = use_shape

%#codegen

s = Square(2,1,2);

r = Rhombus(3,4,7,10);

TotalArea = s.area + r.area;

Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation report.

 Generate Code for MATLAB Value Classes

50-11

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape, and
supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.
7 In the report, on the MATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights the
class constructor. On the Variables tab, it provides details of the variables used
in the class. If a variable is a MATLAB object, by default, the report displays the
object without displaying its properties. To view the list of properties, expand the
list. Within the list of properties, the list of inherited properties is collapsed. In the
following report, the lists of properties and inherited properties are expanded.

8 At the top right side of the report, expand the Calls list.

50 Code Generation for MATLAB Classes

50-12

The Calls list shows that there is a call to the Rhombus constructor from use_shape
and that this constructor calls the Shape constructor.

9 The constructor for the Rhombus class calls the Shape method of the base Shape
class: obj@Shape. In the report, click the Shape link in this call.

 Generate Code for MATLAB Value Classes

50-13

The link takes you to the Shape method in the Shape class definition.

50 Code Generation for MATLAB Classes

50-14

Generate Code for MATLAB Handle Classes and System Objects

This example shows how to generate code for a user-defined System object and then view
the generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System

% ADDONE Compute an output value that increments the input by one

 methods (Access=protected)

 % stepImpl method is called by the step method

 function y = stepImpl(~,x)

 y = x+1;

 end

 end

end

2 Write a function that uses this System object.

function y = testAddOne(x)

%#codegen

 p = AddOne();

 y = p.step(x);

end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report, even
if no errors or warnings occur. The -args option specifies that the testAddOne
function takes one scalar double input.

>> codegen -report testAddOne -args {0}

Code generation successful: View report

4 Click the View report link.
5 In the report, on the MATLAB Code tab Functions panel, click testAddOne, then

click the Variables tab. You can view information about the variable p on this tab.

 Generate Code for MATLAB Handle Classes and System Objects

50-15

6 To view the class definition, on the Classes panel, click AddOne.

50 Code Generation for MATLAB Classes

50-16

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes

Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.
• Display a list of methods for each class in the MATLAB code tab.
• Display the objects used in your MATLAB code together with their properties on the

Variables tab.
• Provide a filter so that you can sort methods by class, size, and complexity.
• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab

The report displays an alphabetical hierarchical list of the classes used in the your
MATLAB code. For each class, you can:

• Expand the class information to view the class methods.
• View a class method by clicking its name. The report displays the methods in the

context of the full class definition.
• Filter the methods by size, complexity, and class by using the Filter functions and

methods option.

Default Constructors

If a class has a default constructor, the report displays the constructor in italics.
Specializations

If the same class is specialized into multiple different classes, the report differentiates
the specializations by grouping each one under a single node in the tree. The report
associates the class definition functions and static methods with the primary node. It
associates the instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea, and a
static method, distanceBetweenShapes. The code generation report, displays a

 MATLAB Classes in Code Generation Reports

50-17

node for the specialized Rhombus and Square classes with their constructors and
getarea method. It displays a node for the Shape class and its associated static method,
distanceBetweenShapes, and two instances of the Shape class, Shape1 and Shape2.

Packages

If you define classes as part of a package, the report displays the package in the list
of classes. You can expand the package to view the classes that it contains. For more
information about packages, see “Packages Create Namespaces”.

In the Variables Tab

The report displays the objects in the selected function or class. By default, for classes
that have properties, the list of properties is collapsed. To expand the list, click the
+ symbol next to the object name. Within the list of properties, the list of inherited
properties is collapsed. To expand the list of inherited properties, click the + symbol next
to Inherited.

The report displays the properties using just the base property name, not the fully
qualified name. For example, if your code uses variable obj1 that is a MATLAB object

50 Code Generation for MATLAB Classes

50-18

with property prop1, then the report displays the property as prop1 not obj1.prop1.
When you sort the Variables column, the sort order is based on the fully qualified
property name.

In the Call Stack

The call stack lists the functions and methods in the order that the top-level function
calls them. It also lists the local functions that each function calls.

How to Generate a Code Generation Report

Add the -report option to your codegen command (requires a MATLAB Coder license)

 Troubleshooting Issues with MATLAB Classes

50-19

Troubleshooting Issues with MATLAB Classes

Class class does not have a property with name name

If a MATLAB class has a method, mymethod, that returns a handle class with a property,
myprop, you cannot generate code for the following type of assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle

 properties

 myprop

 end

 methods

 function this = MyClass

 this.myprop = MyClass2;

 end

 function y = mymethod(this)

 y = this.myprop;

 end

 end

end

classdef MyClass2 < handle

 properties

 aa

 end

end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In MATLAB,
the assignment h.mymethod().aa = 12; changes the property of that object. Code
generation does not support this assignment.

50 Code Generation for MATLAB Classes

50-20

Workaround

Rewrite the code to return the object and then assign a value to a property of the object.

function foo

h = MyClass;

b=h.mymethod();

b.aa=12;

 Handle Object Limitations for Code Generation

50-21

Handle Object Limitations for Code Generation
The code generation software statically determines the lifetimes of handle objects. It
can reuse memory rather than rely on a dynamic memory management scheme such as
reference counting or garbage collection. It generates code that does not use dynamic
memory allocation or incur the overhead of run-time automatic memory management.
These characteristics of the generated code are important for some safety-critical and
real-time applications.

When you use handle objects, the static analysis that the code generation software uses
requires that you adhere to the following restrictions:

• “A Variable Outside a Loop Cannot Refer to a Handle Object Created Inside a Loop”
on page 50-21

• “A Handle Object That a Persistent Variable Refers To Must Be a Singleton Object”
on page 50-21

A Variable Outside a Loop Cannot Refer to a Handle Object Created
Inside a Loop

Consider the handle class mycls and the function usehandle1. The code generation
software reports an error because p, which is outside the loop, has a property that refers
to a mycls object created inside the loop.

classdef mycls < handle

 properties

 prop

 end

end

function usehandle1

p = mycls;

for i = 1:10

 p.prop = mycls;

end

A Handle Object That a Persistent Variable Refers To Must Be a Singleton
Object

If a persistent variable refers to a handle object, the code generation software allows only
one instance of the object during the program’s lifetime. The object must be a singleton

50 Code Generation for MATLAB Classes

50-22

object. To create a singleton handle object, enclose statements that create the object in
the if isempty() guard for the persistent variable.

For example, consider the class mycls and the function usehandle2. The code
generation software reports an error for usehandle2 because p.prop refers to the
mycls object that the statement inner = mycls creates. This statement creates a
mycls object for each invocation of usehandle2.

classdef mycls < handle

 properties

 prop

 end

end

function usehandle2(x)

assert(isa(x, 'double'));

persistent p;

inner = mycls;

inner.prop = x;

if isempty(p)

 p = mycls;

 p.prop = inner;

end

If you move the statements inner = mycls and inner.prop = x inside the if
isempty() guard, code generation succeeds. The statement inner = mycls executes
only once during the program’s lifetime.

function usehandle2(x)

assert(isa(x, 'double'));

persistent p;

if isempty(p)

 inner = mycls;

 inner.prop = x;

 p = mycls;

 p.prop = inner;

end

Consider the function usehandle3. The code generation software reports an error
for usehandle3 because the persistent variable p refers to the mycls object that the
statement myobj = mycls creates. This statement creates a mycls object for each
invocation of usehandle3.

function usehandle3(x)

 Handle Object Limitations for Code Generation

50-23

assert(isa(x, 'double'));

myobj = mycls;

myobj.prop = x;

doinit(myobj);

disp(myobj.prop);

function doinit(obj)

persistent p;

if isempty(p)

 p = obj;

end

If you make myobj persistent and enclose the statement myobj = mycls inside an if
isempty() guard, code generation succeeds. The statement myobj = mycls executes
only once during the program’s lifetime.

function usehandle3(x)

assert(isa(x, 'double'));

persistent myobj;

if isempty(myobj)

 myobj = mycls;

end

doinit(myobj);

function doinit(obj)

persistent p;

if isempty(p)

 p = obj;

end

50 Code Generation for MATLAB Classes

50-24

System Objects Requirements and Limitations for Code Generation

The following usage rules and limitations apply to using System objects in code
generated from MATLAB.

Object Construction and Initialization

• If objects are stored in persistent variables, initialize System objects once by
embedding the object handles in an if statement with a call to isempty().

• Set arguments to System object constructors as compile-time constants.
• You cannot initialize System objects properties with other MATLAB class objects

as default values in code generation. You must initialize these properties in the
constructor.

Inputs and Outputs

• System objects accept a maximum of 32 inputs. A maximum of 8 dimensions per input
is supported.

• The data type of the inputs should not change.
• If you want the size of inputs to change, verify that variable-size is enabled. Code

generation support for variable-size data also requires that the Enable variable
sizing option is enabled, which is the default in MATLAB.

Note: Variable-size properties in MATLAB Function block in Simulink are not
supported. System objects predefined in the software do not support variable-size if
their data exceeds the DynamicMemoryAllocationThreshold value.

• Do not set System objects to become outputs from the MATLAB Function block.
• Do not use the Save and Restore Simulation State as SimState option for any System

object in a MATLAB Function block.
• Do not pass a System object as an example input argument to a function being

compiled with codegen.
• Do not pass a System object to functions declared as extrinsic (functions called in

interpreted mode) using the coder.extrinsic function. System objects returned
from extrinsic functions and scope System objects that automatically become extrinsic
can be used as inputs to another extrinsic function, but do not generate code.

Tunable and Nontunable Properties

 System Objects Requirements and Limitations for Code Generation

50-25

• The value assigned to a nontunable property must be a constant and there can be at
most one assignment to that property (including the assignment in the constructor).

• For most System objects, the only time you can set their nontunable properties during
code generation is when you construct the objects.

• For System objects that are predefined in the software, you can set their tunable
properties at construction time or using dot notation after the object is locked.

• For System objects that you define, you can change their tunable properties
at construction time or using dot notation during code generation. For
getNumInputsImpl and getNumOutputsImpl methods, if you set the
return argument from an object property, that object property must have the
Nontunable attribute.

• Objects cannot be used as default values for properties.
• In MATLAB simulations, default values are shared across all instances of an object.

Two instances of a class can access the same default value if that property has not
been overwritten by either instance.

Cell Arrays and Global Variables

• System objects can contain cell arrays, but cell arrays cannot contain System objects.
• Global variables are allowed in a System object, unless you will be using that System

object in Simulink via the MATLAB System block. To avoid syncing global variables
between a MEX file and the workspace, use a coder configuration object. For example:

f = coder.MEXConfig;

f.GlobalSyncMethod = 'NoSync'

Then, include '-config f' in your codegen command.

Methods

• Code generation support is available only for these System object methods:

• get

• getNumInputs

• getNumOutputs

• isDone (for sources only)
• isLocked

• release

50 Code Generation for MATLAB Classes

50-26

• reset

• set (for tunable properties)
• step

• For System objects that you define,

Code generation support is available only for these methods:

• getDiscreteStateImpl

• getNumInputsImpl

• getNumOutputsImpl

• infoImpl

• isDoneImpl

• isInputDirectFeedThroughImpl

• outputImpl

• processTunedPropertiesImpl

• releaseImpl — Code is not generated automatically for the this method. To
release an object, you must explicitly call the release method in your code.

• resetImpl

• setupImpl

• stepImpl

• updateImpl

• validateInputsImpl

• validatePropertiesImpl

• Code generation support for using dot notation depends on whether the System object
is predefined in the software or is one that you defined.

• For System objects that are predefined in the software, you cannot use dot
notation to call methods.

• For System objects that you define, you can use dot notation or function call
notation, with the System object as first argument, to call methods.

51

Code Generation for Function Handles

• “Function Handle Definition for Code Generation” on page 51-2
• “Define and Pass Function Handles for Code Generation” on page 51-3
• “Function Handle Limitations for Code Generation” on page 51-5

51 Code Generation for Function Handles

51-2

Function Handle Definition for Code Generation

You can use function handles to invoke functions indirectly and parameterize operations
that you repeat frequently. You can perform the following operations with function
handles:

• Define handles that reference user-defined functions and built-in functions supported
for code generation (see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List” on page 42-2)

Note: You cannot define handles that reference extrinsic MATLAB functions.
• Define function handles as scalar values
• Define structures that contain function handles
• Pass function handles as arguments to other functions (excluding extrinsic functions)

To generate efficient standalone code for function handles, you are restricted to using a
subset of the operations you can perform with function handles in MATLAB, as described
in “Function Handle Limitations for Code Generation” on page 51-5

 Define and Pass Function Handles for Code Generation

51-3

Define and Pass Function Handles for Code Generation

The following code example shows how to define and call function handles for code
generation. You can copy the example to a MATLAB Function block in Simulink or
MATLAB function in Stateflow. To convert this function to a MEX function using
codegen, uncomment the two calls to the assert function, highlighted below:

function addval(m)

%#codegen

 % Define class and size of primary input m

 % Uncomment next two lines to build MEX function with codegen

 % assert(isa(m,'double'));

 % assert(all (size(m) == [3 3]));

 % Pass function handle to addone

 % to add one to each element of m

 m = map(@addone, m);

 disp(m);

 % Pass function handle to addtwo

 % to add two to each element of m

 m = map(@addtwo, m);

 disp(m);

 function y = map(f,m)

 y = m;

 for i = 1:numel(y)

 y(i) = f(y(i));

 end

 function y = addone(u)

 y = u + 1;

 function y = addtwo(u)

 y = u + 2;

This code passes function handles @addone and @addtwo to the function map which
increments each element of the matrix m by the amount prescribed by the referenced
function. Note that map stores the function handle in the input variable f and then uses
f to invoke the function — in this case addone first and then addtwo.

51 Code Generation for Function Handles

51-4

If you have MATLAB Coder, you can use the function codegen to convert the function
addval to a MEX executable that you can run in MATLAB. Follow these steps:

1 At the MATLAB command prompt, issue this command:

codegen addval

2 Define and initialize a 3-by-3 matrix by typing a command like this at the MATLAB
prompt:

m = zeros(3)

3 Execute the function by typing this command:

addval(m)

You should see the following result:

 0 0 0

 0 0 0

 0 0 0

 1 1 1

 1 1 1

 1 1 1

 3 3 3

 3 3 3

 3 3 3

For more information, see “MEX Function Generation at the Command Line”.

 Function Handle Limitations for Code Generation

51-5

Function Handle Limitations for Code Generation

You cannot use the same bound variable to reference different function handles.

After you bind a variable to a specific function, you cannot use the same variable to
reference two different function handles, as in this example:

%Incorrect code

...

x = @plus;

x = @minus;

...

This code produces a compilation error.

You cannot pass function handles to or from coder.ceval.

You cannot pass function handles as inputs to or outputs from coder.ceval. For
example, suppose that f and str.f are function handles:

f = @sin;

str.x = pi;

str.f = f;

The following statements result in compilation errors:

coder.ceval('foo', @sin);

coder.ceval('foo', f);

coder.ceval('foo', str);

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic MATLAB
functions. For more information, see “Declaring MATLAB Functions as Extrinsic
Functions” on page 53-12.

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary functions. For
example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

51 Code Generation for Function Handles

51-6

plot(data, fhandle(data));

x = fhandle(data);

In this example, the function plotFcn receives a function handle and its data as primary
inputs. plotFcn attempts to call the function referenced by the fhandle with the input
data and plot the results. However, this code generates a compilation error. The error
indicates that the function isa does not recognize 'function_handle' as a class name
when called inside a MATLAB function to specify properties of primary inputs.

You cannot view function handles from the debugger

You cannot display or watch function handles from the debugger. The function handles
appear as empty matrices.

52

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 52-2
• “Supported Index Expressions” on page 52-3
• “Apply Operations to a Variable Number of Arguments” on page 52-4
• “Implement Wrapper Functions” on page 52-6
• “Pass Property/Value Pairs” on page 52-7
• “Variable Length Argument Lists for Code Generation” on page 52-9

52 Defining Functions for Code Generation

52-2

Specify Variable Numbers of Arguments

You can use varargin in a function definition to specify that the function accepts a
variable number of input arguments for a given input argument. You can use varargout
in a function definition to specify that the function returns a variable number of
arguments for a given output argument.

When you use varargin and varargout for code generation, there are the following
limitations:

• You cannot use varargout in the function definition for a top-level function.
• You cannot use varargin in the function definition for a top-level function in

a MATLAB Function block in a Simulink model, or in a MATLAB function in a
Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the code
generation software generates the function with a fixed number of arguments. This
fixed number of arguments is based on the number of example arguments that you
provide on the command line or in a MATLAB Coder project test file.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 52-4
• “Implement Wrapper Functions” on page 52-6
• “Pass Property/Value Pairs” on page 52-7

Code generation relies on loop unrolling to produce simple and efficient code for
varargin and varargout. This technique permits most common uses of varargin and
varargout, but some uses are not allowed (see “Variable Length Argument Lists for
Code Generation” on page 52-9).

For more information about using varargin and varargout in MATLAB functions, see
Passing Variable Numbers of Arguments.

 Supported Index Expressions

52-3

Supported Index Expressions

In MATLAB, varargin and varargout are cell arrays. Generated code does not support
cell arrays, but does allow you to use the most common syntax — curly braces {} — for
indexing into varargin and varargout arrays, as in this example:

%#codegen

function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i};

end

You can use the following index expressions. The exp arguments must be constant
expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element exp
varargin{exp1: exp2} Read the values of elements

exp1 through exp2

varargin

(read only)

varargin{:} Read the values of all
elements

varargout

(read and write)
varargout{exp} Read or write the value of

element exp

Note: The use of () is not supported for indexing into varargin and varargout arrays.

52 Defining Functions for Code Generation

52-4

Apply Operations to a Variable Number of Arguments

You can use varargin and varargout in for-loops to apply operations to a variable
number of arguments. To index into varargin and varargout arrays in generated
code, the value of the loop index variable must be known at compile time. Therefore,
during code generation, the compiler attempts to automatically unroll these for-loops.
Unrolling eliminates the loop logic by creating a separate copy of the loop body in the
generated code for each iteration. Within each iteration, the loop index variable becomes
a constant. For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen

function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

When to Force Loop Unrolling

To automatically unroll for-loops containing varargin and varargout expressions,
the relationship between the loop index expression and the index variable must be
determined at compile time.

In the following example, the function fcn cannot detect a logical relationship between
the index expression j and the index variable i:

%#codegen

function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

j = 0;

for i = 1:length(varargin)

 j = j+1;

 varargout{j} = varargin{j};

end

As a result, the function does not unroll the loop and generates a compilation error:

 Apply Operations to a Variable Number of Arguments

52-5

Nonconstant expression or empty matrix.

This expression must be constant because

its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header in the
function coder.unroll, as follows:

%#codegen

function [x,y,z] = fcn(a,b,c)

 [x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)

 j = 0;

 for i = coder.unroll(1:length(varargin))

 j = j + 1;

 varargout{j} = varargin{j};

 end;

Using Variable Numbers of Arguments in a for-Loop

The following example multiplies a variable number of input dimensions in inches by
2.54 to convert them to centimeters:

%#codegen

function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in the top-
level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code Generation” on
page 52-9.

52 Defining Functions for Code Generation

52-6

Implement Wrapper Functions

You can use varargin and varargout to write wrapper functions that accept up to 64
inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One Function to Another

The following example passes a variable number of inputs to different optimization
functions, based on a specified input method:

%#codegen

function answer = fcn(method,a,b,c)

answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)

 if strcmp(method,'simple')

 answer = simple_optimization(varargin{:});

 else

 answer = complex_optimization(varargin{:});

 end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another function.
• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code Generation” on
page 52-9.

 Pass Property/Value Pairs

52-7

Pass Property/Value Pairs

You can use varargin to pass property/value pairs in functions. However, for code
generation, you must take precautions to avoid type mismatch errors when evaluating
varargin array elements in a for-loop:

If Do This:

You assign varargin array elements to
local variables in the for-loop

Verify that for all pairs, the size, type, and
complexity are the same for each property
and the same for each value

Properties or values have different sizes,
types, or complexity

Do not assign varargin array elements to
local variables in a for-loop; reference the
elements directly

For example, in the following function test1, the sizes of the property strings and
numeric values are not the same in each pair:

%#codegen

function test1

 v = create_value('size', 18, 'rgb', [240 9 44]);

end

function v = create_value(varargin)

 v = new_value();

 for i = 1 : 2 : length(varargin)

 name = varargin{i};

 value = varargin{i+1};

 switch name

 case 'size'

 v = set_size(v, value);

 case 'rgb'

 v = set_color(v, value);

 otherwise

 end

 end

end

...

Generated code determines the size, type, and complexity of a local variable based on its
first assignment. In this example, the first assignments occur in the first iteration of the
for-loop:

52 Defining Functions for Code Generation

52-8

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to 3 and the size
of the numeric value changes to a vector, resulting in a type mismatch error. To avoid
such errors, reference varargin array values directly, not through local variables, as
highlighted in this code:

%#codegen

function test1

 v = create_value('size', 18, 'rgb', [240 9 44]);

end

function v = create_value(varargin)

 v = new_value();

 for i = 1 : 2 : length(varargin)

 switch varargin{i}

 case 'size'

 v = set_size(v, varargin{i+1});

 case 'rgb'

 v = set_color(v, varargin{i+1});

 otherwise

 end

 end

end

...

 Variable Length Argument Lists for Code Generation

52-9

Variable Length Argument Lists for Code Generation

Use variable length argument lists in top-level functions according to guidelines

When you use varargin and varargout for code generation, there are the following
limitations:

• You cannot use varargout in the function definition for a top-level function.
• You cannot use varargin in the function definition for a top-level function in

a MATLAB Function block in a Simulink model, or in a MATLAB function in a
Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the code
generation software generates the function with a fixed number of arguments. This
fixed number of arguments is based on the number of example arguments that you
provide on the command line or in a MATLAB Coder project test file.

A top-level function is:

• The function called by Simulink in a MATLAB Function block or by Stateflow in a
MATLAB function.

• The function that you provide on the command line to codegen or fiaccel.

For example, the following code generates compilation errors:

%#codegen

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

To fix the problem, write a top-level function that specifies a fixed number of inputs
and outputs. Then call inch_2_cm as an external function or local function, as in this
example:

%#codegen

function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)

[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

function varargout = inch_2_cm(varargin)

for i = 1:length(varargin)

 varargout{i} = varargin{i} * 2.54;

end

52 Defining Functions for Code Generation

52-10

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (), to index
into varargin and varargout arrays. For more information, see “Supported Index
Expressions” on page 52-3.

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that the value
of the expression can be computed at compile time. For examples, see “Apply Operations
to a Variable Number of Arguments” on page 52-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write to input
arguments, copy the values into a local variable.

53

Calling Functions for Code Generation

• “Resolution of Function Calls for Code Generation” on page 53-2
• “Resolution of File Types on Code Generation Path” on page 53-6
• “Compilation Directive %#codegen” on page 53-8
• “Call Local Functions” on page 53-9
• “Call Supported Toolbox Functions” on page 53-10
• “Call MATLAB Functions” on page 53-11

53 Calling Functions for Code Generation

53-2

Resolution of Function Calls for Code Generation

From a MATLAB function, you can call local functions, supported toolbox functions,
and other MATLAB functions. MATLAB resolves function names for code generation as
follows:

 Resolution of Function Calls for Code Generation

53-3

Subfunction?

Function
on the code
generation

path?

Function
on

MATLAB
path?

Extrinsic
function?

Function
on

MATLAB
path?

YesYes
Dispatch to
MATLAB

for execution
at runtime

No

No

No

Yes

Suitable
for code

 generation?

Yes

Yes

Yes

Generate

C code

Start

Generate error

No

No

No

53 Calling Functions for Code Generation

53-4

Key Points About Resolving Function Calls

The diagram illustrates key points about how MATLAB resolves function calls for code
generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 53-4.
• Attempts to compile functions unless the code generation software determines that it

should not compile them or you explicitly declare them to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare it to
be extrinsic by using the construct coder.extrinsic, as described in “Declaring
MATLAB Functions as Extrinsic Functions” on page 53-12. During simulation,
the code generation software generates code for the call to an extrinsic function, but
does not generate the function's internal code. Therefore, simulation can run only on
platforms where MATLAB software is installed. During standalone code generation,
MATLAB attempts to determine whether the extrinsic function affects the output of
the function in which it is called — for example by returning mxArrays to an output
variable. Provided that the output does not change, MATLAB proceeds with code
generation, but excludes the extrinsic function from the generated code. Otherwise,
compilation errors occur.

The code generation software detects calls to many common visualization functions,
such as plot, disp, and figure. The software treats these functions like extrinsic
functions but you do not have to declare them extrinsic using the coder.extrinsic
function.

• Resolves file type based on precedence rules described in “Resolution of File Types on
Code Generation Path” on page 53-6

Compile Path Search Order

During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code generation path
contains the toolbox functions supported for code generation.

2 MATLAB path

 Resolution of Function Calls for Code Generation

53-5

If the function is not on the code generation path, MATLAB searches this path.

MATLAB applies the same dispatcher rules when searching each path (see “Function
Precedence Order”).

When to Use the Code Generation Path

Use the code generation path to override a MATLAB function with a customized version.
A file on the code generation path shadows a file of the same name on the MATLAB path.

53 Calling Functions for Code Generation

53-6

Resolution of File Types on Code Generation Path

MATLAB uses the following precedence rules for code generation:

 Resolution of File Types on Code Generation Path

53-7

MEX-file?

MDL-file?

P-file?

M-file and
MEX-file in same

directory?

Yes

No

No

No

Yes

M-file?

Yes

Yes

Start

No

Compile
M-file

Generate
error

YesNo

53 Calling Functions for Code Generation

53-8

Compilation Directive %#codegen

Add the %#codegen directive (or pragma) to your function after the function signature
to indicate that you intend to generate code for the MATLAB algorithm. Adding this
directive instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during code generation.

function y = my_fcn(x) %#codegen

....

 Call Local Functions

53-9

Call Local Functions

Local functions are functions defined in the body of MATLAB function. They work the
same way for code generation as they do when executing your algorithm in the MATLAB
environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)

%#codegen

% Calculates a statistical mean and a standard

% deviation for the values in vals.

len = length(vals);

mean = avg(vals, len);

stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);

plot(vals,'-+');

function mean = avg(array,size)

mean = sum(array)/size;

53 Calling Functions for Code Generation

53-10

Call Supported Toolbox Functions

You can call toolbox functions directly if they are supported for code generation. For a
list of supported functions, see “Functions and Objects Supported for C and C++ Code
Generation — Alphabetical List” on page 42-2.

 Call MATLAB Functions

53-11

Call MATLAB Functions

The code generation software attempts to generate code for functions, even if they
are not supported for C code generation. The software detects calls to many common
visualization functions, such as plot, disp, and figure. The software treats these
functions like extrinsic functions but you do not have to declare them extrinsic using
coder.extrinsic. During simulation, the code generation software generates code
for these functions, but does not generate their internal code. During standalone code
generation, MATLAB attempts to determine whether the visualization function affects
the output of the function in which it is called. Provided that the output does not change,
MATLAB proceeds with code generation, but excludes the visualization function from the
generated code. Otherwise, compilation errors occur.

For example, you might want to call plot to visualize your results in the MATLAB
environment. If you generate a MEX function from a function that calls plot and then
run the generated MEX function, the code generation software dispatches calls to the
plot function to MATLAB. If you generate a library or executable, the generated code
does not contain calls to the plot function. The code generation report highlights calls
from your MATLAB code to extrinsic functions so that it is easy to determine which
functions are supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you must declare
the functions (like pause) to be extrinsic (see “Resolution of Function Calls for Code
Generation” on page 53-2). Extrinsic functions are not compiled, but instead executed in
MATLAB during simulation (see “How MATLAB Resolves Extrinsic Functions During
Simulation” on page 53-16).

There are two ways to declare a function to be extrinsic:

53 Calling Functions for Code Generation

53-12

• Use the coder.extrinsic construct in main functions or local functions (see
“Declaring MATLAB Functions as Extrinsic Functions” on page 53-12).

• Call the function indirectly using feval (see “Calling MATLAB Functions Using
feval” on page 53-16).

Declaring MATLAB Functions as Extrinsic Functions

To declare a MATLAB function to be extrinsic, add the coder.extrinsic construct at
the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions

The following code declares the MATLAB patch function extrinsic in the local function
create_plot:

function c = pythagoras(a,b,color) %#codegen

% Calculates the hypotenuse of a right triangle

% and displays the triangle.

c = sqrt(a^2 + b^2);

create_plot(a, b, color);

function create_plot(a, b, color)

%Declare patch and axis as extrinsic

coder.extrinsic('patch');

x = [0;a;a];

y = [0;0;b];

patch(x, y, color);

axis('equal');

The code generation software detects that axis is not supported for code generation and
automatically treats it as an extrinsic function. The compiler does not generate code for
patch and axis, but instead dispatches them to MATLAB for execution.

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at the MATLAB
prompt:

 Call MATLAB Functions

53-13

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view the
MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they are
supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

53 Calling Functions for Code Generation

53-14

When to Use the coder.extrinsic Construct

Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output — such as pause — during
simulation, without generating unnecessary code (see “How MATLAB Resolves
Extrinsic Functions During Simulation” on page 53-16).

• Make your code self-documenting and easier to debug. You can scan the source code
for coder.extrinsic statements to isolate calls to MATLAB functions, which can
potentially create and propagate mxArrays (see “Working with mxArrays” on page
53-17).

 Call MATLAB Functions

53-15

• Save typing. With one coder.extrinsic statement, each subsequent function call
is extrinsic, as long as the call and the statement are in the same scope (see “Scope of
Extrinsic Function Declarations” on page 53-15).

• Declare the MATLAB function(s) extrinsic throughout the calling function scope (see
“Scope of Extrinsic Function Declarations” on page 53-15). To narrow the scope,
use feval (see “Calling MATLAB Functions Using feval” on page 53-16).

Rules for Extrinsic Function Declarations

Observe the following rules when declaring functions extrinsic for code generation:

• Declare the function extrinsic before you call it.
• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations

The coder.extrinsic construct has function scope. For example, consider the following
code:

function y = foo %#codegen

coder.extrinsic('rat','min');

[N D] = rat(pi);

y = 0;

y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are called in the
main function foo. There are two ways to narrow the scope of an extrinsic declaration
inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this example:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y = mymin(N, D);

function y = mymin(a,b)

coder.extrinsic('min');

y = min(a,b);

Here, the function rat is extrinsic every time it is called inside the main function
foo, but the function min is extrinsic only when called inside the local function
mymin.

53 Calling Functions for Code Generation

53-16

• Call the MATLAB function using feval, as described in “Calling MATLAB Functions
Using feval” on page 53-16.

Calling MATLAB Functions Using feval

The function feval is automatically interpreted as an extrinsic function during code
generation. Therefore, you can use feval to conveniently call functions that you want to
execute in the MATLAB environment, rather than compiled to generated code.

Consider the following example:

function y = foo

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0;

y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated by
MATLAB — not compiled — which has the same result as declaring the function min
extrinsic for just this one call. By contrast, the function rat is extrinsic throughout the
function foo.

How MATLAB Resolves Extrinsic Functions During Simulation

MATLAB resolves calls to extrinsic functions — functions that do not support code
generation — as follows:

 Call MATLAB Functions

53-17

During simulation, MATLAB generates code for the call to an extrinsic function, but does
not generate the function's internal code. Therefore, you can run the simulation only on
platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the extrinsic function
affects the output of the function in which it is called — for example by returning
mxArrays to an output variable (see “Working with mxArrays” on page 53-17).
Provided that the output does not change, MATLAB proceeds with code generation, but
excludes the extrinsic function from the generated code. Otherwise, MATLAB issues a
compiler error.

Working with mxArrays

The output of an extrinsic function is an mxArray — also called a MATLAB array. The
only valid operations for mxArrays are:

• Storing mxArrays in variables

53 Calling Functions for Code Generation

53-18

• Passing mxArrays to functions and returning them from functions
• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must first
convert them to known types, as described in “Converting mxArrays to Known Types” on
page 53-18.

Converting mxArrays to Known Types

To convert an mxArray to a known type, assign the mxArray to a variable whose type is
defined. At run time, the mxArray is converted to the type of the variable assigned to it.
However, if the data in the mxArray is not consistent with the type of the variable, you
get a run-time error.

For example, consider this code:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat, which returns
two mxArrays representing the numerator N and denominator D of the rational fraction
approximation of pi. Although you can pass these mxArrays to another MATLAB
function — in this case, min — you cannot assign the mxArray returned by min to the
output y.

If you run this function foo in a MATLAB Function block in a Simulink model, the code
generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you expect min to
return — in this case, a scalar double — as follows:

function y = foo %#codegen

coder.extrinsic('rat');

[N D] = rat(pi);

y = 0; % Define y as a scalar of type double

y = min(N,D);

 Call MATLAB Functions

53-19

Restrictions on Extrinsic Functions for Code Generation

The full MATLAB run-time environment is not supported during code generation.
Therefore, the following restrictions apply when calling MATLAB functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller's workspace
do not work during code generation. Such functions include:

• dbstack

• evalin

• assignin

• save

• The MATLAB debugger cannot inspect variables defined in extrinsic functions.
• Functions in generated code may produce unpredictable results if your extrinsic

function performs the following actions at run time:

• Change folders
• Change the MATLAB path
• Delete or add MATLAB files
• Change warning states
• Change MATLAB preferences
• Change Simulink parameters

Limit on Function Arguments

You can call functions with up to 64 inputs and 64 outputs.

54

Generate Efficient and Reusable Code

• “Optimization Strategies” on page 54-2
• “Modularize MATLAB Code” on page 54-5
• “Eliminate Redundant Copies of Function Inputs” on page 54-6
• “Inline Code” on page 54-9
• “Control Inlining” on page 54-11
• “Fold Function Calls into Constants” on page 54-14
• “Control Stack Space Usage” on page 54-16
• “Stack Allocation and Performance” on page 54-17
• “Dynamic Memory Allocation and Performance” on page 54-18
• “Minimize Dynamic Memory Allocation” on page 54-19
• “Provide Maximum Size for Variable-Size Arrays” on page 54-20
• “Disable Dynamic Memory Allocation During Code Generation” on page 54-26
• “Set Dynamic Memory Allocation Threshold” on page 54-27
• “Excluding Unused Paths from Generated Code” on page 54-29
• “Prevent Code Generation for Unused Execution Paths” on page 54-30
• “Generate Code with Parallel for-Loops (parfor)” on page 54-32
• “Minimize Redundant Operations in Loops” on page 54-34
• “Unroll for-Loops” on page 54-36
• “Support for Integer Overflow and Non-Finites” on page 54-39
• “Integrate Custom Code” on page 54-41
• “MATLAB Coder Optimizations in Generated Code” on page 54-47
• “Generate Reusable Code” on page 54-50

54 Generate Efficient and Reusable Code

54-2

Optimization Strategies

MATLAB Coder introduces certain optimizations when generating C/C++ code or
MEX functions from your MATLAB code. For more information, see “MATLAB Coder
Optimizations in Generated Code”.

To optimize your generated code further, you can:

• Adapt your MATLAB code.
• Control code generation using the configuration object from the command-line or the

project settings dialog box.

To optimize the execution speed of generated code, for these conditions, perform the
following actions as necessary:

Condition Action

You have for-loops whose iterations are
independent of each other.

“Generate Code with Parallel for-Loops (parfor)”

You have variable-size arrays in your MATLAB
code.

“Minimize Dynamic Memory Allocation”

You have multiple variable-size arrays in your
MATLAB code. You want dynamic memory
allocation for larger arrays and static allocation
for smaller ones.

“Set Dynamic Memory Allocation Threshold”

You want your generated function to be called by
reference.

“Eliminate Redundant Copies of Function
Inputs”

You are calling small functions in your MATLAB
code.

“Inline Code”

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining”

You do not want to generate code for expressions
that contain constants only.

“Fold Function Calls into Constants”

You have loop operations in your MATLAB code
that do not depend on the loop index.

“Minimize Redundant Operations in Loops”

 Optimization Strategies

54-3

Condition Action

You have integer operations in your MATLAB
code. You know beforehand that integer
overflow does not occur during execution of your
generated code.

“Disable Support for Integer Overflow”

You know beforehand that Infs and NaNs do not
occur during execution of your generated code.

“Disable Support for Non-Finite Numbers”

You have for-loops with few iterations. “Unroll for-Loops”
You already have legacy C/C++ code optimized
for your target environment.

“Integrate Custom Code”

To optimize the memory usage of generated code, for these conditions, perform the
following actions as necessary:

Condition Action

You have if/else/elseif statements
or switch/case/otherwise statements
in your MATLAB code. You do not require
some branches of the statements in your
generated code.

“Prevent Code Generation for Unused
Execution Paths”

You want your generated function to be
called by reference.

“Eliminate Redundant Copies of Function
Inputs”

You have limited stack space for your
generated code.

“Control Stack Space Usage”

You are calling small functions in your
MATLAB code.

“Inline Code”

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for
larger ones.

“Control Inlining”

You do not want to generate code for
expressions that contain constants only.

“Fold Function Calls into Constants”

You have loop operations in your MATLAB
code that do not depend on the loop index.

“Minimize Redundant Operations in Loops”

You have integer operations in your
MATLAB code. You know beforehand that

“Disable Support for Integer Overflow”

54 Generate Efficient and Reusable Code

54-4

Condition Action

integer overflow does not occur during
execution of your generated code.
You know beforehand that Inf-s and NaN-
s does not occur during execution of your
generated code.

“Disable Support for Non-Finite Numbers”

Your MATLAB code has variables that are
large arrays or structures. The variable
reuse optimization preserves your variable
names. You want to see if the extra
memory required to preserve the variable
names of the large arrays or structures
affects performance.

“Reuse Large Arrays and Structures”

 Modularize MATLAB Code

54-5

Modularize MATLAB Code

For large MATLAB code, streamline code generation by modularizing the code:

1 Break up your MATLAB code into smaller, self-contained sections.
2 Save each section in a MATLAB function.
3 Generate C/C++ code for each function.
4 Call the generated C/C++ functions in sequence from a wrapper MATLAB function

using coder.ceval.
5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this approach also
supplies you with C/C++ code for the individual sections. You can reuse the code for the
individual sections later by integrating them with other generated C/C++ code using
coder.ceval.

54 Generate Efficient and Reusable Code

54-6

Eliminate Redundant Copies of Function Inputs

You can reduce the number of copies in your generated code by writing functions that use
the same variable as both an input and an output. For example:

function A = foo(A, B) %#codegen

A = A * B;

end

This coding practice uses a reference parameter optimization. When a variable acts
as both input and output, the generated code passes the variable by reference instead
of redundantly copying the input to a temporary variable. In the preceding example,
input A is passed by reference in the generated code because it also acts as an output for
function foo:

...

/* Function Definitions */

void foo(double *A, double B)

{

 *A *= B;

}

...

The reference parameter optimization reduces memory usage and execution time,
especially when the variable passed by reference is a large data structure. To achieve
these benefits at the call site, call the function with the same variable as both input and
output.

By contrast, suppose that you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen

y = A * B;

end

The generated code passes the inputs by value and returns the value of the output:

...

/* Function Definitions */

double foo2(double A, double B)

{

 return A * B;

}

...

 Eliminate Redundant Copies of Function Inputs

54-7

In some cases, the output of the function cannot be a modified version of its inputs. If
you do not use the inputs later in the function, you can modify your code to operate on
the inputs instead of on a copy of the inputs. One method is to create additional return
values for the function. For example, consider the code:

function y1=foo(u1) %#codegen

 x1=u1+1;

 y1=bar(x1);

end

function y2=bar(u2)

 % Since foo does not use x1 later in the function,

 % it would be optimal to do this operation in place

 x2=u2.*2;

 % The change in dimensions in the following code

 % means that it cannot be done in place

 y2=[x2,x2];

end

You can modify this code to eliminate redundant copies.

function y1=foo(u1) %#codegen

 u1=u1+1;

 [y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)

 u2=u2.*2;

 % The change in dimensions in the following code

 % still means that it cannot be done in place

 y2=[u2,u2];

end

The reference parameter optimization does not apply to constant inputs. If the same
variable is an input and an output, and the input is constant, the code generation
software treats the output as a separate variable. For example, consider the function
foo:

function A = foo(A, B) %#codegen

A = A * B;

end

Generate code in which A has a constant value 2.

codegen -config:lib foo -args {coder.Constant(2) 3} -report

54 Generate Efficient and Reusable Code

54-8

The generated code defines the constant A and returns the value of the output.

...

#define A (2.0)

...

double foo(double B)

{

 return A * B;

}

...

 Inline Code

54-9

Inline Code

MATLAB uses internal heuristics to determine whether to inline functions in the
generated code. You can use the coder.inline directive to fine-tune these heuristics for
individual functions. For more information, see coder.inline.

In this section...

“Prevent Function Inlining” on page 54-9
“Use Inlining in Control Flow Statements” on page 54-9

Prevent Function Inlining

In this example, function foo is not inlined in the generated code:

function y = foo(x)

 coder.inline('never');

 y = x;

end

Use Inlining in Control Flow Statements

You can use coder.inline in control flow code. If the software detects contradictory
coder.inline directives, the generated code uses the default inlining heuristic and
issues a warning.

Suppose you want to generate code for a division function that will be embedded in
a system with limited memory. To optimize memory use in the generated code, the
following function, inline_division, manually controls inlining based on whether it
performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code

% than the function call itself.

if isscalar(dividend) && isscalar(divisor)

 coder.inline('always');

else

% Vector division produces a for-loop.

% Prohibit inlining to reduce code size.

 coder.inline('never');

54 Generate Efficient and Reusable Code

54-10

end

if any(divisor == 0)

 error('Can not divide by 0');

end

y = dividend / divisor;

Related Examples
• “Control Inlining”

 Control Inlining

54-11

Control Inlining

Restrict inlining when:

• The size of generated code exceeds desired limits due to excessive inlining of
functions. Suppose that you include the statement, coder.inline('always'),
inside a certain function. You then call that function at many different sites in your
code. The generated code can be large due to the function being inlined every time it is
called.

The call sites must be different. For instance, inlining does not lead to large code if
the function to be inlined is called several times inside a loop.

• You have limited RAM or stack space.

In this section...

“Control Size of Functions Inlined” on page 54-11
“Control Size of Functions After Inlining” on page 54-12
“Control Stack Size Limit on Inlined Functions” on page 54-12

Control Size of Functions Inlined

You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions that can be inlined. The function size is measured in terms of
an abstract number of instructions, not actual MATLAB instructions or instructions in
the target processor. Experiment with this parameter to obtain the inlining behavior that
you want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline threshold, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThreshold, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineThreshold = 100;

Generate code using this configuration object.

54 Generate Efficient and Reusable Code

54-12

Control Size of Functions After Inlining

You can use the MATLAB Coder app or the command-line interface to control the
maximum size of functions after inlining. The function size is measured in terms of an
abstract number of instructions, not actual MATLAB instructions or instructions in the
target processor. Experiment with this parameter to obtain the inlining behavior that
you want.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline threshold max, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineThresholdMax = 100;

Generate code using this configuration object.

Control Stack Size Limit on Inlined Functions

Specifying a limit on the stack space constrains the amount of inlining allowed. For
out-of-line functions, stack space for variables local to the function is released when
the function returns. However, for inlined functions, stack space remains occupied
by the local variables even after the function is executed. The value of the property,
InlineStackLimit, is measured in bytes. Based on information from the target
hardware settings, the software estimates the number of stack variables that a certain
value of InlineStackLimit can accomodate. This estimate excludes possible C compiler
optimizations such as putting variables in registers.

You can use the MATLAB Coder app or the command-line interface to control the stack
size limit on inlined functions.

• Using the app, in the project settings dialog box, on the All Settings tab, set the
value of the field, Inline stack limit, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value of the
property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');

cfg.InlineStackLimit = 2000;

Generate code using this configuration object.

 Control Inlining

54-13

Related Examples
• “Inline Code”

54 Generate Efficient and Reusable Code

54-14

Fold Function Calls into Constants

This example shows how to specify constants in generated code using coder.const.
The code generation software folds an expression or a function call in a coder.const
statement into a constant in generated code. Because the generated code does not have
to evaluate the expression or call the function every time, this optimization reduces the
execution time of the generated code.

Write a function AddShift that takes an input Shift and adds it to the elements of
a vector. The vector consists of the square of the first 10 natural numbers. AddShift
generates this vector.

function y = AddShift(Shift) %#codegen

y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software generates code for creating the vector. It adds Shift
to each element of the vector during vector creation. The definition of AddShift in
generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int k;

 for (k = 0; k < 10; k++) {

 y[k] = (double)((1 + k) * (1 + k)) + Shift;

 }

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

Generate code for AddShift using the codegen command. Open the Code Generation
Report.

 Fold Function Calls into Constants

54-15

codegen -config:lib -launchreport AddShift -args 0

The code generation software creates the vector containing the squares of the first 10
natural numbers. In the generated code, it adds Shift to each element of this vector.
The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])

{

 int i0;

 static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,

 49, 64, 81, 100 };

 for (i0 = 0; i0 < 10; i0++) {

 y[i0] = (double)iv0[i0] + Shift;

 }

}

See Also
coder.const

54 Generate Efficient and Reusable Code

54-16

Control Stack Space Usage

This example shows how to set the maximum stack space that the generated code uses.
Set the maximum stack usage when:

• You have limited stack space, for instance, in embedded targets.
• Your C compiler reports a run-time stack overflow.

The value of the property, StackUsageMax, is measured in bytes. Based on information
from the target hardware settings, the software estimates the number of stack variables
that a certain value of StackUsageMax can accomodate. This estimate excludes possible
C compiler optimizations such as putting variables in registers.

Control Stack Space Usage Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 On the Memory tab, set Stack usage max to the value that you want.

Control Stack Space Usage at the Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib','dll', or 'exe' (depending on your
requirements). For example:

cfg = coder.config('lib');

2 Set the property, StackUsageMax, to the value that you want.

cfg.StackUsageMax=400000;

More About
• “Stack Allocation and Performance”

 Stack Allocation and Performance

54-17

Stack Allocation and Performance

By default, local variables are allocated on the stack. Large variables that do not fit on
the stack are statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation. However,
stack space is sometimes limited, typically in embedded processors. MATLAB Coder
allows you to manually set a limit on the stack space usage to make your generated
code suitable for your target hardware. You can choose this limit based on the target
hardware configurations. For more information, see “Control Stack Space Usage”.

54 Generate Efficient and Reusable Code

54-18

Dynamic Memory Allocation and Performance

To achieve faster execution of generated code, minimize dynamic (or run-time) memory
allocation of arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated code. Instead,
such arrays are referenced indirectly through pointers. For such arrays, memory cannot
be allocated during compilation of generated code. Based on storage requirements
for the arrays, memory is allocated and freed at run time as required. This run-time
allocation and freeing of memory leads to slower execution of the generated code. For
more information on dynamic memory allocation, see “Bounded Versus Unbounded
Variable-Size Data”.

When Dynamic Memory Allocation Occurs

Dynamic memory allocation occurs when the code generation software cannot find upper
bounds for variable-size arrays. The software cannot find upper bounds when you specify
the size of an array using a variable that is not a compile-time constant. An example of
such a variable is an input variable (or a variable computed from an input variable).

Instances in the MATLAB code that can lead to dynamic memory allocation are:

• Array initialization: You specify array size using a variable whose value is known only
at run time.

• After initialization of an array:

• You declare the array as variable-size using coder.varsize without explicit
upper bounds. After this declaration, you expand the array by concatenation inside
a loop. The number of loop runs is known only at run time.

• You use a reshape function on the array. At least one of the size arguments to the
reshape function is known only at run time.

If you know the maximum size of the array, you can avoid dynamic memory allocation.
You can then provide an upper bound for the array and prevent dynamic memory
allocation in generated code. For more information, see “Minimize Dynamic Memory
Allocation” on page 54-19.

 Minimize Dynamic Memory Allocation

54-19

Minimize Dynamic Memory Allocation

When possible, minimize dynamic memory allocation because it leads to slower execution
of generated code. Dynamic memory allocation occurs when the code generation software
cannot find upper bounds for variable-size arrays.

If you know the maximum size of a variable-size array, you can avoid dynamic memory
allocation. Follow these steps:

1 “Provide Maximum Size for Variable-Size Arrays” on page 54-20.
2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page
54-26.

• “Set Dynamic Memory Allocation Threshold”

Caution If a variable-size array in the MATLAB code does not have a maximum size,
disabling dynamic memory allocation leads to a code generation error. Before disabling
dynamic memory allocation, you must provide a maximum size for variable-size arrays in
your MATLAB code.

More About
• “Dynamic Memory Allocation and Performance”

54 Generate Efficient and Reusable Code

54-20

Provide Maximum Size for Variable-Size Arrays

To constrain array size for variable-size arrays, do one of the following:

• Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use an assert
statement with relational operators to constrain the variable. Doing so helps the code
generation software to determine a maximum size for the array.

The following examples constrain array size using assert statements:

• When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input variable N:

function y = array_init (N)

 assert(N <= 25); % Generates exception if N > 25

 y = zeros(1,N);

The assert statement constrains input N to a maximum size of 25. In the absence
of the assert statement, y is assigned a pointer to an array in the generated code,
thus allowing dynamic memory allocation.

• When Array Size Is Obtained from Computation Using Input Variables

Define a function, array_init_from_prod, which takes two input variables, M
and N, and uses their product to specify the maximum size of an array, y.

function y = array_init_from_prod (M,N)

 size=M*N;

 assert(size <= 25); % Generates exception if size > 25

 y=zeros(1,size);

The assert statement constrains the product of M and N to a maximum of 25.

Alternatively, if you restrict M and N individually, it leads to dynamic memory
allocation:

function y = array_init_from_prod (M,N)

 assert(M <= 5);

 assert(N <= 5);

 size=M*N;

 y=zeros(1,size);

 Provide Maximum Size for Variable-Size Arrays

54-21

This code causes dynamic memory allocation because M and N can both have
unbounded negative values. Therefore, their product can be unbounded and
positive even though, individually, their positive values are bounded.

Tip Place the assert statement on a variable immediately before it is used to
specify array size.

Tip You can use assert statements to restrict array sizes in most cases. When
expanding an array inside a loop, this strategy does not work if the number of loop
runs is known only at run time.

• Restrict Concatenations in a Loop Using coder.varsize with Upper Bounds

You can expand arrays beyond their initial size by concatenation. When you
concatenate additional elements inside a loop, there are two syntax rules for
expanding arrays.

1 Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant, you can
expand it by concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements

 out = zeros(1,in);

 for i=1:5

 out = [out 0];

 end

2 Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as variable-size
using coder.varsize:

function out=ExpandArray() % Expand an array by five elements

 out = zeros(1,5);

 coder.varsize('out');

 for i=1:5

 out = [out 0];

 end

54 Generate Efficient and Reusable Code

54-22

Either case leads to dynamic memory allocation. To prevent dynamic memory
allocation in such cases, use coder.varsize with explicit upper bounds. This
example shows how to use coder.varsize with explicit upper bounds:

Restrict Concatenations Using coder.varsize with Upper Bounds

1 Define a function, RunningAverage, that calculates the running average of an N-
element subset of an array:

 function avg=RunningAverage(N)

% Array whose elements are to be averaged

 NumArray=[1 6 8 2 5 3];

% Initialize average:

% These will also be the first two elements of the function output

 avg=[0 0];

% Place a bound on the argument

 coder.varsize('avg',[1 8]);

% Loop to calculate running average

 for i=1:N

 s=0;

 s=s+sum(NumArray(1:i));

 avg=[avg s/i];

 % Increase the size of avg as required by concatenation

 end

The output, avg, is an array that you can expand as required to accommodate
the running averages. As a new running average is calculated, it is added to the
array avg through concatenation, thereby expanding the array.

Because the maximum number of running averages is equal to the number of
elements in NumArray, you can supply an explicit upper bound for avg in the
coder.varsize statement. In this example, the upper bound is 8 (the two initial
elements plus the six elements of NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

 Provide Maximum Size for Variable-Size Arrays

54-23

In the generated code, avg is assigned an array of size 8 (static memory
allocation). The function definition for RunningAverage appears as follows
(using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])

3 By contrast, if you remove the explicit upper bound, the generated code
dynamically allocates avg.

Replace the statement

coder.varsize('avg',[1 8]);

with:

coder.varsize('avg');

4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby allowing
dynamic memory allocation. The function definition for RunningAverage
appears as follows (using built-in C types):

void Test(double N, emxArray_real_T *avg)

Note: Dynamic memory allocation also occurs if you precede
coder.varsize('avg') with the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations within the
loop.

• Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an argument
and returns array, out, having the same elements as in, but reshaped as an m-by-n-
by-... matrix. If one of the size variables m,n,.... is not a compile-time constant,
then dynamic memory allocation of out takes place.

54 Generate Efficient and Reusable Code

54-24

To avoid dynamic memory allocation, use an assert statement before the reshape
statement to restrict the size variables m,n,... to numel(in). This example shows
how to use an assert statement before a reshape statement:

Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and
reshapes a matrix, mat, to have N rows:

 function [out1,out2] = ReshapeMatrix(N)

 mat = [1 2 3 4 5; 4 5 6 7 8]

% Since mat has 10 elements, N must be a factor of 10

% to pass as argument to reshape

 out1 = reshape(mat,N,[]);

% N is not restricted

 assert(N < numel(mat));

% N is restricted to number of elements in mat

 out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input
argument does not have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size 100
(=10 X 10) in the generated code.

Tip If your system has limited memory, do not use the assert statement in this
way. For an n-element matrix, the assert statement creates an n-by-n matrix,
which might be large.

Related Examples
• “Minimize Dynamic Memory Allocation”
• “Disable Dynamic Memory Allocation During Code Generation”
• “Set Dynamic Memory Allocation Threshold”

 Provide Maximum Size for Variable-Size Arrays

54-25

More About
• “Dynamic Memory Allocation and Performance”

54 Generate Efficient and Reusable Code

54-26

Disable Dynamic Memory Allocation During Code Generation

To disable dynamic memory allocation using the MATLAB Coder app:

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, under Variable Sizing Support, set Dynamic memory

allocation to Never.

To disable dynamic memory allocation at the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');

2 Set the DynamicMemoryAllocation property of the configuration object to Off:

cfg.DynamicMemoryAllocation = 'Off';

If a variable-size array in the MATLAB code does not have a maximum upper bound,
disabling dynamic memory allocation leads to a code generation error. Therefore, you can
identify variable-size arrays in your MATLAB code that do not have a maximum upper
bound. These arrays are the arrays that are dynamically allocated in the generated code.

Related Examples
• “Minimize Dynamic Memory Allocation”
• “Provide Maximum Size for Variable-Size Arrays”
• “Set Dynamic Memory Allocation Threshold”

More About
• “Dynamic Memory Allocation and Performance”

 Set Dynamic Memory Allocation Threshold

54-27

Set Dynamic Memory Allocation Threshold

This example shows how to specify a dynamic memory allocation threshold for variable-
size arrays. Dynamic memory allocation optimizes storage requirements for variable-
size arrays, but causes slower execution of generated code. Instead of disabling dynamic
memory allocation for all variable-size arrays, you can disable dynamic memory
allocation for arrays less than a certain size.

Specify this threshold when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays, static
memory allocation can speed up generated code. Static memory allocation can lead to
unused storage space. However, you can decide that the unused storage space is not a
significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays, when you use
dynamic memory allocation, you can significantly reduce storage requirements.

Set Dynamic Memory Allocation Threshold Using the MATLAB Coder App

1 To open the Generate dialog box, on the Generate Code page, click the Generate

arrow .
2 Click More Settings.
3 On the Memory tab, select the Enable variable-sizing check box.
4 Set Dynamic memory allocation to For arrays with max size at or

above threshold.
5 Set Dynamic memory allocation threshold to the value that you want.

54 Generate Efficient and Reusable Code

54-28

The Dynamic memory allocation threshold value is measured in bytes. Based
on information from the target hardware settings, the software estimates the size
of the array that a certain value of DynamicMemoryAllocationThreshold can
accomodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

Set Dynamic Memory Allocation Threshold at the Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll', or 'exe' (depending on your requirements). For example:

cfg = coder.config('lib');

2 Set DynamicMemoryAllocation to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';

3 Set the property, DynamicMemoryAllocationThreshold, to the value that you
want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured in bytes.
Based on information from the target hardware settings, the software estimates the
size of the array that a certain value of DynamicMemoryAllocationThreshold
can accomodate. This estimate excludes possible C compiler optimizations such as
putting variables in registers.

Related Examples
• “Minimize Dynamic Memory Allocation”
• “Provide Maximum Size for Variable-Size Arrays”
• “Disable Dynamic Memory Allocation During Code Generation”

More About
• “Dynamic Memory Allocation and Performance”

 Excluding Unused Paths from Generated Code

54-29

Excluding Unused Paths from Generated Code

In certain situations, you do not need some branches of an: if, elseif, else
statement, or a switch, case, otherwise statement in your generated code. For
instance:

• You have a MATLAB function that performs multiple tasks determined by a control-
flow variable. You might not need some of the tasks in the code generated from this
function.

• You have an if/elseif/if statement in a MATLAB function performing different
tasks based on the nature (type/value) of the input. In some cases, you know the
nature of the input beforehand. If so, you do not need some branches of the if
statement.

You can prevent code generation for the unused branches of an if/elseif/else
statement or a switch/case/otherwise statement. Declare the control-flow variable
as a constant. The code generation software generates code only for the branch that the
control-flow variable chooses.

Related Examples
• “Prevent Code Generation for Unused Execution Paths”

54 Generate Efficient and Reusable Code

54-30

Prevent Code Generation for Unused Execution Paths

In this section...

“Prevent Code Generation When Local Variable Controls Flow” on page 54-30
“Prevent Code Generation When Input Variable Controls Flow” on page 54-31

If a variable controls the flow of an: if, elseif, else statement, or a switch,
case, otherwise statement, declare it as constant so that code generation takes place
for one branch of the statement only.

Depending on the nature of the control-flow variable, you can declare it as constant in
two ways:

• If the variable is local to the MATLAB function, assign it to a constant value in the
MATLAB code. For an example, see “Prevent Code Generation When Local Variable
Controls Flow” on page 54-30.

• If the variable is an input to the MATLAB function, you can declare it as constant
using coder.Constant. For an example, see “Prevent Code Generation When Input
Variable Controls Flow” on page 54-31.

Prevent Code Generation When Local Variable Controls Flow

1 Define a function SquareOrCube which takes an input variable, in, and squares or
cubes its elements based on whether the choice variable, ch, is set to s or c:

function out = SquareOrCube(ch,in) %#codegen

 if ch=='s'

 out = in.^2;

 elseif ch=='c'

 out = in.^3;

 else

 out = 0;

 end

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix based on the
input for ch.

 Prevent Code Generation for Unused Execution Paths

54-31

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice variable,
ch, and the other branches of the if/elseif/if statement do not appear in the
generated code.

Prevent Code Generation When Input Variable Controls Flow

1 Define a function MathFunc, which performs different mathematical operations on
an input, in, depending on the value of the input, flag:

function out = MathFunc(flag,in) %#codegen

 %# codegen

 switch flag

 case 1

 out=sin(in);

 case 2

 out=cos(in);

 otherwise

 out=sqrt(in);

 end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements of a 2-by-2
matrix based on the input for flag.

3 Generate code for MathFunc, declaring the argument, flag, as a constant using
coder.Constant:

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The variable,
flag, and the switch/case/otherwise statement do not appear in the generated
code.

More About
• “Excluding Unused Paths from Generated Code”

54 Generate Efficient and Reusable Code

54-32

Generate Code with Parallel for-Loops (parfor)

This example shows how to generate C code for a MATLAB algorithm that contains a
parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen

a=ones(10,256);

r=rand(10,256);

parfor i=1:10

 a(i,:)=real(fft(r(i,:)));

end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the generated C
code executes the loop iterations in parallel on the available number of cores.

3 To specify a maximum number of threads, rewrite the function test_parfor as
follows:

function a = test_parfor(u) %#codegen

a=ones(10,256);

r=rand(10,256);

parfor (i=1:10,u)

 a(i,:)=real(fft(r(i,:)));

end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u, is a
scalar double. At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the number
of cores specified by the input, u. If less than u cores are available, the iterations run
on the cores available at the time of the call.

More About
• “Algorithm Acceleration Using Parallel for-Loops (parfor)”
• “Classification of Variables in parfor-Loops”

 Generate Code with Parallel for-Loops (parfor)

54-33

• “Reduction Assignments in parfor-Loops”

54 Generate Efficient and Reusable Code

54-34

Minimize Redundant Operations in Loops

This example shows how to minimize redundant operations in loops. When a loop
operation does not depend on the loop index, performing it inside a loop is redundant.
This redundancy often goes unnoticed when you are performing multiple operations in a
single MATLAB statement inside a loop. For example, in the following code, the inverse
of the matrix B is being calculated 100 times inside the loop although it does not depend
on the loop index:

for i=1:100

 C=C + inv(B)*A^i*B;

 end

Performing such redundant loop operations can lead to unnecessary processing. To avoid
unnecessary processing, move operations outside loops as long as they do not depend on
the loop index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms in the
following power series expansion:

C B AB B A B= + + +
- -

1
1 1 2

...

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A

 C=zeros(size(A));

% Perform the series sum

 for i=1:n

 C=C+inv(B)*A^i*B;

 end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input arguments for A
and B:

X = coder.typeof(zeros(4));

codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

In the generated code, the inversion of B is performed n times inside the loop. It is
more economical to perform the inversion operation once outside the loop because it
does not depend on the loop index.

3 Modify SeriesFunc as follows:

 Minimize Redundant Operations in Loops

54-35

 function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A

 C=zeros(size(A));

% Perform the inversion outside the loop

 inv_B=inv(B);

% Perform the series sum

 for i=1:n

 C=C+inv_B*A^i*B;

 end

This procedure performs the inversion of B only once, leading to faster execution of
the generated code.

54 Generate Efficient and Reusable Code

54-36

Unroll for-Loops

Unrolling for-loops eliminates the loop logic by creating a separate copy of the loop body
in the generated code for each iteration. Within each iteration, the loop index variable
becomes a constant.

You can also force loop unrolling for individual functions by wrapping the loop header in
a coder.unroll function. For more information, see coder.unroll.

Limit Copying the for-loop Body in Generated Code

To limit the number of times that you copy the body of a for-loop in generated code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a vector
of length n and assign random numbers to specific elements. Add a test function
test_unroll. This function calls getrand(n) with n equal to values both less than
and greater than the threshold for copying the for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen

% The directive %#codegen indicates that the function

% is intended for code generation

 % Calling getrand 8 times triggers unroll

 y1 = getrand(8);

 % Calling getrand 50 times does not trigger unroll

 y2 = getrand(50);

function y = getrand(n)

 % Turn off inlining to make

 % generated code easier to read

 coder.inline('never');

 % Set flag variable dounroll to repeat loop body

 % only for fewer than 10 iterations

 dounroll = n < 10;

 % Declare size, class, and complexity

 % of variable y by assignment

 y = zeros(n, 1);

 % Loop body begins

 for i = coder.unroll(1:2:n, dounroll)

 if (i > 2) && (i < n-2)

 y(i) = rand();

 end;

 Unroll for-Loops

54-37

 end;

 % Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static library
code for test_unroll:

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body of the
for-loop (unrolls the loop) because the number of iterations is less than 10:

static void getrand(double y[8])

{

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, sizeof(double) << 3);

 /* Loop body begins */

 y[2] = b_rand();

 y[4] = b_rand();

 /* Loop body ends */

}

The generated C code for getrand(50) does not unroll the for-loop because the
number of iterations is greater than 10:

static void b_getrand(double y[50])

{

 int i;

 int b_i;

 /* Turn off inlining to make */

 /* generated code easier to read */

 /* Set flag variable dounroll to repeat loop body */

 /* only for fewer than 10 iterations */

 /* Declare size, class, and complexity */

 /* of variable y by assignment */

 memset(&y[0], 0, 50U * sizeof(double));

 /* Loop body begins */

54 Generate Efficient and Reusable Code

54-38

 for (i = 0; i < 25; i++) {

 b_i = (i << 1) + 1;

 if ((b_i > 2) && (b_i < 48)) {

 y[b_i - 1] = b_rand();

 }

 }

 Support for Integer Overflow and Non-Finites

54-39

Support for Integer Overflow and Non-Finites

The code generation software generates supporting code for the following situations:

• The result of an integer operation falls outside the range that a data type can
represent. This situation is known as integer overflow.

• An operation generates non-finite values (inf and NaN). The supporting code is
contained in the files rt_nonfinite.c, rtGetInf.c, and rtGetNaN.c (with
corresponding header files).

If you know that these situations do not occur, you can suppress generation of the
supporting code. You therefore reduce the size of the generated code and increase its
speed. However, if one of these situations occurs, it is possible that the generated code
will not match the behavior of the original MATLAB code.

Disable Support for Integer Overflow

You can use the MATLAB Coder app or the command-line interface to disable support for
integer overflow. When you disable this support, the overflow behavior of your generated
code depends on your target C compiler. Most C compilers wrap on overflow.

• Using the app:

1 To open the Generate dialog box, on the Generate Code page, click the

Generate arrow .
2 Click More Settings.
3 To disable support for integer overflow, on the Speed tab, clear Saturate on

integer overflow.
• At the command line:

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib', 'dll', or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the SaturateOnIntegerOverflow
property to false.

cfg.SaturateOnIntegerOverflow = false;

54 Generate Efficient and Reusable Code

54-40

Disable Support for Non-Finite Numbers

You can use the MATLAB Coder app or the command-line interface to disable support for
non-finite numbers(inf and NaN).

• Using the app:

1 To open the Generate dialog box, on the Generate Code page, click the

Generate arrow .
2 Set Build type to Source Code, Static Library, Dynamic Library, or

Executable (depending on your requirements).
3 Click More Settings.
4 On the Speed tab, clear the Support non-finite numbers check box.

• At the command line:

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib', 'dll', or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the SupportNonFinite property to
false.

cfg.SupportNonFinite = false;

 Integrate Custom Code

54-41

Integrate Custom Code

This example shows how to integrate custom code to enhance performance of generated
code. Although MATLAB Coder generates optimized code for most applications, you
might have legacy code optimized for your specific requirements. For example:

• You have custom libraries optimized for your target environment.
• You have custom libraries for functions not supported by MATLAB Coder.
• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by MATLAB
Coder.

This example illustrates how to integrate the function cublasSgemm from the NVIDIA®

CUDA® Basic Linear Algebra Subroutines (CUBLAS) library in generated code. This
function performs matrix multiplication on a Graphics Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class
coder.ExternalDependency. ExternalLib_API defines an interface to the
CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API to be
used for error messages.

• isSupportedContext: Determines if the build context supports the CUBLAS
library.

• updateBuildInfo: Adds header file paths and link files to the build
information.

• GPU_MatrixMultiply: Defines the interface to the CUBLAS library function
cublasSgemm.

ExternalLib_API.m

classdef ExternalLib_API < coder.ExternalDependency

 %#codegen

 methods (Static)

 function bName = getDescriptiveName(~)

 bName = 'ExternalLib_API';

 end

54 Generate Efficient and Reusable Code

54-42

 function tf = isSupportedContext(ctx)

 if ctx.isMatlabHostTarget()

 tf = true;

 else

 error('CUBLAS library not available for this target');

 end

 end

 function updateBuildInfo(buildInfo, ctx)

 [~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

 % Include header file path

 % Include header files later using coder.cinclude

 hdrFilePath = 'C:\My_Includes';

 buildInfo.addIncludePaths(hdrFilePath);

 % Include link files

 linkFiles = strcat('libcublas', linkLibExt);

 linkPath = 'C:\My_Libs';

 linkPriority = '';

 linkPrecompiled = true;

 linkLinkOnly = true;

 group = '';

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 linkFiles = strcat('libcudart', linkLibExt);

 buildInfo.addLinkObjects(linkFiles, linkPath, ...

 linkPriority, linkPrecompiled, linkLinkOnly, group);

 end

 %API for library function 'cuda_MatrixMultiply'

 function C = GPU_MatrixMultiply(A, B)

 assert(isa(A,'single'), 'A must be single.');

 assert(isa(B,'single'), 'B must be single.');

 if(coder.target('MATLAB'))

 C=A*B;

 else

 % Include header files

 % for external functions and typedefs

 Integrate Custom Code

54-43

 % Header path included earlier using updateBuildInfo

 coder.cinclude('"cuda_runtime.h"');

 coder.cinclude('"cublas_v2.h"');

 % Compute dimensions of input matrices

 m = int32(size(A, 1));

 k = int32(size(A, 2));

 n = int32(size(B, 2));

 % Declare pointers to matrices on destination GPU

 d_A = coder.opaque('float*');

 d_B = coder.opaque('float*');

 d_C = coder.opaque('float*');

 % Compute memory to be allocated for matrices

 % Single = 4 bytes

 size_A = m*k*4;

 size_B = k*n*4;

 size_C = m*n*4;

 % Define error variables

 error = coder.opaque('cudaError_t');

 cudaSuccessV = coder.opaque('cudaError_t', ...

 'cudaSuccess');

 % Assign memory on destination GPU

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_A), size_A);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(A) failed');

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_B), size_B);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(B) failed');

 error = coder.ceval('cudaMalloc', ...

 coder.wref(d_C), size_C);

 assert(error == cudaSuccessV, ...

 'cudaMalloc(C) failed');

 % Define direction of copying

 hostToDevice = coder.opaque('cudaMemcpyKind', ...

 'cudaMemcpyHostToDevice');

 % Copy matrices to destination GPU

54 Generate Efficient and Reusable Code

54-44

 error = coder.ceval('cudaMemcpy', ...

 d_A, coder.rref(A), size_A, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

 error = coder.ceval('cudaMemcpy', ...

 d_B, coder.rref(B), size_B, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

 % Define type and size for result

 C = zeros(m, n, 'single');

 error = coder.ceval('cudaMemcpy', ...

 d_C, coder.rref(C), size_C, hostToDevice);

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 % Define handle variables for external library

 handle = coder.opaque('cublasHandle_t');

 blasSuccess = coder.opaque('cublasStatus_t', ...

 'CUBLAS_STATUS_SUCCESS');

 % Initialize external library

 ret = coder.opaque('cublasStatus_t');

 ret = coder.ceval('cublasCreate', coder.wref(handle));

 assert(ret == blasSuccess, 'cublasCreate failed');

 TRANSA = coder.opaque('cublasOperation_t', ...

 'CUBLAS_OP_N');

 alpha = single(1);

 beta = single(0);

 % Multiply matrices on GPU

 ret = coder.ceval('cublasSgemm', handle, ...

 TRANSA,TRANSA,m,n,k, ...

 coder.rref(alpha),d_A,m, ...

 d_B,k, ...

 coder.rref(beta),d_C,k);

 assert(ret == blasSuccess, 'cublasSgemm failed');

 % Copy result back to local host

 deviceToHost = coder.opaque('cudaMemcpyKind', ...

 'cudaMemcpyDeviceToHost');

 error = coder.ceval('cudaMemcpy', coder.wref(C), ...

 Integrate Custom Code

54-45

 d_C, size_C, deviceToHost);

 assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

 end

 end

 end

end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API, include the
following line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that solely
performs this matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen

 C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the CUBLAS
libraries, set the target language for code generation to C++.

cfg=coder.config('mex');

cfg.TargetLang='C++';

4 Generate code for Matrix_Multiply using cfg as the configuration object and two
2 X 2 matrices of type single as arguments. Since cublasSgemm supports matrix
multiplication for data type float, the corresponding MATLAB matrices must have
type single.

codegen -config cfg Matrix_Multiply ...

 -args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2 identity
matrices of type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also
coder.BuildConfig | assert | coder.ceval | coder.ExternalDependency |
coder.opaque | coder.rref | coder.wref

54 Generate Efficient and Reusable Code

54-46

Related Examples
• “Encapsulate Interface to an External C Library”

More About
• “Encapsulating the Interface to External Code”

 MATLAB Coder Optimizations in Generated Code

54-47

MATLAB Coder Optimizations in Generated Code

In this section...

“Constant Folding” on page 54-47
“Loop Fusion” on page 54-48
“Successive Matrix Operations Combined” on page 54-48
“Unreachable Code Elimination” on page 54-49

In order to improve the execution speed and memory usage of generated code, MATLAB
Coder introduces the following optimizations:

Constant Folding

When possible, the code generation software evaluates expressions in your MATLAB
code that involve compile-time constants only. In the generated code, it replaces these
expressions with the result of the evaluations. This behavior is known as constant
folding. Because of constant folding, the generated code does not have to evaluate the
constants during execution.

The following example shows MATLAB code that is constant-folded during code
generation. The function MultiplyConstant multiplies every element in a matrix by a
scalar constant. The function evaluates this constant using the product of three compile-
time constants, a, b, and c.

function out=MultiplyConstant(in) %#codegen

 a=pi^4;

 b=1/factorial(4);

 c=exp(-1);

 out=in.*(a*b*c);

end

The code generation software evaluates the expressions involving compile-time
constants, a,b, and c. It replaces these expressions with the result of the evaluation in
generated code.

Constant folding can occur when the expressions involve scalars only. To explicitly
enforce constant folding of expressions in other cases, use the coder.const function.
For more information, see “Fold Function Calls into Constants”.

54 Generate Efficient and Reusable Code

54-48

Control Constant Folding

You can control the maximum number of instructions that can be constant-folded from
the command line or the project settings dialog box.

• At the command line, create a configuration object for code generation. Set the
property ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');

cfg.ConstantFoldingTimeout = 200;

• Using the app, in the project settings dialog box, on the All Settings tab, set the field
Constant folding timeout to the value that you want.

Loop Fusion

When possible, the code generation software fuses successive loops with the same
number of runs into a single loop in the generated code. This optimization reduces loop
overhead.

The following code contains successive loops, which are fused during code generation.
The function SumAndProduct evaluates the sum and product of the elements in an array
Arr. The function uses two separate loops to evaluate the sum y_f_sum and product
y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen

 y_f_sum = 0;

 y_f_prod = 1;

 for i = 1:length(Arr)

 y_f_sum = y_f_sum+Arr(i);

 end

 for i = 1:length(Arr)

 y_f_prod = y_f_prod*Arr(i);

 end

The code generated from this MATLAB code evaluates the sum and product in a single
loop.

Successive Matrix Operations Combined

When possible, the code generation software converts successive matrix operations in
your MATLAB code into a single loop operation in generated code. This optimization

 MATLAB Coder Optimizations in Generated Code

54-49

reduces excess loop overhead involved in performing the matrix operations in separate
loops.

The following example contains code where successive matrix operations take place. The
function ManipulateMatrix multiplies every element of a matrix Mat with a factor.
To every element in the result, the function then adds a shift:

function Res=ManipulateMatrix(Mat,factor,shift)

 Res=Mat*factor;

 Res=Res+shift;

end

The generated code combines the multiplication and addition into a single loop operation.

Unreachable Code Elimination

When possible, the code generation software suppresses code generation from
unreachable procedures in your MATLAB code. For instance, if a branch of an if,
elseif, else statement is unreachable, then code is not generated for that branch.

The following example contains unreachable code, which is eliminated during code
generation. The function SaturateValue returns a value based on the range of its input
x.

function y_b = SaturateValue(x) %#codegen

 if x>0

 y_b = x;

 elseif x>10 %This is redundant

 y_b = 10;

 else

 y_b = -x;

 end

The second branch of the if, elseif, else statement is unreachable. If the variable
x is greater than 10, it is also greater than 0. Therefore, the first branch is executed in
preference to the second branch.

MATLAB Coder does not generate code for the unreachable second branch.

54 Generate Efficient and Reusable Code

54-50

Generate Reusable Code

With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names which you can
call from different locations, for example, in a Simulink model or MATLAB function
library.

• Compile external functions on the MATLAB path and integrate them into generated
C code for embedded targets.

See “Resolution of Function Calls for Code Generation”.

Common applications include:

• Overriding generated library function with a custom implementation.
• Implementing a reusable library on top of standard library functions that can be used

with Simulink.
• Swapping between different implementations of the same function.

Managing Data

55

Working with Data

• “About Data Types in Simulink” on page 55-2
• “Data Types Supported by Simulink” on page 55-5
• “Control Signal Data Types” on page 55-7
• “Validate a Floating-Point Embedded Model” on page 55-17
• “Specify Fixed-Point Data Types” on page 55-22
• “Specify Data Types Using Data Type Assistant” on page 55-24
• “Data Types for Bus Signals” on page 55-37
• “Data Objects” on page 55-38
• “Define Data Classes” on page 55-56
• “Determine Where to Store Data for Simulink Models” on page 55-61
• “Upgrade Level-1 Data Classes” on page 55-68
• “Associating User Data with Blocks” on page 55-70
• “Design Minimum and Maximum” on page 55-71
• “Support Limitations for Simulink Software Features” on page 55-73
• “Supported and Unsupported Simulink Blocks” on page 55-76
• “Support Limitations for Stateflow Software Features” on page 55-87

55 Working with Data

55-2

About Data Types in Simulink

In this section...

“About Data Types” on page 55-2
“Data Typing Guidelines” on page 55-3
“Data Type Propagation” on page 55-3

About Data Types

The term data type refers to the way in which a computer represents numbers in
memory. A data type determines the amount of storage allocated to a number, the
method used to encode the number's value as a pattern of binary digits, and the
operations available for manipulating the type. Most computers provide a choice of
data types for representing numbers, each with specific advantages in the areas of
precision, dynamic range, performance, and memory usage. To optimize performance,
you can specify the data types of variables used in the MATLAB technical computing
environment. The Simulink software builds on this capability by allowing you to specify
the data types of Simulink signals and block parameters.

The ability to specify the data types of a model's signals and block parameters is
particularly useful in real-time control applications. For example, it allows a Simulink
model to specify the optimal data types to use to represent signals and block parameters
in code generated from a model by automatic code-generation tools, such as the Simulink
Coder product. By choosing the most appropriate data types for your model's signals and
parameters, you can dramatically increase performance and decrease the size of the code
generated from the model.

Simulink performs extensive checking before and during a simulation to ensure that
your model is typesafe, that is, that code generated from the model will not overflow or
underflow and thus produce incorrect results. Simulink models that use the default data
type (double) are inherently typesafe. Thus, if you never plan to generate code from your
model or use a nondefault data type in your models, you can skip the remainder of this
section.

On the other hand, if you plan to generate code from your models and use nondefault
data types, read the remainder of this section carefully, especially the section on data
type rules (see “Data Typing Guidelines” on page 55-3). In that way, you can avoid
introducing data type errors that prevent your model from running to completion or
simulating at all.

 About Data Types in Simulink

55-3

Data Typing Guidelines

Observing the following rules can help you to create models that are typesafe and,
therefore, execute without error:

• Signal data types generally do not affect parameter data types, and vice versa.

A significant exception to this rule is the Constant block, whose output data type is
determined by the data type of its parameter.

• If the output of a block is a function of an input and a parameter, and the input and
parameter differ in type, the Simulink software converts the parameter to the input
type before computing the output.

• In general, a block outputs the data type that appears at its inputs.

Significant exceptions include Constant blocks and Data Type Conversion blocks,
whose output data types are determined by block parameters.

• Virtual blocks accept signals of any type on their inputs.

Examples of virtual blocks include Mux and Demux blocks and unconditionally
executed subsystems.

• The elements of a signal array connected to a port of a nonvirtual block must be of the
same data type.

• The signals connected to the input data ports of a nonvirtual block cannot differ in
type.

• Control ports (for example, Enable and Trigger ports) accept any data type.
• Solver blocks accept only double signals.
• Connecting a non-double signal to a block disables zero-crossing detection for that

block.

Data Type Propagation

Whenever you start a simulation, enable display of port data types, or refresh the port
data type display, the Simulink software performs a processing step called data type
propagation. This step involves determining the types of signals whose type is not
otherwise specified and checking the types of signals and input ports to ensure that they
do not conflict. If type conflicts arise, an error dialog is displayed that specifies the signal
and port whose data types conflict. The signal path that creates the type conflict is also
highlighted.

55 Working with Data

55-4

Note You can insert typecasting (data type conversion) blocks in your model to resolve
type conflicts. For more information, see Data Type Conversion.

See Also
Simulink.AliasType | Simulink.NumericType

Related Examples
• “Control Signal Data Types” on page 55-7
• “Validate a Floating-Point Embedded Model” on page 55-17
• “Specify Fixed-Point Data Types” on page 55-22
• “Specify Data Types Using Data Type Assistant” on page 55-24

More About
• “Data Types Supported by Simulink” on page 55-5
• “Data Types for Bus Signals” on page 55-37

 Data Types Supported by Simulink

55-5

Data Types Supported by Simulink

Simulink supports all built-in numeric MATLAB data types except int64 and uint64.
The term built-in data type refers to data types defined by MATLAB itself as opposed to
data types defined by MATLAB users. Unless otherwise specified, the term data type in
the Simulink documentation refers to built-in data types.

The following table lists the built-in MATLAB data types supported by Simulink.

Name Description

double Double-precision floating point
single Single-precision floating point
int8 Signed 8-bit integer
uint8 Unsigned 8-bit integer
int16 Signed 16-bit integer
uint16 Unsigned 16-bit integer
int32 Signed 32-bit integer
uint32 Unsigned 32-bit integer

Besides these built-in types, Simulink defines a boolean (true or false) type. The
values 1 and 0 represent true and false respectively. For this data type, Simulink
represents real, nonzero numeric values (including Inf) as true (1).

Block Support for Data and Signal Types

All Simulink blocks accept signals of type double by default. Some blocks prefer
boolean input and others support multiple data types on their inputs. For more
information on the data types supported by a specific block for parameter and input and
output values, in the Simulink documentation see the Data Type Support section of
the reference page for that block. If the documentation for a block does not specify a data
type, the block inputs or outputs only data of type double.

Several blocks support bus objects (Simulink.Bus) as data types. See “Data Types for
Bus Signals” on page 55-37.

Many Simulink blocks also support fixed-point data types. For more information about
fixed-point data, see “Specify Fixed-Point Data Types” on page 55-22. For more

55 Working with Data

55-6

information on the data types supported by a specific block for parameter and input and
output values, in the Simulink documentation see the Data Type Support section of
the reference page for that block. If the documentation for a block does not specify a data
type, the block inputs or outputs only data of type double.

To view a table that summarizes the data types supported by the blocks in the Simulink
block libraries, execute the following command at the MATLAB command line:

showblockdatatypetable

See Also
Simulink.AliasType | Simulink.Bus | Simulink.NumericType

Related Examples
• “Control Signal Data Types” on page 55-7
• “Specify Fixed-Point Data Types” on page 55-22
• “Define Simulink Enumerations” on page 56-7
• “Specify Data Types Using Data Type Assistant” on page 55-24

More About
• “About Data Types in Simulink” on page 55-2
• “Data Types for Bus Signals” on page 55-37

 Control Signal Data Types

55-7

Control Signal Data Types
To view the signal data types in your model, in the Simulink Editor, select Display >
Signals & Ports > Port Data Types. The port data type display is not automatically
updated when you change the data type of a diagram element. To refresh the display,
press Ctrl+D.

To control the data type of a signal in a Simulink model, you specify a data type for the
corresponding block output.

You can also introduce a new signal of a specific data type into a model in any of the
following ways:

• Load signal data of the desired type from the MATLAB workspace into your model via
a root-level Inport block or a From Workspace block.

• Create a Constant block in your model and set its parameter to the desired type.
• Use a Data Type Conversion block to convert a signal to the desired data type.

Simulink blocks determine the data type of their outputs by default. Many blocks allow
you to override the default type and explicitly specify an output data type, using a block
parameter that is typically named Output data type. For example, the Output data
type parameter appears on the Signal Attributes pane of the Constant block dialog
box.

55 Working with Data

55-8

 Control Signal Data Types

55-9

See the following topics for more information:

For Information About... See...

Valid data type values that you can specify “Entering Valid Data Type Values” on page
55-9

An assistant that helps you specify valid
data type values

“Specify Data Types Using Data Type
Assistant” on page 55-24

Specifying valid data type values for
multiple blocks simultaneously

“Using the Model Explorer for Batch
Editing” on page 55-12

Entering Valid Data Type Values

In general, you can specify the output data type as any of the following:

• A rule that inherits a data type (see “Data Type Inheritance Rules” on page 55-10)
• The name of a built-in data type (see “Built-In Data Types” on page 55-11)
• An expression that evaluates to a data type (see “Data Type Expressions” on page

55-11)

Valid data type values vary among blocks. You can use the pull-down menu associated
with a block data type parameter to view the data types that a particular block supports.
For example, the Data type pull-down menu on the Data Store Memory block dialog box
lists the data types that it supports, as shown here.

55 Working with Data

55-10

For more information about the data types that a specific block supports, see the
documentation for the block in the Simulink documentation.

Data Type Inheritance Rules

Blocks can inherit data types from a variety of sources, including signals to which they
are connected and particular block parameters. You can specify the value of a data type
parameter as a rule that determines how the output signal inherits its data type. To view
the inheritance rules that a block supports, use the data type pull-down menu on the
block dialog box. The following table lists typical rules that you can select.

Inheritance Rule Description

Inherit: Inherit via back

propagation

Simulink automatically determines the
output data type of the block during
data type propagation (see “Data Type
Propagation” on page 55-3). In this
case, the block uses the data type of a
downstream block or signal object.

 Control Signal Data Types

55-11

Inheritance Rule Description

Inherit: Same as input The block uses the data type of its sole
input signal for its output signal.

Inherit: Same as first input The block uses the data type of its first
input signal for its output signal.

Inherit: Same as second input The block uses the data type of its second
input signal for its output signal.

Inherit: Inherit via internal

rule

The block uses an internal rule to
determine its output data type. The
internal rule chooses a data type
that optimizes numerical accuracy,
performance, and generated code size,
while taking into account the properties
of the embedded target hardware. It is not
always possible for the software to optimize
efficiency and numerical accuracy at the
same time.

Built-In Data Types

You can specify the value of a data type parameter as the name of a built-in data type,
for example, single or boolean. To view the built-in data types that a block supports,
use the data type pull-down menu on the block dialog box. See “Data Types Supported by
Simulink” on page 55-5 for a list of all built-in data types that are supported.

Data Type Expressions

You can specify the value of a data type parameter as an expression that evaluates to a
numeric data type object. Simply enter the expression in the data type field on the block
dialog box. In general, enter one of the following expressions:

• fixdt Command

Specify the value of a data type parameter as a command that invokes the fixdt
function. This function allows you to create a Simulink.NumericType object that
describes a fixed-point or floating-point data type. See the documentation for the
fixdt function for more information.

• Data Type Object Name

55 Working with Data

55-12

Specify the value of a data type parameter as the name of a data object that
represents a data type. Simulink data objects that you instantiate from classes, such
as Simulink.NumericType and Simulink.AliasType, simplify the task of making
model-wide changes to output data types and allow you to use custom aliases for data
types. See “Data Objects” on page 55-38 for more information about Simulink data
objects.

Using the Model Explorer for Batch Editing

Using the Model Explorer (see “Model Explorer Overview” on page 11-2), you can
assign the same output data type to multiple blocks simultaneously. For example, the
slexAircraftExample model that comes with the Simulink product contains numerous
Gain blocks. Suppose you want to specify the Output data type parameter of all the
Gain blocks in the model as single. You can achieve this task as follows:

1 Use the Model Explorer search bar (see “Search Using Model Explorer” on page
11-60) to identify all blocks in the slexAircraftExample model of type Gain.

The Model Explorer Contents pane lists all Gain blocks in the model.

 Control Signal Data Types

55-13

2 In the Model Explorer Contents pane, select all the Gain blocks whose Output
data type parameter you want to specify.

Model Explorer highlights the rows corresponding to your selections.

55 Working with Data

55-14

3 In the Model Explorer Contents pane, click the data type associated with one of the
selected Gain blocks.

Model Explorer displays a pull-down menu with valid data type options.

 Control Signal Data Types

55-15

4 In the pull-down menu, enter or select the desired data type, for example, single.

Model Explorer specifies the data type of all selected items as single.

55 Working with Data

55-16

See Also
Simulink.AliasType | Simulink.Bus | Simulink.NumericType

Related Examples
• “Validate a Floating-Point Embedded Model” on page 55-17
• “Specify Fixed-Point Data Types” on page 55-22
• “Specify Data Types Using Data Type Assistant” on page 55-24

More About
• “About Data Types in Simulink” on page 55-2
• “Data Types Supported by Simulink” on page 55-5
• “Data Types for Bus Signals” on page 55-37

 Validate a Floating-Point Embedded Model

55-17

Validate a Floating-Point Embedded Model

You can use data type override mode to switch the data types in your model. This
capability allows you to maintain one model but simulate and generate code for multiple
data types, and also validate the numerical behavior for each type. For example, if you
implement an algorithm using double-precision data types and want to check whether
the algorithm is also suitable for single-precision use, you can apply a data type override
to floating-point data types to replace all doubles with singles without affecting any other
data types in your model.

Apply a Data Type Override to Floating-Point Data Types

To apply a data type override, you must specify the data type that you want to apply and
the data type that you want to replace.

You can set a data type override using one of the following methods. In these examples,
both methods change all floating-point data types to single.

From the Command Line

For example:

set_param(gcs, 'DataTypeOverride', 'Single');

set_param(gcs, 'DataTypeOverrideAppliesTo','Floating-point');

Using the Fixed-Point Tool

For example:

1 In the Simulink Editor, select Analysis > Fixed-Point Tool.

The Fixed-Point Tool opens.
2 Select View > Show Settings for Selected System.
3 In the Fixed-Point Tool right pane, under Settings for selected system:

a Set Data type override to Single.
b Set Data type override applies to Floating-point.

For more information on data type override settings, see fxptdlg.

55 Working with Data

55-18

Validate a Single-Precision Model

This example uses the ex_single_validation model to show how you can use data
type overrides. It proves that an algorithm, which implements double-precision data
types, is also suitable for single-precision embedded use.

About the Model

• The inputs In2 and In3 are double-precision inputs to the Sum and Product blocks.
• The outputs of the Sum and Product blocks are data inputs to the Multiport

Switch block.
• The input In1 is the control input to the Multiport Switch block. The value of this

control input determines which of its other inputs, the sum of In2 and In3 or the
product of In2 and In3, passes to the output port. Because In1 is a control input, its
data type is int8.

 Validate a Floating-Point Embedded Model

55-19

• The Relational Operator block compares the output of the Multiport Switch block
to In4, and outputs a Boolean signal.

Run the Example

Open the Model

1 Open the ex_single_validation model. At the MATLAB command line, enter:

addpath(fullfile(docroot,'toolbox','simulink','examples'))

ex_single_validation

Run Model Advisor Check

1 From the model menu, select Analysis > Model Advisor > Model Advisor.
2 In the System Selector dialog box, click OK.

The Model Advisor opens.
3 In the Model Advisor, expand the By Task node and, under Modeling Single-

Precision Systems, select the Identify questionable operations for strict
single-precison design check.

4 In the right pane, click Run This Check.

The check generates a warning that multiple blocks use double-precision floating-
point operations.

Override Floating-Point Data Types With Singles

1 In the Simulink Editor, select Analysis > Fixed-Point Tool.

The Fixed-Point Tool opens.
2 In the Fixed-Point Tool right pane, under Settings for selected system:

a Set Data type override to Single.
b Set Data type override applies to Floating-point.
c Click Apply.

3 In the model menu, select Simulation > Update Diagram.

The data type override replaces all the floating-point (double) data types in the
model with single data types, but does not affect the integer or Boolean data types.

55 Working with Data

55-20

Re-run the Model Advisor Check

In the Model Advisor, run the Identify questionable operations for strict single-
precison design check again.

The check passes indicating that this algorithm is suitable for single-precision embedded
use.

See Also
Simulink.AliasType | Simulink.NumericType

Related Examples
• “Control Signal Data Types” on page 55-7
• “Specify Fixed-Point Data Types” on page 55-22

More About
• “About Data Types in Simulink” on page 55-2

 Validate a Floating-Point Embedded Model

55-21

• “Data Types Supported by Simulink” on page 55-5

55 Working with Data

55-22

Specify Fixed-Point Data Types

The Simulink software allows you to create models that use fixed-point numbers to
represent signals and parameter values. Use of fixed-point data can reduce the memory
requirements and increase the speed of code generated from a model.

To execute a model that uses fixed-point numbers, you must have the Fixed-Point
Designer product installed on your system. Specifically, you must have the product to:

• Update a Simulink diagram (Ctrl+D) containing fixed-point data types
• Run a model containing fixed-point data types
• Generate code from a model containing fixed-point data types
• Log the minimum and maximum values produced by a simulation
• Automatically scale the output of a model using the autoscaling tool

If the Fixed-Point Designer product is not installed on your system, you can execute
a fixed-point model as a floating-point model by enabling automatic conversion of
fixed-point data to floating-point data during simulation. See “Overriding Fixed-Point
Specifications” on page 55-22 for details.

If you do not have the Fixed-Point Designer product installed and do not enable
automatic conversion of fixed-point to floating-point data, an error occurs if you try to
execute a fixed-point model.

Note: You do not need the Fixed-Point Designer product to edit a model containing
fixed-point blocks, or to use the Data Type Assistant to specify fixed-point data types, as
described in “Specifying a Fixed-Point Data Type” on page 55-27.

Overriding Fixed-Point Specifications

Most of the functionality in the Fixed-Point Tool is for use with the Fixed-Point Designer
software. However, even if you do not have Fixed-Point Designer software, you can
configure data type override settings to simulate a model that specifies fixed-point data
types. In this mode, the Simulink software temporarily overrides fixed-point data types
with floating-point data types when simulating the model.

 Specify Fixed-Point Data Types

55-23

Note: If you use fi objects or embedded numeric data types in your model or workspace,
you might introduce fixed-point data types into your model. You can set fipref to prevent
the checkout of a Fixed-Point Designer license.

To simulate a model without using Fixed-Point Designer:

1 In the Model Hierarchy pane, select the root model.
2 In the Simulink Editor, select Analysis > Fixed-Point Tool.

The Fixed-Point Tool opens.
3 In the section Settings for selected system:

• Set Fixed-point instrumentation mode to Force off.
• Set Data type override to Double or Single.
• Set Data type override applies to All numeric types.

4 If you use fi objects or embedded numeric data types in your model, set the
fipref DataTypeOverride property to TrueDoubles or TrueSingles
(to be consistent with the model-wide data type override setting) and the
DataTypeOverrideAppliesTo property to All numeric types.

For example, at the MATLAB command line, enter:

 p = fipref('DataTypeOverride', 'TrueDoubles', ...

 'DataTypeOverrideAppliesTo', 'AllNumericTypes');

See Also
fixdt | Simulink.NumericType

Related Examples
• “Design Minimum and Maximum” on page 55-71
• “Control Signal Data Types” on page 55-7
• “Specify Data Types Using Data Type Assistant” on page 55-24

More About
• “About Data Types in Simulink” on page 55-2
• “Data Types Supported by Simulink” on page 55-5

55 Working with Data

55-24

Specify Data Types Using Data Type Assistant

The Data Type Assistant is an interactive graphical tool that simplifies the task of
specifying data types for blocks and data objects. The assistant appears on block and
object dialog boxes, adjacent to parameters that provide data type control, such as the
Output data type parameter. For example, it appears on the Signal Attributes pane
of the Constant block dialog box shown here.

You can selectively show or hide the Data Type Assistant by clicking the applicable
button:

•
Click the Show data type assistant button to display the assistant.

•
Click the Hide data type assistant button to hide a visible
assistant.

Use the Data Type Assistant to specify a data type as follows:

1 In the Mode field, select the category of data type that you want to specify. In
general, the options include the following:

 Specify Data Types Using Data Type Assistant

55-25

Mode Description

Inherit Inheritance rules for data types
Built in Built-in data types
Fixed point Fixed-point data types
Enumerated Enumerated data types
Bus object Bus object data types
Expression Expressions that evaluate to data types

The assistant changes dynamically to display different options that correspond to the
selected mode. For example, setting Mode to Expression causes the Constant block
dialog box to appear as follows.

2 In the field that is to the right of the Mode field, select or enter a data type.

For example, suppose that you designate the variable myDataType as an alias for a
single data type. You create an instance of the Simulink.AliasType class and
set its BaseType property by entering the following commands:

myDataType = Simulink.AliasType

55 Working with Data

55-26

myDataType.BaseType = 'single'

You can use this data type object to specify the output data type of a Constant block.
Enter the data type alias name, myDataType, as the value of the expression in the
assistant.

3 Click the OK or Apply button to apply your changes.

The assistant uses the data type that you specified to populate the associated data
type parameter in the block or object dialog box. In the following example, the
Output data type parameter of the Constant block specifies the same expression
that you entered using the assistant.

 Specify Data Types Using Data Type Assistant

55-27

For more information about the data types that you can specify using the Data Type
Assistant, see “Entering Valid Data Type Values” on page 55-9. For details about
specifying fixed-point data types, see “Specify Fixed-Point Data Types with the Data
Type Assistant”.

Specifying a Fixed-Point Data Type

When the Data Type Assistant Mode is Fixed point, the Data Type Assistant
displays fields for specifying information about your fixed-point data type. For a detailed
discussion about fixed-point data, see “Fixed-Point Basics”. For example, the next figure
shows the Block Parameters dialog box for a Gain block, with the Signal Attributes tab
selected and a fixed-point data type specified.

55 Working with Data

55-28

If the Scaling is Slope and bias rather than Binary point, the Data Type Assistant
displays a Slope field and a Bias field rather than a Fraction length field:

You can use the Data Type Assistant to set these fixed-point properties:

 Specify Data Types Using Data Type Assistant

55-29

Signedness

Specify whether you want the fixed-point data to be Signed or Unsigned. Signed data
can represent positive and negative values, but unsigned data represents positive values
only. The default setting is Signed.

Word length

Specify the bit size of the word that will hold the quantized integer. Large word sizes
represent large values with greater precision than small word sizes. Word length can be
any integer between 0 and 32. The default bit size is 16.

Scaling

Specify the method for scaling your fixed-point data to avoid overflow conditions and
minimize quantization errors. The default method is Binary point scaling. You can
select one of two scaling modes:

Scaling Mode Description

Binary

point

If you select this mode, the Data Type Assistant displays the Fraction
Length field, which specifies the binary point location.

Binary points can be positive or negative integers. A positive integer
moves the binary point left of the rightmost bit by that amount. For
example, an entry of 2 sets the binary point in front of the second bit from
the right. A negative integer moves the binary point further right of the
rightmost bit by that amount, as in this example:

The default binary point is 0.
Slope and

bias

If you select this mode, the Data Type Assistant displays fields for
entering the Slope and Bias.

Slope can be any positive real number, and the default slope is 1.0.
Bias can be any real number, and the default bias is 0.0. You can enter

55 Working with Data

55-30

Scaling Mode Description

slope and bias as expressions that contain parameters you define in the
MATLAB workspace.

Note Use binary-point scaling whenever possible to simplify the implementation of fixed-
point data in generated code. Operations with fixed-point data using binary-point scaling
are performed with simple bit shifts and eliminate expensive code implementations,
which are required for separate slope and bias values.

For more information about fixed-point scaling, see “Scaling”.

Data type override

When the Mode is Built in or Fixed point, you can use the Data type override
option to specify whether you want this data type to inherit or ignore the data type
override setting specified for its context, that is, for the block, Simulink.Signal object
or Stateflow chart in Simulink that is using the signal. The default behavior is Inherit.

Data Type Override Mode Description

Inherit (default) Inherits the data type override setting
from its context, that is, from the block,
Simulink.Signal object or Stateflow
chart in Simulink that is using the signal.

Off Ignores the data type override setting of its
context and uses the fixed-point data type
specified for the signal.

The ability to turn off data type override for an individual data type provides greater
control over the data types in your model when you apply data type override. For
example, you can use this option to ensure that data types meet the requirements of
downstream blocks regardless of the data type override setting.

Calculate Best-Precision Scaling

Click this button to calculate best-precision values for both Binary point and Slope
and bias scaling, based on the specified minimum and maximum values. The Simulink
software displays the scaling values in the Fraction Length field or the Slope and Bias
fields. For more information, see “Constant Scaling for Best Precision”.

 Specify Data Types Using Data Type Assistant

55-31

Showing Fixed-Point Details

When you specify a fixed-point data type, you can use the Fixed-point details subpane
to see information about the fixed-point data type that is currently displayed in the Data
Type Assistant. To see the subpane, click the expander next to Fixed-point details in
the Data Type Assistant. The Fixed-point details subpane appears at the bottom of the
Data Type Assistant:

The rows labeled Output minimum and Output maximum show the same values
that appear in the corresponding Output minimum and Output maximum fields
above the Data Type Assistant. The names of these fields may differ from those shown.
For example, a fixed-point block parameter would show Parameter minimum and
Parameter maximum, and the corresponding Fixed-point details rows would be
labeled accordingly. See “Signal Ranges” on page 60-41 and “Check Parameter
Values” on page 32-14 for more information.

The rows labeled Representable minimum, Representable maximum, and
Precision always appear. These rows show the minimum value, maximum value, and
precision that can be represented by the fixed-point data type currently displayed in
the Data Type Assistant. For information about these three quantities, see “Fixed-Point
Basics”.

55 Working with Data

55-32

The values displayed by the Fixed-point details subpane do not automatically update
if you click Calculate Best-Precision Scaling, or change the range limits, the values
that define the fixed-point data type, or anything elsewhere in the model. To update the
values shown in the Fixed-point details subpane, click Refresh Details. The Data
Type Assistant then updates or recalculates all values and displays the results.

Clicking Refresh Details does not change anything in the model, it only changes the
display. Click OK or Apply to put the displayed values into effect. If the value of a field
cannot be known without first compiling the model, the Fixed-point details subpane
shows the value as Unknown.

If any errors occur when you click Refresh Details, the Fixed-point details subpane
shows an error flag on the left of the applicable row, and a description of the error on the
right. For example, the next figure shows two errors:

The row labeled Output minimum shows the error Cannot evaluate because
evaluating the expression MySymbol, specified in the Output minimum field, did not
return an appropriate numeric value. When an expression does not evaluate successfully,
the Fixed-point details subpane displays the unevaluated expression (truncating to 10
characters if necessary to save space) in place of the unavailable value.

To correct the error in this case, you would need to define MySymbol in an accessible
workspace to provide an appropriate numeric value. After you clicked Refresh Details,

 Specify Data Types Using Data Type Assistant

55-33

the value of MySymbol would appear in place of its unevaluated text, and the error
indicator and error description would disappear.

To correct the error shown for Output maximum, you would need to decrease Output
maximum, increase Word length, or decrease Fraction length (or some combination
of these changes) sufficiently to allow the fixed-point data type to represent the
maximum value that it could have.

Other values relevant to a particular block can also appear in the Fixed-point details
subpane. For example, on a Discrete-Time Integrator block's Signal Attributes tab, the
subpane could look like this:

Note that the values displayed for Upper saturation limit and Lower saturation
limit are greyed out. This appearance indicates that the corresponding parameters are
not currently used by the block. The greyed-out values can be ignored.

Note also that Initial condition displays the value 1..4. The actual value is a
vector or matrix whose smallest element is 1 and largest element is 4. To conserve space,
the Fixed-point details subpane shows only the smallest and largest element of a
vector or matrix. An ellipsis (..) replaces the omitted values. The underlying definition
of the vector or matrix is unaffected.

Lock output data type setting against changes by the fixed-point tools

Select this check box to prevent replacement of the current data type with a type that the
Fixed-Point Tool or Fixed-Point Advisor chooses. For instructions on autoscaling fixed-
point data, see “Scaling”.

55 Working with Data

55-34

Specify an Enumerated Data Type

You can specify an enumerated data type by selecting the Enum: <class name> option
and specify an enumerated object.

In the Data Type Assistant, you can use the Mode parameter to specify a bus as a data
object for a block. Select the Enumerated option and specify an enumerated object.

For details about enumerated data types, see “Data Types”.

Specify a Bus Object Data Type

The blocks listed in the section called “Data Types for Bus Signals” on page 55-37
support your specifying a bus object as a data type. For those blocks, in the Data type
parameter, select the Bus: <object name> option and specify a bus object. You cannot
use the Expression option to specify a bus object as a data type for a block.

In the Data Type Assistant, you can use the Mode parameter to specify a bus as a data
object for a block. Select the Bus option and specify a bus object.

 Specify Data Types Using Data Type Assistant

55-35

You can specify a bus object as the data type for data objects such as Simulink.Signal,
Simulink.Parameter, and Simulink.BusElement. In the Model Explorer, in
Properties dialog box for a data object, in the Data type parameter, select the Bus:
<object name> option and specify a bus object. You can also use the Expression
option to specify a bus object.

For more information on specifying a bus object data type, see “Associating Bus Objects
with Simulink Blocks” on page 61-24

See Also
fixdt | Simulink.NumericType

Related Examples
• “Control Signal Data Types” on page 55-7
• “Specify Fixed-Point Data Types” on page 55-22
• “Design Minimum and Maximum” on page 55-71
• “Define Simulink Enumerations” on page 56-7

55 Working with Data

55-36

More About
• “About Data Types in Simulink” on page 55-2
• “Data Types Supported by Simulink” on page 55-5
• “Data Types for Bus Signals” on page 55-37

 Data Types for Bus Signals

55-37

Data Types for Bus Signals

A bus object (Simulink.Bus) specifies the architectural properties of a bus, as distinct
from the values of the signals it contains. For example, a bus object can specify the
number of elements in a bus, the order of those elements, whether and how elements are
nested, and the data types of constituent signals; but not the signal values.

You can specify a bus object as a data type for the following blocks:

• Bus Creator

• Constant

• Data Store Memory

• Inport

• Outport

• Signal Specification

You can specify a bus object as a data type for the following classes:

• Simulink.BusElement

• Simulink.Parameter

• Simulink.Signal

See “Specify a Bus Object Data Type” on page 55-34 for information about how to specify
a bus object as a data type for blocks and classes.

See Also
Simulink.Bus

Related Examples
• “Control Signal Data Types” on page 55-7
• “Specify Data Types Using Data Type Assistant” on page 55-24

More About
• “About Data Types in Simulink” on page 55-2
• “Data Types Supported by Simulink” on page 55-5

55 Working with Data

55-38

Data Objects

In this section...

“Data Class Naming Conventions” on page 55-39
“Use Data Objects in Simulink Models” on page 55-39
“Data Object Properties” on page 55-41
“Create Parameter Object with Specific Numeric Data Type” on page 55-42
“Create Data Objects from Built-In Data Class Package Simulink” on page 55-42
“Create Data Objects from Another Data Class Package” on page 55-43
“Create Data Objects Directly from Dialog Boxes” on page 55-44
“Create Data Objects for a Model Using Data Object Wizard” on page 55-45
“Create Data Objects from External Data Source Programmatically” on page 55-50
“Data Object Methods” on page 55-51
“Handle Versus Value Classes” on page 55-52
“Compare Data Objects” on page 55-54
“Save and Load Data Objects” on page 55-54
“Create Persistent Data Objects” on page 55-55

You can create data objects to specify values, value ranges, data types, tunability,
and other characteristics of signals, states, and block parameters. You use the object
names in Simulink dialog boxes to specify signal, state, and parameter characteristics.
The objects exist in a workspace such as the base workspace, a model workspace, or a
Simulink data dictionary. Data objects allow you to make model-wide changes to signal,
state, and parameter characteristics by changing only the values of workspace objects.

You create data objects as instances of data classes. Memory structures called data class
packages contain the data class definitions. The built-in package Simulink defines two
data classes, Simulink.Signal and Simulink.Parameter, that you can use to create
data objects.

You can customize data object properties and methods by defining subclasses of the built-
in data classes. For more information about creating a data class package, see “Define
Data Classes” on page 55-56.

 Data Objects

55-39

Data Class Naming Conventions

Simulink uses dot notation to name data classes:

package.class

• package is the name of the package that contains the class definition.
• class is the name of the class.

This notation allows you to create and reference identically named classes that belong to
different packages. In this notation, the name of the package qualifies the name of the
class.

Class and package names are case sensitive. For example, you cannot use
MYPACKAGE.MYCLASS and mypackage.myclass interchangeably to refer to the same
class.

Use Data Objects in Simulink Models

To specify simulation and code generation options for signals, block parameters, and
states by modifying variables in a workspace or data dictionary, use data objects.
Associate the objects with signals, parameters, and states in a model diagram.

Use Parameter Objects

You can use parameter objects, instead of numeric MATLAB variables, to specify values
for block parameters. For example, to create and use a Simulink.Parameter object to
specify the Gain parameter of a Gain block:

1 Create a parameter object. For example, create an object using the built-in package
Simulink.

myParam = Simulink.Parameter;

2 Assign a numeric value to the Value property.

myParam.Value = 15.23;

3 Specify other characteristics for the block parameter by adjusting the object
properties. For example, to specify the parameter data type as single, use the
DataType object property.

myParam.DataType = 'single';

55 Working with Data

55-40

4 In a block dialog box, specify the value of a parameter as myParam. For example, in a
Gain block dialog box, specify Gain as myParam.

During simulation, the Gain parameter uses the value single(15.23).

Use Signal Objects

To use a signal object to control the characteristics of a signal in a model, create the
object in a workspace by using the same name as the signal.

1 Create a Simulink.Signal object. For example, create an object using the built-in
package Simulink.

mySig = Simulink.Signal;

2 Specify the signal characteristics by adjusting the object properties. For example, to
specify the signal data type as boolean, use the DataType object property.

mySig.DataType = 'boolean';

3 In the Signal Properties dialog box for the signal in the model, specify Signal name
as mySig. Click Apply.

4 Select the check box next to Signal name must resolve to Simulink signal
object.

This option forces the model signal to use the properties that the signal object mySig
defines. To learn how to control the way that signal names resolve to signal objects,
see “Symbol Resolution” on page 4-95.

You can use a signal object to control the characteristics of a block state, such as that of
the Discrete-Time Integrator block.

1 Create a Simulink.Signal object. For example, create an object using the built-in
package Simulink.

myState = Simulink.Signal;

2 Specify the state characteristics by adjusting the object properties. For example, to
specify the state data type as int16, use the DataType object property.

myState.DataType = 'int16';

3 In a block dialog box, on the State Attributes tab, specify State name as myState.
Click Apply.

4 Select the check box next to State name must resolve to Simulink signal object.

 Data Objects

55-41

Data Object Properties

To control parameter and signal characteristics using data objects, you specify values
for the data object properties. For example, parameter and signal data objects have
a DataType property that determines the data type of the target block parameter or
signal. Data class definitions determine the names, value types, default values, and valid
value ranges of data object properties.

You can use either the Model Explorer or MATLAB commands to change a data object's
properties.

For a list of signal object properties, see Simulink.Signal. For a list of parameter
object properties, see Simulink.Parameter.

Use the Model Explorer to Change an Object's Properties

To use the Model Explorer to change an object's properties, select the workspace that
contains the object in the Model Explorer's Model Hierarchy pane. Then select the
object in the Model Explorer's Contents pane.

The Model Explorer displays the object's property dialog box in its Dialog pane (if the
pane is visible).

You can configure the Model Explorer to display some or all of the properties of an object
in the Contents pane (see “Model Explorer: Contents Pane” on page 11-19). To edit a
property, click its value in the Contents or Dialog pane. The value is replaced by a
control that allows you to change the value.

Use MATLAB Commands to Change an Object's Properties

You can also use MATLAB commands to get and set data object properties. Use the
following dot notation in MATLAB commands and programs to get and set a data object's
properties:

55 Working with Data

55-42

value = obj.property;

obj.property = value;

where obj is a variable that references either the object if it is an instance of a value
class or a handle to the object if the object is an instance of a handle class (see “Handle
Versus Value Classes” on page 55-52), PROPERTY is the property's name, and VALUE
is the property's value. For example, the following MATLAB code creates a data type
alias object (i.e., an instance of Simulink.AliasType) and sets its base type to uint8:

gain = Simulink.AliasType;

gain.BaseType = 'uint8';

You can use dot notation recursively to get and set the properties of objects that are
values of other object's properties, e.g.,

gain.CoderInfo.StorageClass = 'ExportedGlobal';

Create Parameter Object with Specific Numeric Data Type

To create a parameter object that uses a specific numeric data type, specify the Value
property using a double number. Specify the DataType property using a string.
Simulation and code generation cast that number in the Value property to the numeric
data type that you specify in the DataType property.

For example, this code creates a parameter object myParam with numeric value 18.25
and numeric data type single.

myParam = Simulink.Parameter;

myParam.Value = 18.25;

myParam.DataType = 'single';

Create Data Objects from Built-In Data Class Package Simulink

The built-in package Simulink defines two data object classes Simulink.Parameter
and Simulink.Signal. You can create these data objects using the user interface or
programmatically.

Create Data Objects

1 In the Model Explorer Model Hierarchy pane, select a workspace to contain the
data objects. For example, click Base Workspace.

 Data Objects

55-43

2
On the toolbar, click the arrow next to Add Parameter or Add Signal . From
the drop-down list, select Simulink Parameter or Simulink Signal.

A parameter or signal object appears in the base workspace. The default name for
new parameter objects is Param. The default name for new signal objects is Sig.

3 To create more objects, click Add Parameter or Add Signal.

Programmatically Create Data Objects

% Create a Simulink.Parameter object named myParam whose value is 15.23.

myParam = Simulink.Parameter(15.23);

% Create a Simulink.Signal object named mySig.

mySig = Simulink.Signal;

Create Data Objects from Another Data Class Package

You can create your own package to define custom data object classes that subclass
Simulink.Parameter and Simulink.Signal. You can use this technique to add your
own properties and methods to data objects. If you have an Embedded Coder license,
you can define custom storage classes and memory sections in the package. For more
information about creating a data class package, see “Define Data Classes” on page
55-56.

Create Data Objects from Another Package

Suppose that you define a data class package called myPackage. Before you can create
data objects from the package, you must include the package folder on your MATLAB
path.

1 In the Model Explorer Model Hierarchy pane, select a workspace to contain the
data objects. For example, click Base Workspace.

2
Click the arrow next to Add Parameter or Add Signal and select Customize
class lists.

3 In the dialog box, select the check box next to the class that you want. For example,
select the check boxes next to myPackage.Parameter and myPackage.Signal.
Click OK.

4 Click the arrow next to Add Parameter or Add Signal. Select the class for the data
object that you want to create. For example, select myPackage Parameter or
myPackage Signal.

55 Working with Data

55-44

A parameter or signal object appears in the base workspace. The default name for
new parameter objects is Param. The default name for new signal objects is Sig.

5 To create more data objects from the package myPackage, click Add Parameter or
Add Signal again.

Programmatically Create Data Objects from Another Package

Suppose that you define a data class package called myPackage. Before you can create
data objects from the package, you must include the package folder on your MATLAB
path.

% Create a myPackage.Parameter object named myParam whose value is 15.23.

myParam = myPackage.Parameter(15.23);

% Create a myPackage.Signal object named mySig.

mySig = myPackage.Signal;

Create Data Objects Directly from Dialog Boxes

When you open a Signal Properties dialog box or a block dialog box, you can efficiently
create a signal or parameter data object in a workspace or data dictionary.

Create Parameter Object from Block Dialog Box

1 In a numeric block parameter in the dialog box, specify the name that you want for
the data object. For example, specify the name myParam.

2 Right-click the block parameter edit field. Select Create Variable.
3 In the Create New Data dialog box, specify Value as Simulink.Parameter.

Alternatively, you can specify the name of a data class that you created, such as
myPackage.Parameter. You can also use the drop-down list to select from a list of
available data object classes.

4 Specify Location as Base Workspace and click Create.

You can use the Location option to select a workspace to contain the new data
object. If a model is linked to a data dictionary, you can choose to create a data object
in the dictionary.

5 In the dialog box that opens, configure the data object properties. Specify a numeric
value for the parameter in the Value box. Click OK.

 Data Objects

55-45

The parameter object myParam appears in the base workspace.
6 In the block parameter dialog box, click OK.

Create Signal Object from Signal Properties Dialog Box

1 In the Signal name box, specify a signal name such as mySig. Click Apply.
2 Right-click the Signal name edit field. Select Create Variable.
3 In the Create New Data dialog box, specify Value as Simulink.Signal.

Alternatively, you can specify the name of a data class that you created, such as
myPackage.Signal. Also, from the drop-down list, you can select a data object class
that exists on the MATLAB path.

4 Specify Location as Base Workspace and click Create.

You can use the Location option to select a workspace to contain the new data
object. If a model is linked to a data dictionary, you can choose to create a data object
in the dictionary.

5 In the dialog box that opens, configure the data object properties and click OK.

The signal object mySig appears in the base workspace.
6 In the Signal Properties dialog box, select the check box next to Signal name must

resolve to Simulink signal object and click OK.

Create Data Objects for a Model Using Data Object Wizard

To create data objects that represent signals, parameters, and states in a model, you
can use the Data Object Wizard. The wizard finds data in the model that do not have
corresponding data objects.

Based on specifications in the model, the wizard creates the objects and assigns these
characteristics:

• Signal, parameter, or state name.
• Numeric value for parameter objects.
• Data type. For signal objects, includes alias types such as Sumlink.AliasType and

Simulink.NumericType.

1 In the Simulink Editor, select Code > Data Objects > Data Object Wizard.

55 Working with Data

55-46

2 In the Model name box, enter the name of the model that you want to search.

 Data Objects

55-47

By default, the box contains the name of the model from which you opened the
wizard.

3 Under Find options, select the check boxes next to the data object types that you
want to create. The table describes the options.

Option Description

Root inputs Named signals from root-level Inport blocks.
Root outputs Named signals from root-level Outport blocks.
States States associated with these discrete blocks:

Discrete Filter

Discrete State-Space

Discrete-Time Integrator

Discrete Transfer Fcn

Discrete Zero-Pole

Memory

PID Controller

PID Controller (2DOF)

Unit Delay

Data stores Data stores. For more information about data stores, see “Local
and Global Data Stores” on page 58-2 .

Block outputs Named signals whose sources are non-root-level blocks.
Parameters • Numeric parameters, for example the parameters in these

blocks:
Constant

Gain

Relay

• Stateflow data with Scope set to Parameter.

For more information, see “Share Simulink Parameters with
Charts” in the Stateflow documentation.

Alias types Data type replacement names that you specify in Configuration
Parameters > Code Generation > Data Type Replacement.
If you have an Embedded Coder license, the Data Object Wizard
creates Simulink.AliasType objects for these data type
replacement names. For more information about data type

55 Working with Data

55-48

Option Description

replacement, see “Data Type Replacement” in the Embedded Coder
documentation.

4 Click Find.

The data object table displays the proposed objects.

5 (Optional) To create objects from a data class other than the default classes, select
the check box next to the objects whose class you want to change. To select all of the
objects, click Select All. Click Change Class. In the dialog box that opens, select
classes by using the drop-down lists next to Parameter and Signal.

If the classes that you want do not appear in the drop-down list, select Customize
class lists. In the dialog box that opens, select the check box next to the classes
that you want, and click OK.

 Data Objects

55-49

To change the default parameter and signal classes that the wizard uses to propose
objects:

• On the Model Explorer Model Hierarchy pane, select a workspace. For example,
select Base Workspace.

•
On the toolbar, click the arrow next to Add Parameter or Add Signal .

• From the drop-down list, select the class that you want the wizard to use. For
example, select myPackage Parameter or myPackage Signal.

A parameter or signal object appears in the selected workspace. The default name
for new parameter objects is Param. The default name for new signal objects is
Sig.

The next time that you use the Data Object Wizard, the wizard proposes objects
using the parameter or signal class that you selected in Model Explorer.

6 Select the check box next to the proposed objects that you want to create. To select
all of the proposed objects, click Select All.

7 Click Create.

The data objects appear in the base workspace. If the target model is linked to a data
dictionary, the objects appear in the dictionary.

The wizard changes settings in your model depending on the configuration
parameter Configuration Parameters > Diagnostics > Data Validity > Signal
resolution.

• If you set the parameter to Explicit only, the wizard forces the corresponding
signals in your model to resolve to the new signal objects. The wizard selects the
option Signal name must resolve to Simulink signal object in each Signal
Properties dialog box.

• If you set the parameter to Explicit and implicit or Explicit and warn
implicit, the wizard does not change the setting of Signal name must resolve
to Simulink signal object for any signals.

Consider turning off implicit signal object resolution for your model by using
the function disableimplicitsignalresolution. For more information, see
“Explicit and Implicit Symbol Resolution” on page 4-98.

55 Working with Data

55-50

Data Object Wizard Troubleshooting

The Data Object Wizard does not suggest creation of data objects for these entities in a
model:

• Multiple separate signals that have the same name
• Signal with the same name as a variable used in a block parameter
• Signal that lacks a single contiguous source block
• Signal whose source block is commented out or commented through

Create Data Objects from External Data Source Programmatically

This example shows how to create data objects based on an external data source (such as
a Microsoft Excel file) by using a script.

1 Create a new .m script file.
2 Place information in the file that describes the data in the external file that you

want to convert to data objects. For example, the following information creates two
Simulink data objects with the indicated properties. The first is for a parameter and
the second is for a signal:

% Parameters

ParCon = Simulink.Parameter;

ParCon.StorageClass = 'Custom'

ParCon.CoderInfo.CustomStorageClass ='Const';

ParCon.Value = 3;

% Signals

SigGlb = Simulink.Signal;

SigGlb.DataType = 'int8';

3 Run the .m file. The data objects appear in the MATLAB workspace.

If you want to import the target data from the external source, you can write MATLAB
functions and scripts that read the information, convert the information to data objects,
and load the objects into the base workspace.

You can use these functions to interact with files that are external to MATLAB:

• xmlread

• xmlwrite

• xlsread

 Data Objects

55-51

• xlswrite

• csvread

• csvwrite

• dlmread

• dlmwrite

Data Object Methods

Data classes define functions, called methods, for creating and manipulating the objects
that they define. A class may define any of the following kinds of methods.

Dynamic Methods

A dynamic method is a method whose identity depends on its name and the class of
an object specified implicitly or explicitly as its first argument. You can use either
function or dot notation to specify this object, which must be an instance of the class
that defines the method or an instance of a subclass of the class that defines the method.
For example, suppose class A defines a method called setName that assigns a name to
an instance of A. Further, suppose the MATLAB workspace contains an instance of A
assigned to the variable obj. Then, you can use either of the following statements to
assign the name 'foo' to obj:

obj.setName('foo');

setName(obj, 'foo');

A class may define a set of methods having the same name as a method defined by one of
its super classes. In this case, the method defined by the subclass overrides the behavior
of the method defined by the parent class. The Simulink software determines which
method to invoke at runtime from the class of the object that you specify as its first or
implicit argument. Hence, the term dynamic method.

Note: Most Simulink data object methods are dynamic methods. Unless the
documentation for a method specifies otherwise, you can assume that a method is a
dynamic method.

Static Methods

A static method is a method whose identity depends only on its name and hence
cannot change at runtime. To invoke a static method, use its fully qualified name,

55 Working with Data

55-52

which includes the name of the class that defines it followed by the name of the
method itself. For example, Simulink.ModelAdvisor class defines a static
method named getModelAdvisor. The fully qualified name of this static method is
Simulink.ModelAdvisor.getModelAdvisor. The following example illustrates
invocation of a static method.

ma = Simulink.ModelAdvisor.getModelAdvisor('vdp');

Constructors

Every data class defines a method for creating instances of that class. The name
of the method is the same as the name of the class. For example, the name of the
Simulink.Parameter class's constructor is Simulink.Parameter. The constructors
defined by Simulink data classes take no arguments.

The value returned by a constructor depends on whether its class is a handle class or a
value class. The constructor for a handle class returns a handle to the instance that it
creates if the class of the instance is a handle class; otherwise, it returns the instance
itself (see “Handle Versus Value Classes” on page 55-52).

Handle Versus Value Classes

Simulink classes, including data object classes, fall into two categories: value classes and
handle classes.

About Value Classes

The constructor for a value class (see “Constructors” on page 55-52) returns an
instance of the class and the instance is permanently associated with the MATLAB
variable to which it is initially assigned. Reassigning or passing the variable to a function
causes MATLAB to create and assign or pass a copy of the original object.

For example, Simulink.NumericType is a value class. Executing the following
statements

>> x = Simulink.NumericType;

>> y = x;

creates two instances of class Simulink.NumericType in the workspace, one assigned
to the variable x and the other to y.

 Data Objects

55-53

About Handle Classes

The constructor for a handle class returns a handle object. The handle can be assigned to
multiple variables or passed to functions without causing a copy of the original object to
be created. For example, Simulink.Parameter class is a handle class. Executing

>> x = Simulink.Parameter;

>> y = x;

creates only one instance of Simulink.Parameter class in the MATLAB workspace.
Variables x and y both refer to the instance via its handle.

A program can modify an instance of a handle class by modifying any variable that
references it, e.g., continuing the previous example,

>> x.Description = 'input gain';

>> y.Description

ans =

input gain

Most Simulink data object classes are value classes. Exceptions include
Simulink.Signal and Simulink.Parameter class.

You can determine whether a variable is assigned to an instance of a class or to a
handle to that class by displaying the variable at the MATLAB command line. MATLAB
appends the text (handle) to the name of the object class in the value display, e.g.,

>> gain = Simulink.Parameter

gain =

Simulink.Parameter (handle)

 Value: []

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: ''

 DataType: 'auto'

 Min: []

 Max: []

 DocUnits: ''

 Complexity: 'real'

 Dimensions: [0 0]

55 Working with Data

55-54

Copy Handle Classes

Use the copy method of a handle class to create copies of instances of that class. For
example, Simulink.ConfigSet is a handle class that represents model configuration
sets. The following code creates a copy of the current model's active configuration set and
attaches it to the model as an alternate configuration geared to model development.

activeConfig = getActiveConfigSet(gcs);

develConfig = copy(activeConfig);

develConfig.Name = 'develConfig';

attachConfigSet(gcs, develConfig);

Compare Data Objects

Simulink data objects provide a method, named isequal, that determines whether
object property values are equal. This method compares the property values of one object
with those belonging to another object and returns true (1) if all of the values are the
same or false (0) otherwise. For example, the following code instantiates two signal
objects (A and B) and specifies values for particular properties.

A = Simulink.Signal;

B = Simulink.Signal;

A.DataType = 'int8';

B.DataType = 'int8';

A.InitialValue = '1.5';

B.InitialValue = '1.5';

Afterward, use the isequal method to verify that the object properties of A and B are
equal.

>> result = isequal(A,B)

result =

 1

Save and Load Data Objects

You can use the save command to save data objects in a MAT-file and the load
command to restore them to the MATLAB workspace in the same or a later session.
Definitions of the classes of saved objects must exist on the MATLAB path for them to be
restored. If the class of a saved object acquires new properties after the object is saved,

 Data Objects

55-55

Simulink adds the new properties to the restored version of the object. If the class loses
properties after the object is saved, only the properties that remain are restored.

Create Persistent Data Objects

To preserve data objects so that they persist when you close MATLAB, you can:

• Configure a model to load the objects from a MAT-file or script file when the model
loads.

• Save the objects in a data dictionary. Data dictionaries offer more control over model
data than the base workspace or a model workspace. For more information about data
dictionaries, see “What Is a Data Dictionary?” on page 59-2.

To load data objects from a file when you load a model, write a script that creates the
objects and configures their properties. Alternatively, save the objects in a MAT-file
(see “Save and Load Data Objects” on page 55-54). Then use either the script or a
load command as the PreLoadFcn callback routine for the model that uses the objects.
Suppose that you save the data objects in a file named data_objects.mat, and the
model to which they apply is open and active. At the command prompt, entering:

set_param(gcs, 'PreLoadFcn', 'load data_objects');

sets load data_objects as the model's preload function. Whenever you open the
model, the data objects appear in the base workspace.

See Also
disableimplicitsignalresolution | Simulink.Parameter | Simulink.Signal

Related Examples
• “Define Data Classes” on page 55-56
• Block Parameters

More About
• “What Is a Data Dictionary?” on page 59-2
• “Symbol Resolution” on page 4-95

55 Working with Data

55-56

Define Data Classes

This example shows how to subclass Simulink data classes.

Use MATLAB class syntax to create a data class in a package. Optionally, assign
properties to the data class and define custom storage classes.

Use an example to define data classes

1 View the +SimulinkDemos data class package in the folder matlabroot/toolbox/
simulink/simdemos/dataclasses (open).

This package contains predefined data classes.
2 Copy the folder to the location where you want to define your data classes.
3 Rename the folder +mypkg and add its parent folder to the MATLAB path.
4 Modify the data class definitions.

Manually define data class

1 Create a package folder +mypkg and add its parent folder to the MATLAB path.
2 Create class folders @Parameter and @Signal inside +mypkg.

Note: Simulink requires data classes to be defined inside +Package/@Class folders.
3 In the @Parameter folder, create a MATLAB file Parameter.m and open it for

editing.
4 Define a data class that is a subclass of Simulink.Parameter using MATLAB class

syntax.

classdef Parameter < Simulink.Parameter

end % classdef

To use a custom class name other than Parameter or Signal, name the class folders
using the custom name. For example, to define a class mypkg.myParameter:

• Define the data class as a subclass of Simulink.Parameter or Simulink.Signal.

classdef myParameter < Simulink.Parameter

end % classdef

 Define Data Classes

55-57

• In the class definition, name the constructor method as myParameter or mySignal.
• Name the class folder, which contains the class definition, as @myParameter or

@mySignal.

Optional: Add properties to data class

The properties and end keywords enclose a property definition block.

classdef Parameter < Simulink.Parameter

 properties % Unconstrained property type

 Prop1 = [];

 end

 properties(PropertyType = 'logical scalar')

 Prop2 = false;

 end

 properties(PropertyType = 'char')

 Prop3 = '';

 end

 properties(PropertyType = 'char',...

 AllowedValues = {'red'; 'green'; 'blue'})

 Prop4 = 'red';

 end

end % classdef

Note: The MATLAB editor does not recognize the attributes PropertyType and
AllowedValues, because they are only defined for Simulink data classes. You can
suppress mlint warnings about these unrecognized attributes by right-clicking the
attribute in the MATLAB editor and selecting Suppress “Unknown attribute name
‘...’” > In This File.

If you add properties to a subclass of Simulink.Parameter, Simulink.Signal, or
Simulink.CustomStorageClassAttributes, you can specify the following property
types.

Property Type Syntax

Double number properties(PropertyType = 'double

scalar')

55 Working with Data

55-58

Property Type Syntax

int32 number properties(PropertyType = 'int32

scalar')

Logical number properties(PropertyType =

'logical scalar')

String (char) properties(PropertyType = 'char')

String with limited set of allowed values properties(PropertyType = 'char',

AllowedValues = {'a', 'b', 'c'})

Optional: Add initialization code to data class

You can add a constructor within your data class to perform initialization activities when
the class is instantiated.

In this example, the constructor initializes the value of object obj based on an optional
input argument.

classdef Parameter < Simulink.Parameter

 methods

 function obj = Parameter(optionalValue)

 if (nargin == 1)

 obj.Value = optionalValue;

 end

 end

 end % methods

end % classdef

Optional: Define custom storage classes

Use the setupCoderInfo method to configure the CoderInfo object of your class. Then,
create a call to the useLocalCustomStorageClasses method and open the Custom
Storage Class Designer.

1 In the constructor within your data class, call the
useLocalCustomStorageClasses method.

classdef Parameter < Simulink.Parameter

 methods

 function setupCoderInfo(obj)

 useLocalCustomStorageClasses(obj, 'mypkg');

 obj.CoderInfo.StorageClass = 'Custom';

 Define Data Classes

55-59

 end

 end % methods

end % classdef

2 Open the Custom Storage Class Designer for your package.

cscdesigner('mypkg')

3 Define custom storage classes.

Optional: Define custom attributes for custom storage classes

1 Create a MATLAB file myCustomAttribs.m and open it for editing. Save this file in
the +mypkg/@myCustomAttribsfolder, where +mypkg is the folder containing the
@Parameter and @Signal folders.

2 Define a subclass of Simulink.CustomStorageClassAttributes using MATLAB
class syntax. For example, consider a custom storage class that defines data using
the original identifier but also provides an alternate name for the data in generated
code.

classdef myCustomAttribs < Simulink.CustomStorageClassAttributes

 properties(PropertyType = 'char')

 AlternateName = '';

 end

end % classdef

3 Override the default implementation of the isAddressable method to determine
whether the custom storage class is writable.

classdef myCustomAttribs < Simulink.CustomStorageClassAttributes

 properties(PropertyType = 'logical scalar')

 IsAlternateNameInstanceSpecific = true;

 end

 methods

 function retVal = isAddressable(hObj, hCSCDefn, hData)

 retVal = false;

 end

 end % methods

end % classdef

4 Override the default implementation of the getInstanceSpecificProps method.

For an example, see CSCTypeAttributes_FlatStructure.m in the folder
matlabroot\toolbox\simulink\simulink\dataclasses\+Simulink

\@CSCTypeAttributes_FlatStructure (open).

55 Working with Data

55-60

Note: This is an optional step. By default, all custom attributes are instance-specific
and are modifiable for each data object. However, you can limit which properties are
allowed to be instance-specific.

5 Override the default implementation of the getIdentifiersForInstance method
to define identifiers for objects of the data class.

Note: In its default implementation, this method queries the name or identifier of
the data object and uses that identifier in generated code. By overriding this method,
you can control the identifier of your data objects in generated code.

classdef myCustomAttribs < Simulink.CustomStorageClassAttributes

 properties(PropertyType = 'char')

 GetFunction = '';

 SetFunction = '';

 end

 methods

 function retVal = getIdentifiersForInstance(hCSCAttrib, hCSCDefn, hData, identifier)

 retVal = struct('GetFunction', hData.CoderInfo.CustomAttributes.GetFunction, ...

 'SetFunction', hData.CoderInfo.CustomAttributes.SetFunction);

 end%

 end % methods

end % classdef

6 If you are using grouped custom storage classes, override the default implementation
of the getIdentifiersForGroup method to specify the identifier for the group in
generated code.

For an example, see CSCTypeAttributes_FlatStructure.m in the folder
matlabroot\toolbox\simulink\simulink\dataclasses\+Simulink

\@CSCTypeAttributes_FlatStructure (open).

Related Examples
• “Data Objects” on page 55-38

 Determine Where to Store Data for Simulink Models

55-61

Determine Where to Store Data for Simulink Models
You can store, partition, and share model data in a location that is appropriate for your
design. This data can include:

• Numeric values for block parameters, such as Simulink.Parameter objects and
MATLAB variables

• Signals, such as Simulink.Signal objects
• Data types
• Model configuration sets
• Simulation input and output data

Choose the appropriate storage locations to more easily manage the data.

In this section...

“Types of Data” on page 55-61
“Store Data for Your Design” on page 55-62
“Storage Locations” on page 55-64

Types of Data

The storage location that you choose can depend on the nature of the data.

• Simulation data is the set of input data that you use to drive a simulation and the
set of output data that a simulation generates. For example, you can use variables
to store input data that a simulation imports through Inport and From Workspace
blocks. A simulation can generate output data through Outport blocks, To Workspace
blocks, and logged signals.

You can store simulation data for your current session in the base workspace. To
permanently store the data, save it in a MAT-file or script file. For more information
about loading, generating, and storing simulation data, see “Techniques for Importing
Signal Data” on page 57-75 and “Export Simulation Data” on page 57-4.

• Design data is the set of variables that you use to specify block parameters and signal
characteristics in a model. For example, design data includes numeric MATLAB
variables, parameter and signal data objects, data type objects, and bus objects.

You can store design data in the base workspace, model workspaces, or the Design
Data section of a data dictionary. To store local design data with a model, use model

55 Working with Data

55-62

workspaces. To share design data between models, use data dictionaries or the
base workspace. Data dictionaries permanently store the data, and you can control
the data scope to establish ownership, partition the data to ease readability and
maintenance, and track changes. If you use the base workspace, to permanently store
the data, you must save it in a MAT-file or script file.

• Configuration sets are sets of model configuration parameters. By default,
configuration sets reside in the model file, so you do not need to store the sets
separately from the model. However, you cannot share these sets with other models.

To share configuration sets between models, you must create Simulink.ConfigSet
objects. Each object represents a standalone configuration set. You can store these
objects in the base workspace or in the Configurations section of a data dictionary.
If you use data dictionaries, you can define the scope of each configuration set,
compare different configuration sets, and track changes. A data dictionary inherently
partitions configuration sets from other kinds of data.

Store Data for Your Design

The table shows the techniques you can use to store, partition, and manage data for your
design.

Design Description Data Storage Techniques

Rapid prototyping and
model experimentation

You want to
create temporary
data, such as
variables to
specify numeric
block parameters,
while you learn to
use Simulink.

You want to
experiment
with modeling
techniques. You
do not need to
permanently store
the data that you
create.

Store data in the base workspace so
you can quickly create and change the
data.

 Determine Where to Store Data for Simulink Models

55-63

Design Description Data Storage Techniques

Standalone model You have a single
model that does
not depend on
other systems for
data. The model
stands alone
because it is not
a piece of a larger
system.

Store data in the model workspace.
Use a data dictionary to store data
that you cannot store in the model
workspace.

Alternatively, store all of the model
data in a data dictionary. If you use a
dictionary, you can partition the data
by using referenced dictionaries.

Standalone hierarchy of
referenced models

You have a
hierarchy of
referenced models
that does not
depend on other
systems for data.
The hierarchy
stands alone
because it is not
a piece of a larger
system.

Store local model data in each model
workspace.

Store data that the models share,
such as bus objects and configuration
sets, in a data dictionary. Link all of
the models in the hierarchy to the
dictionary.

For examples, see “Migrate Model
Reference Hierarchy to Use
Dictionary” on page 59-20 and
Using a Data Dictionary to Manage
the Data for a Fuel Control System.

55 Working with Data

55-64

Design Description Data Storage Techniques

System of components One or more
teams maintain
the components
of a system
of models. A
component is a
single model or
a hierarchy of
referenced models
that represents
a piece of the
system.

Store local model data in model
workspaces.

Store data that the models in a
component share, such as bus objects
and configuration sets, in a data
dictionary. Link all of the models in
the component to the dictionary.

Use additional referenced dictionaries
to store data that the components
share.

For an example, see “Partition Data
for Model Reference Hierarchy Using
Data Dictionaries” on page 59-37.

Storage Locations

Choose any of these locations to store data:

• The MATLAB base workspace. Use the base workspace to store variables while you
experiment with temporary models.

• A model workspace. Use a model workspace to permanently store data that is local to
a model.

• A data dictionary. Use data dictionaries to permanently store global data, share data
between models, and track changes made to data.

The chart shows the capabilities and advantages of each storage location.

Capability Base Workspace Model
Workspace

Data
Dictionary

Data-model linkage implicit implicit ✓
Unified interface for defining data ✓ ✓ ✓
Model-data dependency ✓ ✓ ✓
Data entry comparison ✓ ✓ ✓
Data entry persistence ✓ ✓

 Determine Where to Store Data for Simulink Models

55-65

Capability Base Workspace Model
Workspace

Data
Dictionary

Shared data ✓ ✓
Data grouping ✓
Change tracking for data entries ✓
Change tracking for configuration sets ✓
Data entry merging and reconciliation ✓
Storage and partitioning of auxiliary data ✓
Requirements linking ✓

Temporary Data: Base Workspace

Use the base workspace to temporarily store data:

• While you learn to use Simulink
• When you need to quickly create variables while experimenting with modeling

techniques
• When you do not need to store the data permanently

To create variables in the base workspace, you can use the MATLAB command prompt
or the Model Explorer. All open models can use the data that you create in the base
workspace.

If you use variables to specify numeric block parameters in the model, you can
programmatically change the parameter values during simulation by using commands
at the command prompt. To programmatically change the values of parameters that you
store in the model workspace or data dictionaries, you must use the function interfaces
for those storage locations.

To permanently store base workspace data before you end a MATLAB session, you can
save the data in a MAT-file or a script file. During a later session, you can load the data
from the file. However, if you make changes to the data in the base workspace, you
must save the data to the file again. Consider instead using a model workspace or data
dictionary to permanently store data.

Local Data: Model Workspace

Use a model workspace to store data that you use only in the associated model. This data
can include:

55 Working with Data

55-66

• Constant parameters, for example, numeric variables that you use to specify block
parameter values.

• Data objects, such as Simulink.Signal and Simulink.Parameter objects, that
you use to control signal and parameter characteristics. However, the objects can use
only the Auto storage class.

• Simulink.NumericType objects that you use to specify data types. However, you
cannot use the object as a data type alias. You must set the IsAlias property to
false.

• Model arguments.

You can improve model portability and establish data ownership by storing the data in
the model workspace. In this case, the model file permanently stores the data.

In a model reference hierarchy, each model workspace acts as a unique namespace.
Therefore, you can use the same variable name in multiple model workspaces. You can
then assign a unique variable value for each model.

You can use the Model Explorer to manipulate model workspace data. Alternatively,
you can use the command prompt or scripts in conjunction with the model workspace
programmatic interface.

For more information about using model workspaces to store local data, see “Model
Workspaces” on page 4-84.

Global and Shared Data: Data Dictionary

A data dictionary is a standalone file that permanently stores data. Use data dictionaries
to partition data, track changes, control access, and share data.

As you can with model workspaces, you can use data dictionaries to directly associate
data with a model. You can use this association to scope the data and to establish
ownership.

When you use dictionaries, you can partition the data by storing it in additional
referenced dictionaries. However, each entry in a dictionary must use a unique name.
You must manage each dictionary as a separate file.

Use a data dictionary to store data that multiple models or system components share.
This data can include:

• Numeric variables that multiple models use to specify block parameter values.

 Determine Where to Store Data for Simulink Models

55-67

• Simulink.AliasType and Simulink.NumericType objects that you use to specify
data types in multiple models at once.

• Data objects that use a storage class other than Auto. If you have a Simulink Coder
license, these objects can represent signals and tunable parameters that appear as
global variables in the generated code.

• Simulink.Bus objects that you use to define signal interfaces between referenced
models.

• Simulink.ConfigSet objects that you use to maintain configuration parameter
uniformity across multiple models.

• Enumerated type definitions, which you store using
Simulink.data.dictionary.EnumTypeDefinition objects.

You can use the Model Explorer to manipulate dictionary data. Alternatively, you can
use the command prompt or scripts in conjunction with the data dictionary programmatic
interface.

For basic information about data dictionaries, see “What Is a Data Dictionary?” on page
59-2.

More About
• “What Are Model Dependencies?” on page 17-19
• “Componentization Guidelines” on page 14-28
• “What Is a Data Dictionary?” on page 59-2
• “Model Workspaces” on page 4-84
• “Data Objects” on page 55-38
• “Symbol Resolution” on page 4-95

55 Working with Data

55-68

Upgrade Level-1 Data Classes

Simulink no longer supports level-1 data classes. You must upgrade data classes that
you created using the level-1 data class infrastructure, which was removed in a previous
release.

Run the following utility function while specifying the destination folder for the upgraded
classes.

Note: Property types defined in level-1 data classes that are not
subclasses of Simulink.Parameter, Simulink.Signal, or
Simulink.CustomStorageClassAttributes are not preserved during an upgrade.
Only subclasses of these three classes will preserve attributes PropertyType and
AllowedValues.

1 This command upgrades all your level-1 data class packages. You cannot upgrade
selected data packages.

Simulink.data.upgradeClasses('C:\MyDataClasses')

Here, C:\MyDataClasses is the destination folder for your level-2 data classes.

Note: Do not place your upgraded level-2 classes and their equivalent level-1 classes
in the same folder.

Simulink.data.upgradeClasses uses the packagedefn.mat file in your level-1
class packages for the upgrade and creates level-2 classes in the specified destination
folder. Then, Simulink.data.upgradeClasses adds the folder to top of the
MATLAB path and saves the path.

Note: If Simulink.data.upgradeClasses cannot save the MATLAB path because
of restricted access, a warning appears. In this case, manually add the folder to the
top of the MATLAB path and save the path using savepath.

2 You can change the location of the level-2 package folders after they have been
generated. However, you will need to update your MATLAB path so that MATLAB
can find these package folders.

 Upgrade Level-1 Data Classes

55-69

3 Resave MAT-files and models that contain level-1 data objects.
4 Retain your level-1 classes on the MATLAB path until you have resaved all of your

models and MAT-files that contain level-1 data objects. Any models or MAT-files that
contain level-1 data objects will continue to load successfully while your level-1 data
classes are on the MATLAB path.

Note: You cannot use both level-1 and level-2 data classes at the same time. Level-2
classes need to be above the level-1 classes on the MATLAB path so that they are
found by MATLAB.

55 Working with Data

55-70

Associating User Data with Blocks

You can use the set_param command to associate your own data with a block. For
example, the following command associates the value of the variable mydata with the
currently selected block.

set_param(gcb, 'UserData', mydata)

The value of mydata can be any MATLAB data type, including arrays, structures,
objects, and Simulink data objects.

Use get_param to retrieve the user data associated with a block.

get_param(gcb, 'UserData')

The following command saves the user data associated with a block in the model file of
the model containing the block.

set_param(gcb, 'UserDataPersistent', 'on');

Note If persistent UserData for a block contains any Simulink data objects, the
directories containing the definitions for the classes of those objects must be on the
MATLAB path when you open the model containing the block.

 Design Minimum and Maximum

55-71

Design Minimum and Maximum
In this section...

“Use of Design Minimum and Maximum” on page 55-71
“Valid Values for Design Minimum and Maximum” on page 55-71

Use of Design Minimum and Maximum

You can specify the design minimum and maximum for model data such as blocks and
data objects. Simulink uses the design minimum and maximum as follows.

• To define a valid range for Simulink parameters and signals and use it in range-
checking

• To calculate best-precision scaling for fixed-point data types
• To calculate derived minimum and maximum for model data for which design

minimum and maximum are not specified

Valid Values for Design Minimum and Maximum

Simulink no longer allows you to specify the design minimum and maximum as -Inf/
Inf. The default design minimum or maximum is [].

Previously, you could specify the design minimum and maximum as -Inf/Inf. However,
this specification is ambiguous.

It may imply that the design minimum and maximum are explicitly specified; in other
words, it may imply that the parameter or signal can have any value. It may also imply
that the design minimum and maximum are unspecified. While this ambiguity may
not have a significant effect on range-checking, it could affect the calculation of derived
minimum and maximum or the checking of data type validity.

Note: Simulink generates an error or warning when you specify the design minimum and
maximum as -Inf/Inf.

Avoiding Specifying Infinite Design Minimum or Maximum

There are three sources for the warning Simulink generates if the design minimum and/
or maximum are set to -Inf/Inf. Each source requires a different solution.

55 Working with Data

55-72

1 MATLAB code

i Use error handling tools such as dbstop and lastwarn to locate the MATLAB
code that is setting the design minimum and maximum to -Inf/Inf.

ii Either remove these lines of code from the MATLAB file or replace instances of -
Inf and Inf with [].

2 MAT-file: Resave the MAT-file
3 SLX file: Resave the SLX file

Related Examples
• “Check Parameter Values” on page 32-14
• “Signal Ranges” on page 60-41

More About
• “Fixed Point”
• “Tunable Block Parameters” on page 32-18
• “Data Objects” on page 55-38

 Support Limitations for Simulink Software Features

55-73

Support Limitations for Simulink Software Features

The software does not support the following Simulink software features. Avoid using
these unsupported features.

Not Supported Description

Variable-step solvers The software supports only fixed-step solvers.

For more information, see “Choose a Fixed-Step Solver” on
page 22-16 in the Simulink documentation.

Callback functions The software does not execute model callback functions
during the analysis. The results that the analysis generates,
such as the harness model, may behave inconsistently with
the expected behavior.

• If a model or any referenced model calls a callback
function that changes any block parameters, model
parameters, or workspace variables, the analysis does not
reflect those changes.

• Changing the storage class of base workspace variables
on model callback functions or mask initializations is not
supported.

• Callback functions called prior to analysis, such as the
PreLoadFcn or PostLoadFcn model callbacks, are fully
supported.

Model callback functions The software only supports model callback functions if the
InitFcn callback of the model is empty.

Algebraic loops The software does not support models that contain algebraic
loops.

For more information, see “Algebraic Loops” on page 3-37 in
the Simulink documentation.

Masked subsystem
initialization functions

The software does not support models whose masked
subsystem initialization modifies any attribute of any
workspace parameter.

Complex signals The software supports only real signals.

55 Working with Data

55-74

Not Supported Description

For more information, see “Complex Signals” on page
60-15 in the Simulink documentation.

Variable-size signals The software does not support variable-size signals. A
variable-size signal is a signal whose size (number of
elements in a dimension), in addition to its values, can
change during model execution.

For more information, see “Variable-Size Signal Basics” on
page 62-2 in the Simulink documentation.

Multiword fixed-point
data types

The software does not support multiword fixed-point data
types.

Nonzero start times Although Simulink allows you to specify a nonzero
simulation start time, the analysis generates signal data that
begins only at zero. If your model specifies a nonzero start
time:

• If you do not select the Reference input model in
generated harness parameter (the default), the harness
model is a subsystem. The analysis sets the start time of
the harness model to 1 and continues the analysis.

• If you select the Reference input model in generated
harness parameter, a Model block references the harness
model. The software cannot change the start time of
the harness model, so the analysis stops and you see a
recommendation to set the Start time parameter to 0.

 Support Limitations for Simulink Software Features

55-75

Not Supported Description

Nonfinite data The software does not support nonfinite data (for example,
NaN and Inf) and related operations.

In the Relational Operator block, the software assigns the
output as follows:

• If the Relational operator parameter is isFinite, the
output is always 1.

• If the Relational operator parameter is isNan or
isInf, the output is always 0.

In the MATLAB Function block, the software assigns the
return value as follows:

• For the isFinite function, the output is always 1.
• For the isNan and isInf functions, the output is always

0.
Concurrent execution The software does not support models that are configured for

concurrent execution.
Signals with nonzero
sample time offset

The software does not support models with signals that have
nonzero sample time offsets.

Models with no output
ports

The software only supports models that have one or more
output ports.

Large floating-point
constants outside the
range [-realmax/2,
realmax/2]

The use of large floating-point constants can cause out of
memory errors or substantial loss of precision. Avoid using
such constants if possible.

55 Working with Data

55-76

Supported and Unsupported Simulink Blocks

The software provides various levels of support for Simulink blocks:

• Fully supported
• Partially supported
• Not supported

If your model contains unsupported blocks, you can enable automatic stubbing.
Automatic stubbing considers the interface of the unsupported blocks, but not their
behavior. If any of the unsupported blocks affect the simulation outcome, however, the
analysis may achieve only partial results. For details about automatic stubbing, see
“Handle Incompatibilities with Automatic Stubbing”.

To achieve 100% coverage, avoid using unsupported blocks in models that you analyze.
Similarly, for partially supported blocks, specify only the block parameters that the
software recognizes.

The following tables summarize the analysis support for Simulink blocks. Each table lists
the blocks in a Simulink library and describes support information for that particular
block.

Additional Math and Discrete Library

The software supports all blocks in the Additional Math and Discrete library.

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries. Those blocks are
listed under their respective libraries.

Continuous Library

Block Support Notes

Derivative Not supported
Integrator Not supported and not stubbable
Integrator Limited Not supported and not stubbable
PID Controller Not supported
PID Controller (2 DOF) Not supported

 Supported and Unsupported Simulink Blocks

55-77

Block Support Notes

Second Order Integrator Not supported and not stubbable
Second Order Integrator Limited Not supported and not stubbable
State-Space Not supported and not stubbable
Transfer Fcn Not supported and not stubbable
Transport Delay Not supported
Variable Time Delay Not supported
Variable Transport Delay Not supported
Zero-Pole Not supported and not stubbable

Discontinuities Library

The software supports all blocks in the Discontinuities library.

Discrete Library

Block Support Notes

Delay Supported
Difference Supported
Discrete Derivative Supported
Discrete Filter Supported
Discrete FIR Filter Supported
Discrete PID Controller Supported
Discrete PID Controller (2 DOF) Supported
Discrete State-Space Not supported
Discrete Transfer Fcn Supported
Discrete Zero-Pole Not supported
Discrete-Time Integrator Supported
First-Order Hold Supported
Memory Supported
Tapped Delay Supported

55 Working with Data

55-78

Block Support Notes

Transfer Fcn First Order Supported
Transfer Fcn Lead or Lag Supported
Transfer Fcn Real Zero Supported
Unit Delay Supported
Zero-Order Hold Supported

Logic and Bit Operations Library

The software supports all blocks in the Logic and Bit Operations library.

Lookup Tables Library

Block Support Notes

Cosine Supported
Direct Lookup Table (n-D) Supported
Interpolation Using

Prelookup

Not supported when:

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
4.

or

• The Interpolation method parameter is Linear and the
Number of sub-table selection dimensions parameter
is not 0.

1-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

n-D Lookup Table Not supported when:

• The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or

 Supported and Unsupported Simulink Blocks

55-79

Block Support Notes

• The Interpolation method parameter is Linear and the
Number of table dimensions parameter is greater than
5.

Lookup Table Dynamic Supported
Prelookup Supported
Sine Supported

Math Operations Library

Block Support Notes

Abs Supported
Add Supported
Algebraic Constraint Supported
Assignment Supported
Bias Supported
Complex to Magnitude-Angle Not supported
Complex to Real-Imag Supported
Divide Supported
Dot Product Supported
Find Nonzero Elements Supported
Gain Supported
Magnitude-Angle to Complex Supported
Math Function All signal types support the following Function

parameter settings.

conj hermitian magnitude^2 mod

rem reciprocal square transpose

The software does not support the following Function
parameter settings.

10^u exp hypot

55 Working with Data

55-80

Block Support Notes

log log10 pow

Matrix Concatenate Supported
MinMax Supported
MinMax Running Resettable Supported
Permute Dimensions Supported
Polynomial Supported
Product Supported
Product of Elements Supported
Real-Imag to Complex Supported
Reciprocal Sqrt Not supported
Reshape Supported
Rounding Function Supported
Sign Supported
Signed Sqrt Not supported
Sine Wave Function Not supported
Slider Gain Supported
Sqrt Supported
Squeeze Supported
Subtract Supported
Sum Supported
Sum of Elements Supported
Trigonometric Function Supported if Function is sin, cos, or sincos, and

Approximation method is CORDIC.
Unary Minus Supported
Vector Concatenate Supported
Weighted Sample Time Math Supported

 Supported and Unsupported Simulink Blocks

55-81

Model Verification Library

The software supports all blocks in the Model Verification library.

Model-Wide Utilities Library

Block Support Notes

Block Support Table Supported
DocBlock Supported
Model Info Supported
Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

Ports & Subsystems Library

Block Support Notes

Atomic Subsystem Supported
Code Reuse Subsystem Supported
Configurable Subsystem Supported
Enable Supported
Enabled Subsystem Design range checks do not consider specified minimum

and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values”.

Enabled and Triggered

Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values”.

For Each Supported with the following limitations:

• When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition,

55 Working with Data

55-82

Block Support Notes

Test Objective, Proof Assumption, or Proof
Objective blocks, not supported.

• When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Each Subsystem Supported with the following limitations:

• When For Each Subsystem contains one or more
Simulink Design Verifier Test Condition,
Test Objective, Proof Assumption, or Proof
Objective blocks, not supported.

• When the mask parameters of the For Each Subsystem
are partitioned, not supported.

For Iterator Subsystem Supported
Function-Call Feedback Latch Supported
Function-Call Generator Supported
Function-Call Split Supported
Function-Call Subsystem Design range checks do not consider specified minimum

and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values”.

If Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for an If
block.

If Action Subsystem Supported
Inport Supported
Model Supported except for the limitations described in “Support

Limitations for Model Blocks”.
Model Variants Supported except for the limitations described in “Support

Limitations for Model Blocks”.
Outport Supported
Resettable Subsystem Supported

 Supported and Unsupported Simulink Blocks

55-83

Block Support Notes

Subsystem Supported
Switch Case Supported
Switch Case Action Subsystem Supported
Trigger Supported
Triggered Subsystem Not supported when the trigger control signal specifies a

fixed-point data type.

Design range checks do not consider specified minimum
and maximum values for blocks connected to the outport
of the subsystem. For more information on design range
checks, see “Check for Specified Intermediate Minimum
and Maximum Signal Values”.

Variant Subsystem Not supported when the Generate preprocessor
conditionals parameter is enabled.

Only the active variant is analyzed.
While Iterator Subsystem Supported

Signal Attributes Library

The software supports all blocks in the Signal Attributes library.

Signal Routing Library

Block Support Notes

Bus Assignment Supported
Bus Creator Supported
Bus Selector Supported
Data Store Memory Supported
Data Store Read Supported
Data Store Write Supported
Demux Supported
Environment Controller Supported

55 Working with Data

55-84

Block Support Notes

From Supported
Goto Supported
Goto Tag Visibility Supported
Index Vector Supported
Manual Switch The Manual Switch block is compatible with the software,

but the analysis ignores this block in a model. The
analysis does not flag the coverage objectives for this block
as satisfiable or unsatisfiable.

Model coverage data is collected for the Manual Switch
block.

Merge Supported
Multiport Switch Supported
Mux Supported
Selector Supported
Switch Supported
Vector Concatenate Supported

Sinks Library

Block Support Notes

Display Supported
Floating Scope Supported
Outport (Out1) Supported
Scope Supported
Stop Simulation Not supported and not stubbable
Terminator Supported
To File Supported
To Workspace Supported
XY Graph Supported

 Supported and Unsupported Simulink Blocks

55-85

Sources Library

Block Support Notes

Band-Limited White Noise Not supported
Chirp Signal Not supported
Clock Supported
Constant Supported unless Constant value is inf.
Counter Free-Running Supported
Counter Limited Supported
Digital Clock Supported
Enumerated Constant Supported
From File Not supported. When MAT-file data is stored in MATLAB

timeseries format, not stubbable.
From Workspace Not supported
Ground Supported
Inport (In1) Supported
Pulse Generator Supported
Ramp Supported
Random Number Not supported and not stubbable
Repeating Sequence Not supported
Repeating Sequence

Interpolated

Not supported

Repeating Sequence Stair Supported
Signal Builder Not supported
Signal Generator Not supported
Sine Wave Not supported
Step Supported
Uniform Random Number Not supported and not stubbable

55 Working with Data

55-86

User-Defined Functions Library

Block Support Notes

Fcn Supports all operators except ^, and supports only the
mathematical functions abs, ceil, fabs, floor, rem, and
sgn.

Parameter configurations are not supported. The analysis
ignores parameter configurations that you specify for these
blocks.

Interpreted MATLAB Function Not supported
Level-2 MATLAB S-Function For limitations, see “Support Limitations for S-Functions”.
MATLAB Function For limitations, see “Support Limitations for MATLAB for

Code Generation”.
S-Function For limitations, see “Support Limitations for S-Functions”.
S-Function Builder For limitations, see “Support Limitations for S-Functions”.
Simulink Function Not supported

 Support Limitations for Stateflow Software Features

55-87

Support Limitations for Stateflow Software Features

The software does not support the following Stateflow software features. Avoid using
these unsupported features in models that you analyze.

In this section...

“ml Namespace Operator, ml Function, ml Expressions” on page 55-87
“C Math Functions” on page 55-87
“Atomic Subcharts That Call Exported Graphical Functions Outside a Subchart” on
page 55-88
“Atomic Subchart Input and Output Mapping” on page 55-88
“Recursion and Cyclic Behavior” on page 55-88
“Custom C or C++ Code” on page 55-90
“Machine-Parented Data” on page 55-90
“Textual Functions with Literal String Arguments” on page 55-90

ml Namespace Operator, ml Function, ml Expressions

The software does not support calls to MATLAB functions or access to MATLAB
workspace variables, which the Stateflow software allows. (See “Access Built-In
MATLAB Functions and Workspace Data” in the Stateflow documentation.)

C Math Functions

The software supports calls to the following C math functions:

• abs

• ceil

• fabs

• floor

• fmod

• labs

• ldexp

• pow (only for integer exponents)

55 Working with Data

55-88

The software does not support calls to other C math functions, which the Stateflow
software allows. If automatic stubbing is enabled, which it is by default, the software
eliminates these unsupported functions during the analysis.

For information about C math functions in Stateflow, see “Call C Functions in C Charts”
in the Stateflow documentation.

Note: For details about automatic stubbing, see “Handle Incompatibilities with
Automatic Stubbing”.

Atomic Subcharts That Call Exported Graphical Functions Outside a
Subchart

The software does not support atomic subcharts that call exported graphical functions,
which the Stateflow software allows.

Note: For information about exported functions, see “Export Stateflow Functions for
Reuse” in the Stateflow documentation.

Atomic Subchart Input and Output Mapping

If an input or output in an atomic subchart maps to chart-level data of a different scope,
the software does not support the chart that contains that atomic subchart.

For an atomic subchart input, this incompatibility applies when the input maps to chart-
level data of output, local, or parameter scope. For an atomic subchart output, this
incompatibility applies when the output maps to chart-level data of local scope.

Recursion and Cyclic Behavior

The software does not support recursive functions, which occur when a function calls
itself directly or indirectly through another function call. Stateflow software allows you to
implement recursion using graphical functions.

In addition, the software does not support recursion that the Stateflow software allows
you to implement using a combination of event broadcasts and function calls.

 Support Limitations for Stateflow Software Features

55-89

Note: For information about avoiding recursion in Stateflow charts, see “ Guidelines for
Avoiding Unwanted Recursion in a Chart” in the Stateflow documentation.

Stateflow software also allows you to create cyclic behavior, where a sequence of steps is
repeated indefinitely. If your model has a chart with cyclic behavior, the software cannot
analyze it.

Note: For information about cyclic behavior in Stateflow charts, see “Cyclic Behavior in a
Chart” in the Stateflow documentation.

However, you can modify a chart with cyclic behavior so that it is compatible, as in the
following example.

The following chart creates cyclic behavior. State A calls state A1, which broadcasts a
Clear event to state B, which calls state B2, which broadcasts a Set event back to state
A, causing the cyclic behavior.

If you change the send function calls to use directed event broadcasts so that the Set
and Clear events are broadcast directly to the states B1 and A1, respectively, the cyclic
behavior disappears and the software can analyze the model.

55 Working with Data

55-90

Note: For information about the benefits of directed event broadcasts, see “ Broadcast
Events to Synchronize States” in the Stateflow documentation.

Custom C or C++ Code

The software does not support custom C or C++ code, which the Stateflow software
allows.

Machine-Parented Data

The software does not support machine-parented data (i.e., defined at the level of the
Stateflow machine), which the Stateflow software allows.

For more information, see “Best Practices for Using Data in Charts” in the Stateflow
documentation.

Textual Functions with Literal String Arguments

The software does not support literal string arguments to textual functions in a Stateflow
chart.

56

Enumerations and Modeling

• “Simulink Enumerations” on page 56-2
• “Use Enumerated Data in Simulink Models” on page 56-7

56 Enumerations and Modeling

56-2

Simulink Enumerations

Enumerated data is data that is restricted to a finite set of values. An enumerated data
type is a MATLAB class that defines a set of enumerated values. Each enumerated value
consists of an enumerated name and an underlying integer which the software uses
internally and in generated code.

Simulink enumerations are built on enumerations defined for the MATLAB language.
They are subclasses of the abstract superclass Simulink.IntEnumType, and inherit
from that superclass the capabilities necessary to be used in the Simulink environment.

Before you begin to use enumerations in a modeling context, you should understand
information provided in “Enumerations”.

The following examples show how to use enumerations in Simulink and Stateflow.

Example Shows How To Use...

Data Typing in Simulink Data types in Simulink, including
enumerated data types

Modeling a CD Player/Radio Using
Enumerated Data Types

Enumerated data types in a Simulink
model that contains a Stateflow chart

For information on using enumerations in Stateflow, see “Enumerated Data”.

Simulink Constructs that Support Enumerations

• “Overview” on page 56-2
• “Block Support” on page 56-3
• “Class Support” on page 56-4
• “Logging Enumerated Data” on page 56-4
• “Importing Enumerated Data” on page 56-5

Overview

In general, all Simulink tools and constructs support enumerated types for which the
support makes sense given the purpose of enumerated types: to represent program
states and to control program logic. The Simulink Editor, Simulink Debugger, Port

 Simulink Enumerations

56-3

Value Displays, referenced models, subsystems, masks, buses, data logging, and most
other Simulink capabilities support enumerated types without imposing any special
requirements.

Enumerated types are not intended for mathematical computation, so no block that
computes a numeric output (as distinct from passing a numeric input through to the
output) supports enumerated types. Thus an enumerated type is not considered to
be a numeric type, even though an enumerated value has an underlying integer. See
“Enumerated Values in Computation” on page 56-22 for more information.

Most capabilities that do not support enumerated types obviously could not support
them. Therefore, the Simulink documentation usually mentions enumerated type
nonsupport only where necessary to prevent a misconception or describe an exception.
See “Simulink Enumeration Limitations” on page 56-5 for information about certain
constructs that could support enumerated types but do not.

Block Support

The following Simulink blocks support enumerated types:

• Constant (but Enumerated Constant is preferable)
• Data Type Conversion

• Data Type Conversion Inherited

• Data Type Duplicate

• Display

• MATLAB Function

• Enumerated Constant

• Floating Scope

• From File

• From Workspace

• Inport

• Interval Test

• Interval Test Dynamic

• Multiport Switch

• Outport

• Probe (input only)

56 Enumerations and Modeling

56-4

• Relational Operator

• Relay (output only)
• Repeating Sequence Stair

• Scope

• Signal Specification

• Switch

• Switch Case

• To File

• To Workspace

All members of the following categories of Simulink blocks support enumerated types:

• Bus-capable blocks (see “Bus-Capable Blocks” on page 61-21)
• Pass-through blocks:

• With state, like the Data Store Memory and Unit Delay blocks.
• Without state, like the Mux block.

Many Simulink blocks in addition to those named above support enumerated types,
but they either belong to one of the categories listed above, or are rarely used with
enumerated types. The Data Type Support section of each block reference page describes
all data types that the block supports.

Class Support

The following Simulink classes support enumerated types:

• Simulink.Signal

• Simulink.Parameter

• Simulink.AliasType

• Simulink.BusElement

Logging Enumerated Data

Root-level outports, To Workspace blocks, and Scope blocks can all export enumerated
values. Signal and State logging work with enumerated data in the same way as with
any other data. All logging formats are supported. The From File block does not

 Simulink Enumerations

56-5

support enumerated data. Use the From Workspace block instead, combined with some
technique for transferring data between a file and a workspace. See “Save Runtime Data
from Simulation” for more information.

Importing Enumerated Data

Root-level inports and From Workspace blocks can output enumerated signals during
simulation. Data must be provided in a Structure, Structure with Time, or
TimeSeries object. No interpolation occurs for enumerated values between the specified
simulation times. From File blocks produce only data of type double, so they do not
support enumerated types. See “Load Signal Data for Simulation” for more information.

Simulink Enumeration Limitations

• “Enumerations and Scopes” on page 56-5
• “Enumerated Types for Switch Blocks” on page 56-5
• “Nonsupport of Enumerations” on page 56-6

Enumerations and Scopes

When a Scope block displays an enumerated signal, the vertical axis displays the names
of the enumerated values only if the scope was open during simulation. If you open the
Scope block for the first time before any simulation has occurred, or between simulations,
the block displays only numeric values. When simulation begins, enumerated names
replace the numeric values, and thereafter appear whenever the Scope block is opened.

When a Floating Scope block displays multiple signals, the names of enumerated values
appear on the Y axis only if all signals are of the same enumerated type. If the Floating
Scope block displays more than one type of enumerated signal, or any numeric signal, no
names appear, and any enumerated values are represented by their underlying integers.

Enumerated Types for Switch Blocks

The control input of a Switch block can be of any data type supported by Simulink
software. However, the u2 ~=0 mode is not supported for enumerations. If the control
input has an enumeration, choose one of the following methods to specify the criteria for
passing the first input:

• Select u2 >= Threshold or u2 > Threshold and specify a threshold value of the
same enumerated type as the control input.

56 Enumerations and Modeling

56-6

• Use a Relational Operator block to do the comparison and then feed the Boolean
result of this comparison into the control port of the Switch block.

Nonsupport of Enumerations

The following limitations exist when using enumerated data types with Simulink:

• Packages cannot contain enumeration class definitions.
• The If Action block might support enumerations, but currently does not do so.
• Generated code does not support logging enumerated data.
• Custom Stateflow targets do not support enumerated types.
• HDL Coder does not support enumerations.

See Also
enumeration | Simulink.data.getEnumTypeInfo |
Simulink.defineIntEnumType

Related Examples
• “Use Enumerated Data in Simulink Models” on page 56-7
• “Use Enumerated Data in MATLAB Function Blocks” on page 37-104
• “Use Enumerated Data in Generated Code”

More About
• “Enumerations in Data Dictionary” on page 59-15

 Use Enumerated Data in Simulink Models

56-7

Use Enumerated Data in Simulink Models

In this section...

“Define Simulink Enumerations” on page 56-7
“Simulate with Enumerations” on page 56-14
“Specify Enumerations as Data Types” on page 56-16
“Get Information About Enumerated Data Types” on page 56-17
“Enumeration Value Display” on page 56-17
“Instantiate Enumerations” on page 56-19
“Enumerated Values in Computation” on page 56-22

Enumerated data is data that is restricted to a finite set of values. An enumerated data
type is a MATLAB class that defines a set of enumerated values. Each enumerated value
consists of an enumerated name and an underlying integer which the software uses
internally and in generated code.

For basic conceptual information about enumerations in Simulink, see “Simulink
Enumerations” on page 56-2.

For information about generating code with enumerations, see “Use Enumerated Data in
Generated Code” in the Simulink Coder documentation.

Define Simulink Enumerations

To define an enumerated data type that you can use in Simulink models, use one of these
methods:

• Define an enumeration class using a classdef block in a MATLAB file.
• Use the function Simulink.defineIntEnumType. You do not need a script file to

define the type. For more information, see the function reference page.

Workflow to Define a Simulink Enumeration

1 Create a class definition.
2 Optionally, customize the enumeration.
3 Optionally, save the enumeration in a MATLAB file.

56 Enumerations and Modeling

56-8

Create Simulink Enumeration Class

To create a Simulink enumeration class, in the class definition:

• Define the class as a subclass of Simulink.IntEnumType. You can also base an
enumerated type on one of these built-in integer data types: int8, uint8, int16,
uint16, and int32.

• Add an enumeration block that specifies enumeration values with underlying
integer values.

Consider the following example:

classdef BasicColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 end

end

The first line defines an integer-based enumeration that is derived from built-in class
Simulink.IntEnumType. The enumeration is integer-based because IntEnumType is
derived from int32.

The enumeration section specifies three enumerated values.

Enumerated Value Enumerated Name Underlying Integer

Red(0) Red 0

Yellow(1) Yellow 1

Blue(2) Blue 2

When defining an enumeration class for use in the Simulink environment, consider the
following:

• The name of the enumeration class must be unique among data type names and base
workspace variable names, and is case-sensitive.

• Underlying integer values in the enumeration section need not be unique within the
class and across types.

• Often, the underlying integers of a set of enumerated values are consecutive and
monotonically increasing, but they need not be either consecutive or ordered.

 Use Enumerated Data in Simulink Models

56-9

• For simulation, an underlying integer can be any int32 value. Use the MATLAB
functions intmin and intmax to get the limits.

• For code generation, every underlying integer value must be representable as an
integer on the target hardware, which may impose different limits. See “Target” and
“Hardware Implementation Pane” for more information.

For more information on superclasses, see “Converting to Superclass Value”. For
information on how enumeration classes are handled when there is more than one name
for an underlying value, see “How to Alias Enumeration Names”.

Customize Simulink Enumeration

About Simulink Enumeration Customizations

You can customize a Simulink enumeration by implementing specific static methods in
the class definition. If you define these methods using the appropriate syntax, you can
change the behavior of the class during simulation and in generated code.

The table shows the methods you can implement to customize an enumeration.

Static Method Purpose Default Value
Without
Implementing
Method

Custom Return Value Usage
Context

getDefaultValue Specifies the default
enumeration member
for the class.

First member
specified
in the
enumeration
definition

A string containing
the name of an
enumeration
member in the class
(see “Instantiate
Enumerations” on
page 56-19)

Simulation
and code
generation

getDescription Specifies a description
of the enumeration
class.

'' A string containing
the description of the
type

Code
generation

getHeaderFile Specifies the
name of a header
file. The method
getDataScope

determines the
significance of the file.

'' A string containing
the name of
the header file
that defines the
enumerated type

Code
generation

56 Enumerations and Modeling

56-10

Static Method Purpose Default Value
Without
Implementing
Method

Custom Return Value Usage
Context

getDataScope Specifies whether
generated code
exports or imports
the definition of the
enumerated data
type. Use the method
getHeaderFile to
specify the generated
or included header file
that defines the type.

'Auto' One of these
strings: 'Auto',
'Exported', or
'Imported'

Code
generation

addClassNameToEnumNamesSpecifies whether to
prefix the class name
in generated code.

false true or false Code
generation

For more examples of these methods as they apply to code generation, see “Customize
Enumerated Data Type” in the Simulink Coder documentation.

Specify a Default Enumerated Value

wSimulink software and related generated code use an enumeration's default value
for ground-value initialization of enumerated data when you provide no other initial
value. For example, an enumerated signal inside a conditionally executed subsystem
that has not yet executed has the enumeration's default value. Generated code uses
an enumeration's default value if a safe cast fails, as described in “Type Casting for
Enumerations” in the Simulink Coder documentation.

Unless you specify otherwise, the default value for an enumeration is the first value
in the enumeration class definition. To specify a different default value, add your own
getDefaultValue method to the methods section. The following code shows a shell for
the getDefaultValue method:
 function retVal = getDefaultValue()

 % GETDEFAULTVALUE Specifies the default enumeration member.

 % Return a valid member of this enumeration class to specify the default.

 % If you do not define this method, Simulink uses the first member.

 retVal = ThisClass.EnumName;

 end

 Use Enumerated Data in Simulink Models

56-11

To customize this method, provide a value for ThisClass.EnumName that specifies the
desired default.

• ThisClass must be the name of the class within which the method exists.
• EnumName must be the name of an enumerated value defined in that class.

For example:

classdef BasicColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 end

 methods (Static)

 function retVal = getDefaultValue()

 retVal = BasicColors.Blue;

 end

 end

end

This example defines the default as BasicColors.Blue. If this method does not appear,
the default value would be BasicColors.Red, because that is the first value listed in
the enumerated class definition.

The seemingly redundant specification of ThisClass inside the definition of that
same class is necessary because getDefaultValue returns an instance of the default
enumerated value, not just the name of the value. The method, therefore, needs a
complete specification of what to instantiate. See “Instantiate Enumerations” on page
56-19 for more information.

Save Enumeration in a MATLAB File

You can define an enumeration within a MATLAB file.

• The name of the definition file must match the name of the enumeration exactly,
including case. For example, the definition of enumeration BasicColors must reside
in a file named BasicColors.m. Otherwise, MATLAB will not find the definition.

• You must define each class definition in a separate file.
• Save each definition file on the MATLAB search path. MATLAB searches the path to

find a definition when necessary.

56 Enumerations and Modeling

56-12

To add a file or folder to the MATLAB search path, type addpath pathname at the
MATLAB command prompt. For more information, see “What Is the MATLAB Search
Path?”, addpath, and savepath.

• You do not need to execute an enumeration class definition to use the enumeration.
The only requirement, as indicated in the preceding bullet, is that the definition file
be on the MATLAB search path.

Change and Reload Enumerations

You can change the definition of an enumeration by editing and saving the file that
contains the definition. You do not need to inform MATLAB that a class definition
has changed. MATLAB automatically reads the modified definition when you save the
file. However, the class definition changes do not take full effect if any class instances
(enumerated values) exist that reflect the previous class definition. Such instances might
exist in the base workspace or might be cached.

The following table explains options for removing instances of an enumeration from the
base workspace and cache.

If In Base Workspace... If In Cache...

Do one of the following:

• Locate and delete specific obsolete
instances.

• Delete everything from the workspace
by using the clear command.

• Delete obsolete instances by closing all
models that you updated or simulated
while the previous class definition was
in effect.

• Clear functions and close models that
are caching instances of the class.

For more information about applying enumeration changes, see “Automatic Updates for
Modified Classes”.

Import Enumerations Defined Externally to MATLAB

If you have enumerations defined externally to MATLAB— for example, in a data
dictionary, that you want to import for use within the Simulink environment, you can do
so programmatically with calls to the function Simulink.defineIntEnumType. This
function defines an enumeration that you can use in MATLAB as if it is defined by a
class definition file. In addition to specifying the enumeration class name and values,
each function call can specify:

 Use Enumerated Data in Simulink Models

56-13

• String that describes the enumeration class.
• Which of the enumeration values is the default.

For code generation, you can specify:

• Header file in which the enumeration is defined for generated code.
• Whether the code generator applies the class name as a prefix to enumeration

members — for example, BasicColors_Red or Red.

As an example, consider the following class definition:

classdef BasicColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 end

 methods (Static = true)

 function retVal = getDescription()

 retVal = 'Basic colors...';

 end

 function retVal = getDefaultValue()

 retVal = BasicColors.Blue;

 end

 function retVal = getHeaderFile()

 retVal = 'mybasiccolors.h';

 end

 function retVal = addClassNameToEnumNames()

 retVal = true;

 end

 end

end

The following function call defines the same class for use in MATLAB:

Simulink.defineIntEnumType('BasicColors', ...

 {'Red', 'Yellow', 'Blue'}, [0;1;2],...

 'Description', 'Basic colors', ...

 'DefaultValue', 'Blue', ...

 'HeaderFile', 'mybasiccolors.h', ...

 'DataScope', 'Imported', ...

 'AddClassNameToEnumNames', true);

56 Enumerations and Modeling

56-14

Simulate with Enumerations

Consider the following enumeration class definition — BasicColors with enumerated
values Red, Yellow, and Blue, with Blue as the default value:

classdef BasicColors < Simulink.IntEnumType

 enumeration

 Red(0)

 Yellow(1)

 Blue(2)

 end

 methods (Static)

 function retVal = getDefaultValue()

 retVal = BasicColors.Blue;

 end

 end

end

Once this class definition is known to MATLAB, you can use the enumeration in
Simulink and Stateflow models. Information specific to enumerations in Stateflow
appears in “Enumerated Data”. The following Simulink model uses the enumeration
defined above:

The output of the model looks like this:

 Use Enumerated Data in Simulink Models

56-15

The Data Type Conversion block OrigToInt specifies an Output data type of
int32 and Integer rounding mode: Floor, so the block converts the Sine Wave block
output, which appears in the top graph of the Scope display, to a cycle of integers: 1, 2,
1, 0, 1, 2, 1. The Data Type Conversion block IntToColor uses these values to select
colors from the enumerated type BasicColors by referencing their underlying integers.

The result is a cycle of colors: Yellow, Blue, Yellow, Red, Yellow, Blue, Yellow, as
shown in the middle graph. The Enumerated Constant block EnumConst outputs
Yellow, which appears in the second graph as a straight line. The Relational
Operator block compares the constant Yellow to each value in the cycle of colors. It
outputs 1 (true) when Yellow is less than the current color, and 0 (false) otherwise, as
shown in the third graph.

56 Enumerations and Modeling

56-16

The sort order used by the comparison is the numeric order of the underlying integers of
the compared values, not the lexical order in which the enumerated values appear in the
enumerated class definition. In this example the two orders are the same, but they need
not be. See “Specify Enumerations as Data Types” on page 56-16 and “Enumerated
Values in Computation” on page 56-22 for more information.

Specify Enumerations as Data Types

Once you define an enumeration, you can use it much like any other data type. Because
an enumeration is a class rather than an instance, you must use the prefix ? or Enum:
when specifying the enumeration as a data type. You must use the prefix ? in the
MATLAB Command Window. However, you can use either prefix in a Simulink model.
Enum: has the same effect as the ? prefix, but Enum: is preferred because it is more self-
explanatory in the context of a graphical user interface.

Depending on the context, type Enum: followed by the name of an enumeration, or select
Enum: <class name> from a menu (for example, for the Output data type block
parameter) , and replace <class name>.

To use the Data Type Assistant, set the Mode to Enumerated, then enter the name of
the enumeration. For example, in the previous model, the Data Type Conversion block
IntToColor, which outputs a signal of type BasicColors, has the following output
signal specification:

You cannot set a minimum or maximum value for a signal defined as an enumeration,
because the concepts of minimum and maximum are not relevant to the purpose of
enumerations. If you change the minimum or maximum for a signal of an enumeration
from the default value of [], an error occurs when you update the model. See
“Enumerated Values in Computation” on page 56-22 for more information.

 Use Enumerated Data in Simulink Models

56-17

Get Information About Enumerated Data Types

The functions enumeration and Simulink.data.getEnumTypeInfo return
information about enumerated data types.

Get Information About Enumeration Members

Use the function enumeration to:

• Return an array that contains all enumeration values for an enumeration class in the
MATLAB Command Window

• Get the enumeration values programmatically
• Provide the values to a Simulink block parameter that accepts an array or vector of

enumerated values, such as the Case conditions parameter of the Switch Case block

Get Information About Enumerated Class

Use the function Simulink.data.getEnumTypeInfo to return information about an
enumeration class, such as:

• The default enumeration member
• The name of the header file that defines the type in generated code
• The data type used in generated code to store the integer values underlying the

enumeration members

Enumeration Value Display

Wherever possible, Simulink software displays enumeration values by name, not by the
underlying integer value. However, the underlying integers can affect value display in
Scope and Floating Scope blocks.

Block... Affect on Value Display...

Scope When displaying an enumerated signal, the names of the
enumerated values appear as labels on the Y axis. The names
appear in the order given by their underlying integers, with
the lowest value at the bottom.

Floating Scope When displaying signals that are of the same enumeration,
names appear on the Y axis as they would for a Scope block. If
the Floating Scope block displays mixed data types, no names

56 Enumerations and Modeling

56-18

Block... Affect on Value Display...

appear, and any enumerated values are represented by their
underlying integers.

Enumerated Values with Non-Unique Integers

More than one value in an enumeration can have the same underlying integer value, as
described in “Specify Enumerations as Data Types” on page 56-16. When this occurs,
the value on an axis of Scope block output or in Display block output always is the first
value listed in the enumerated class definition that has the shared underlying integer.
For example:

Although the Enumerated Constant block outputs True, both On and True have the
same underlying integer, and On is defined first in the class definition enumeration

 Use Enumerated Data in Simulink Models

56-19

section. Therefore, the Display block shows On. Similarly, a Scope axis would show only
On, never True, no matter which of the two values is input to the Scope block.

Instantiate Enumerations

Before you can use an enumeration, you must instantiate it. You can instantiate an
enumeration in MATLAB, in a Simulink model, or in a Stateflow chart. The syntax is the
same in all contexts.

Instantiating Enumerations in MATLAB

To instantiate an enumeration in MATLAB, enter ClassName.EnumName in the
MATLAB Command Window. The instance is created in the base workspace. For
example, if BasicColors is defined as in “Create Simulink Enumeration Class” on page
56-8, you can type:

bcy = BasicColors.Yellow

bcy =

 Yellow

Tab completion works for enumerations. For example, if you enter:

bcy = BasicColors.<tab>

MATLAB displays the elements and methods of BasicColors in alphabetical order:

Double-click an element or method to insert it at the position where you pressed <tab>.
See “Tab Completion” for more information.

56 Enumerations and Modeling

56-20

Casting Enumerations in MATLAB

In MATLAB, you can cast directly from an integer to an enumerated value:

bcb = BasicColors(2)

bcb =

 Blue

You can also cast from an enumerated value to its underlying integer:

>> bci = int32(bcb)

bci =

 2

In either case, MATLAB returns the result of the cast in a 1x1 array of the relevant data
type.

Although casting is possible, use of enumeration values is not robust in cases where
enumeration values and the integer equivalents defined for an enumeration class might
change.

Instantiating Enumerations in Simulink (or Stateflow)

To instantiate an enumeration in a Simulink model, you can enter
ClassName.EnumName as a value in a dialog box. For example, consider the following
model:

The Enumerated Constant block EnumConst, which outputs the enumerated value
Yellow, defines that value as follows:

 Use Enumerated Data in Simulink Models

56-21

You can enter any valid MATLAB expression that evaluates to an enumerated
value, including arrays and workspace variables. For example, you could enter
BasicColors(1), or if you had previously executed bcy = BasicColors.Yellow
in the MATLAB Command Window, you could enter bcy. As another example,
you could enter an array, such as[BasicColors.Red, BasicColors.Yellow,
BasicColors.Blue].

You can use a Constant block to output enumerated values. However, that block
displays parameters that do not apply to enumerated types, such as Output Minimum
and Output Maximum.

If you create a Simulink.Parameter object as an enumeration, you must specify the
Value parameter as an enumeration member and the Data type with the Enum: or ?
prefix, as explained in “Specify Enumerations as Data Types” on page 56-16.

You cannot specify the integer value of an enumeration member for the Value
parameter. See “Enumerated Values in Computation” on page 56-22 for
more information. Thus, the following fails even though the integer value for
BasicColors.Yellow is 1.

The same syntax and considerations apply in Stateflow. See “Enumerated Data” for more
information.

56 Enumerations and Modeling

56-22

Enumerated Values in Computation

By design, Simulink prevents enumerated values from being used as numeric values
in mathematical computation, even though an enumerated class is a subclass of the
MATLAB int32 class. Thus, an enumerated type does not function as a numeric type
despite the existence of its underlying integers. For example, you cannot input an
enumerated signal directly to a Gain block.

You can use a Data Type Conversion block to convert in either direction between an
integer type and an enumerated type, or between two enumerated types. That is, you
can use a Data Type Conversion block to convert an enumerated signal to an integer
signal (consisting of the underlying integers of the enumerated signal values) and input
the resulting integer signal to a Gain block. See “Casting Enumerated Signals” on page
56-22 for more information.

Enumerated types in Simulink are intended to represent program states and control
program logic in blocks like the Relational Operator block and the Switch block. When a
Simulink block compares enumerated values, the values compared must be of the same
enumerated type. The block compares enumerated values based on their underlying
integers, not their order in the enumerated class definition.

When a block like the Switch block or Multiport Switch block selects among multiple
data signals, and any data signal is of an enumerated type, all the data signals must be
of that same enumerated type. When a block inputs both control and data signals, as
Switch and Multiport Switch do, the control signal type need not match the data signal
type.

Casting Enumerated Signals

You can use a Data Type Conversion block to cast an enumerated signal to a signal of
any numeric type, provided that the underlying integers of all enumerated values input
to the block are within the range of the numeric type. Otherwise, an error occurs during
simulation.

Similarly, you can use a Data Type Conversion block to cast a signal of any integer type
to an enumerated signal, provided that every value input to the Data Type Conversion
block is the underlying integer of some value in the enumerated type. Otherwise, an
error occurs during simulation.

You cannot use a Data Type Conversion block to cast a numeric signal of any non-
integer data type to an enumerated type. For example, the model used in “Simulate with

 Use Enumerated Data in Simulink Models

56-23

Enumerations” on page 56-14 needed two Data Conversion blocks to convert a sine
wave to enumerated values.

The first block casts double to int32, and the second block casts int32 to
BasicColors. You cannot cast a complex signal to an enumerated type regardless of the
data types of its real and imaginary parts.

Casting Enumerated Block Parameters

You cannot cast a block parameter of any numeric data type to an enumerated data type.
For example, suppose that an Enumerated Constant block specifies a Value of 2 and an
Output data type of Enum: BasicColors:

An error occurs because the specifications implicitly cast a double value to an
enumerated type. The error occurs even though the numeric value corresponds
arithmetically to one of the enumerated values in the enumerated type.

You cannot cast a block parameter of an enumeration to any other data type.
For example, suppose that a Constant block specifies a Constant value of
BasicColors.Blue and an Output data type of int32.

56 Enumerations and Modeling

56-24

An error occurs because the specifications implicitly cast an enumerated value to a
numeric type. The error occurs even though the enumerated value's underlying integer is
a valid int32.

See Also
enumeration | Simulink.data.getEnumTypeInfo |
Simulink.defineIntEnumType

Related Examples
• “Use Enumerated Data in MATLAB Function Blocks” on page 37-104
• “Use Enumerated Data in Generated Code”

More About
• “Simulink Enumerations” on page 56-2
• “Enumerations in Data Dictionary” on page 59-15

57

Importing and Exporting Simulation
Data

• “Using Simulation Data” on page 57-3
• “Export Simulation Data” on page 57-4
• “Data Format for Exported Simulation Data” on page 57-9
• “Data Set Conversion for Logged Data” on page 57-15
• “Convert Logged Data to Dataset Format” on page 57-19
• “Limit Amount of Exported Data” on page 57-31
• “Samples to Export for Variable-Step Solvers” on page 57-33
• “Export Signal Data Using Signal Logging” on page 57-36
• “Configure a Signal for Logging” on page 57-39
• “View the Signal Logging Configuration” on page 57-46
• “Enable Signal Logging for a Model” on page 57-52
• “Override Signal Logging Settings” on page 57-58
• “Access Signal Logging Data” on page 57-71
• “Techniques for Importing Signal Data” on page 57-75
• “Import Data to Model a Continuous Plant” on page 57-80
• “Import Data to Test a Discrete Algorithm” on page 57-82
• “Import Data for an Input Test Case” on page 57-83
• “Import Signal Logging Data” on page 57-86
• “Import Data to Root-Level Input Ports” on page 57-87
• “Import Bus Data to Root-Level Input Ports” on page 57-91
• “Import and Map Root-Level Inport Data” on page 57-100
• “Import Dataset Data” on page 57-131
• “Import MATLAB timeseries Data” on page 57-132

57 Importing and Exporting Simulation Data

57-2

• “Import Simulink.Timeseries and Simulink.TsArray Data” on page 57-134
• “Import Data Arrays” on page 57-135
• “Import MATLAB Time Expression Data” on page 57-138
• “Import Data Structures” on page 57-139
• “State Information” on page 57-144
• “Save State Information” on page 57-150
• “Load State Information” on page 57-154

 Using Simulation Data

57-3

Using Simulation Data

Working with Simulation Data

During simulation, you can:

• Import input signal and initial state data from a workspace or file.
• Export output signal and state data to a workspace or file.

Exporting (logging) simulation data provides a baseline for analyzing and debugging a
model. Use standard or custom MATLAB functions to generate simulated system input
signals and to graph, analyze, or otherwise postprocess the system outputs.

Also, import data into a model for testing and analysis, as well as to continue a paused or
stopped simulation.

57 Importing and Exporting Simulation Data

57-4

Export Simulation Data

In this section...

“Simulation Data” on page 57-4
“Approaches for Exporting Signal Data” on page 57-4
“Enable Simulation Data Export” on page 57-7
“View Logged Simulation Data With the Simulation Data Inspector” on page 57-7
“Memory Performance” on page 57-7

Simulation Data

Simulation data can include any combination of signal, time, output, state, and data
store logging data.

Exporting simulation data involves saving signal values to the MATLAB workspace or
to a MAT-file during simulation for later retrieval and postprocessing. Exporting data is
also known as “data logging” or “saving simulation data.”

If you have data logged in different formats:

• Array
• Structure
• Structure with time
• MATLAB timeseries
• ModelDataLogs

Consider converting this data to the Dataset format. This can simplify the post-
processing of data. For more information, see “Data Set Conversion for Logged Data” on
page 57-15.

You can also import the exported data to use as input for simulating a model.

Approaches for Exporting Signal Data

Exporting simulation data very often involves exporting signal data. You can use a
variety of approaches for exporting signal data.

 Export Simulation Data

57-5

Export Approach Usage Documentation

Connect a Scope block or viewer
to a signal.

If you use a Scope block
for viewing results during
simulation, consider also using
the Scope block to export data.

Save output at a sample rate
other than the base sample
rate.

Scopes store data and can be
memory intensive.

Scope

Connect a signal to a To File
block.

Consider using a To File block
for exporting large amounts of
data.

Save output at a sample rate
other than the base sample
rate.

Use the MAT-file only after the
simulation has completed.

To File

Connect a signal to a To
Workspace block.

Document in the diagram the
workspace variables used to
store signal data.

Save output at a sample rate
other than the base sample
rate.

To Workspace

Connect a signal to a root-level
Outport block.

Consider using this approach
for logging data in a top-level
model, if the model already
includes an Outport block.

Outport

57 Importing and Exporting Simulation Data

57-6

Export Approach Usage Documentation

Set the signal logging
properties for a signal.

Use signal logging to avoid
adding blocks.

Log signals based on individual
signal rates.

Data is available only when
simulation is paused or
completed.

Use signal logging to log array
of buses signals.

“Export Signal Data Using
Signal Logging” on page
57-36

Configure Simulink to export
time, state, and output data.

Consider exporting this data to
capture complete information
about the simulation as a
whole.

Outputs and states are logged
at the base sample rate of the
model.

“Data Format for Exported
Simulation Data” on page
57-9

“Limit Amount of Exported
Data” on page 57-31

“Samples to Export for Variable-
Step Solvers” on page 57-33

Log a data store. Log a data store to share data
throughout a model hierarchy,
capturing the order of all data
store writes.

“Log Data Stores” on page
58-31

Use the sim command
to log simulation data
programmatically.

Use sim to export to one data
object the time, states, and
signal simulation data.

Select the Return as single
object parameter when
simulating the model using the
sim command inside a function
or a parfor loop.

sim

 Export Simulation Data

57-7

Enable Simulation Data Export

To export the states and root-level outputs of a model to the MATLAB base workspace
during simulation of the model, use one of these interfaces:

• Configuration Parameters > Data Import/Export pane (for details, see “Data
Import/Export Pane”)

• sim command

In both approaches, specify:

• The kinds of simulation data that you want to export:

• Signal logging
• Time
• Output
• State or final state
• Data store

Each kind of simulation data export has an associated default variable. You can
specify your own variables for the exported data.

• The characteristics of the logged data, including:

• “Data Format for Exported Simulation Data” on page 57-9
• “Limit Amount of Exported Data” on page 57-31
• “Samples to Export for Variable-Step Solvers” on page 57-33

View Logged Simulation Data With the Simulation Data Inspector

To inspect exported simulation data interactively, consider using the “Customize the
Simulation Data Inspector Interface” on page 25-42.

The Simulation Data Inspector has some limitations on the kinds of logged data that it
displays. See “Limitations of the Simulation Data Inspector” on page 25-54.

Memory Performance

When exporting simulation data in a simulation mode other than Rapid Accelerator,
Simulink optimizes memory usage in the following situations.

57 Importing and Exporting Simulation Data

57-8

• When time steps happen at regular intervals, Simulink uses compressed time
representation. Simulink stores the value for the first time stamp, the length of the
interval (time step), and the total number of time stamps.

• When multiple signals use identical sequences of time stamps, the signals share a
single stored time stamp sequence. This may reduce memory use for logged data by as
much as a factor of two. An example when this memory performance can be a critical
performance factor is when logging bus signals that have thousands of bus elements.

 Data Format for Exported Simulation Data

57-9

Data Format for Exported Simulation Data

In this section...

“Data Format for Block-Based Exported Data” on page 57-9
“Data Format for Model-Based Exported Data” on page 57-9
“Signal Logging Format” on page 57-9
“Logged Data Store Format” on page 57-10
“Time, State, and Output Data Format” on page 57-10

Data Format for Block-Based Exported Data

You can use the Scope, To File, or To Workspace blocks to export simulation data.
Each of these blocks has a data format parameter.

Data Format for Model-Based Exported Data

The data format for model-based exporting of simulation data specifies how Simulink
stores the exported data.

Simulink uses different data formats, depending on the kind of data that you export. For
details, see:

• “Signal Logging Format” on page 57-9
• “Logged Data Store Format” on page 57-10
• “Time, State, and Output Data Format” on page 57-10

Signal Logging Format

Use the Dataset format for signal logging data in new models. Select the format using
the Configuration Parameters > Data Import/Export > Signal logging format
parameter.

For details, see “Specify the Signal Logging Data Format” on page 57-52.

For backwards compatibility, Simulink supports the ModelDataLogs format for signal
logging. The ModelDataLogs format will be removed in a future release. For details, see
“Migrate from ModelDataLogs to Dataset Format” on page 57-53.

57 Importing and Exporting Simulation Data

57-10

For formats other than Dataset, you can convert to the Dataset format. For more
information, see “Data Set Conversion for Logged Data” on page 57-15.

Logged Data Store Format

When you log data store data, Simulink uses a Simulink.SimulationData.Dataset
object.

For details, see “Accessing Data Store Logging Data” on page 58-33.

Time, State, and Output Data Format

For exported time, states, and output data, use one of the following formats:

• “Dataset” on page 57-10 (default)
• “Array” on page 57-11
• “Structure with Time” on page 57-11
• “Structure” on page 57-14

If you select the Configuration Parameters > Data Import/Export > Output check
box, Simulink logs fixed-point data as double. To log fixed-point data, consider using one
of these approaches:

• Signal logging — For details, see “Export Signal Data Using Signal Logging” on page
57-36.

1 In the Simulink Editor, select one or more signals.
2

Click the Simulation Data Inspector button arrow and click Log Selected
Signals to Workspace.

• To File block
• To Workspace block — In the To Workspace block parameters dialog box, enable the

Log fixed-point data as a fi object parameter.

For information about the format for logged final state data, see “State Information” on
page 57-144.

Dataset

Dataset format:

 Data Format for Exported Simulation Data

57-11

• Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB timeseries
objects allow you to work with logged data in MATLAB without a Simulink license.

• Supports logging multiple data values for a given time step, which can be important
for Iterator subsystem and Stateflow signal logging.

• Does not support logging nonvirtual bus data for code generation or Rapid Accelerator
mode.

Array

If you select this Array option, Simulink saves the states and outputs of a model in a
state and output array, respectively.

The state matrix has the name specified in the Save to workspace area (for example,
xout). Each row of the state matrix corresponds to a time sample of the states of a
model. Each column corresponds to an element of a state. For example, suppose that
your model has two continuous states, each of which is a two-element vector. Then the
first two elements of each row of the state matrix contains a time sample of the first
state vector. The last two elements of each row contain a time sample of the second state
vector.

The model output matrix has the name specified in the Save to workspace area (for
example, yout). Each column corresponds to a model output port, and each row to the
outputs at a specific time.

Note: Use array format to save your model outputs and states only if the logged data is:

• Either all scalars or all vectors (or all matrices for states)
• Either all real or all complex
• All of the same data type

If your model outputs and states do not meet these conditions, use the Structure or
Structure with time output formats (see “Structure with Time” on page 57-11).

Structure with Time

If you select this format, Simulink saves the model states and outputs in structures that
have their names specified in the Save to workspace area. By default, the structures
are xout for states and yout for output.

57 Importing and Exporting Simulation Data

57-12

The structure used to save outputs has two top-level fields:

• time

Contains a vector of the simulation times.
• signals

Contains an array of substructures, each of which corresponds to a model output port.

Each substructure has four fields:

• values

Contains the outputs for the corresponding output port.

• If the outputs are scalars or vectors, the values field is a matrix each of whose
rows represents an output at the time specified by the corresponding element of
the time vector.

• If the outputs are matrix (2-D) values, the values field is a 3-D array of
dimensions M-by-N-by-T where M-by-N is the dimensions of the output signal
and T is the number of output samples.

• If T = 1, MATLAB drops the last dimension. Therefore, the values field is an M-
by-N matrix.

• dimensions

Specifies the dimensions of the output signal.
• label

Specifies the label of the signal connected to the output port, S-Function block, or the
type of state (continuous or discrete). The label is DSTATE or CSTATE, except for S-
Function block state labels. For S-Function block state labels for discrete states, the
label is the name of the state (instead of DSTATE).

• blockName

Specifies the name of the corresponding output port or block with states.
• inReferencedModel

Contains a value of 1 if the signals field records the final state of a block that
resides in the reference model. Otherwise, the value is false (0).

 Data Format for Exported Simulation Data

57-13

The following example shows the structure-with-time format for a nonreferenced model.

xout.signals(1)

ans =

 values: [296206x1 double]

 dimensions: 1

 label: 'CSTATE'

 blockName: 'vdp/x1'

 inReferencedModel: 0

The structure used to save states has a similar organization. The states structure has
two top-level fields:

• time

The time field contains a vector of the simulation times.
• signals

The field contains an array of substructures, each of which corresponds to one of the
states of the model.

Each signals structure has four fields: values, dimensions, label, and blockName.
The values field contains time samples of a state of the block specified by the
blockName field. The label field for built-in blocks indicates the type of state: either
CSTATE (continuous state) or DSTATE (discrete state). For S-Function blocks, the label
contains whatever name is assigned to the state by the S-Function block.

The time samples of a state are stored in the values field as a matrix of values. Each
row corresponds to a time sample. Each element of a row corresponds to an element of
the state. If the state is a matrix, the matrix is stored in the values array in column-
major order. For example, suppose that the model includes a 2-by-2 matrix state and that
51 samples of the state are logged during a simulation run.

The values field for this state would contain a 51-by-4 matrix. Each row corresponds
to a time sample of the state, and the first two elements of each row correspond to the
first column of the sample. The last two elements correspond to the second column of the
sample.

57 Importing and Exporting Simulation Data

57-14

Note: Simulink can read back simulation data saved to the MATLAB workspace in the
Structure with time output format. See “Examples of Specifying Signal and Time
Data” on page 57-142 for more information.

Structure

This format is the same as for Structure with time output format, except that
Simulink does not store simulation times in the time field of the saved structure.

 Data Set Conversion for Logged Data

57-15

Data Set Conversion for Logged Data

In this section...

“Why Convert to Dataset Format” on page 57-15
“Results of Conversion” on page 57-16
“Dataset Conversion Limitations” on page 57-18

Why Convert to Dataset Format

You can use the Simulink.SimulationData.Dataset constructor to convert a MATLAB
workspace variable that contains data that was logged in one of these formats
to Dataset format:

• Array
• Structure
• Structure with time
• MATLAB times eries
• ModelDataLogs

Converting data from other Simulink logging formats to Dataset format simplifies
writing scripts to post-process data logged. Some formats come from the logging
techniques that Simulink supports. For example, for models with multiple To Workspace
blocks using different data formats or for models that use To Workspace blocks and log
signals using ModelDataLogs format.

Different simulation modes have different levels of support for data logging formats.
Switching between Normal and Accelerator modes can require changes to the logging
formats used.

The conversion to Dataset format also makes it easier to take advantage of features
that require Dataset format. You can easily convert data logged in earlier releases that
used a format other than Dataset to work well with Dataset data in a more recent
release.

The Dataset format:

• Uses MATLAB timeseries objects to store logged data, which allows you to work with
logging data in MATLAB without a Simulink license. For example, to manipulate the

57 Importing and Exporting Simulation Data

57-16

logged data, you can use MATLAB time-series methods such as filter, detrend,
and resample.

• Supports logging multiple data values for a given time step, which is important for
Iterator subsystem and Stateflow signal logging.

By default, the resulting Dataset object uses the variable name as its name. You can
use a Name-Value pair to specify a Dataset name.

You can use the Simulink.SimulationData.DataSet.concat method to
combine Dataset objects into one concatenated Dataset object.

Results of Conversion

Dataset objects hold data as elements. To display the elements of a Dataset variable,
enter the variable name at the MATLAB command prompt. The elements of Dataset
objects are different types, depending on the data they store. For example, signal logging
stores data as Simulink.SimulationData.Signal elements and state logging in
Dataset format stores data as Simulink.SimulationData.State elements. Each
element holds data as a MATLAB time-series object. At conversion, the elements and
time-series field populate as much as possible from the converted object.

Format Conversion Result Notes

MATLAB time series If you log nonbus data, during conversion,
the software first adds the data as a
Simulink.SimulationData.Signal object. It then
adds that object as an element of the newly created
Dataset.

If you log bus data in time-series format, one
time series corresponds to each element of a
bus. Converting arranges the logged data as a
structure with time-series objects as leaf nodes.
This structure hierarchy matches the bus hierarchy.
Conversion of this type of structure of time-
series objects adds the whole structure to a
Simulink.SimulationData.Signal object. It then
adds that object as an element of the data set.

 Data Set Conversion for Logged Data

57-17

Format Conversion Result Notes

Time-series objects hold relevant information such as
block path and time stamps. The conversion tries to
preserve this information.

Structure and structure with
time

Structure and structure with time formats do not
always contain as much information as if you log
in Dataset format. However, before converting
structure and structure with time formats, the data
structure must have time and signals fields.

Conversion populates a
Simulink.SimulationData.Signal object with
the structure and adds it as an element of the data
set. If other information is available, converting
also adds it to the element or time-series values.
For example, if the structure has a field called
blockName, converting adds it to the block path.
Otherwise, the block path is empty.

When scope data is logged in structure format,
the logged structure has a PlotStyle field. The
software uses this field to set the interpolation in the
Dataset object.

Array Arrays contain little information. For example, there
is no block path information.

Conversion adds the array to a
Simulink.SimulationData.Signal object and
adds it as an element of the Dataset object. The
conversion leaves unavailable information such as
block path and time stamp fields as either empty or
with default values.

ModelDataLogs Converts data from ModelDataLogs format to
Dataset format.

57 Importing and Exporting Simulation Data

57-18

Dataset Conversion Limitations

• Converting logged data to Dataset format results in a Dataset object that contains
all of the information that the original logged data included. However, if there is no
corresponding information for the other Dataset properties, the conversion uses
default values for that information.

• To log variable-size signals, use the To Workspace block. If you convert data
logged with To Workspace to be Dataset format, you lose the information about the
variable-size signals.

• When you log a bus signal in array, structure, or structure with time formats, the
logged data is organized with the first column containing the data for the first signal
in the bus, the second column containing data for the second bus signal, and so on.
When you convert that data to Dataset, the Dataset preserves that organization.
But if you log the bus signal in Dataset format without conversion, the conversion
captures the bus data as a structure of time-series objects.

• If the logged data does not include a time vector, when you convert that data to
Dataset, the conversion inserts a time vector, with one time step for each data value.
However, the simulation time steps and the Dataset timesteps can vary.

• Dataset format ignores the specification of frame signals. Conversion of structure or
structure with time data to Dataset reshapes the data for logged frame signals.

See Also
Simulink.SimulationData.Dataset

Related Examples
• “Convert Logged Data to Dataset Format” on page 57-19

 Convert Logged Data to Dataset Format

57-19

Convert Logged Data to Dataset Format

In this section...

“Convert Workspace Data to Dataset” on page 57-19
“Convert Structure Without Time to Dataset” on page 57-21
“Programmatically Access Logged Signal Data Saved in Dataset Format” on page
57-25

Convert Workspace Data to Dataset

This example shows how to convert MATLAB time-series data to Dataset format.
myvdp_timeseries is the vdp model with two To Workspace blocks configured for
simout and simout1 logging data in MATLAB time-series format. Consider using a
procedure like this one if you have models that use To Workspace blocks to log data to
MATLAB time-series format.

57 Importing and Exporting Simulation Data

57-20

Use the Simulink.SimulationData.Dataset constructor to convert the MATLAB time-
series data to Dataset format and then concatenate the two data sets.

1 Starting with the vdp model, add two To Workspace blocks to the model as shown.
2 Set the Save format parameter of both blocks. Set Timeseries.
3 Save the model as myvdp_timeseries.
4 Simulate the model.

The simulation logs data using the To Workspace blocks.
5 Access the signal logging format, logsout.

logsout

logsout =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'logsout'

 Total Elements: 2

 Elements:

 1: 'x1'

 2: 'x2'

 -Use get or getElement to access elements by index or name.

 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

6 Convert the MATLAB time-series data from both To Workspace blocks to Dataset.

ds = Simulink.SimulationData.Dataset(simout);

ds1 = Simulink.SimulationData.Dataset(simout1);

ds is the variable name of the first To Workspace block data. ds1 is the variable
name of the second To Workspace block data.

7 Concatenate both datasets into dsfinal. Observe that the format of dsfinal matches
that of logsout.

dsfinal = ds.concat(ds1)

 Convert Logged Data to Dataset Format

57-21

dsfinal =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'simout'

 Total Elements: 2

 Elements:

 1: 'x1'

 2: 'x2'

 -Use get or getElement to access elements by index or name.

 -Use addElement or setElement to add or modify elements.

 Methods, Superclasses

Convert Structure Without Time to Dataset

This example shows how to convert structure without time data to Dataset format.
myvdp_structure is the vdp model with two To Workspace blocks configured for
simout and simout1 logging data in structure format, as shown.

57 Importing and Exporting Simulation Data

57-22

If you have models that use To Workspace blocks to log data to structure format, consider
using a procedure like this one to convert them to Dataset format.

1 Starting with the vdp model, add two To Workspace blocks to the model as shown.

 Convert Logged Data to Dataset Format

57-23

2 In the Save format parameter of both blocks, select Structure.
3 Enable signal logging for the two signals going to the two To Workspace blocks to log

in Ds format.
4 Save the model as myvdp_structure.
5 Simulate the model.

The simulation logs data using the To Workspace blocks.
6 Convert the structure data from both To Workspace blocks to Dataset.

ds = Simulink.SimulationData.Dataset(simout);

ds1 = Simulink.SimulationData.Dataset(simout1);

simout is the variable name of the first To Workspace block data. simout1 is the
variable name of the second To Workspace block data.

57 Importing and Exporting Simulation Data

57-24

With the conversion of structure without time or an array, time starts at t=0 and
increments by 1.

7 Get the values of the first element in ds.
ds.get(1).Values.Time

ans =

 0

 1

 2

 3

 .

 .

 .

 61

 62

 63

8 Get the time values of the first element from signal logging.
logsout.get(1).Values.Time

ans =

 0

 0.0001

 0.0006

 0.0031

 .

 .

 .

 19.2802

 19.6802

 20.0000

9 Observe the discrepancy in time stamps between

• Data logged in structure without time that you convert to Dataset format
• Data logged in Dataset format

 Convert Logged Data to Dataset Format

57-25

Programmatically Access Logged Signal Data Saved in Dataset Format

When you use the default Dataset signal logging format, Simulink saves the logging
data in a Simulink.SimulationData.Dataset object. For information about
extracting signal data from that object, see the Simulink.SimulationData.Dataset
reference page.

The Simulink.SimulationData.Dataset object contains a
Simulink.SimulationData.Signal object for each logged signal.

For bus signals, the Simulink.SimulationData.Signal object contains a structure of
MATLAB timeseries objects.

The Simulink.SimulationData.Dataset class provides two methods for accessing
the signal logging data and its associated information.

Name Description

Simulink.SimulationData.DataSet.get

You can also use the getElement method,
which shares the same syntax and behavior
as the get method.

Get element or collection of elements from
the dataset, based on index, name, or block
path.

Simulink.SimulationData.DataSet.numElementsGet number of elements in the dataset.

For examples of accessing signal logging data that uses the Dataset format, see
Simulink.SimulationData.Dataset.

Access Array of Buses Signal Logging Data

Signal logging data for an array of buses uses Dataset signal logging format.

The general approach to access data for a specific signal in an array of buses is:

1 Use a Simulink.SimulationData.Dataset.get (or getElement) method to
access a specific signal in the logged data (by default, the logsout variable).

2 To get the values, index within the array of buses.
3 Index again to get data for a specific bus.

For example, to obtain the signal logging data for the Constant6 block in the
ex_log_nested_aob model, for the topBus signal that feeds the Terminator block:

logsout.getElement('topBus').Values.a(2,2).firstConst.data

57 Importing and Exporting Simulation Data

57-26

Below are additional examples of accessing array of buses signal logging data. For
another example that shows how to log array of buses data, see sldemo_mdlref_bus.

Simple Array of Buses

The ex_log_simple_aob model includes an array of buses signal AoBSig that
combines two bus signals (busSig1 and busSig2).

To access the signal logging data for the array of buses signal, navigate through the
structure hierarchy and use an index to access a specific node. This example shows
navigation to the chirpSig signal value in busSig2.

logsout.getElement('AoBSig').Values(2).chirpSig.Data

ans=

 0

 0.9585

Array of Buses in a Bus

The ex_log_aob_in_bus model has an array of buses (s2) that feeds into bus s1.

 Convert Logged Data to Dataset Format

57-27

This example shows navigation to the Constant3 block, which is a signal in bus2.

logsout.getElement('s1').Values.s2(2).firstConst.Data

ans=

 3

 3

 3

 3

 3

 3

Nested Arrays of Buses

The ex_log_nested_aob model has an array of buses (a) that is made up of three
arrays of buses: b, c, and d. The Matrix Concatenate block combines the nested arrays of
buses into array of buses a.

57 Importing and Exporting Simulation Data

57-28

This example shows navigation to the Constant6 block.

 Convert Logged Data to Dataset Format

57-29

logsout.getElement('topBus').Values.a(2,2).firstConst.Data

ans=

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

 7

Accessing Data for Signals with a Duplicate Name

For a model with multiple signals that have the same signal name, the signal logging
data includes a Simulink.SimulationData.Signal object for each signal that has a
duplicate name.

To access a specific signal that has a duplicate name, use one of these approaches:

• Visually inspect the displayed output of Simulink.SimulationData.Signal
objects to find the data for the specific signal.

• Use the Simulink.SimulationData.Dataset.getElement method, specifying the
blockpath for the source block of the signal.

• Create a script to iterate through the signals with a duplicate signal name, using
the Simulink.SimulationData.Dataset.getElement method with an index
argument.

• Use the Signal Properties dialog box to specify a different name. Consider using this
approach when the signals with a duplicate name do not appear in multiple instances
of a referenced model in Normal mode.

1 In the model, right-click the signal.
2 In the context menu, select Properties.
3 In the Signal Properties dialog box, set Logging name to Custom and specify a

different name than the signal name.

57 Importing and Exporting Simulation Data

57-30

4 Simulate the model and use the
Simulink.SimulationData.Dataset.getElement method with a name
argument.

Tip Alternatively, you can use the Signal Logging Selector to access a specific signal. For
details, see “Override Signal Logging Settings with the Signal Logging Selector” on page
57-59.

Handling Newline Characters in Signal Logging Data

To handle newline characters in logging names in signal logging data that uses Dataset
format, use a sprintf command within a getElement call. For example:

topOut.getElement(sprintf('INCREMENT\nBUS'))

See Also
Simulink.SimulationData.Dataset

More About
• “Use the Dataset Format for Signal Logging in New Models” on page 57-53

 Limit Amount of Exported Data

57-31

Limit Amount of Exported Data

In this section...

“Decimation” on page 57-31
“Limit Data Points to Last” on page 57-31
“Logging Intervals” on page 57-32

Decimation

To skip samples when exporting data, apply a decimation factor. For example, a
decimation factor of 2 saves every other sample. By default, decimation is set to 1, which
does not skip any samples.

The approach you use to specify a decimation factor depends on the kind of logging data.

Kind of Data How to Specify

Signal logging Right-click the signal. In the Signal
Properties dialog box, select the
Decimation parameter.

Data store logging From the block parameters dialog box for
that block, open the Logging tab. Apply a
decimation factor using the Decimation
parameter.

State and output Enter a value in the field to the right of the
Decimation label.

Limit Data Points to Last

To limit the number of samples saved to be only the most recent samples, set the Limit
Data Points to Last parameter.

The approach you use depends on the kind of logging data.

Kind of Data How to Specify

Signal logging Right-click the signal. In the Signal
Properties dialog box, select the Limit
Data Points to Last parameter.

57 Importing and Exporting Simulation Data

57-32

Kind of Data How to Specify

Data store logging From the block parameters dialog box
for that block, open the Logging tab.
Select the Limit Data Points to Last
parameter.

State and output Enter a value in the field to the right of the
Limit Data Points to Last label.

Logging Intervals

To specify an interval for logging, use the Configuration Parameters > Data Import/
Export > Logging intervals parameter. Limiting logging to a specified interval allows
you to examine specific logged data without changing the model or adding complexity to a
model.

The logging intervals apply to data logged for:

• Time
• States
• Output
• Signal logging
• The To Workspace block
• The To File block

The logging intervals do not apply to final state logged data, scopes, or streaming data to
the Simulation Data Inspector.

The intervals specified with Logging intervals establish the set of times to which the
Decimation and Limit data points to last parameters apply. For example, suppose
you set the logging interval [2,4;7,9] with a fixed-step solver with a fixed-step size of
1. The logged times are 2, 3, 4, 7, 8, and 9.

For details, see “Logging intervals”.

 Samples to Export for Variable-Step Solvers

57-33

Samples to Export for Variable-Step Solvers

In this section...

“Output Options” on page 57-33
“Refine Output” on page 57-33
“Produce Additional Output” on page 57-34
“Produce Specified Output Only” on page 57-35

Output Options

Use the Output options list on the Data Import/Export configuration pane to control
how much output the simulation generates when your model uses a variable-step solver.

• Refine output (default)
• Produce additional output

• Produce specified output only

Refine Output

The Refine output option provides additional output points when the simulation
output does not include as many points as you would like. This parameter provides an
integer number of output points between time steps. For example, a refine factor of 2
provides output midway between the time steps as well as at the steps. The default refine
factor is 1.

Suppose that a sample simulation generates output at these times:

0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output at these
times:

0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

To get smoother output more efficiently, change the refine factor instead of reducing
the step size. When you change the refine factor, the solver generates additional points
by evaluating a continuous extension formula at sample points. This option changes

57 Importing and Exporting Simulation Data

57-34

the simulation step size so that time steps coincide with the times that you specify for
additional output.

The refine factor applies to variable-step solvers and is most useful when you are using
ode45. The ode45 solver is capable of taking large steps. However, when you graph
simulation output, the output from this solver sometimes is not sufficiently smooth. In
such cases, run the simulation again with a larger refine factor. A value of such as 4 for
ode45 should provide much smoother results.

Note This option helps the solver locate zero crossings, although it does not ensure that
Simulink detects all zero crossings (see “Zero-Crossing Detection” on page 3-23).

Produce Additional Output

Use the Produce additional output option to specify directly those additional times
at which the solver generates output. When you select this option, the Data Import/
Export pane displays an Output times parameter. In this parameter, enter a MATLAB
expression that evaluates to an additional time or a vector of additional times. The solver
produces hit times at the output times that you specify, in addition to the times it needs
to more accurately simulate the model.

Suppose that a sample simulation generates output at these times:

0, 2.5, 5, 8.5, 10

Choosing the Produce additional output option and specifying [0:10] generates
output at these times:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step size chosen by the variable-step
solver.

Tips

• This option helps the solver locate zero crossings, although it does not ensure that
Simulink detects all zero crossings (see “Zero-Crossing Detection” on page 3-23).

• Set the Output times parameter to a value other than the default empty matrix ([]).
• For triggered subsystems and function-call subsystems, the calling function must

inherit the sampling rate.

 Samples to Export for Variable-Step Solvers

57-35

Produce Specified Output Only

Simulink generates output at the start and stop times, in addition to the times that you
specify.

Suppose that a sample simulation generates output at these times:

0, 2.5, 5, 8.5, 10

Choosing the Produce specified output only option and specifying [1:9]
generates output at these times:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This option changes the simulation step size so that time steps coincide with the times
that you specify for producing output. The solver may hit other time steps to accurately
simulate the model. However, the output does not include these points. This option
is useful when you are comparing different simulations to check that the simulations
produce output at the same times.

Tips

• This option helps the solver locate zero crossings, although it does not ensure that
Simulink detects all zero crossings (see “Zero-Crossing Detection” on page 3-23).

• Set the Output times parameter to a value other than the default empty matrix ([]).
• In Normal, Accelerator, and Rapid Accelerator modes, Simulink generates output at

the start and stop times, as well as at the times that you specify.
• When you simulate a model in Normal mode, triggered subsystems and function-call

subsystems use the times that you specify, all of the time steps in between the values
that you specify, and the simulation start and stop times.

• For triggered subsystems and function-call subsystems, the calling function must
inherit the sampling rate.

57 Importing and Exporting Simulation Data

57-36

Export Signal Data Using Signal Logging

In this section...

“Signal Logging” on page 57-36
“Signal Logging Workflow” on page 57-36
“Signal Logging in Rapid Accelerator Mode” on page 57-37
“Signal Logging for Array of Buses Signals” on page 57-38
“Signal Logging Limitations” on page 57-38

Signal Logging

To capture signal data from a simulation, in most cases use signal logging. Mark the
signals that you want to log and enable signal logging for the model. For details, see
“Configure a Signal for Logging” on page 57-39 and “Enable Signal Logging for a
Model” on page 57-52.

For a summary of other approaches to capture signal data, see “Export Simulation Data”
on page 57-4.

Signal Logging Workflow

To collect and use signal logging data, perform these tasks.

1 Mark individual signals for signal logging. See “Configure a Signal for Logging” on
page 57-39.

2 Enable signal logging for a model. See “Enable Signal Logging for a Model” on page
57-52.

3 Simulate the model.
4 Access the signal logging data. See “Access Signal Logging Data” on page 57-71.

Log Subsets of Signals

One approach for testing parts of a model as you develop it is to mark a superset of
signals for logging, and select different subsets of signals to log by overriding signal
logging settings. You can use the Signal Logging Selector or a programmatic interface.
See “Override Signal Logging Settings” on page 57-58.

 Export Signal Data Using Signal Logging

57-37

Use this approach to log signals in models that use model referencing. See “Models with
Model Referencing: Overriding Signal Logging Settings” on page 57-62.

Additional Signal Logging Options

In conjunction with the basic signal logging workflow, you can specify additional options
related to the data that signal logging collects and to how that data is displayed. You can:

• Specify a name for the signal logging data for a signal. See “Specify Signal-Level
Logging Name” on page 57-41.

• Control how much data the simulation generates for a signal. See “Limit the Data
Logged for a Signal” on page 57-43.

• Review the signal logging configuration for a model. See “View the Signal Logging
Configuration” on page 57-46.

• Specify the format for the signal logging data. Use the default format (Dataset)
except for backwards compatibility with older models. See “Specify the Signal Logging
Data Format” on page 57-52.

• Specify which samples to export for models with variable-step solvers. See “Samples
to Export for Variable-Step Solvers” on page 57-33.

• Configure the model to display signal logging data in the Simulation Data Inspector.
See “View Logged Signal Data with the Simulation Data Inspector” on page 57-72.

Signal Logging in Rapid Accelerator Mode

Use the Dataset format for signal logging data in Rapid Accelerator mode. Select the
format using the Configuration Parameters > Data Import/Export > Signal
logging format parameter.

For details, see “Specify the Signal Logging Data Format” on page 57-52.

Signal logging in Rapid Accelerator mode does not log the following kinds of signals.
When you update or simulate a model that contains these signals, Simulink displays a
warning that those signals are not logged.

• Signals inside Stateflow charts
• Signals that use a custom data type

You cannot use signal logging in Rapid Accelerator mode if you set the Configuration
Parameters > Solver > Sample time constraint parameter to Ensure sample
time independent.

57 Importing and Exporting Simulation Data

57-38

Signal Logging for Array of Buses Signals

Use the Dataset format for logging array of buses signals. Select the format using
the Configuration Parameters > Data Import/Export > Signal logging format
parameter.

For details, see “Specify the Signal Logging Data Format” on page 57-52.

Signal Logging Limitations

• Rapid Accelerator mode supports signal logging, with the requirements and
limitations described in “Signal Logging in Rapid Accelerator Mode” on page
57-37.

• Top-model software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulation
modes support signal logging. For a description of limitations of signal logging using
SIL and PIL modes, see “Internal Signal Logging Support” in the Embedded Coder
documentation.

• Array of buses signals support signal logging, with the requirements described in
“Signal Logging for Array of Buses Signals” on page 57-38.

• You cannot log signals in For Each subsystems.
• You cannot log local data in Stateflow Truth Table blocks.

 Configure a Signal for Logging

57-39

Configure a Signal for Logging

In this section...

“Mark a Signal for Signal Logging” on page 57-39
“Specify Signal-Level Logging Name” on page 57-41
“Limit the Data Logged for a Signal” on page 57-43
“Set Sample Time for a Logged Signal” on page 57-44

Mark a Signal for Signal Logging

Enable logging by marking a signal, using one of the following techniques:

• “Enable Signal Logging Using Simulink Editor Menu Options” on page 57-39
• “Enable Signal Logging Using the Signal Properties Dialog Box” on page 57-40
• “Enable Signal Logging Using Model Explorer” on page 57-40
• “Programmatic Interface” on page 57-40

The Simulink Editor menu options generally are the simplest way to mark signals for
signal logging

A signal for which you enable signal logging is a logged signal. By default, Simulink
displays a logged signal indicator for each logged signal.

Enable Signal Logging Using Simulink Editor Menu Options

1 In the Simulink Editor, select one or more signals.
2

Click the Simulation Data Inspector button arrow and click Log Selected
Signals to Workspace.

Alternatively, you can select one or more signals and check Simulation > Output > Log
Selected Signals to Workspace.

If you select multiple signals, the signal logging configuration that Simulink sets depends
on whether any of the selected signals are marked for signal logging.

57 Importing and Exporting Simulation Data

57-40

Signal Logging for Selected Signals Result of Enabling the Log/Unlog Selected
Signals Option

At least one of the selected signals does not
have signal logging enabled.

Enables signal logging for all of the
selected signals

All selected signals have signal logging
enabled.

Disables signal logging for all of the
selected signals

Enable Signal Logging Using the Signal Properties Dialog Box

1 In the Simulink Editor, right-click the signal.
2 From the context menu, select Signal Properties.
3 In the Signal Properties dialog box, in the Logging and accessibility tab, select

Log signal data.
4 Click OK.

Enable Signal Logging Using Model Explorer

Note: The only signals that Model Explorer displays are named signals. See “Signal
Names and Labels” on page 60-5.

1 In the Model Explorer Model Hierarchy pane, select the node that contains the
signal for which you want to enable signal logging.

2 If the Contents pane does not display the DataLogging property, set the Column
view to Signals or add the DataLogging property to the current view. For details
about column views, see “Control Model Explorer Contents Using Views” on page
11-25.

3 Enable the DataLogging property for one or more signals.

However, the Model Explorer:

• Does not display unnamed signals
• Might need to be reconfigured to display the DataLogging property (which sets up

logging for a signal)

Programmatic Interface

To enable signal logging programmatically for selected blocks, use the outport
DataLogging property. Set this property using the set_param command. For example:

 Configure a Signal for Logging

57-41

1 At the MATLAB Command Window, open a model. Type

vdp

2 Get the port handles of the signal to log. For example, for the Mu block outport
signal.

ph = get_param('vdp/Mu','PortHandles')

3 Enable signal logging for the desired outport signal.

set_param(ph.Outport(1),'DataLogging','on')

The logged signal indicator appears.

Logging Referenced Model Signals

You can log any logged signal in a referenced model. Use the Signal Logging Selector to
configure signal logging for a model reference hierarchy. For details, see “Models with
Model Referencing: Overriding Signal Logging Settings” on page 57-62.

Specify Signal-Level Logging Name

You can specify a signal-level logging name to the object that Simulink uses to store
logging data for a signal. Specifying a signal-level logging name can be useful for signals
that are unnamed or that share a duplicate name with another signal in the model
hierarchy. Specifying signal-level logging names, rather than using the names that
Simulink generates, can make the logged data easier to analyze.

To specify a signal-level logging name, use one of the following approaches:

• “Using the Simulink Editor to Specify a Signal-Level Logging Name” on page
57-42

• “Using the Model Explorer to Specify a Signal-Level Logging Name” on page 57-42
• “Programmatically Specifying a Signal-Specific Logging Name” on page 57-42

If you do not specify a custom signal-level logging name, Simulink uses the signal name.
If the signal does not have a name, the action Simulink takes depends on the signal
logging format:

• Dataset — Uses a blank name
• ModelDataLogs — Generates a default name that is composed of the block name and

port number. For example, if the block name is MyBlock and the signal being logged
is the first output of this block, Simulink generates the name SL_MyBlock1.

57 Importing and Exporting Simulation Data

57-42

Note: The signal-level logging name is distinct from the model-level signal logging name,
which is the name for the object containing all the logged signal data for the whole model.
The default model-level signal logging name is logsout. For details about the model-
level signal logging name, see “Specify a Name for the Signal Logging Data for a Model”
on page 57-57.

Using the Simulink Editor to Specify a Signal-Level Logging Name

1 In the Simulink Editor, right-click the signal.
2 From the context menu, select Signal Properties.
3 Specify the logging name:

a In the Signal Properties dialog box, select the Logging and accessibility tab.
b From the Logging name list, select Custom.
c Enter the logging name in the adjacent text field.

Using the Model Explorer to Specify a Signal-Level Logging Name

1 In the Model Explorer Model Hierarchy pane, select the node that contains the
signal for which you want to specify a logging name.

2 If the Contents pane does not display the LoggingName property, add the
LoggingName property to the current view. For details about column views, see
“Control Model Explorer Contents Using Views” on page 11-25.

3 Enter a logging name for one or more signals using the LoggingName column.

Programmatically Specifying a Signal-Specific Logging Name

Enable signal logging programmatically for selected blocks with the outport
DataLogging property. Set this property using the set_param command.

1 At the MATLAB Command Window, open a model. For example, type:

vdp

2 Get the port handles of the signal to log. For example, for the Mu block outport
signal:

ph = get_param('vdp/Mu','PortHandles');

3 Enable signal logging for the desired outport signal:

set_param(ph.Outport(1),'DataLogging','on');

 Configure a Signal for Logging

57-43

The logged signal indicator appears.
4 Issue commands that use the DataLoggingNameMode and DataLoggingName

parameters. For example:

set_param(ph.Outport(1),'DataLoggingNameMode','Custom');

set_param(ph.Outport(1),'DataLoggingName','x2_log');

Limit the Data Logged for a Signal

You can limit the amount of data logged for a signal by:

• Specifying a decimation factor
• Limiting the number of samples saved to be only the most recent samples

You can limit data logged for a signal by using the Signal Properties dialog box, the
Model Explorer, the Signal Logging Selector, or programmatically. The following sections
describe the first two approaches.

Using the Signal Properties Dialog Box to Limit the Amount of Data Logged

1 In the Simulink Editor, right-click the signal.
2 From the context menu, select Signal Properties.
3 In the Signal Properties dialog box, click the Logging and accessibility tab. Then

select one or both of these options:

• Limit data points to last
• Decimation

Using the Model Explorer to Limit Data Logged

1 In the Model Explorer Model Hierarchy pane, select the node that contains the
signal for which you want to limit the amount of data logged.

2 If the Contents pane does not display the DataLoggingDecimation property or
the DataLoggingLimitDataPoints property, add one or both of those properties
to the current view. For details about column views, see “Control Model Explorer
Contents Using Views” on page 11-25.

3 To specify a decimation factor, edit the Decimation and DecimateData properties.
To limit the number of samples logged, edit the LimitDataPoints property.

57 Importing and Exporting Simulation Data

57-44

Set Sample Time for a Logged Signal

To set the sample time for a logged signal, in the Signal Properties dialog box, use the
Sample Time option. This option:

• Separates design and testing, because you do not need to insert a Rate Transition
block to have a consistent sample time for logged signals

• Reduces the amount of logged data for a continuous time signal, for which setting
decimation is not relevant

• Eliminates the need to postprocess logged signal data for signals with different
sample times

Usage Notes

Do not specify a sample time for:

• Frame-based signals
• Conditional subsystems (for example, function-call or triggered subsystems) and

conditional referenced models, which require an inherited sample time

If you simulate in SIL mode, signal logging ignores the sample times you specify for
logged signals.

When you mark a signal for signal logging, Simulink inserts a hidden To Workspace
block. When you specify a sample time for a logged signal, Simulink inserts a hidden
Rate Transition block, as well as a hidden To Workspace block.

Specifying a sample time for signal logging does not affect the simulation result.
However, it is possible that the signal logging output for a logged signal varies depending
on whether you specify a sample rate. For example, the interpolation method can differ
depending on whether you specify a sample time for signal logging. Suppose a model
includes a continuous signal and the sample time is inherited (-1). The logged output for
that signal shows the interpolation method is linear.

 Configure a Signal for Logging

57-45

logsout.get(1).Values.DataInfo

tsdata.datametadata

 Package: tsdata

 Common Properties:

 Units: ''

 Interpolation: linear (tsdata.interpolation)

If you change the sample time to be continuous (0), the logged output for that signal
shows the interpolation method is zoh (zero-order hold).

57 Importing and Exporting Simulation Data

57-46

View the Signal Logging Configuration

In this section...

“Approaches for Viewing the Signal Logging Configuration” on page 57-46
“Use Simulink Editor to View Signal Logging Configuration” on page 57-47
“Use Signal Logging Selector to View Signal Logging Configuration” on page 57-49
“Use Model Explorer to View Signal Logging Configuration” on page 57-51

Approaches for Viewing the Signal Logging Configuration

Signal Logging Configuration
Viewing Approach

Usage Documentation

In the Simulink Editor, view
signal logging indicators.

Consider using this approach
for models that have few
signals marked for signal
logging and have a shallow
model hierarchy.

This approach avoids leaving
the Simulink Editor.

You need to open the Signal
Properties dialog box for each
signal.

“Use Simulink Editor to View
Signal Logging Configuration”
on page 57-47

Use the Signal Logging
Selector.

Consider using this approach
for models with deep
hierarchies.

View a model that has signal
logging override settings for
some signals.

View the configuration as part
of specifying a subset of signals
to log from all signals marked
for signal logging.

“Use Signal Logging Selector
to View Signal Logging
Configuration” on page 57-49

 View the Signal Logging Configuration

57-47

Signal Logging Configuration
Viewing Approach

Usage Documentation

View signal logging
configuration without
displaying the signal logging
indicators in the model.

View signal logging
configuration information
such as decimation and output
options in one window.

Use the Model Explorer. View signal logging
configuration in the context
of other model component
properties.

You may need to adjust the
column view to display signal
logging properties.

“Use Model Explorer to View
Signal Logging Configuration”
on page 57-51

Use Simulink Editor to View Signal Logging Configuration

By default, Simulink Editor displays an indicator on each signal that is marked for signal
logging. To view the signal logging setting for a signal:

1 Right-click the signal. From the context menu, select Signal Properties.
2 Select the Logging and accessibility tab.

57 Importing and Exporting Simulation Data

57-48

For example, in the following model the output of the Sine Wave block is logged:

If you use the command-line interface to override logging for a signal, the Simulink
Editor continues to display the signal logging indicator for that signal. When you
simulate the model, Simulink displays a red signal logging indicator for all signals
marked to be logged, reflecting any overrides. For details about configuring a signal for
logging, see “Configure a Signal for Logging” on page 57-39.

 View the Signal Logging Configuration

57-49

A logged signal can also be a test point. See “Test Points” on page 60-57 for
information about test points.

To turn the display of logging indicators off, clear Display > Signals & Ports >
Testpoint & Logging Indicators.

Use Signal Logging Selector to View Signal Logging Configuration

1 Open the model for which you want to view the signal logging configuration.
2 Open the Signal Logging Selector, using one of the following approaches:

• In the Configuration Parameters > Data Import/Export pane, in the
Signals area, select the Configure Signals to Log button.

If necessary, select Signal logging to enable the Configure Signals to Log
button.

• For a model that includes a Model block, you can also use the following approach:

a In the Simulink Editor, right-click a Model block.
b In the context-menu, select Log Referenced Signals.

3 In the Model Hierarchy pane, select the model node for which you want to view the
signal logging configuration. For example:

To expand a node in the Model Hierarchy pane, right-click the arrow to the left of the
node.

If no signals for a node are marked for signal logging, the Contents pane is empty.

If you open the Signal Logging Selector for a model that uses model referencing, then
in the Model Hierarchy pane, the check box to the left of a model node indicates the
override configuration of the node.

57 Importing and Exporting Simulation Data

57-50

Check Box Signal Logging Configuration

For the top-level model node, logs all logged signals in the top
model.

For a Model block node, logs all logged signals in the model
reference hierarchy for that block.
For the top-level model node, disables logging for all logged
signals in the top model.

For a Model block node, disables logging for all signals in the
model reference hierarchy for that block.
For the top-level model node, logs all logged signals that have
the DataLogging setting enabled.

For a Model block node, logs all logged signals in the model
reference hierarchy for that block that have the DataLogging
setting enabled.

Viewing the Signal Logging Configuration for Subsystems, Masked Subsystems, and Linked
Libraries

The following table describes default Model Hierarchy pane display of subsystems,
masked subsystems, and linked library nodes.

Node Display Default

Subsystem Displays subsystems all that include logged
signals

Masked subsystem Does not display masked subsystems
Linked library Displays all subsystems that include logged

signals

You can control how the Model Hierarchy pane displays subsystems, masked
subsystems, and linked libraries. Use icons at the top of the Model Hierarchy pane
or use the View menu, using the same approach as you use in the Model Explorer. For
details, see “Displaying Linked Library Subsystems” on page 11-13 and “Displaying
Masked Subsystems” on page 11-13.

• To display all subsystems, including subsystems that do not include signals
marked for logging, select the icon or View > Show All Subsystems. This

 View the Signal Logging Configuration

57-51

subsystem setting also applies to masked subsystems, if you specify to display masked
subsystems.

• To display masked subsystems with logged signals, use the icon or View > Show
Masked Subsystems

• To display linked libraries, use the icon or View > Show Library Links

Filtering Signal Logging Selector Contents

To find a specific signal or property value for a signal, use the Filter Contents edit
box. Use the same approach as you use in the Model Explorer; for details, see “Filtering
Contents” on page 11-44.

Highlighting a Block in a Model

To use the Model Hierarchy pane to highlight a block in model, right-click the block or
signal and select Highlight block in model.

Use Model Explorer to View Signal Logging Configuration

1 Open the model for which you want to view the signal logging configuration. Select
the top-level model in a model reference hierarchy to access the logging configuration
information for referenced models.

2 In the Contents pane, set Column View to the Signals view.

For further information, see “Model Explorer: Model Hierarchy Pane” on page 11-9 and
“Model Explorer: Contents Pane” on page 11-19.

57 Importing and Exporting Simulation Data

57-52

Enable Signal Logging for a Model

In this section...

“Enable and Disable Logging at the Model Level” on page 57-52
“Specify the Signal Logging Data Format” on page 57-52
“Specify a Name for the Signal Logging Data for a Model” on page 57-57

Enable and Disable Logging at the Model Level

To log a signal, you must mark it for signal logging. For details, see “Configure a Signal
for Logging” on page 57-39.

Enable or disable logging globally for all signals that you mark for signal logging in a
model. By default, signal logging is enabled. Simulink logs signals only if Configuration
Parameters > Data Import/Export > Signal logging parameter is checked. If the
option is not checked, Simulink ignores the signal logging settings for individual signals.

To disable signal logging, use one of these approaches.

• Clear the Configuration Parameters > Data Import/Export > Signal logging
parameter.

• Use the SignalLogging parameter. For example:

set_param(bdroot, 'SignalLogging', 'off')

Selecting a Subset of Signals to Log

You can select a subset of signals to log for a model that has:

• Signal logging enabled
• Logged signals

For details, see “Override Signal Logging Settings” on page 57-58.

Specify the Signal Logging Data Format

The signal logging format determines how Simulink stores the logged signal data. You
can store the data using either the Dataset or ModelDataLogs format.

 Enable Signal Logging for a Model

57-53

Set the Signal Logging Format

To set the signal logging format, use either of these approaches:

• Set the Configuration Parameters > Data Import/Export > Signal logging
format parameter to either Dataset (default) or ModelDataLogs.

• Use the SignalLoggingSaveFormat parameter, with a value of Dataset or
ModelDataLogs. For example:

set_param(bdroot, 'SignalLoggingSaveFormat', 'Dataset')

Use the Dataset Format for Signal Logging in New Models

Use the Dataset format for signal logging for new models. The ModelDataLogs format
is supported for backwards compatibility. The ModelDataLogs format will be removed
in a future release.

The Dataset format:

• Provides an easy to analyze format for logged signal data for models with deep
hierarchies, bus signals, and signals with duplicate or invalid names.

• Supports signal logging in Rapid Accelerator mode.
• Avoids the limitations of the ModelDataLogs format, which Bug Report 495436

describes.

When you specify the Dataset format, Simulink stores the data using a
Simulink.SimulationData.Dataset object.

Note: Use the Dataset format to log arrays of buses.

Migrate from ModelDataLogs to Dataset Format

The ModelDataLogs logging format is supported for backwards compatibility. The
ModelDataLogs format will be removed in a future release. To enable existing models
that use ModelDataLogs format to continue to work in future releases, migrate those
models to use Dataset format.

Use the Upgrade Advisor to upgrade a model to use Dataset format, using one of these
approaches:

• In the Simulink Editor, select Analysis > Model Advisor > Upgrade Advisor

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=

57 Importing and Exporting Simulation Data

57-54

• From the MATLAB command line, use the upgradeadvisor function.

If you have already logged signal data in the ModelDataLogs format, you can
use the Simulink.ModelDataLogs.convertToDataset function to update the
ModelDataLogs signal logging dataset to use Dataset format. For example, to update
the older_model_dataset from ModelDataLogs format to Dataset format:

new_dataset = logsout.convertToDataset('older_model_dataset')

Depending upon your particular circumstances, converting a model from using
ModelDataLogs format to using Dataset format may require that you make some
modifications to your existing models and to code in callbacks, functions, scripts, or
tests. The following table identifies possible issues that you may need to address after
converting to Dataset format. The table provides solutions for each issue.

Possible Issue After Conversion to
Dataset Format

Solution

Code in existing callbacks,
functions, scripts, or tests that
used the ModelDataLogs
programmatic interface to access
data may result in an error.

Check for code that uses ModelDataLogs format
access methods. Update that code to use Dataset
format access methods.

For example, suppose existing code includes the
following line:

logsout.('Subsystem Name').X.data

Replace that code with a Dataset access method:

logsout.getElement('x').Values.data

Logging bus signals requires a
configuration parameter change.

Logging buses in Dataset format requires that
Configuration Parameters > Diagnostics >
Connectivity > Mux blocks used to create bus
signals be set to error.

To configure a model for proper bus usage, run the
Upgrade Advisor with the Check bus usage check.

Mux block signal names are lost. The Dataset format treats Mux block signals as a
vector.

If you need to identify signals by signal names,
replace Mux blocks with a Bus Creator blocks. Set

 Enable Signal Logging for a Model

57-55

Possible Issue After Conversion to
Dataset Format

Solution

Configuration Parameters > Diagnostics >
Connectivity > Mux blocks used to create bus
signals to error.

Signal Viewer cannot be used for
signal logging.

If you use the Dataset format for signal logging,
then Simulink does not log the signals to be logged in
the Signal Viewer.

Configure the signal for signal logging.
The unpack method generates an
error.

The unpack method, which is supported
for Simulink.ModelDataLogs
and Simulink.SubsysDataLogs
objects, is not supported for
Simulink.SimulationData.Dataset objects.

For example, if the logged data has three fields: x, y,
and z, then:

• For ModelDataLogs format data, the
mlog.unpack method creates three variables in
the base workspace.

• For Dataset format data, access methods by
names. For example:

x = logsout.getElement('x').Values

57 Importing and Exporting Simulation Data

57-56

Possible Issue After Conversion to
Dataset Format

Solution

The ModelDataLogs and
Dataset formats have different
naming rules for unnamed
signals.

If necessary, add signal names.

• In ModelDataLogs format, for an unnamed
signal coming from a block, Simulink assigns a
name in this form:

SL_BlockName+<portIndex>

For example, SL_Gain1.
• In Dataset format, elements do not need a name,

so Simulink leaves the signal name empty.
• For both ModelDataLogs and Dataset formats,

Simulink assigns the same name to unnamed
signals that come from Bus Selector blocks.

Test points in referenced models
are not logged.

Consider enabling signal logging for test points in a
referenced model.

Running or updating a model
that uses model referencing
might return a signal logging
format inconsistency error.

Follow the approach described in “Model Reference
Signal Logging Format Consistency” on page
57-56.

Model Reference Signal Logging Format Consistency

If signal logging is enabled for a top model, then the signal logging format for the non-
protected referenced models must be the same as the signal logging format for the top
model.

Simulink performs signal logging format consistency checking during model update
or when you run a simulation. Simulink does not report inconsistencies during code
generation for model reference simulation target code.

If Simulink reports a signal logging format inconsistency, then use one of the following
approaches:

• Use the Upgrade Advisor (with the upgradeadvisor function) to upgrade a model to
use Dataset format.

 Enable Signal Logging for a Model

57-57

• Use the Simulink.SimulationData.updateDatasetFormatLogging function to
convert a model and its referenced models to use Dataset format for signal logging.

• Turn off signal logging for the model, including for all referenced models, by clearing
the Configuration Parameters > Data Import/Export > Signal logging
parameter check box.

• Disable logging for all signals in this top-level Model block.

1 Select the Configuration Parameters > Data Import/Export > Configure
Signals to Log button.

2 In the Signal Logging Selector dialog box, in the Model Hierarchy pane, clear
the check box for the top Model block in the model reference hierarchy.

Specify a Name for the Signal Logging Data for a Model

You use the model-level signal logging name to access the signal logging data for a model.
The default name for the signal logging data is logsout. Specifying a model-level signal
logging name can make it easier to identify the source of the logged data. For example,
you could specify the signal logging name car_logsout to identify the data as being the
signal logging data for the car model.

To specify a different model-level signal logging name, use either of these approaches:

• In the edit box next to the Configuration Parameters > Data Import/Export >
Signal logging parameter, enter the signal logging name.

• Use the SignalLoggingName parameter, specifying a signal logging name. For
example:

set_param(bdroot, 'SignalLoggingName', 'heater_model_signals')

57 Importing and Exporting Simulation Data

57-58

Override Signal Logging Settings

In this section...

“Benefits of Overriding Signal Logging Settings” on page 57-58
“Two Interfaces for Overriding Signal Logging Settings” on page 57-58
“Scope of Signal Logging Setting Overrides” on page 57-59
“Override Signal Logging Settings with the Signal Logging Selector” on page 57-59
“Override Signal Logging Settings from MATLAB” on page 57-65

Benefits of Overriding Signal Logging Settings

As you develop a model, you may want to override the signal logging settings for a
specific simulation run. You can override signal logging properties without changing the
model in the Simulink Editor.

Override signal logging properties to reduce memory overhead and to facilitate the
analysis of simulation logging results. By overriding signal logging settings, you can
avoid recompiling a model.

Overriding signal logging properties is useful when you want to:

• Focus on only a few signals by disabling logging for most of the signals marked for
logging. You can mark a superset of signals for logging, and then select different
subsets of them for logging.

• Exclude a few signals from the signal logging output.
• Override specific signal logging properties, such as decimation, for a signal.
• Collect only what you need when running multiple test vectors.

Two Interfaces for Overriding Signal Logging Settings

Use either of two interfaces to override signal logging settings:

• “Override Signal Logging Settings with the Signal Logging Selector” on page
57-59

• “Override Signal Logging Settings from MATLAB” on page 57-65

You can use a combination of the two interfaces. The Signal Logging Selector
creates Simulink.SimulationData.ModelLoggingInfo objects when

 Override Signal Logging Settings

57-59

saving the override settings. The command-line interface has properties whose
names correspond to the Signal Logging Selector interface. For example, the
Simulink.SimulationData.ModelLoggingInfo class has a LoggingMode property,
which corresponds to the Logging Mode parameter in the Signal Logging Selector.

Scope of Signal Logging Setting Overrides

When you override signal logging settings, Simulink uses those override settings when
you simulate the model.

Simulink saves in the model the signal logging override configuration that you specify.
However, Simulink does not change the signal logging settings in the Signal Properties
dialog box for each signal in the model.

In the Signal Logging Selector, if you override some signal logging settings, and then
set the Logging Mode to Log all signals as specified in model, the logging
settings defined in the model appear in the Signal Logging Selector. The override
settings are greyed out, indicating that you cannot override these settings. To reactivate
the override settings, set Logging Mode to Override signals. Using the Signal
Logging Selector to override logging for a specific signal does not affect the signal logging
indicator for that signal.

If you close and then reopen the model, the logging setting overrides that you made
are in effect, if logging mode is set to override signals for that model. When the model
displays the signal logging indicators, it displays the indicators for all logged signals,
including logged signals that you have overridden.

Note: Simulink rebuilds a model in the following situation:

1 The model contains one or more signals marked for signal logging.
2 You simulate the model in Rapid Accelerator mode.
3 You use the Signal Logging Selector or MATLAB command line to modify the signal

logging configuration.
4 You simulate the model in Rapid Accelerator mode again.

Override Signal Logging Settings with the Signal Logging Selector

1 Open the Signal Logging Selector, using one of the following approaches:

57 Importing and Exporting Simulation Data

57-60

• In the Configuration Parameters > Data Import/Export pane, in the
Signals area, select the Configure Signals to Log button.

If necessary, select Signal logging to enable the Configure Signals to Log
button.

• For a model that includes a Model block, you can also use the following approach:

a In the Simulink Editor, right-click a Model block.
b In the context-menu, select Log Referenced Signals.

2 Set Logging Mode to Override signals.

Note: The Override signals setting affects all levels of the model hierarchy. This
setting can result in turning off logging for any signal throughout the hierarchy,
based on existing settings. To review settings, select the appropriate node in the
Model Hierarchy pane.

3 View the node containing the logged signals that you want to override. If necessary,
expand nodes or configure the Model Hierarchy pane to display masked subsystems.
See “Use Signal Logging Selector to View Signal Logging Configuration” on page
57-49.

4 Override signal logging settings. Use one of the following approaches, depending on
whether or not your model uses model referencing:

 Override Signal Logging Settings

57-61

• “Models Without Model Referencing: Overriding Signal Logging Settings” on page
57-61

• “Models with Model Referencing: Overriding Signal Logging Settings” on page
57-62

Tip To open the Configuration Parameters > Data Import/Export pane from the

Signal Logging Selector, use the button.

Models Without Model Referencing: Overriding Signal Logging Settings

If your model does not use model referencing (that is, the model does not include any
Model blocks), override signal logging settings using the following procedure.

1 Open the Signal Logging Selector. In the Configuration Parameters > Data
Import/Export pane, in the Signals area, select the Configure Signals to Log
button.

• If necessary, select Signal logging to enable the Configure Signals to Log
button.

2 Set Logging Mode to Override signals.
3 View the node containing the logged signals that you want to override. If necessary,

expand nodes or configure the Model Hierarchy pane to display masked subsystems.

57 Importing and Exporting Simulation Data

57-62

See “Use Signal Logging Selector to View Signal Logging Configuration” on page
57-49.

4 In the Contents pane table, select the signal whose logging settings you want to
override.

5 Override logging settings:

• To disable logging for a signal, clear the DataLogging check box for that signal.
• To override other signal logging settings (for example, decimation), ensure that

the DataLogging check box is selected. Then, edit values in the appropriate
columns.

Models with Model Referencing: Overriding Signal Logging Settings

If your model uses model referencing (that is, the model includes at least one Model
block), override signal logging settings using the one or more of the following procedures:

• “Enable Logging for All Logged Signals” on page 57-62
• “Disable Logging for All Logged Signals in a Model Node” on page 57-63
• “Override Signal Logging for a Subset of Signals” on page 57-63
• “Override Other Signal Logging Properties” on page 57-64

Enable Logging for All Logged Signals

By default, Simulink logs all the logged signals in a model, including the logged signals
throughout model reference hierarchies.

If logging is disabled for any logged signals in the top-level model or in the top-level
Model block in a model reference hierarchy, then in the Model Hierarchy pane, the

check box to the left of that node is either solid (), if logging is disabled for some of

signals, or empty (), if logging is disabled for all of the signals.

To enable logging of all logged signals for a node:

1 Open the Signal Logging Selector. In the Configuration Parameters > Data
Import/Export pane, in the Signals area, select the Configure Signals to Log
button.

2 Set Logging Mode to Override signals.
3 View the node containing the logged signals that you want to override. If necessary,

expand nodes or configure the Model Hierarchy pane to display masked subsystems.

 Override Signal Logging Settings

57-63

See “Use Signal Logging Selector to View Signal Logging Configuration” on page
57-49.

4 In the Model Hierarchy pane, select the check box to the left of the node, so that

the check box has a check mark ().

• For the top-level model, logging is enabled for all logged signals in the top-level
model, but not for logged signals in model reference hierarchies.

• For a Model block at the top of a model referencing hierarchy, logging is enabled
for the whole model reference hierarchy for the selected referenced model.

Disable Logging for All Logged Signals in a Model Node

If signal logging is enabled for any signals in a model node, then in the Model

Hierarchy pane, the check box to the left of the node is either solid (), if logging is

enabled for some signals, or checked (), if logging is enabled for all signals.

To disable logging for all logged signals in a node of a model:

1 Open the Signal Logging Selector. In the Configuration Parameters > Data
Import/Export pane, in the Signals area, select the Configure Signals to Log
button.

2 Set Logging Mode to Override signals.
3 View the node containing the logged signals that you want to override. If necessary,

expand nodes or configure the Model Hierarchy pane to display masked subsystems.
See “Use Signal Logging Selector to View Signal Logging Configuration” on page
57-49.

4 In the Model Hierarchy pane, clear the check box to the left of the node, so that the

check box is empty ().

• For the top-level model, logging is disabled for all logged signals in the top-level
model, but not for logged signals in model reference hierarchies.

• For a Model block at the top of a model referencing hierarchy, logging is disabled
for the whole model reference hierarchy for the selected reference model.

Override Signal Logging for a Subset of Signals

To log some, but not all, logged signals in a model node:

57 Importing and Exporting Simulation Data

57-64

1 Open the Signal Logging Selector. In the Configuration Parameters > Data
Import/Export pane, in the Signals area, select the Configure Signals to Log
button.

2 Set Logging Mode to Override signals.
3 View the node containing the logged signals that you want to override. If necessary,

expand nodes or configure the Model Hierarchy pane to display masked subsystems.
See “Use Signal Logging Selector to View Signal Logging Configuration” on page
57-49.

4 In the Model Hierarchy pane, ensure that the check box for the top-level model

or Model block is either solid (), if logging is disabled for some of the signals, or

empty (), if logging is disabled for all the signals. Click the check box to cycle
through different states.

5 In the Contents pane table, for the signals that you want to log, select the check box
in the DataLogging column.

To enable logging for multiple signals, hold the Shift or Ctrl key and select a range
of signals or individual signals. Select the check box in the DataLogging column of
one of the highlighted signals.

Note: You cannot use the Signal Logging Selector to override a subset of signals for
model reference variant systems, including:

• Model reference variants
• Model blocks that contain a Subsystem Variant or model reference variant

You can override programmatically a subset of signals in those configurations. For
details, see “Override Signal Logging Settings from MATLAB” on page 57-65.

Override Other Signal Logging Properties

In addition to overriding the setting for the DataLogging property for a signal, you can
override other signal logging properties, such as decimation.

1 Open the Signal Logging Selector. In the Configuration Parameters > Data
Import/Export pane, in the Signals area, select the Configure Signals to Log
button.

 Override Signal Logging Settings

57-65

2 Set Logging Mode to Override signals.
3 View the node containing the logged signals that you want to override. If necessary,

expand nodes or configure the Model Hierarchy pane to display masked subsystems.
See “Use Signal Logging Selector to View Signal Logging Configuration” on page
57-49.

4 In the Model Hierarchy pane, ensure that the check box for the top-level model

or Model block is solid () if logging is disabled for some signals, or empty (),
if logging is disabled for all signals. Click the check box to cycle through different
states.

5 In the Contents pane table, for the signals for which you want to override logging
properties, enable logging by selecting the check box in the DataLogging column.

To enable logging for multiple signals, hold the Shift or Ctrl key and select a range
of signals or individual signals. Select the check box in the DataLogging column of
one of the highlighted signals.

6 In the Contents pane table, modify the settings for properties, such as
DecimateData and Decimation.

Override Signal Logging Settings from MATLAB

The MATLAB command-line interface for overriding signal logging settings includes:

• The DataLoggingOverride model parameter — Use to view or set signal logging
override values for a model

• The following classes:

• Simulink.SimulationData.ModelLoggingInfo — Specify signal logging
override settings for a model. This class corresponds to the overall Signal Logging
Selector interface.

• Simulink.SimulationData.SignalLoggingInfo — Override settings for a
specific signal. This class corresponds to a row in the logging property table in the
Signal Logging Selector:

57 Importing and Exporting Simulation Data

57-66

• Simulink.SimulationData.LoggingInfo — Overrides for signal logging
settings such as decimation. This class corresponds to the editable columns in a
row in the logging property table in the Signal Logging Selector.

To query a model for its signal logging override status, use the DataLoggingOverride
parameter.

To configure signal logging from the command line, use methods and properties of
the three classes listed above. To apply the configuration, use set_param with the
DataLoggingOverride model parameter.

The following sections describe how to use the command-line interface to perform some
common signal logging configuration tasks.

• “Create a Model Logging Information Object” on page 57-66
• “Specify Which Models to Log” on page 57-67
• “Log a Subset of Signals” on page 57-68
• “Override Other Signal Logging Properties” on page 57-70

Create a Model Logging Information Object

To use the command-line interface for overriding signal logging settings, first create
a Simulink.SimulationData.ModelLoggingInfo object. For example, use the
following commands to create the model logging override object for the ex_bus_logging
model and automatically add each logged signal in the model to that object:
open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_bus_logging')));

mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...

'ex_bus_logging')

mi =

 ModelLoggingInfo with properties:

 Model: 'ex_bus_logging'

 LoggingMode: 'OverrideSignals'

 LogAsSpecifiedByModels: {}

 Signals: [1x4 Simulink.SimulationData.SignalLoggingInfo]

The LoggingMode property is set to OverrideSignals, which configures the model
logging override object to log only the signals specified in the Signals property.

 Override Signal Logging Settings

57-67

To apply the model override object settings, use:

set_param(ex_bus_logging, 'DataLoggingOverride', mi);

Simulink saves the settings when you save the model.

You can control the kinds of systems from which to include logged signals. By default, the
Simulink.SimulationData.ModelLoggingInfo object includes logged signals from:

• Libraries
• Masked subsystems
• Referenced models
• Active variants

As an alternative, you can use the Simulink.SimulationData.ModelLoggingInfo
constructor and specify a Simulink.SimulationData.SignalLoggingInfo
object for each signal. To ensure that you specified valid signal logging
settings for a model, use the verifySignalAndModelPaths method with the
Simulink.SimulationData.ModelLoggingInfo object for the model.

Specify Which Models to Log

Use the LoggingMode property of a Simulink.SimulationData.ModelLoggingInfo
object to specify whether to use the signal logging settings as specified in the model and
all referenced models, or to override those settings.

You can control whether a top-level model and referenced models use override signal
logging settings or use the signal logging settings specified by the model, as described in
the Simulink.SimulationData.ModelLoggingInfo documentation.

The following example shows how to log all signals as specified in the top model and all
referenced models. The signal logging output is stored in topOut.

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_bus_logging')));

mi = Simulink.SimulationData.ModelLoggingInfo...

 ('ex_bus_logging');

mi.LoggingMode = 'LogAllAsSpecifiedInModel'

mi =

57 Importing and Exporting Simulation Data

57-68

 ModelLoggingInfo with properties:

 Model: 'ex_bus_logging'

 LoggingMode: 'LogAllAsSpecifiedInModel'

 LogAsSpecifiedByModels: {}

 Signals: []

To apply the model override object settings, use:

set_param(ex_bus_logging, 'DataLoggingOverride', mi);

The following example shows how to log only signals in the top model:

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_bus_logging')));

mi = Simulink.SimulationData.ModelLoggingInfo...

 ('ex_bus_logging');

mi.LoggingMode = 'OverrideSignals';

mi = mi.setLogAsSpecifiedInModel('ex_bus_logging',true);

To apply the model override object settings, use:

set_param(ex_bus_logging,'DataLoggingOverride', mi);

Simulink saves the settings when you save the model.

Log a Subset of Signals

For a simple model with a limited number of logged signals, you could create an
empty Simulink.SimulationData.ModelDataLogInfo object. Then create
Simulink.SimulationData.SignalLoggingInfo objects for each of the signals that
you want to log, and assign those objects to the model logging information object.

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_bus_logging')));

mdl = 'ex_bus_logging';

blk = 'ex_bus_logging/IncrementBusCreator';

blkPort = 1;

load_system(mdl);

 Override Signal Logging Settings

57-69

ov = Simulink.SimulationData.ModelLoggingInfo(mdl);

so = Simulink.SimulationData.SignalLoggingInfo(blk,blkPort);

ov.Signals(1) = so;

% apply this object so the model

set_param(mdl,'DataLoggingOverride',ov);

% Simulate

sim(mdl);

% observe that only the signal

topOut

To apply the model override object settings, use:

set_param(mdl, 'DataLoggingOverride', ov);

Simulink saves the settings when you save the model.

For a model that uses model referencing, or that is complex, to specify a
subset of logged signals to log, consider using the findSignal method with a
Simulink.SimulationData.ModelLoggingInfo object. For example, to log only one
signal from the referenced model instance referenced by :

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

 'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_bus_logging')));

mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel(...

 'ex_bus_logging');

pos = mi.findSignal({'ex_bus_logging/CounterA' ...

 'ex_mdlref_counter_bus/Bus Creator'}, 1)

pos =

 4

for idx=1:length(mi.Signals)

 mi.Signals(idx).LoggingInfo.DataLogging = (idx == pos);

57 Importing and Exporting Simulation Data

57-70

end

To apply the model override object settings, use:

set_param(ex_bus_logging,'DataLoggingOverride', mi);

Simulink saves the settings when you save the model.

Note: You can override programmatically a subset of signals for model reference variant
systems, including:

• Model reference variants
• Model blocks that contain a Subsystem Variant or model reference variant

To log a subset of signals for these model reference variant systems, set the
SignalLoggingSaveFormat parameter to Dataset.

Override Other Signal Logging Properties

In addition to overriding the setting for the DataLogging property for a signal, you can
override other signal logging properties, such as decimation.

Use Simulink.SimulationData.LoggingInfo properties to override signal logging
properties. The following example shows how to set the decimation override settings.

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

'examples', 'ex_mdlref_counter_bus')));

open_system(docpath(fullfile(docroot, 'toolbox', 'simulink', ...

 'examples', 'ex_bus_logging')));

mi = Simulink.SimulationData.ModelLoggingInfo.createFromModel...

 ('ex_bus_logging');

pos = mi.findSignal({'ex_bus_logging/CounterA' ...

 'ex_mdlref_counter_bus/Bus Creator'}, 1);

mi.Signals(pos).LoggingInfo.DecimateData = true;

mi.Signals(pos).LoggingInfo.Decimation = 2;

To apply the model override object settings, use:

set_param(ex_bus_logging,'DataLoggingOverride', mi);

Simulink saves the settings when you save the model.

 Access Signal Logging Data

57-71

Access Signal Logging Data

In this section...

“View Signal Logging Data” on page 57-71
“Signal Logging Object” on page 57-71
“View Logged Signal Data with the Simulation Data Inspector” on page 57-72
“Handling Spaces and Newlines in Logged Names” on page 57-72
“Programmatically Access Logged Signal Data Saved in ModelDataLogs Format” on
page 57-74

View Signal Logging Data

You can view the signal logging data for a paused or completed simulation, using one of
these interfaces:

• The Simulation Data Inspector
• Programmatically, using MATLAB commands

To access signal logging data programmatically, the approach you use depends on the
signal logging data format (Dataset or ModelDataLogs). For details, see:

• “Programmatically Access Logged Signal Data Saved in Dataset Format” on page
57-25

• Simulink.ModelDataLogs

Note: If you do not see logging data for a signal that you marked in the model for signal
logging, check the logging configuration using the Signal Logging Selector. Use the
Signal Logging Selector to enable logging for a signal whose logging is overridden. For
details, see “View the Signal Logging Configuration” on page 57-46 and “Override Signal
Logging Settings” on page 57-58.

Signal Logging Object

Simulink saves signal logging data in a signal logging object, which you access using a
MATLAB workspace variable.

57 Importing and Exporting Simulation Data

57-72

The type of the signal logging object depends on the signal logging format that you
choose. For details, see “Specify the Signal Logging Data Format” on page 57-52.

• Dataset format — Uses a Simulink.SimulationData.Dataset object
• ModelDataLogs format — Uses a Simulink.ModelDataLogs object

The default name of the signal logging variable is logsout. You can change the variable
name. For details, see “Specify a Name for the Signal Logging Data for a Model” on page
57-57.

View Logged Signal Data with the Simulation Data Inspector

You can use the Simulation Data Inspector to view logged signal data.

To view logged signal data with the Simulation Data Inspector, open the Simulink Editor
and use one of the following approaches:

• To display logged signals when a simulation ends or when you pause a simulation,
select Simulation > Output > Send Logged Workspace Data to Data
Inspector.

• To launch the Simulation Data Inspector to display the logged data, select
Simulation > Output > Simulation Data Inspector.

For additional information about using the Simulation Data Inspector, see “Inspect
Signal Data with Simulation Data Inspector” on page 25-2.

Handling Spaces and Newlines in Logged Names

Signal names in data logs can have spaces or newlines in their names when:

• The signal is named and the name includes a space or newline character.
• The signal is unnamed and originates in a block whose name includes a space or

newline character.
• The signal exists in a subsystem or referenced model, and the name of the subsystem,

Model block, or of any superior block, includes a space or newline character.

The following three examples show a signal whose name contains a space, a signal whose
name contains a newline, and an unnamed signal that originates in a block whose name
contains a newline:

 Access Signal Logging Data

57-73

The following example shows how to handle spaces or new lines in logged names, if a
model uses:

• Dataset for the signal logging format
• The default of logsout for the signal logging data

logsout

logsout =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'logsout'

 Total Elements: 3

 Elements:

 1: ''

 2: 'x y'

 3: 'a

b'

To access a signal with a space or newline, use the index. For example, to access the x y
signal:

>> logsout.getElement(2)

57 Importing and Exporting Simulation Data

57-74

Programmatically Access Logged Signal Data Saved in ModelDataLogs
Format

Note: The ModelDataLogs signal logging format is supported for backward
compatibility. For new models, use the Dataset format.

For information on extracting signal data from that object, see
Simulink.ModelDataLogs.

 Techniques for Importing Signal Data

57-75

Techniques for Importing Signal Data
In this section...

“Signal Data Import Techniques Summary” on page 57-75
“Comparison of Techniques” on page 57-76
“Time and Signal Values for Imported Data” on page 57-77

Signal Data Import Techniques Summary

Simulink provides several techniques for importing signal data into a model.

Signal Data Import Technique Description

Root-level
Inport,Trigger, Enable,
or Function-Call
Subsystem block

Supplies external inputs from the MATLAB (base), model,
or mask workspace. Specify the external inputs in the
Configuration Parameters > Data Import/Export >
Input parameter or as a sim command argument.

To import and map signal and bus data to root-level inports
at the same time, you can use the Inport Mapping tool. For
details, see “Import and Map Root-Level Inport Data” on
page 57-100. Use this method if you have many signals
to import and map.

For an example of a more manual way to import signal data
and map it to root-level inport, see “Import Data to Root-
Level Input Ports” on page 57-87. Consider this method
if you have few signals to import and map.

From File block Reads data from a MAT-file and outputs the data as a
signal.

From Workspace block Reads data from the MATLAB (base), model, or mask
workspace and outputs the data as a signal.

For an example, see “Use From Workspace Block to Import
an Input Test Case” on page 57-84.

Signal Builder block Provides a graphical interface for creating and generating
interchangeable groups of signals.

Each of these techniques:

57 Importing and Exporting Simulation Data

57-76

• Uses blocks to represent the signal data inport sources visually
• Supports data interpolation and extrapolation, which support the use of incomplete

sets of signal data
• Supports zero-crossing detection

Comparison of Techniques

Each technique is well-suited to meet one or more of the following modeling
considerations.

Modeling Consideration Suggested Technique

Purpose of importing signal data
To perform local, temporary testing by
importing a small set of signal data

• From File block
• From Workspace block
• Signal Builder block
• Root-level Inport, Trigger, Enable, or

Function-Call Subsystem block
To test a model to be used as a referenced
model

Root-level Inport, Trigger, Enable, or
Function-Call Subsystem block

To verify a model using multiple test cases Signal Builder block, using signal groups.

If the Simulink Verification and Validation
software is installed, in signal groups you
can use the Verification Manager to enable
or disable individual Model Verification
blocks. For details, see “Model Verification
Blocks and the Verification Manager”.

To perform local, temporary testing by
importing a small set of signal data

Depending on the modeling goal, as
discussed in “Time and Signal Values for
Imported Data” on page 57-77, choose
from the following techniques:

• From File block
• From Workspace block
• Signal Builder block

 Techniques for Importing Signal Data

57-77

Modeling Consideration Suggested Technique

• Root-level Inport, Trigger, Enable, or
Function-Call Subsystem block

Signal data
Very large dataset From File block, which incrementally loads

the data
Data exported using a To File block From File block
Data exported using a To Workspace block From Workspace block
Excel spreadsheet Signal Builder block, which can import

Excel spreadsheet data directly into
Simulink

Variable-size signals From Workspace block
Array of buses signals root Inport block
Data storage
In a block Signal Builder block
In the base or model workspace • From Workspace block

• Root-level Inport, Trigger, Enable, or
Function-Call Subsystem block

In a MAT-file separate from the model file From File block

Time and Signal Values for Imported Data

Depending on your model development or testing goal, the approach for specifying time
and signal values can vary. Each of these guidelines applies to one or more of the signal
data import techniques (From File, From Workspace, Signal Builder, and root-level
Inport or Trigger blocks).

Modeling Goal Time and Signal Values Additional Notes

Import data
representing a
continuous plant

Specify a time vector and signal
values extracted a continuous
plant (for example, data that
you acquire experimentally or
from the results of a previous
simulation).

In the Inport block parameters
dialog box, select Interpolate
data.

To ensure that the Simulink
variable time solver executes
at the times that you specify

57 Importing and Exporting Simulation Data

57-78

Modeling Goal Time and Signal Values Additional Notes

Use any of the data formats
listed in “Input Data” on page
57-88. Here are recommended
formats for the following
imported data sources:

• Another simulation —
Dataset

• An equation — MATLAB time
expression

• Experimental data —
MATLAB timeseries, data
array, or structure

For details, see “Specify Time
Data” on page 57-141. For
an example of using a structure
to specify the time and signal
values, see “Import Data to Model
a Continuous Plant” on page
57-80.

in the imported data, set the
Configuration Parameters >
Data Import/Export >
Output options parameter to
Produce additional output.

Test a discrete
algorithm

Use a structure, with an empty
time vector.

Specify signal values, but no
time vector. (One signal value is
read at each time step, using the
sample time of the source block.)

For an example of using a
structure to specify the signal
values, see “Import Data to Test
a Discrete Algorithm” on page
57-82.

In the Inport block parameters
dialog box, clear Interpolate
data.

 Techniques for Importing Signal Data

57-79

Modeling Goal Time and Signal Values Additional Notes

Create an input
test case

(An input test
case is typically
composed of steps
and ramps, with
discontinuities.)

Specify a time vector and signal
values, but specify only the time
steps at points where the shape
of the output jumps.

For details about specifying a
time vector, see “Specify Time
Data” on page 57-141.

Use any of the input data formats
described in “Input Data” on page
57-88, except for MATLAB
time expressions.

Select the Interpolate data
parameter.

For the input, consider using
a From Workspace, From File,
or Signal Builder block, which
trigger a zero-crossing at the
discontinuities.

For examples of using a From
Workspace block and a Signal
Builder block, see “Import Data
for an Input Test Case” on page
57-83.

57 Importing and Exporting Simulation Data

57-80

Import Data to Model a Continuous Plant

In this section...

“Share Simulation Data Across Models” on page 57-80
“Example of Importing Data to Model a Continuous Plant” on page 57-80

Share Simulation Data Across Models

When reusing data from a variable step size simulation for simulation in another model,
the second simulation must read the data at the same time steps as the first simulation.

The following example illustrates how to reuse signal logging data from the simulation of
one model in the simulation of a second model. For more information, see “Import Signal
Logging Data” on page 57-86.

Example of Importing Data to Model a Continuous Plant

1 Open the ex_data_import_continuous model.

This model uses the ode15s solver and produces continuous signals.
2 To use the output of this model as input to the simulation of another model, log the

signal that you want to reuse. In the Simulink Editor, select that signal, click the

Simulation Data Inspector button arrow and click Log Selected Signals
to Workspace.

Note: To enable signal logging, select the Configuration Parameters > Data
Import/Export > Signal logging parameter. This model has Signal logging
enabled, and has the Signal logging format parameter set to Dataset.

3 Simulate the model.

 Import Data to Model a Continuous Plant

57-81

Simulating the model saves a variable-step signal to the workspace, using the
logsout variable. The signal logging output is a Simulink.SimulationData.Dataset
object.

Use the Simulink.SimulationData.Dataset.getElement method to
access the logged data. The logged data for individual signals is stored in
Simulink.SimulationData.Signal objects. For this model, there is one logged
signal: StepResponse.

4 Open a second model, named ex_data_import_continuous_second.

You can configure this second model to simulate using the logged data from the first
model. In this example, the second model uses a root-level Inport block to import the
logged data. The Inport block has the Interpolate data option selected.

5 In the second model, select the Configuration Parameters > Data Import/
Export > Input parameter.

Use the Simulink.SimulationData.Signal.getElement method to specify the
StepResponse signal element, as shown below:

6 Specify that for the second model, the Simulink solver runs at the time steps
specified in the saved data (u). In the Data Import/Export pane, set the Output
options parameter to Produce additional output and the Output times
parameter to:

logsout.getElement('StepResponse').Values.Time

7 Simulate the second model.

Note: Simulink does not feed minor time-step data through root input ports. For details
about minor time steps, see “Minor Time Steps” on page 3-22.

57 Importing and Exporting Simulation Data

57-82

Import Data to Test a Discrete Algorithm

In this section...

“Specify a Signal-Only Structure” on page 57-82
“Example of Importing Data to Test a Discrete Algorithm” on page 57-82

Specify a Signal-Only Structure

To import data for a discrete signal, specify a signal-only structure as the input value. Do
not specify a time vector.

Example of Importing Data to Test a Discrete Algorithm

1 Set the sample time for the Inport, Trigger, or From Workspace block.
2 For the data that you want to import, specify a structure variable that does not

include a time vector. For example, for the variable called import_var:

import_var.time = [];

import_var.signals.values = [0; 1; 5; 8; 10];

import_var.signals.dimension = 1;

The input for the first time step is read from the first element of an input port value
array. The value for the second time step is read from the second element of the
value array, and so on.

For details about how to specify the signal value and dimension data, see “Specify
Signal Data” on page 57-140.

3 In the block parameters dialog box for the block that imports the data, clear the
Interpolate data parameter.

4 If you are using a From Workspace block to import data, set the Form output after
final data value by parameter to a value other than Extrapolation.

 Import Data for an Input Test Case

57-83

Import Data for an Input Test Case

In this section...

“Guidelines for Importing a Test Case” on page 57-83
“Example of Test Case Data” on page 57-83
“Use From Workspace Block to Import an Input Test Case” on page 57-84
“Use Signal Builder Block to Import an Input Test Case” on page 57-85

Guidelines for Importing a Test Case

Typically when importing a test case in Simulink, you want to:

• Create a signal that has ramps and steps. In other words, the signal has one or more
discontinuities.

• Create the signal using the fewest points possible.
• Have the Simulink solver execute at the specified discontinuities.

To import this signal in Simulink, use a From Workspace, From File, or Signal Builder
block, all of which support zero-crossing detection.

Example of Test Case Data

The following is an example of test case data:

57 Importing and Exporting Simulation Data

57-84

The following two examples use this test case data.

Use From Workspace Block to Import an Input Test Case

1 Open the model ex_data_import_test_case_from_workspace.

2 Enable zero-crossing detection. In the From Workspace block dialog, select Enable
zero-crossing detection.

3 Create a signal structure for the test case. At each discontinuity, enter a duplicate
entry in the time vector. As described in the From Workspace block documentation,

 Import Data for an Input Test Case

57-85

this generates a zero-crossing and forces the variable-step solver to take a time step
at this exact time.

Define the var structure representing the test case:

var.time = [0 1 1 5 5 8 8 10];

var.signals.values = [0 0 2 2 2 3 3 3]';

var.signals.dimensions = 1;

4 To import the test case structure, in the From Workspace block dialog, in the Data
parameter, specify var.

5 Simulate the model. The Scope block reflects the test case data.

Use Signal Builder Block to Import an Input Test Case

As an alternative to using a From Workspace block, you can use a Signal Builder block to
either create a signal interactively or to import a signal from a MAT-file.

1 Open the ex_data_import_signal_builder model.

2 Create a structure and save it in a MAT-file:

var.time = [0 1 1 5 5 8 8 10];

var.signals.values = [0 0 2 2 2 3 3 3]';

var.signals.dimensions = 1;

var.signals.label = 'var';

save var.mat var

3 Double-click the Signal Builder block to open its dialog box.
4 Select File > Import From File menu item, and select the var.mat file.
5 In the Select parameter, select Replace existing dataset. In the Data to

Import section, select the Select All check box. Confirm the selection and click OK.

The Signal Builder block display reflects the test case data.

57 Importing and Exporting Simulation Data

57-86

Import Signal Logging Data
You can log signal data from a simulation, and then import that data into a model.

The imported signal logging data provides the input for simulating the model. You can
use imported signal logging data to perform standalone simulation of a referenced model.

1 Set the Configuration Parameters > Data Import/Export > Signal logging
format parameter to Dataset.

2 Use the default signal logging output variable, logsout, or specify a variable using
the Configuration Parameters > Data Import/Export > Signal logging edit
box.

3 Simulate the parent model.

The signal logging output is a Simulink.SimulationData.Dataset object.
4 Use the Simulink.SimulationData.Dataset.getElement method to

access the logged data. The logging data for individual signals is stored in
Simulink.SimulationData.Signal objects.

5 For the referenced model that you want to simulate standalone, use the
Simulink.SimulationData.Signal.getElement method to specify signal
elements for the Configuration Parameters > Data Import/Export > Input
parameter.

For example:

6 Simulate the referenced model.

For an example of loading logged signal data into a model:

1 Open the sldemo_mdlref_bus model.
2 In the right corner of the model, double-click the blue block labeled Interface

Specification.
3 See the “Logging Model Reference Signals” and “Loading Data” sections.

To import signal logging data for array of buses signals, see “Import Array of Buses
Data” on page 57-94.

 Import Data to Root-Level Input Ports

57-87

Import Data to Root-Level Input Ports

In this section...

“Root-Level Input Ports” on page 57-87
“Enable Data Import” on page 57-88
“Input Data” on page 57-88
“Import Bus Data” on page 57-90

Root-Level Input Ports

You can import data from a workspace and apply it to a root-level:

• Enable block
• Inport block
• Trigger block that has an edge-based (rising, falling, or either) trigger type

These blocks import data from the workspace based on the value of the Configuration
Parameters > Data Import/Export > Input parameter.

Note: You cannot use input ports to import buses in RSim or External modes. To import
bus data in Rapid Accelerator mode, use Dataset format.

You can also import data from a workspace using a From Workspace block. For details,
see the From Workspace documentation and “Import Data for an Input Test Case” on
page 57-83.

If you want to import many signals to root-level input ports, see “Import and Map Root-
Level Inport Data” on page 57-100.

If your target is an RSim target, you can import root-level inport data from workspace
variables in a MAT-file using the following command:

!model -i ws_variables.mat

The software does not support this feature for other targets. For more information, see
“Set Up Rapid Simulation Input Data” and “Run Rapid Simulations”.

57 Importing and Exporting Simulation Data

57-88

Enable Data Import

To enable data import:

1 Select the Configuration Parameters > Data Import/Export > Input
parameter.

2 Enter an external input specification in the adjacent edit box and click Apply.

For details, see “Input Data” on page 57-88.

Input Data

Use the Configuration Parameters > Data Import/Export > Input parameter to
import data from a workspace and apply it to the root-level input ports of a model during
a simulation run.

Simulink linearly interpolates or extrapolates input values as necessary if you select the
Interpolate data option for the corresponding Inport, Enable, or Trigger block.

Note: The use of the Input box is independent of the setting of the Format list on the
Data Import/Export pane.

Simulink resolves symbols used in the external input specification as described in
“Symbol Resolution” on page 4-95. See the documentation of the sim command for some
data import capabilities that are available only for programmatic simulation.

Forms of Input Data

The input data can take any of the following forms:

• A Simulink.SimulationData.Dataset object — Collection of logged data in
MATLAB timeseries format. For details, see “Import Dataset Data” on page
57-131.

• MATLAB timeseries — For details, see the following sections:

• “Import MATLAB timeseries Data” on page 57-132
• “Import Bus Data to Root-Level Input Ports” on page 57-91

• Array — See “Import Data Arrays” on page 57-135.

 Import Data to Root-Level Input Ports

57-89

• Simulink.SimulationData.Signal — For details, see “Import Signal Logging
Data” on page 57-86

• Structure — See “Import Data Structures” on page 57-139.
• A structure array containing data for all input ports.
• Empty matrix — Use an empty matrix for ports for which you want to use ground

values, without having to create data values.
• Time expression — See “Import MATLAB Time Expression Data” on page 57-138.
• Simulink.Timeseries and Simulink.TsArray — See “Import

Simulink.Timeseries and Simulink.TsArray Data” on page 57-134.

Note: The Simulink.Timeseries and Simulink.TsArray formats are supported
for compatibility with earlier releases. In new models, use one of the other supported
formats.

Input Expressions

In the Input box, specify the signal input using either of these approaches:

• Create data at runtime for each simulation time step using the input u = UT(t) for
either a MATLAB function (expressed as a string) or MATLAB expression.

• Specify the data directly, using either:

• A Simulink.SimulationData.Dataset object. Specify only one Dataset object.
• A 2D array of input values versus time for all input ports, in the form UT = [T,

U1, ... Un], where T = [t1, ..., tm]'
• A comma-separated list of variables or MATLAB expressions. Do not include a

Dataset object in a comma-separated list. For details, see “Comma-Separated
Lists for the Input Parameter” on page 57-89.

Comma-Separated Lists for the Input Parameter

Each variable or expression corresponds to a specific input port. Each variable or
expression in the list should evaluate to the appropriate object that corresponds to one of
the root-level input ports of the model, with the first item corresponding to the first root-
level input port, the second to the second root-level input port, and so on.

If you specify Dataset data, specify only one Dataset object. Do not include it in a
comma-separated list.

57 Importing and Exporting Simulation Data

57-90

For an Enable or Trigger block, the signal driving the enable or trigger port must be the
last item in the comma-separated list. If you have both an enable and a trigger port, then
specify the enable port as the next-to-last item in the list, and the trigger port as the last
item.

To simplify the specification of external data to input, you can load data for a subset of
root-level Inport ports, without having to create data structures for the ports for which
you want to use ground values. For information about ground values, see “Initialize
Signals and Discrete States” on page 60-48.

Use an empty matrix to specify ground values for a port. For example, to load data for
input ports in1 and in3, and to use ground values for port in2, enter the following in
the Input parameter:

in1, [], in3

Import Bus Data

To import bus data to root input ports, use a structure of MATLAB timeseries objects
or a Dataset object that includes a structure of timeseries objects. For details, see
“Import Bus Data to Root-Level Input Ports” on page 57-91.

You can specify an empty matrix in a comma-separated list. The empty matrix uses the
ground values for the bus signal.

For example, to load data for input ports in1 and in3, and to use ground values for port
in2, enter the following in the Input parameter:

in1, [], in3

You can initialize bus signals, including using partial specification of initialization data.
For details, see “Specify Initial Conditions for Bus Signals” on page 61-65.

For details about importing array of bus data to a root Inport block, see “Import Array of
Buses Data” on page 57-94.

 Import Bus Data to Root-Level Input Ports

57-91

Import Bus Data to Root-Level Input Ports
In this section...

“Imported Bus Data Requirements” on page 57-91
“Convert Simulink.TsArray Objects” on page 57-91
“Import Bus Data to a Root Inport” on page 57-92
“Import Array of Buses Data” on page 57-94

Imported Bus Data Requirements

To import bus data to a root-level input port, use a structure of MATLAB timeseries
objects. The timeseries objects represent the bus elements that you want to specify
values for. Any bus elements for which you do not include a field in the structure use
ground values. You can include a structure of timeseries objects as a Dataset object
element.

In the root-level Inport block, set Data type to Bus and specify the name of a bus object.

A root-level input port defined by a bus object (see Simulink.Bus) can import data from
a Dataset object or from that represent the bus elements for which you want to specify
values. Any bus elements for which you do not include a field in the structure use ground
values.

The structure of MATLAB timeseries objects must match the bus elements in terms of:

• Hierarchy
• Name of the structure field, which must match the bus element name. (The name

property of the timeseries object does not need to match the bus element name.)
• Data type (for tunable parameters)
• Dimensions
• Complexity

The order of the structure fields does not have to match the order of the bus elements.

Convert Simulink.TsArray Objects

If you use logged data from a model whose Configuration Parameters > Data
Import/Export > Signal logging format parameter is set to ModelDataLogs format

57 Importing and Exporting Simulation Data

57-92

instead of the default Dataset format, consider converting the data to a structure of
MATLAB timeseries objects. The ModelDataLogs format is supported for backwards
compatibility. The ModelDataLogs format will be removed in a future release.

Convert to a Structure of Timeseries Objects

To create a structure of MATLAB timeseries objects from a Simulink.TsArray
object, use Simulink.SimulationData.createStructOfTimeseries. For example,
if tsa is a Simulink.TsArray object:

input = Simulink.SimulationData.createStructOfTimeseries(tsa);

Note: If you use a structure of MATLAB timeseries objects for a root Inport block in a
model that has multiple root Inport blocks, all the root Inport blocks must use MATLAB
timeseries objects. Convert any root Inport block data that uses Simulink.TsArray
or Simulink.Timeseries objects to be MATLAB timeseries objects.

Import Bus Data to a Root Inport

Assume that you have a model set up as follows:

• The TopBusObject bus object has two elements:

• c

• s1, which is a sub-bus that has two elements: a and b.

• The model has two root Inport blocks: In1 and In2.

• The In1 Inport block imports non-bus data.
• The In2 Inport block imports bus data of type TopBusObject.

1 Create a MATLAB timeseries object for each root Inport or Trigger block for which
you want to import non-bus data.

 Import Bus Data to Root-Level Input Ports

57-93

For example:

N = 10;

Ts = 1;

t1 = ((0:N)* Ts)';

d1 = sin(t1);

in1 = timeseries(d1,t1)

2 Create a structure of MATLAB timeseries objects, with one timeseries object for
each leaf bus element for which you do not want to use ground values.

For example, to specify non-ground values for all the elements in the s2 bus:

in2.c = timeseries(d1,t1);

in2.s1.a = timeseries(d2,t2);

in2.s1.b = timeseries(d3,t3);

The MATLAB timeseries objects that you create must match the corresponding
bus elements, as described in “Imported Bus Data Requirements” on page 57-91.

To determine the number of MATLAB timeseries objects and data type,
complexity, and dimensions needed for creating a structure of timeseries objects
from a bus, you can use the Simulink.Bus.getNumLeafBusElements and
Simulink.Bus.getLeafBusElements methods. For example, for the bus object
MyBus:

num_el = MyBus.getNumLeafBusElements;

el_list = MyBus.getLeafBusElements;

To create a structure of MATLAB timeseries objects from a bus object
and a cell array of timeseries or Simulink.Timeseries objects, use the
Simulink.SimulationData.createStructOfTimeseries utility. For example:

input = ...

Simulink.SimulationData.createStructOfTimeseries('MyBus',...

{ts1,ts2,ts3});

The number of timeseries objects in the cell array must match the number of leaf
elements in the bus object (in this example, num_el). The data type, dimensions,
and complexity of each timeseries object must match those attributes of the
corresponding bus object leaf node (in this example, the attributes listed in
el_list).

57 Importing and Exporting Simulation Data

57-94

3 Create a Dataset object and add in1 and in2 to the data set.

ds = Simulink.SimulationData.Dataset;

ds.addElement(in1);

ds.addElement(in2);

4 In the Configuration Parameters > Import/Export > Input parameter edit box,
enter the Dataset object ds.

Import Array of Buses Data

To import (load) array of buses data using a root Inport block, use an array of structures
of MATLAB timeseries objects.

Note: You cannot use an Enable, Trigger, From Workspace, or From File block to import
data for an array of buses.

Full Specification of Data

You can use the logged data for an array of buses signal from a previous simulation as
roundtrip input to a root-level Inport block in a subsequent simulation run. The logged
data is a full specification of data for the Inport block.

If you construct an array of structures of MATLAB timeseries objects to fully specify
the data to import:

• Specify the structure fields in the same order as the signals in the bus signals.
• Do not include more fields in the structure than there are signals in the bus.

For leaf fields, match exactly the data type, dimensions, and complexity of the
corresponding signal in the bus.

Partial Specification of Data

To specify partial data for array of buses, create a MATLAB array of structures with
MATLAB timeseries objects at the leaf nodes.

 Import Bus Data to Root-Level Input Ports

57-95

The structure that you create to specify partial data must be consistent with these rules:

• You can omit fields, including leaf nodes and sub-branches. You can also omit
dimensions. If you do not specify a field, Simulink uses the ground value for that field.

• For sub-bus nodes, make the dimension of each field equal to, or smaller than, the
dimension for the corresponding node of the array of buses.

This example shows how you can specify partial data to be imported using a root
Inport block whose data type is defined as bus object MyBus. You can open the model
(ex_partial_loading_aob_model) and the MATLAB code that defines the data to
import (ex_partial_loading_aob_data.m).

When you simulate ex_partial_loading_aob_model, it looks like this:

The input Inport block uses the MyBus bus object as its data type.

57 Importing and Exporting Simulation Data

57-96

The MyBus array of buses includes MyBus(1) and MyBus(2). The port dimension is set
to 2 to reflect the two buses in the array of buses, and Output as nonvirtual bus is
enabled.

Here are the elements of the array of buses, which includes MyBus(1) and MyBus(2).
The color highlighting shows the nodes of the array of buses for which data is being
imported.

 Import Bus Data to Root-Level Input Ports

57-97

MyBus(1)
X

A

B(5)

Y(1)

C

D

Y(2)

C

D

Y

Z

Y(2)

C

D

MyBus(2)
X

A

B(5)

Y(1)

C

D

Y

Z

C

D

Y(3

C

D

Y(3

Here is MATLAB code that defines the data to import. The color that highlights the code
matches the color of the corresponding node in the array of buses. To view the code used
in this model, open the MATLAB code file ex_partial_loading_aob_data.m.

57 Importing and Exporting Simulation Data

57-98

 Import Bus Data to Root-Level Input Ports

57-99

In the code that defines the import data:

• The timeseries object MyBusValue specifies the data for the highlighted nodes.
• The timeseries object BT for MyBus(2), because BT is a leaf node, it must match

exactly the dimensions, data type, and complexity of the corresponding bus element.
• The structure specifies data for Y(2). You can skip the first and last sub-buses of Y

(that is, Y(1) and Y(3)).

This example specifies data for Y(2); you can skip the first and last sub-buses of Y (that
is, Y(1) and Y(3)).

After you define the MyBusValue variable for the import data, set the Configuration
Parameters > Data Import/Export > Input parameter to MyBusValue.

57 Importing and Exporting Simulation Data

57-100

Import and Map Root-Level Inport Data

In this section...

“Root Inport Mapping” on page 57-100
“Importing and Mapping Workflow” on page 57-101
“Identify Signal Data to Import and Map” on page 57-101
“Import Signal and Bus Data” on page 57-105
“View and Inspect Signal Data” on page 57-107
“Select Map Mode” on page 57-110
“Set Options for Mapping” on page 57-111
“Map Data” on page 57-112
“Understand Mapping Results” on page 57-113
“Export Data” on page 57-116
“Work with Scenarios” on page 57-117
“Convert Test Harness Model to Harness-Free Mode” on page 57-119
“Converting Harness-Driven Models to Use Harness-Free External Inputs” on page
57-120
“Import Test Vectors from Simulink Design Verifier Environment” on page 57-126
“Alternative Workflows to Load Data” on page 57-127
“Create Custom Mapping File Function” on page 57-128

Root Inport Mapping

To import, visualize, and map signal and bus data to root-level inports, use the Root
Inport Mapping tool. For alternative ways to import data, see “Techniques for Importing
Signal Data” on page 57-75.

To start Root Inport Mapping, in the Simulink Editor for your model, click the Connect
Input button in Simulation > Model Configuration Parameters > Data Import/
Export. The model name displays in the top left of the tool.

 Import and Map Root-Level Inport Data

57-101

Importing and Mapping Workflow

1 Identify the signals you want to import and map to the model root-level inports (see
“Identify Signal Data to Import and Map” on page 57-101).

2 Import data (see “Import Signal and Bus Data” on page 57-105).
3 Visualize data (see “View and Inspect Signal Data” on page 57-107).
4 Determine how you want to map the data, for example, by block path or signal name,

(see “Select Map Mode” on page 57-110).
5 Select options to map signals (see “Set Options for Mapping” on page 57-111).
6 Map the data (see “Map Data” on page 57-112).
7 Save data for future reference or for others to use (see “Export Data” on page

57-116).
8 Save the current Root Inport Mapping scenario for future reference or to share with

others (see “Work with Scenarios” on page 57-117).

To create a custom mapping file function to map data to root-level inports, see “Create
Custom Mapping File Function” on page 57-128.

Identify Signal Data to Import and Map

You can import data from these sources.

Data Source Description

Base workspace You can selectively import from the base workspace. If there are
overlapping signal names, the most recently imported signal
overwrites the signal already loaded in the Root Inport Mapping
tool. For more information on supported data formats, see
“Supported Base Workspace and MAT-File Formats” on page
57-102.

Data files You can selectively import signals contained in MAT-files and
Microsoft Excel files. Each time you import the contents of one of
these files, the contents overwrite all existing data already loaded
in the Root Inport Mapping tool.

• For more information on supported data formats in MAT-files,
see “Supported Base Workspace and MAT-File Formats” on page
57-102.

57 Importing and Exporting Simulation Data

57-102

Data Source Description

• For more information on supported data formats in Excel files,
see “Supported Excel File Formats” on page 57-104.

Supported Base Workspace and MAT-File Formats

The Root Inport Mapping tool supports these MATLAB data types or formats.

Data Formats Block Name Block Path Signal Name Port Order Custom

Simulink.SimulationData.Dataset

Timeseries (MATLAB and
Simulink) (only for

Simulink
timeseries)

Simulink.SimulationData.-

Signal

Stateflow.SimulationData.-

State

Structure with Time, Structure
Without Time

Data Array

Array of Buses

“Specifying Function-Call
Inputs” on page 9-13

For example, a signal data MAT-file with three signals (signal1, signal2, and signal3)
with block path specified might have workspace variables as shown in this code sample.
This file has signals that have signal names, block names, block paths, and port order
index values, which enables mapping the data using Signal Name, Block Name, Block
Path, or Port Order mapping mode. If there are corresponding root-level inports with
corresponding port order, signal names, or block paths, the tool maps the signal to those
ports.

signal1 =

 Import and Map Root-Level Inport Data

57-103

 Simulink.SimulationData.Signal

 Package: Simulink.SimulationData

 Properties:

 Name: 'signalGain5'

 BlockPath: [1x1 Simulink.SimulationData.BlockPath]

 PortType: 'outport'

 PortIndex: 1

 Values: [1x1 timeseries]

 Methods, Superclasses

>> signal2

signal2 =

 Simulink.SimulationData.Signal

 Package: Simulink.SimulationData

 Properties:

 Name: 'signalGain10'

 BlockPath: [1x1 Simulink.SimulationData.BlockPath]

 PortType: 'outport'

 PortIndex: 1

 Values: [1x1 timeseries]

 Methods, Superclasses

>> signal3

signal3 =

 Simulink.SimulationData.Signal

 Package: Simulink.SimulationData

 Properties:

 Name: 'signalGain15'

 BlockPath: [1x1 Simulink.SimulationData.BlockPath]

 PortType: 'outport'

 PortIndex: 1

 Values: [1x1 timeseries]

 Methods, Superclasses

Notes for MAT-files and base workspace:

57 Importing and Exporting Simulation Data

57-104

• Only one Simulink.SimulationData.Dataset per base workspace or MAT-file can
load. If there are multiple data sets of this type, the first data set listed alphabetically
loads.

• The number of signals with the formats structures, with and without time, must be
the same as the number of model inports, enable ports, and trigger ports.

• Data arrays are matrices. If you have a data array where the number of columns-1 is
equal to the sum of the port widths of all root-level input port blocks in the model. the
Root Inport Mapping tool tries to map this data for the entire model. In this case, you
can choose only the Port Order mapping method. If the number of columns-1 does
not equal the number of root-level inports (including trigger and enable ports), the
Root Inport Mapping tool tries to map the data array to a single inport. In this case,
you can choose any of the mapping methods.

• If your MAT-file or base workspace contains a format that Simulink does not support,
the tool ignores it.

In the case of time expressions, Simulink supports this format, but the Root Inport
Mapping tool does not.

• If you have time series data with enumeration, and the enumeration class is not on
your MATLAB path, the tool ignores that time series data.

• If data sets have non-unique element names, you can only map using the Port Order
mapping method.

Supported Excel File Formats

The Root Inport Mapping tool supports Microsoft Excel spreadsheets only for Windows
systems.

• The tool imports an Excel worksheet as a Simulink.SimulationData.Dataset object
that contains time series elements.

• The tool exports a Simulink.SimulationData.Dataset object as one Excel worksheet
that contains time series data having the same number of time elements.

For Microsoft Excel spreadsheets:

• The tool interprets each worksheet as a Simulink.SimulationData.Dataset data set.
• Each worksheet name must be a valid MATLAB variable name.
• The tool interprets the first row of a worksheet as signal names. If you do not specify

a signal name, the tool assigns a default one using the format Signal#.

 Import and Map Root-Level Inport Data

57-105

• If all columns do not have signal names, the tool assigns signal names using the
format Signal#, where # increments with each additional signal.

• All signal-name columns must be filled in. If there are empty signals, the tool returns
an error at import.

• The tool interprets the first column as time. In this column, the time values must
increase.

• The tool interprets the remaining columns as signals.

Import Signal and Bus Data

You can import signal and bus data. Before you can import bus data, you first need to set
up bus data.

Set Up Bus Data

You can import and map bus data as well as signal data. For more information on buses,
see “Bus Objects” on page 61-23.

1 In the MATLAB workspace, create or load a “Bus Objects” on page 61-23 for the
bus data you want to import and map.

2 If creating a bus object in the base workspace, save the bus object definition to a
MAT-file, for example, d_myBusObj.mat.

3 Have a different MAT-file that contains the bus data you want to import for the bus
object. This can be an existing MAT-file that already contains a MATLAB struct or
Simulink.TSArray, or you can create the bus in the base workspace and save it to
a MAT-file.

4 Set up the model to load the bus object.

Continue to “Import Data” on page 57-105.

Import Data

Before you can import data, you must set up the signals you want to import. See “Identify
Signal Data to Import and Map” on page 57-101.

1 In the Simulink model you want to import the signal or bus data to, open the
Configuration Parameters dialog box.

2 In the Data Import/Export pane, in the Load from workspace section, click
Connect Input.

57 Importing and Exporting Simulation Data

57-106

3 In the Import dialog box, select the data source, Base workspace or File (default).

• Select File to browse to the MAT-file or Excel file that contains the signals you
want to import, click Open to return to the Import dialog box, then click OK.

• Select Base workspace to display a list of base workspace variables that you can
import. Select the variables you want to import and click OK.

The Input dialog box displays the contents of the file or base workspace.

4 Select the data that you want to import, and then click OK.

The Root Inport Mapping tool updates with the imported data.

Choose your next action:

 Import and Map Root-Level Inport Data

57-107

• To visualize and inspect the signal properties of the imported data, see“View and
Inspect Signal Data” on page 57-107.

• To select a mapping mode, see “Select Map Mode” on page 57-110.

Import from Other Sources

You can also use the Root Inport Mapping tool to import signals from other sources:

• To import signals from models that contain Signal Builder blocks, see “Convert
Test Harness Model to Harness-Free Mode” on page 57-119.

• To convert and import test vectors from Simulink Design Verifier, see “Import Test
Vectors from Simulink Design Verifier Environment” on page 57-126.

View and Inspect Signal Data

After you have imported signal or bus data (see “Import Signal and Bus Data” on page
57-105), you can view and inspect signal data.

1 To plot the signal, click the check box next to the signal. If the format is a bus, click
the expander () to see and select the elements of the bus.

57 Importing and Exporting Simulation Data

57-108

2 Explore the plots using the Measure and Zoom & Pan sections of the toolstrip.

• In the Measure section, use the Data Cursors button to display one or two
cursors for the plot. These cursors display the T and Y values of a data point in
the plot. Click a point on the line to view a data point.

• In the Zoom & Pan section, select how you want to zoom and pan the signal
plots. Zooming is only for the selected axis.

To... Click...

Zoom in along the T and Y axes.

Zoom in along the time axis. After
selecting the icon, on the graph, click

 Import and Map Root-Level Inport Data

57-109

To... Click...

and hold the left mouse button and
drag the mouse to select an area to
enlarge.
Zoom in along the data value axis.
After selecting the icon, on the graph,
click and hold the left mouse button
and drag the mouse to select an area to
enlarge.
Zoom out from the graph.

Fit the plot to the graph. After selecting
the icon, click the graph to enlarge the
plot to fill the graph.
Pan the graph up, down, left, or right.
After selecting the icon, on the graph,
click and hold the left mouse button
and move the mouse to the area of the
graph that you want to view.

3 To view the properties of a signal, click inside the plot area. The signal properties
update:

57 Importing and Exporting Simulation Data

57-110

To select a mapping mode, see “Select Map Mode” on page 57-110.

Select Map Mode

Map data to root-level ports using one of these methods:

Goal Map Mode

Assign signals to ports according to the name of
the root-inport block. If the name of a signal or
bus element matches the name of a root-inport
block, the data is mapped to the corresponding
port.

Block Name

Assign signals to ports according to the block
path of the root-inport block. If the block path of
a signal matches the block path of a root-inport
block, the data is mapped to the corresponding
port.

Block Path

 Import and Map Root-Level Inport Data

57-111

Goal Map Mode

Assign signals to ports according to the name
of the signal on the port. If the signal name of a
data element matches the name of a signal at a
port, the signal is mapped to the corresponding
port.

Signal Name

Assign sequential port numbers to the imported
data, starting at 1 and map this signal to the
corresponding inport.

• If there is more data than inports, the
remaining data are mapped first to enable
and then trigger inports.

• If the data is not in the form of a data set, the
data is processed in the order in which it is
passed or parsed from the data file, i.e., the
order in which the data appears in the file.

Port Order

Assign signals to ports according to the
definitions in a custom file.

Custom

Tip When identifying signals to import, consider using a naming convention for signals
and buses such that this grouping of data (signal group) is interchangeable. For example,
you can have two MAT-files whose data has different values but the same variable
names. This convention allows you to quickly switch the groups of input data into and
out of a model.

Choose your next action:

• To select mapping options before mapping, see “Set Options for Mapping” on page
57-111.

• To map data right away, see “Map Data” on page 57-112.

Set Options for Mapping

If you want to set up mapping options, in the Root Inport Mapping toolstrip, click
Options. To map the signals, see “Map Data” on page 57-112.

57 Importing and Exporting Simulation Data

57-112

Goal Option

Compile the model and check the data types of
root-level inports and imported data.

Compile. See “Understand Mapping Results”
on page 57-113. If the comparison data is
inherited from the connected block, a warning
appears.

If you do not select this option, the tool maps
the imported data to the root-level inport but
does not compile the model. When you select this
option, the tool compares the data and inport
parameters to the root-level port and displays
the results.

Import bus data that is only partially defined. Allow partial. Select this option to make sure
that any partially specified bus data you import
maps properly to root-level inports.

Map Data

After you have imported signals or buses (see “Import Signal and Bus Data” on page
57-105), you can map data.

• In the Root Inport Mapping toolstrip, click Map.

The results of a signal mapping display on the Input Map tab.

• The Input Map tab lists the input data and the status of the mapping.

 Import and Map Root-Level Inport Data

57-113

Note: To understand the mapping results, see “Understand Mapping Results” on
page 57-113.

• The mapping definition for the input data is applied to the model.

After you save and close the model, the next time you load input data of the same signal
group into the workspace, the model uses the mapping definition during simulation.

After you save the mapping definition for a model, you can automate data loading. For
more information, see “Alternative Workflows to Load Data” on page 57-127.

Understand Mapping Results

When you complete the import and map process, the Root Inport Mapping Input Map tool
displays the results in the status area.

Status Compile Continue Without Compile

The properties of the mapped data and the
inport are appropriate for simulation.

The data type, dimension, and signal
type properties of the data and inport are
compatible.

N/A Comparison of data and root-level port
data type, dimension, and signal type
properties cannot determine if there is
a match. If you do not compile before
mapping, the tool cannot evaluate whether
all the data types match unless you
explicitly specify the inport data types.
Make sure these block parameters are set
correctly:

• Inport block parameter Data type is
not set to Inherit:auto.

• Inport block parameter Dimension is
not set to -1.

• Inport block parameter Signal type
cannot be auto.

57 Importing and Exporting Simulation Data

57-114

Status Compile Continue Without Compile

The properties of the mapped data and the
inport are not appropriate for simulation.

One or more of the data type, dimensions,
and signal type properties of the data and
inport are not compatible.

Root-level input ports that have not been mapped display as empty ([]).

This figure shows mapping successes and failures.

In the Root Inport Mapping tool, clicking Map selects the Input check box in the Data
Import/Export pane of the model Configuration Parameters dialog box. Mapping
also sets the value to the imported data variables. To apply the changes to the model
configuration, in the Data Import/Export pane, click OK in the Configuration
Parameters dialog box.

To inspect the imported data, you can:

• Connect the output to a scope, simulate the model, and observe the data.
• Log the signals, and use the Simulation Data Inspector tool to observe the data.

Select an item in the Input Map tab to highlight the associated Inport block. If there are
warnings or failures, the Inport block associated with the data appears highlighted in
the model.

• Failures display as yellow Inport blocks outlined with bold red.
• Warnings display as yellow Inport blocks outlined in orange.
• Successes display as normal Inport blocks outlined with blue.

 Import and Map Root-Level Inport Data

57-115

The figures shows that when you select the Counter block name in the Input Map tab,
the Counter block in the model is highlighted. The highlighting indicates an error.

Use the Comparison Tool to evaluate your next action. The Comparison Tool shows
the properties for the root-level inport and the signals you are trying to map to the
inport. You can tell from this table if there is a mismatch that prevents the mapping. For
example, if there is a mismatch, you can update the imported signals or edit the root-
level inport. When you are done, reimport the data to map it.

To investigate warnings and failures, click the line item you want to inspect in the Input
Map tab. The Comparison Tool lists the selected variable, including the field name, input
data, and root-level inport.

57 Importing and Exporting Simulation Data

57-116

Note: When the input is a bus, click the levels of the bus object to drill down to the
individual elements in the bus.

In some cases, the Comparison Tool shows a warning or error, but your investigation of
the elements indicates that there is no problem with mapping the data. In these cases, if
you did not select the Compile check box in the Options menu, select it and click Map
again.

Tip Each time you click a non-green status item, a new Comparison Tool instance
appears. To dock all Comparison Tool instances in one window, click the Dock button .

For more information on the Comparison Tool, see “Comparing Files and Folders”.

Export Data

To save the data you have been working on, export it to the base workspace or a data file.

1 In the Root Inport Mapping toolstrip, click Export.
2 In the Export dialog box, select:

• Base workspace to export the data to the base workspace. If the base workspace
contains signals with the same name, the tool overwrites those signals with the
exported signal.

 Import and Map Root-Level Inport Data

57-117

• File to browse to a writable folder in which to save the signals file. Enter a MAT-
file or Microsoft Excel file name. If the file exists and contains signals with the
same name, the tool overwrites those signals with the exported signal.

Work with Scenarios

The Root Inport Mapping tool uses scenarios to save a snapshot of the current state
of the imported and mapped signals in an MLDATX file. A scenario file contains
information about:

• Location of signal files (MAT-file or Microsoft Excel files)
• Location of the model
• Mapping mode
• Mapping options
• Mapped state

When sharing scenario files, include the scenario file and signal files (MAT-file or
Microsoft Excel. Place the signal files in the last known location or the MATLAB path.

Use the Root Inport Mapping tool to create new scenarios, save scenarios, and load
previously saved scenarios.

• “Create New Scenarios” on page 57-119
• “Save Scenarios” on page 57-117
• “Open Existing Scenarios” on page 57-118

Save Scenarios

You can save a scenario when the Save icon turns blue or when the model name in the
title bar is has an asterisk (*).

1 In the Root Inport Mapping toolstrip, select Save > Save As.
2 In the Save As dialog box, browse to a writable folder, specify a scenario file name,

and then click Save.

• Click Yes to save the signals and the scenario file.

If you loaded signals from the base workspace and have not saved the signals
from the scenario, the tool prompts you to save the signals to a MAT-file. If

57 Importing and Exporting Simulation Data

57-118

a MAT-file is already associated with the scenario, the tool appends the base
workspace variables to this file.

To save a scenario to an existing file (the file from which the scenario was last loaded):

1 In the Root Inport Mapping tool toolbar, click Save.
2 Browse to the MLDATX file in which to save the scenario, then click Save.

If you have not saved the signals from the scenario, the tool prompts you to save the
signals to a MAT-file.

To... Click...

Overwrite the existing MLDATX file. Yes
Exit the dialog. The tool does not save
the scenario.

No

Open Existing Scenarios

You can open previously saved scenario files in one of the following ways:

• Double-click the previously saved scenario file (*.mldatx). The Root Inport Mapping
tool opens and loads the model. Alternatively, right-click the file and select Open.

• When loading the scenario file, the tool first looks for the associated model and
MAT-file or Microsoft Excel file in the last known location, then on the MATLAB
path. An error occurs if the tool cannot find the model or signal files in these two
locations.

• If the previously saved scenario has mapped signals, then when you open the
scenario, the tool applies the mapping and adds the signals to the base workspace
so that you can simulate the model.

• Open the Root Inport Mapping tool for the model, click Open, and select the
previously saved scenario file.

If the model is already open, the new scenario overwrites the existing scenario for the
model. If there are unsaved changes in the open scenario, the tool prompts you:

To... Click...

Save the existing scenario and associated
data before loading the new scenario.

Yes

 Import and Map Root-Level Inport Data

57-119

To... Click...

Open the new scenario without saving the
existing scenario. This option also removes
the data in the existing scenario.

No

Create New Scenarios

To create a new scenario, click New. If you are working in another scenario, the Root
Inport Mapping tool displays the message:

To... Click...

Open a new scenario. This action removes
the existing scenario without saving it.

OK

Cancel. Then use the Save button to save
the existing scenario first, and click the
New button again to open a new scenario.

Cancel

Convert Test Harness Model to Harness-Free Mode

If you have a model that uses the Signal Builder block and want to convert to using
the Root Inport Mapping tool, export the signals from that block to the Root Inport
Mapping tool. The workflow is:

1 In the model, export signals from the Signal Builder block to a variable in the base
workspace.

2 Import the variables from the base workspace to the Root Inport Mapping tool.
3 Remove the Signal Builder block from the model.

57 Importing and Exporting Simulation Data

57-120

4 Add Inport blocks to the model. The number of Inport blocks must equal the number
of output lines from the Signal Builder block you removed.

5 Connect the Inport blocks to these lines.

The following example describes how to replace the Signal Builder block in the
sldemo_autotrans model.

Converting Harness-Driven Models to Use Harness-Free External Inputs

This example shows how to convert a harness model that uses a Signal Builder block as
an input to a harness-free model with root inports. The example collects data from the
harness model and stores it in MAT-files, for use by the harness-free model. After storing
the data, the example removes the Signal Builder block from the harness model and adds
root inports to create a harness-free model. Then, the data in the MAT-files is mapped to
the root inports of the model.

Save Harness Data to MAT-Files

Before converting the model to be harness-free, capture the test cases in the harness.

For this example, you will modify the model sldemo_autotrans from the Modeling an
Automatic Transmission Controller example.

Open the example model. In the MATLAB Command Window type sldemo_autotrans.

 Import and Map Root-Level Inport Data

57-121

Use MATLAB function slexAutotransRootInportsSaveActiveGroup to save the Signal
Builder block data of the active group into a MAT-file. At the command line type
slexAutotransRootInportsSaveActiveGroup('slexAutotransRootInport','ManeuversGUI').
This function creates a MAT-file in the current directory with the same name as the
active group. The function slexAutotransRootInportsSaveActiveGroup has been provided
with this example.

Remove the Signal Builder Block

Remove the Signal Builder block named ManeuversGUI and replace it with two inports.

57 Importing and Exporting Simulation Data

57-122

1 Delete the Signal Builder block named ManeuversGUI.
2 Open the Simulink Library Browser and select Commonly Used Blocks.
3 Drag and drop two input ports from the Library Browser to the model.
4 Connect the input ports to the lines previously connected to the Signal Builder block.
5 Rename the inport ports. Name the input port connected to the Throttle line

Throttle. Name the input port connected to the BrakeTorque line Brake.

Save the model as slexAutotransRootInportsExample1.slx or use the example
slexAutotransRootInportsExample.slx.

The remaining steps of this example use the model
slexAutotransRootInportsExample.slx. If you saved the model with a different
name use your model name in the steps going forward.

 Import and Map Root-Level Inport Data

57-123

Set Up Harness-Free Inputs

Now that the model is harness-free, set up the inputs that you already saved (See "Save
Harness Data to MAT-Files").

From the Simulation->Model Configuration Parameters->Data Import/Export
pane, click the Connect Input button.

Map Signals to Root Inport

The Root Inport Mapping tool opens.

57 Importing and Exporting Simulation Data

57-124

This example uses this tool to set up the model inputs from the MAT-file and map those
inputs to an input port, based on a mapping algorithm. To select the MAT-file that
contains the input data, click the Import button on the Root Inport Mapping toolbar. On
the Import popup, select the File radio button and click the Open Folder button. In the
browser, select the MAT-file that you saved earlier.

Select a Mapping Mode

Once you select the MAT-file slexAutotransRootInportPassingManeuver.mat
that contains the input data, determine the root input port to which to send input data.
Simulink matches input data with input ports based on one of five criteria:

• Port Order - Maps in the order it appears in the file to the corresponding port
number.

• Block Name - Maps by variable name to the corresponding root inport with the
matching block name.

• Signal Name - Maps by variable name to the corresponding root inport with the
matching signal name.

• Block Path - Maps by the BlockPath parameter to the corresponding root inport with
the matching block path.

• Custom - Maps using a MATLAB function.

Earlier in this example, you used the slexAutotransRootInportsSaveActiveGroup
to save input data to variables of the same name as the harness signals Throttle and
Brake, and you added input ports with names matching the variables. Given the set of
conditions for the input data and the model input ports, the best choice for a mapping
criteria is Block Name. Using this criteria, Simulink tries try to match input data
variable names to the names of the input ports. To select this option:

1 Click the Block Name radio button.
2 Click the Options button and select Compile from the dropdown. This will provide

some verification on the mapping.
3 Click the Map button.

When compiling the data, Simulink evaluates inports against the following criteria to
determine whether or not there is a compatibility issue. The status of this compatibility
is reflected by the table colors green, orange, or red. Clicking a cell in the table which has
orange or red color will open the Comparison Tool for further inspection.

• Data Type - Double, single, enum,

 Import and Map Root-Level Inport Data

57-125

• Complexity - Real or complex
• Dimensions - Signal dimensions vs port dimensions

Finalize the Inputs to the Model

Review the results of the mapping compatibility. The Map action has loaded the data
that was mapped to the input ports from the MAT-file to the base workspace. Simulink
sets the Model Configuration Parameters->Data Import/Export->External Input
edit box with the proper comma separated list of inputs. To apply the changes to the
model, in the Configuration Parameters dialog, click Apply.

57 Importing and Exporting Simulation Data

57-126

Simulating the Model

With the changes applied you can now simulate the model and view the results. Click the
Play button on the model. To view the results of the simulation, double-click the Scope
Block PlotResults.

Import Test Vectors from Simulink Design Verifier Environment

You can import and map Simulink Design Verifier test vectors. The following workflow
shows how you can use the Simulink Design Verifier sldvsimdata function to convert
a Simulink Design Verifier test structure to a Simulink.SimulationData.Dataset object.
This workflow requires a Simulink Design Verifier license.

1 Load a MAT-file that contains a Simulink Design Verifier test vector structure.
sldvData. For example:

load sqrt_sldvdata.mat

 Import and Map Root-Level Inport Data

57-127

2 Use the sldvsimdata function to convert a test vector structure to a
Simulink.SimulationData.Dataset object that the Root Inport Mapping tool supports.
This example converts the first test case in sldvData. For example:

sldvDataConverted = sldvsimdata(sldvData,1)

3 Save the Simulink.SimulationData.Dataset object aSLDs to a MAT-file. For
example:

save sldvData.mat sldvDataConverted

You can now import sldvData.mat into the Root Inport Mapping tool as you do any
support MAT-file. For more information on importing signals, see “Import Signal and
Bus Data” on page 57-105.

Alternative Workflows to Load Data

After saving the mapping definition to a model, you can automate data loading and/or
simulation. Consider one of the following methods.

Command Line or Script

To load data and simulate the model from the MATLAB command line, use commands
like:

load('signaldata.mat');

simout = sim('model_name');

To automate testing and load different signal groups, consider using a script.

For example, the following example code creates timeseries data and simulates a model
after loading each signal group. It:

1 Creates signal groups with variable names In1, In2, and In3, and saves these
variables to MAT-files.

2 Simulates a model after loading each signal group.

Note: The variable names must match the import data variables in the Data Import/
Export > Input parameter of the Configuration Parameters dialog box.

% Create signal groups

fileName = 'testCase';

57 Importing and Exporting Simulation Data

57-128

for k =1 :3

 % Create the timeseries data

 var1 = timeseries(rand(10,1));

 var2 = timeseries(rand(10,1));

 var3 = timeseries(rand(10,1));

 % Save the data

 save([fileName '_' num2str(k) '.mat'],'var1','var2','var3');

end

clear all

% After mapping and saving the model loop over signal groups and simulate

% Set the filename to append testcase # to

fileName = 'testCase';

% Loop backwards to preallocate

for k=3:-1:1

 % Load the MAT-file.

 load([fileName '_' num2str(k) '.mat']);

 % Simulate the model

 simOut{k} = sim('model_name');

end

Use the PreLoadFcn Pane

If you are satisfied with the data and mapping, you can set up your model to
automatically load a MAT-file of the same signal group by calling the load function in
the model PreLoadFcn model property node.

1 After saving the MAT-file, in the Simulink editor, select File > Model Properties >
Model Properties.

2 In the Model Properties window, select the PreLoadFcn node.
3 Enter a load function to load the signal data MAT-file. For example,

load d_signal_data.mat;

4 Click OK and save the model.

Create Custom Mapping File Function

Create a custom mapping file function if you do not want to use the mapping modes in
the Root Inport Mapping tool to map your data to root-level input ports. For example,
consider creating a custom mapping file function if:

 Import and Map Root-Level Inport Data

57-129

• Your signal data contains a common prefix that is not in your model.
• You want to explicitly map a signal.

The custom mapping file function is also useful if you want to map by block name, but
the data contains a signal whose name does not match one of the block names.

See these files in the folder matlabroot/help/toolbox/simulink/examples (open)
for examples.

File Description

BlockNameIgnorePrefixMap.m Custom mapping file function that ignores
the prefix of a signal name when importing

BlockNameIgnorePrefixData.mat MAT-file of signal data to be imported
ex_BlockNameIgnorePrefixExample Model file into which you can import and

map data

In addition, see the example Attaching Input Data to External Inputs via Custom Input
Mappings.

Follow these general steps to create a custom mapping file function:

1 Create a MATLAB function with the following input parameters:

• Model name
• Signal names specified as a cell array of strings
• Signals specified as a cell array of signal data

2 In the function, call the getRootInportMap function to create a variable that
contains the mapping object (for an example, see BlockNameIgnorePrefixMap.m).

3 Save and close the MATLAB function file.
4 Add the path for the new function to the MATLAB path.

To use the custom mapping file function:

1 Open the model you want to import data to (for example,
ex_BlockNameIgnorePrefixExample).

2 Open the Configuration Parameters dialog box for the model and select the Data
Import/Export pane.

3 In the Load from workspace section, click Connect Input.

57 Importing and Exporting Simulation Data

57-130

4 Import your signal (for example, BlockNameIgnorePrefixData.mat).
5 In the Mapping section of the toolstrip, click Custom.
6 In the Custom text box, select the MATLAB function file (for example,

BlockNameIgnorePrefixMap.m) using the browser.

By default, this text box contains slexcustomMappingMyCustomMap, which is the
custom function for the Attaching Input Data to External Inputs via Custom Input
Mappings example.

Tip The Root Inport Mapping tool parses your custom code. Parsing reorders output
alphabetically and verifies that data types are consistent.

7 Click Options and select the Compile check box.
8 Click Map.

The model compiles and the Root Inport Mapping tool updates.

To understand the mapping results, see “Understand Mapping Results” on page
57-113.

9 Save and close the model.

The next time you load input data of the same signal group into the workspace, the
model uses the mapping definition during simulation.

After you save the mapping definition for a model, you can automate data loading. For
more information, see “Alternative Workflows to Load Data” on page 57-127.

Custom Mapping Modes Similar to Simulink Modes

If you have a custom mapping mode that is similar to one of the Simulink mapping
modes, you can use the getSlRootInportMap function in your custom mapping file
function.

For an example of a custom mapping function that uses this function, see Using Mapping
Modes with Custom-Mapped External Inputs.

Command-Line Interface for Input Variables

Use the getInputString function to programmatically supply a set of input variables
to the sim command or to a list of input variables that you can manually paste in the
Configuration Parameters > Data Import/Export > Input parameter.

 Import Dataset Data

57-131

Import Dataset Data

In this section...

“Specify a Dataset Using the Input Parameter” on page 57-131
“Dataset Elements” on page 57-131
“Import Dataset Objects for Buses” on page 57-131

Specify a Dataset Using the Input Parameter

You can use a Dataset object as a value for the Configuration Parameters > Data
Import/Export > Input parameter. Specify only one Dataset object and do not include
it in a comma-separated list.

Dataset Elements

A Dataset object can include elements with different data types. The elements can be:

• A MATLAB timeseries object
• A structure, if each leaf node is either empty or a MATLAB timeseries object
• An array that meets one of these requirements:

• An array with time in the first column and the remaining columns each
corresponding to an input port. See “Import Data Arrays” on page 57-135.

• An nx1 array for a root inport that drives a function-call subsystem. See “Arrays
for Input Ports Driving Function-Call Subsystems” on page 57-136.

• A Simulink.SimulationData.Signal object
• An empty matrix

The number of elements in the data set must match the number of root-level input ports.

Import Dataset Objects for Buses

You can use a Dataset object to import bus data for a root-level input port. For details,
see “Import Bus Data to Root-Level Input Ports” on page 57-91.

57 Importing and Exporting Simulation Data

57-132

Import MATLAB timeseries Data

In this section...

“Specify Time Dimension” on page 57-132
“Models with Multiple Root Inport Blocks” on page 57-133

A root-level Inport, Enable, Trigger, and From Workspace block can import data specified
by a MATLAB timeseries object residing in a workspace.

Note: This documentation about importing MATLAB timeseries data includes examples
of root Inport blocks. Unless specifically noted otherwise, the examples are applicable to
root-level Enable, Trigger, and From Workspace blocks.

Specify Time Dimension

When you create a MATLAB timeseries object to import data to Simulink, the time
dimension depends on the dimension and the type of signal data.

Signal Data Dimension or
Type

Time Dimension Alignment Example of timeseries
Constructor

Scalar or a 1D vector First Constructor for a scalar
signal. Time is aligned with
the first dimension.

t = (0:10)';

ts = timeseries(sin(t), t);

2D (including row and
column vectors) or greater

Last Constructor for a matrix
signal. Time is aligned with
the last dimension.

t = 0;

ts = timeseries([1 2; 3 4], t);

2D row vector, and there is
only one time step

Last 'InterpretSingleRowDataAs3D', true

For example:

t = 0;

ts = timeseries([1 2], t, 'InterpretSingleRowDataAs3D', true);

 Import MATLAB timeseries Data

57-133

Models with Multiple Root Inport Blocks

To use a MATLAB timeseries object for a root Inport block in a model that has
multiple root Inport blocks, convert all of the other root Inport block data that uses
Simulink.TsArray or Simulink.Timeseries objects to MATLAB timeseries
objects or to a structure of MATLAB timeseries objects.

You can use the Simulink.Timeseries.convertToMATLABTimeseries method
to convert a Simulink.Timeseries object to a MATLAB timeseries object. For
example, if sim_ts is a Simulink.Timeseries object, then the following line converts
sim_ts to a MATLAB timeseries object:

ts = sim_ts.convertToMATLABTimeseries;

57 Importing and Exporting Simulation Data

57-134

Import Simulink.Timeseries and Simulink.TsArray Data

In this section...

“Use MATLAB Timeseries for New Models” on page 57-134
“Simulink.TsArray Data” on page 57-134

Use MATLAB Timeseries for New Models

For new models, have root-level Inport block or Trigger blocks import MATLAB
timeseries data.

However, you can import existing Simulink.Timeseries object data. Importing
Simulink.Timeseries objects allows you to import data logged by a previous
simulation run that used the ModelDataLogs format for signal logging (see “Export
Signal Data Using Signal Logging” on page 57-36).

Simulink.TsArray Data

Objects of the Simulink.TsArray class have a variable number of properties. The
first property, called Name, specifies the log name of the logged signal. The remaining
properties reference logs for the elements of the logged signal: Simulink.Timeseries
objects for elementary signals and Simulink.TsArrayobjects for mux or bus signals.
The name of each property is the log name of the corresponding signal.

 Import Data Arrays

57-135

Import Data Arrays

In this section...

“Data Array Format” on page 57-135
“Specify the Input Expression” on page 57-135
“Arrays for Input Ports Driving Function-Call Subsystems” on page 57-136

Data Array Format

This import format consists of a real (noncomplex) matrix of data type double. The
first column of the matrix must be a vector of times in ascending order. The remaining
columns specify input values. In particular, each column represents the input for a
different Inport or Trigger block signal (in sequential order) and each row is the input
value for the corresponding time point. For a Trigger block, the signal driving the trigger
port must be the last data item.

The total number of columns of the input matrix must equal n + 1, where n is the total
number of signals entering the model's input ports.

Specify the Input Expression

The default input expression for a model is [t,u] and the default input format is Array.
So if you define t and u in the MATLAB workspace, you need only select the Input
option to input data from the model workspace. For example, suppose that a model has
two input ports, In1 that accepts two signals, and In2 that accepts one signal. Also,
suppose that the MATLAB workspace defines t and u as follows:

N = 10;

Ts = 0.1

t = ((0:N)* Ts)';

u = [sin(t), cos(t), 4*cos(t)];

When the simulation runs, the signals sin(t) and cos(t) will be assigned to In1 and
the signal 4*cos(t) will be assigned to In2.

Note The array input format allows you to load only real (noncomplex) scalar or vector
data of type double. Use the structure format to input complex data, matrix (2-D) data,
and/or data types other than double.

57 Importing and Exporting Simulation Data

57-136

Arrays for Input Ports Driving Function-Call Subsystems

You can use an array to drive a Function-Call Subsystem through a root-level input port.
You can use an array or an array that is a Dataset element. The array must be an nx1
array. For the root-level Inport block, you select Output function call.

For example, if you have a Dataset object with an array element:

ds = Simulink.SimulationData.Dataset;

x = [1 3 7 8]';

ds = ds.addElement(x,'theElementName');

This model uses the ds data set in the Configuration Parameters > Data Import/
Export > Input parameter.

 Import Data Arrays

57-137

When you simulate the model, you see that the Function-Call Subsystem was triggered
only for the times specified in array stored in ds.

>> logsout.get(1).Values.Time

ans =

 1

 3

 7

 8

57 Importing and Exporting Simulation Data

57-138

Import MATLAB Time Expression Data

Specify the Input Expression

You can use a MATLAB time expression to import data from a workspace. To use a
time expression, enter the expression as a string (i.e., enclosed in single quotes) in the
Input field of the Data Import/Export pane. The time expression can be any MATLAB
expression that evaluates to a row vector equal in length to the number of signals
entering the input ports of the model. For example, suppose that a model has one vector
Inport that accepts two signals. Furthermore, suppose that timefcn is a user-defined
function that returns a row vector two elements long. The following are valid input time
expressions for such a model:

'[3*sin(t), cos(2*t)]'

'4*timefcn(w*t)+7'

The expression is evaluated at each step of the simulation, applying the resulting values
to the model's input ports. Note that the Simulink software defines the variable t when
it runs the simulation. Also, you can omit the time variable in expressions for functions of
one variable. For example, the expression sin is interpreted as sin(t).

 Import Data Structures

57-139

Import Data Structures

In this section...

“Data Structures” on page 57-139
“One Structure for All Ports or a Structure for Each Port” on page 57-140
“Specify Signal Data” on page 57-140
“Specify Time Data” on page 57-141
“Examples of Specifying Signal and Time Data” on page 57-142

Data Structures

The Simulink software can read data from the workspace in the form of a structure,
whose name you specify in the Configuration Parameters > Data Import/Export >
Input parameter.

For information about defining MATLAB structures, see “Create a Structure Array” in
the MATLAB documentation.

The structure always includes a signals substructure, which contains a values field and
a dimensions field. For details about the signal data, see “Specify Signal Data” on page
57-140. Depending on the modeling task that you want to perform, the structure can
also include a time field.

You can specify structures for the model as a whole or on a per-port basis. For
information about specifying per-port structures for the Input parameter, see “One
Structure for All Ports or a Structure for Each Port” on page 57-140.

The form of a structure that you use depends on whether you are importing data for
discrete signals (the signal is defined at evenly-spaced values of time) or continuous
signals (the signal is defined for all values of time). For discrete signals, use a
structure that has an empty time vector. For continuous signals, the approach that
you use depends on whether the data represents a smooth curve or a curve that has
discontinuities (jumps) over its range. For details, see:

• “Import Data to Test a Discrete Algorithm” on page 57-82
• “Import Data to Model a Continuous Plant” on page 57-80
• “Import Data for an Input Test Case” on page 57-83

57 Importing and Exporting Simulation Data

57-140

For both discrete and continuous signals, specify a signals field, which contains an
array of substructures, each of which corresponds to a model input port. For details, see
“Specify Signal Data” on page 57-140.

For continuous signals, you may want to specify a time field, which contains a time
vector. See “Time and Signal Values for Imported Data” on page 57-77.

One Structure for All Ports or a Structure for Each Port

You can specify one structure to provide input to all root-level input ports in a model, or
you can specify a separated structure for each port.

The per-port structure format consists of a separate structure-with-time or structure-
without-time for each port. Each port's input data structure has only one signals field.
To specify this option, enter the names of the structures in the Input text field as a
comma-separated list, in1, in2,..., inN, where in1 is the data for your model's first
port, in2 for the second input port, and so on.

The rest of the section about importing structure data focuses on specifying one structure
for all ports.

Specify Signal Data

Each signals substructure must contain two fields: values and dimensions.

The Values Field

The values field must contain an array of inputs for the corresponding input port. If you
specify a time vector, each input must correspond to a time value specified in the time
field.

If the inputs for a port are scalar or vector values, the values field must be an M-by-N
array. If you specify a time vector, M must be the number of time points specified by the
time field and N is the length of each vector value.

If the inputs for a port are matrices (2-D arrays), the values field must be an M-by-N-
by-T array where M and N are the dimensions of each matrix input and T is the number
of time points. For example, suppose that you want to input 51 time samples of a 4-by-5
matrix signal into one of your model's input ports. Then, the corresponding dimensions
field of the workspace structure must equal [4 5] and the values array must have the
dimensions 4-by-5-by-51.

 Import Data Structures

57-141

The Dimensions Field

The dimensions field specifies the dimensions of the input. If each input is a scalar or
vector (1-D array) value, the dimensions field must be a scalar value that specifies the
length of the vector (1 for a scalar). If each input is a matrix (2-D array), the dimensions
field must be a two-element vector whose first element specifies the number of rows in
the matrix and whose second element specifies the number of columns.

Note You must set the Port dimensions parameter of the Inport or the Trigger block
to be the same value as the dimensions field of the corresponding input structure. If the
values differ, an error message is displayed when you try to simulate the model.

Specify Time Data

You can specify a time vector as part of the data structure to import. The “Time and
Signal Values for Imported Data” on page 57-77 section indicates when you may want to
add a time vector.

The following table provides recommendations for how to specify time values, based on
the kind of signal data you want to import.

Signal Data Time Data Recommendation

Inport or Trigger block with a discrete
sample time

Do not specify a time vector. Simulink
reads one signal value at each time step.

Evenly-spaced discrete signals Consider using an expression in the
following form:

TimeVector = Ts * (0:N);

where Ts is the time step and N is the
number of time steps.

Unevenly-spaced values Use any valid MATLAB array expression;
for example, [1:5 5:10] or (1 6 10
15).

If the root-level input port is from a
From Workspace, From File, or Signal
Builder block, which support zero-crossing

57 Importing and Exporting Simulation Data

57-142

Signal Data Time Data Recommendation

detection, you can specify a zero-crossing
time by using a duplicate time entry.

Examples of Specifying Signal and Time Data

In the first example, consider the following model that has a single input port:

1 Create an input structure for loading 11 time samples of a two-element signal vector
of type int8 into the model:

N = 10

Ts = 0.1

a.time = (0:N)*Ts';

c1 = int8([0:1:10]');

c2 = int8([0:10:100]');

a.signals(1).values = [c1 c2];

a.signals(1).dimensions = 2;

2 In the Configuration Parameters > Data Import/Export > Input parameter
edit box, specify the variable a.

3 In the Inport block dialog box, in the Signal Attributes tab, set Port dimensions
to 2 and Data type to int8.

As another example, consider a model that has two inputs:

 Import Data Structures

57-143

Suppose that you want to input a sine wave into the first port and a cosine wave into the
second port. To do this, define a structure, a, as follows, in the MATLAB workspace:

a.time = (0:0.1:1)';

a.signals(1).values = sin(a.time);

a.signals(1).dimensions = 1;

a.signals(2).values = cos(a.time);

a.signals(2).dimensions = 1;

Enter the structure name (a) in the Configuration Parameters > Data Import/
Export > Input parameter edit box.

Note: Note that in this model you do not need to specify the dimension and data type,
because the default values are 1 and double.

57 Importing and Exporting Simulation Data

57-144

State Information

In this section...

“Simulation State Information” on page 57-144
“Types of State Information” on page 57-144
“Format for State Information Saved Without SimState” on page 57-147
“State Information for Referenced Models” on page 57-148

Simulation State Information

Some blocks maintain state information that they use during simulation. For example,
the state information for a Unit Delay block is the output signal value from the previous
simulation step. The block uses the state information for calculating the output signal
value for the current simulation step.

Some examples of uses of saved state information include:

• Stopping a simulation for a model and using the saved state information as input
when you restart the simulation.

• Simulating one model and using the saved state information as input for the
simulation of another model that builds on the results of the first model.

• Examining changes in state information throughout a simulation.

Types of State Information

You can save these kinds of state information.

Type of State
Information

Description Configuration Parameters in
Data Import/Export Pane

States for each
simulation step

State information of blocks
(referred to as partial state data)
at each time step of a simulation

States

Final state State information of blocks at the
end of the simulation

Final states

 State Information

57-145

Type of State
Information

Description Configuration Parameters in
Data Import/Export Pane

Final state with
SimState

Final state with a SimState
object that captures additional
internal information that
Simulink uses during simulation

Final States and Save
complete SimState in final
state

SimState provides more complete final simulation state information than final states
information by itself does. However, if the requirements and limitations of using
SimState do not meet your modeling requirements, save final state information without
SimState.

Comparison of SimState and Final State Logging

Characteristic Final State Final State with SimState

Simulation mode Supports all simulation
modes

Normal or Accelerator.

Model reference “State Information for
Referenced Models” on page
57-148

See “Model Referencing” on
page 22-42.

Resumed simulation Not supported Supported.
Saved state data Only logged states — the

continuous and discrete
states of blocks — which
are a subset of the complete
simulation state of the model

User data, run-time
parameters, or logs of the
model not saved

Complete state information

Does not save user data,
run-time parameters, or
logs of the model.

Block output User data, run-time
parameters, or logs of the
model not saved

Simulink tries to save the
output of a block as part
of a SimState even if S-
functions declare that no
SimState states exist
in the block. If the block
output is of custom type,
Simulink displays an error.

57 Importing and Exporting Simulation Data

57-146

Characteristic Final State Final State with SimState

Readability Use structure with time
format for best readability

To examine a simplified
view of the data,
consider using looking
at the loggedStates
property of the
Simulink.SimState.ModelSimState
class.

Restoring state data Can save and restore in
different simulation modes.
If logged state information is
not sufficient, you can obtain
different results in the two
simulation modes.

Cannot save in Normal
mode and restore in
Accelerator, or conversely
save in Accelerator mode
and restore in Normal
mode.

Restoring multiple states You can initialize only one out
of multiple logged states in
the model.

You restore all states in the
model. You cannot load a
subset of states.

Structural changes You can make structural
changes between simulation
and restoring the simulation.

You cannot make structural
changes to the model
between when you save
the SimState and when
you restore the simulation
using the SimState. For
example, you cannot add
or remove a block after
saving the SimState
without repeating the
simulation and saving the
new SimState.

Input to model function To input to model function,
use Array format with non-
complex data of type double.

You cannot input the
SimState to model
function.

Code generation Supported Not supported

For both SimState and final state logging, Simulink saves state information at one of
these points:

• At the final time step

 State Information

57-147

• At the execution time at which the simulation paused or stopped

For additional information about SimState, see “Limitations of SimState” on page
22-41.

Format for State Information Saved Without SimState

If you do not use the SimState for saving state information, then use Configuration
Parameters > Data Import/Export > Format to specify the data format for the
saved state information.

You can set Format to:

• Array (default)
• Structure

• Structure with time

• Dataset

The Array option for the Configuration Parameters > Data Import/Export >
Format option supports compatibility with models developed in earlier releases, when
Simulink supported only the array format for saving state information.

The array format reflects the order of signals. The order of saved state information can
change between simulations when you change any of the following:

• The model (even without changing the signal)
• The simulation mode
• The code generation mode

The Structure and Structure with time formats are easier to read and consistent
across simulations. Also, these two formats are useful when using state information to
initialize a model for simulation, allowing you to:

• Associate initial state values directly with the full path name to the states. This
association eliminates errors that can occur if Simulink reorders the states, but the
order of the initial state array does not change correspondingly.

• Assign a different data type to the initial value of each state.
• Initialize only a subset of the states.

57 Importing and Exporting Simulation Data

57-148

• Dataset format:

• Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logged data in MATLAB without a
Simulink license.

• Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow signal logging

• Does not support logging nonvirtual bus data for code generation or Rapid
Accelerator mode.

State Information for Referenced Models

When Simulink saves states in the structure or structure-with-time format, it adds an
inReferencedModel subfield to the signals field of the structure. The value of this
additional subfield is true (1) if the signals field records the final state of a block that
resides in the reference model. For example:

xout.signals(1)

ans =

 values: [101x1 double]

 dimensions: 1

 label: 'DSTATE'

 blockName: [1x66 char]

 inReferencedModel: 1

If the signals field records a referenced model state, its blockName subfield contains a
compound path of a top model path and a reference model path. The top model path is
the path from the model root to the Model block that references the reference model. The
reference model path is the path from the reference model root to the block whose state
the signals field records. The compound path uses a | character to separate the top and
reference model paths. For example:

>> xout.signals(1).blockName

ans =

sldemo_mdlref_basic/CounterA|sldemo_mdlref_counter/Previous Output

 State Information

57-149

See Also

Classes
Simulink.SimulationData.Dataset | Simulink.SimulationData.Signal

Related Examples
• “Save State Information” on page 57-150
• “Load State Information” on page 57-154

57 Importing and Exporting Simulation Data

57-150

Save State Information

In this section...

“Save State Information for Each Simulation Step” on page 57-150
“Save Partial Final State Information” on page 57-150
“Examine State Information Saved Without the SimState” on page 57-151
“Save Final State Information with SimState” on page 57-152

Save State Information for Each Simulation Step

You can save state information for logged states for each simulation step during a
simulation. That level of state information can be helpful for debugging.

1 Select the Configuration Parameters > Data Import/Export > States check
box.

2 In the States edit box, you can specify a different variable for the state information,
if you do not want to use the default xout variable.

3 Also in the Data Import/Export pane, set the Format parameter to Dataset,
Structure, or Structure with time, unless you use array format for
compatibility with a legacy model. Dataset format does not support code generation
or Rapid Accelerator simulation mode.

4 Click Apply.
5 Simulate the model.

Save Partial Final State Information

To save just the logged states (the continuous and discrete states of blocks):

1 Select the Configuration Parameters > Data Import/Export > Final states
check box.

2 In the Final states edit box, you can specify a different variable for the state
information, if you do not want to use the default xFinal variable.

3 Clear the Save complete SimState in final state parameter.
4 Set the Format parameter to Dataset, Structure or Structure with time.
5 Click Apply.

 Save State Information

57-151

6 Simulate the model.

Examine State Information Saved Without the SimState

If you enable the Configuration Parameters > Data Import/Export > Final states
or States parameters, Simulink saves the state information in the format that you
specify with the Format parameter. The default variable for Final state information is
xFinal, and the variable for state information for States information is xout.

If a model has no states saved, then xFinal and xout are empty variables. To determine
whether a model has states saved, use the isempty(xout) command.

Final State Information in Dataset Format

For example, suppose that you saved final state information in Dataset format, and use
the default xFinal variable for the saved state information.

xFinal

xFinal =

 Simulink.SimulationData.Dataset

 Package: Simulink.SimulationData

 Characteristics:

 Name: 'xFinal'

 Total Elements: 2

 Elements:

 1: 'CSTATE'

 2: 'DSTATE'

Examine the first element of the state dataset.

xFinal.get(1)

ans =

 Simulink.SimulationData.State

 Package: Simulink.SimulationData

 Properties:

 Name: 'CSTATE'

57 Importing and Exporting Simulation Data

57-152

 BlockPath: [1x1 Simulink.SimulationData.BlockPath]

 Label: CSTATE

 Values: [1x1 timeseries]

Final State Information in Structure with Time Format

For example, suppose that you saved final state information in a structure with time
format, and use the default xFinal variable for the saved state information.

To find the simulation time and number of states in the vdp model, enter the xFinal
variable.

xFinal

xFinal =

 time: 20

 signals: [1x2 struct]

In this case, the simulation time is 20 and there are two states. To examine the first
state, use this command.

xFinal.signals(1)

ans =

 values: 2.0108

 dimensions: 1

 label: 'CSTATE'

 blockName: 'vdp/x1'

 stateName: ''

 inReferencedModel: 0

The values and blockName fields of the first state structure show that the final value
for the output signal of the x1 block is 2.018.

Note: If you write a script to analyze state information, use a combination of label and
blockName values to identify a specific state uniquely. Do not rely on the order of the
states.

Save Final State Information with SimState

To save complete state information, save the SimState for a simulation.

 Save State Information

57-153

1 Select the Configuration Parameters > Data Import/Export > Final states
check box.

2 Also in the Data Import/Export pane, select the Save complete SimState in final
state parameter.

3 In the edit box next to the Save complete SimState in final state parameter,
enter a variable name for the SimState and click Apply.

4 Simulate the model.

For more information about using the SimState, see “Save and Restore Simulation State
as SimState” on page 22-36.

Related Examples
• “Load State Information” on page 57-154

More About
• “State Information” on page 57-144

57 Importing and Exporting Simulation Data

57-154

Load State Information

In this section...

“Import Initial States” on page 57-154
“Initialize a State” on page 57-154
“Initialize States in Referenced Models” on page 57-155

Import Initial States

To initialize a simulation, you can use:

• Final state information (with or without SimState) from a previous simulation
• State information that you create in MATLAB

Use Configuration Parameters > Data Import/Export parameters to import initial
states.

1 Enable the Initial state parameter.
2 In the Initial state edit box, enter the name of the variable for the state information

that you want to use for initialization.

The initial values that the variable specifies override the initial state values that the
blocks in the model specify in initial condition parameters.

Initialize a State

You can initialize a specific state. For example, the following commands create an
initial state structure that initializes the x2 state of the vdp model. The x1 state is not
initialized in the structure. Therefore, during simulation, Simulink uses the value in the
Integrator block associated with the state.

1 Obtain an initial state structure.

open_system('vdp');

states = Simulink.BlockDiagram.getInitialState('vdp');

2 Set the initial value of the signals structure element associated with x2 to 2.

states.signals(2).values = 2;

 Load State Information

57-155

3 Remove the signals structure element associated with x1.

states.signals(1) = [];

4 Use the states variable for the vdp model. Enable the Configuration
Parameters > Data Import/Export > Initial state option. Enter states in the
edit field.

When you simulate the model, note that both states have the initial value of 2. The
initial value of the x2 state is assigned in the states structure, while the initial value of
the x1 state is assigned in its Integrator block.

Initialize States in Referenced Models

To initialize the states of a top model and the models that it references, use the structure
or structure with time format or use SimState.

To view SimState to initialize blocks that are inside a referenced model in Accelerator
mode, set Configuration Parameters > Data Import/Export > Signal logging
format to Dataset. You cannot use these logged states to initialize a model referenced
in Accelerator mode.

Related Examples
• “Save State Information” on page 57-150

More About
• “State Information” on page 57-144

58

Working with Data Stores

• “Local and Global Data Stores” on page 58-2
• “When to Use a Data Store” on page 58-3
• “Create Data Stores” on page 58-4
• “Apply Data Stores” on page 58-6
• “Data Stores with Buses and Arrays of Buses” on page 58-8
• “Data Stores with Data Store Memory Blocks” on page 58-10
• “Data Stores with Signal Objects” on page 58-14
• “Access Data Stores with Simulink Blocks” on page 58-17
• “Rename Data Stores” on page 58-26
• “Data Store Examples” on page 58-28
• “Log Data Stores” on page 58-31
• “Order Data Store Access” on page 58-36
• “Data Store Diagnostics” on page 58-43
• “Data Stores and Software Verification” on page 58-52

58 Working with Data Stores

58-2

Local and Global Data Stores

A data store is a repository to which you can write data, and from which you can read
data, without having to connect an input or output signal directly to the data store. Data
stores are accessible across model levels, so subsystems and referenced models can use
data stores to share data without using I/O ports. You can define two types of data stores:

• A local data store is accessible from anywhere in the model hierarchy that is at or
below the level at which you define the data store, except from referenced models. You
can define a local data store graphically in a model or by creating a model workspace
signal object (Simulink.Signal).

• A global data store is accessible from throughout the model hierarchy, including from
referenced models. Define a global data stores only in the MATLAB base workspace,
using a signal object. The only type of data store that a referenced model can access is
a global data store.

In general, locate a data store at the lowest level in the model that allows access to the
data store by all the parts of the model that need that access. Some examples of local and
global data stores appear in “Data Store Examples” on page 58-28.

For information about using referenced models, see “Model Reference”.

Customized Data Store Access Functions in Generated Code

Embedded Coder provides a custom storage class that you can use to specify customized
data store access functions in generated code. See “Control Data Representation by
Applying Custom Storage Classes” and “Access Data Through Functions with Custom
Storage Class GetSet”.

Related Examples
• “Apply Data Stores” on page 58-6
• “Create Data Stores” on page 58-4
• “Data Store Examples” on page 58-28

More About
• “Access Data Through Functions with Custom Storage Class GetSet”
• “When to Use a Data Store” on page 58-3

 When to Use a Data Store

58-3

When to Use a Data Store

Data stores can be useful when multiple signals at different levels of a model need
the same global values, and connecting all the signals explicitly would clutter the
model unacceptably or take too long to be feasible. Data stores are analogous to global
variables in programs, and have similar advantages and disadvantages, such as making
verification more difficult. See “Data Stores and Software Verification” on page 58-52
for more information.

In some cases, you may be able to use a simpler technique, Goto blocks and From blocks,
to obtain results similar to those provided by data stores. The principal disadvantage
of data Goto/From links is that they generally are not accessible across nonvirtual
subsystem boundaries, while an appropriately configured data store can be accessed
anywhere. See the Goto and From block reference pages for more information about
Goto/From links.

Related Examples
• “Data Store Examples” on page 58-28
• “Apply Data Stores” on page 58-6

More About
• “Data Stores and Software Verification” on page 58-52
• “Local and Global Data Stores” on page 58-2

58 Working with Data Stores

58-4

Create Data Stores

To create a data store, you create a Data Store Memory block or a Simulink.Signal
object. The block or signal object represents the data store and specifies its properties.
Every data store must have a unique name.

• A Data Store Memory block implements a local data store. See “Data Stores with
Data Store Memory Blocks” on page 58-10.

• A Simulink.Signal object can act as a local or global data store. See “Data Stores
with Signal Objects” on page 58-14.

Data stores implemented with Data Store Memory blocks:

• Support data store initialization
• Provide control of data store scope and options at specific levels in the model

hierarchy
• Require a block to represent the data store
• Cannot be accessed within referenced models
• Cannot be in a subsystem that a For Each Subsystem block represents.

Data stores implemented with Simulink.Signal objects:

• Provide model-wide control of data store scope and options
• Do not require a block to represent the data store
• Can be accessed in referenced models, if the data store is global

Be careful not to equate local data stores with Data Store Memory blocks, and global
data stores with Simulink.Signal objects. Either technique can define a local data
store, and a signal object can define either a local or a global data store.

Related Examples
• “Access Data Stores with Simulink Blocks” on page 58-17
• “Apply Data Stores” on page 58-6
• “Data Stores with Data Store Memory Blocks” on page 58-10
• “Data Stores with Signal Objects” on page 58-14

 Create Data Stores

58-5

More About
• “When to Use a Data Store” on page 58-3
• “Local and Global Data Stores” on page 58-2

58 Working with Data Stores

58-6

Apply Data Stores

Note: To use buses and arrays of buses with data stores, perform both the following
procedure and “Setting Up a Model to Use Data Stores with Buses and Arrays of Buses”
on page 58-8.

The following is a general workflow for configuring data stores. You can perform the
tasks in a different order, or separately from the rest, depending on how you use data
stores.

1 Where applicable, plan your use of data stores to minimize their effect on software
verification. For more information, see “Data Stores and Software Verification” on
page 58-52.

2 Create data stores using the techniques described in “Data Stores with Data Store
Memory Blocks” on page 58-10 or “Data Stores with Signal Objects” on page
58-14. For greater reliability, consider assigning rather than inheriting data
store attributes, as described in “Specifying Data Store Memory Block Attributes” on
page 58-10.

3 Add to the model Data Store Write and Data Store Read blocks to write to and read
from the data stores, as described in “Access Data Stores with Simulink Blocks” on
page 58-17.

4 Configure the model and the blocks that access each data store to avoid concurrency
failures when reading and writing the data store, as described in “Order Data Store
Access” on page 58-36.

5 Apply the techniques described in “Data Store Diagnostics” on page 58-43
as needed to prevent data store errors, or to diagnose them if they occur during
simulation.

6 If you intend to generate code for your model, see “Data Stores in Generated Code” in
the Simulink Coder documentation.

Related Examples
• “Access Data Stores with Simulink Blocks” on page 58-17
• “Log Data Stores” on page 58-31
• “Order Data Store Access” on page 58-36
• “Rename Data Stores” on page 58-26

 Apply Data Stores

58-7

More About
• “When to Use a Data Store” on page 58-3
• “Data Store Diagnostics” on page 58-43
• “Data Stores and Software Verification” on page 58-52
• “Local and Global Data Stores” on page 58-2

58 Working with Data Stores

58-8

Data Stores with Buses and Arrays of Buses

Benefits of using data stores with buses and arrays of buses include:

• Simplifying the model layout by associating multiple signals with a single data store
• Producing generated code that represents the data in the store data as structures that

reflect the bus hierarchy
• Writing to and reading from data stores without creating data copies, which results in

more efficient data access

You cannot use a bus or array of buses that contains:

• Variable-dimension signals
• Frame-based signals

Setting Up a Model to Use Data Stores with Buses and Arrays of Buses

This procedure applies to local and global data stores, and to data stores defined with
a Data Store Memory block or a Simulink.Signal object. Before performing the
procedure, you must understand how to use data stores in a model, as described in
“Apply Data Stores” on page 58-6.

To use buses and arrays of buses with data stores:

1 Use the Bus Editor to define a bus object whose properties match the bus data
that you want to write to and read from a data store. For details, see “Manage Bus
Objects with the Bus Editor” on page 61-27.

2 Add a data store (using a Data Store Memory block or a Simulink.Signal
object) for storing the bus data.

3 Specify the bus object as the data type of the data store. For details, see “Specify a
Bus Object Data Type” on page 55-34.

4 In the Model Configuration Parameters > Diagnostics > Connectivity
pane, set the Mux blocks used to create bus diagnostic to error. For details, see
“Prevent Bus and Mux Mixtures” on page 61-113.

5 If you use a MATLAB structure for the initial value of the data store, then in the
Model Configuration Parameters > Diagnostics > Data Validity pane,
set the Underspecified initialization detection diagnostic to Simplified.
For details, see “Specify Initial Conditions for Bus Signals” on page 61-65 and
“Underspecified initialization detection”.

 Data Stores with Buses and Arrays of Buses

58-9

6 (Optional) Select individual bus elements to write to or read from a data store. For
details, see “Accessing Specific Bus and Matrix Elements” on page 58-19.

Related Examples
• “Data Store Examples” on page 58-28
• “Access Data Stores with Simulink Blocks” on page 58-17
• “Order Data Store Access” on page 58-36

More About
• “When to Use a Data Store” on page 58-3
• “Data Store Diagnostics” on page 58-43

58 Working with Data Stores

58-10

Data Stores with Data Store Memory Blocks

In this section...

“Creating the Data Store” on page 58-10
“Specifying Data Store Memory Block Attributes” on page 58-10

Creating the Data Store

To use a Data Store Memory block to define a data store, drag an instance of the block
into the model at the topmost level from which you want the data store to be visible. The
result is a local data store, which is not accessible within referenced models.

• To define a data store that is visible at every level within a given model, except within
Model blocks, drag the Data Store Memory block into the root level of the model.

• To define a data store that is visible only within a particular subsystem and the
subsystems that it contains, but not within Model blocks, drag the Data Store
Memory block into the subsystem.

Once you have added the Data Store Memory block, use its parameters dialog box to
define the data store's properties. The Data store name property specifies the name to
of the data store that the Data Store Write and Data Store Read blocks access. See Data
Store Memory documentation for details.

You can specify data store properties beyond those definable with Data Store Memory
block parameters by selecting the Data store name must resolve to Simulink
signal object option and using a signal object as the data store name. See “Specifying
Attributes Using a Signal Object” on page 58-11 for details.

Specifying Data Store Memory Block Attributes

A Data Store Memory block can inherit three data attributes from its corresponding Data
Store Read and Data Store Write blocks. The inheritable attributes are:

• Data type
• Complexity
• Sample time

 Data Stores with Data Store Memory Blocks

58-11

However, allowing these attributes to be inherited can cause unexpected results that can
be difficult to debug. To prevent such errors, use the Data Store Memory block dialog or a
Simulink.Signal object to specify the attributes explicitly.

Specifying Attributes Using Block Parameters

You can use the Data Store Memory block dialog box to specify the data type and
complexity of a data store. In the next figure, the dialog box sets the Data type to
uint16 and the Signal type to real.

Specifying Attributes Using a Signal Object

You can use a Simulink.Signal object to specify data store attributes for a Data Store
Memory block.

Tip To establish an implicit data store, as described in “Data Stores with Signal Objects”
on page 58-14, use the same general approach as when you explicitly associate a
signal object with a Data Store Memory block.

58 Working with Data Stores

58-12

The next figure shows a Data Store Memory block that specifies resolution to a
Simulink.Signal object, named A. To use a signal object for the data store, set Data
store name to the name of the signal object. For compile-time checking, open the Signal
Attributes tab and select the Data store name must resolve to Simulink signal
object parameter.

The signal object specifies values for all three data attributes that the data store
would otherwise inherit. In this example, which defines a local data store, the
Simulink.Signal object A has the following inherited properties: DataType,
Complexity, and SampleTime.

A =

Simulink.Signal (handle)

 CoderInfo: [1x1 Simulink.CoderInfo]

 Description: ''

 DataType: 'auto'

 Min: []

 Max: []

 Data Stores with Data Store Memory Blocks

58-13

 DocUnits: ''

 Dimensions: 1

 DimensionsMode: 'auto'

 Complexity: 'auto'

 SampleTime: -1

 InitialValue: 0

For more information about specifying signal object attributes for local and global data
stores, see “Signal Object Attributes for Data Stores” on page 58-14.

See Also
Data Store Write | Data Store Memory | Data Store Read

Related Examples
• “Data Store Examples” on page 58-28
• “Access Data Stores with Simulink Blocks” on page 58-17
• “Create Data Stores” on page 58-4
• “Data Stores with Signal Objects” on page 58-14
• “Rename Data Stores” on page 58-26

More About
• “Local and Global Data Stores” on page 58-2

58 Working with Data Stores

58-14

Data Stores with Signal Objects

In this section...

“Creating the Data Store” on page 58-14
“Local and Global Data Stores” on page 58-14
“Signal Object Attributes for Data Stores” on page 58-14

Creating the Data Store

To use a Simulink.Signal object to define a data store without using a Data Store
Memory block, create the signal object in a workspace that is visible to every component
that needs to access the data store. The name of the associated data store is the name of
the signal object. You can use this name in Data Store Read and Data Store Write blocks,
just as if it were the Data store name of a Data Store Memory block. Simulink creates
an associated data store when you use the signal object for data storage.

Local and Global Data Stores

You can use a Simulink.Signal object to define either a local or a global data store.

• If you define the object in the MATLAB base workspace, the result is a global data
store, which is accessible in every model within Simulink, including all referenced
models.

• If you create the object in a model workspace, the result is a local data store, which is
accessible at every level in a model except any referenced models.

Signal Object Attributes for Data Stores

Those data store attributes that a signal object does not define have the same default
values that they do in a Data Store Memory block. The parameter values of a signal
object used as a data store have different requirements, depending on whether the data
store is local or global.

Once you have created the object, set the properties of the signal object to the values that
you want the corresponding data store properties to have. For example, the following
commands define a data store named Error in the MATLAB base workspace:

Error = Simulink.Signal;

 Data Stores with Signal Objects

58-15

Error.Description = 'Use to signal that subsystem output is invalid';

Error.DataType = 'boolean';

Error.Complexity = 'real';

Error.Dimensions = 1;

Error.SampleTime = 0.1;

Attributes for Local Data Stores

For a local data store, for each parameter listed below, you can either set the value
explicitly or you can have the data store inherit the value from the Data Store Write and
Data Store Read blocks.

• DataType

• Complexity

• SampleTime

To define a local data store using a Data Store Memory block, you can use a signal
object for the Data store name parameter. For compile-time checking, in the Signal
Attributes tab, select the Data store must resolve to Simulink signal object
parameter. The Data store must resolve to Simulink signal object parameter
causes Simulink to display an error and stop compilation if Simulink cannot find the
signal object or if the signal object properties are inconsistent with the signal object
properties.

Attributes for Global Data Stores

The following table describes the parameter requirements for global data stores.

Parameter Global Data Store Value

DataType Must be set explicitly
Complexity Must be set explicitly
Dimensions Can be set or inherited
SampleTime Can be set or inherited

See Also
Simulink.Signal

Related Examples
• “Data Store Examples” on page 58-28

58 Working with Data Stores

58-16

• “Access Data Stores with Simulink Blocks” on page 58-17
• “Create Data Stores” on page 58-4
• “Data Stores with Data Store Memory Blocks” on page 58-10
• “Rename Data Stores” on page 58-26

More About
• “Local and Global Data Stores” on page 58-2

 Access Data Stores with Simulink Blocks

58-17

Access Data Stores with Simulink Blocks
In this section...

“Writing to a Data Store” on page 58-17
“Reading from a Data Store” on page 58-17
“Accessing a Global Data Store” on page 58-18
“Accessing Specific Bus and Matrix Elements” on page 58-19

Writing to a Data Store

To set the value of a data store at each time step:

1 Create an instance of a Data Store Write block at the level of your model that
computes the value.

2 Set the Data Store Write block Data store name parameter to the name of the data
store to which you want it to write data.

3 Connect the output of the block that computes the value to the input of the Data
Store Write block.

Reading from a Data Store

To get the value of a data store at each time step:

1 Create an instance of a Data Store Read block at the level of your model that
needs the value.

2 Set the Data Store Read block Data store name parameter to the name of the data
store from which you want it to read.

58 Working with Data Stores

58-18

3 Connect the output of the Data Store Read block to the input of the block that needs
the data store value.

Accessing a Global Data Store

When connected to a global data store (one that is defined by a signal object in the
MATLAB workspace), a Data Store Read or Data Store Write block displays the word
global above the data store name.

 Access Data Stores with Simulink Blocks

58-19

Accessing Specific Bus and Matrix Elements

Configuring a Data Store for Composite Signals

You can store composite signals such as nonvirtual bus signals, arrays of buses, and
vector signals in a data store. To configure a model and a data store for composite
signals, see “Data Stores with Buses and Arrays of Buses” on page 58-8.

Selecting Specific Bus or Matrix Elements

By default, a model writes and reads all bus and matrix elements to and from a data
store.

To select specific bus or matrix elements to write to or read from a data store, use
the Element Assignment pane of the Data Store Write block and the Element
Selection pane of the Data Store Read block . Selecting specific bus or matrix
elements offers the following benefits:

• Reducing the number of blocks in the model. For example, you can eliminate a Data
Store Read and Bus Selector block pair or a Data Store Write and Bus Assignment
block pair for each specific bus element that you want to access).

• Faster simulation of models with large buses and arrays of buses.

Writing Specific Elements to a Data Store

Note: The following procedure describes how to use the Data Store Write block interface
to write specific elements to a data store. You can also perform this task at the command
line, using the DataStoreElements parameter to specify elements. For details, see
“Specification using the command line” on page 58-24.

To assign specific bus or matrix elements to write to a data store:

1 Select the Data Store Write block and in the parameters dialog box, select the
Element Assignment pane. For example, suppose you are using a bus with a data
store named DSM:

58 Working with Data Stores

58-20

2 Expand all the elements in the Signals in the bus list.

 Access Data Stores with Simulink Blocks

58-21

3 Specify the elements that you want to write to the data store. For example:

• In the Signals in the bus list, click B. Then click Select>> to select the element
B.

• To write all the elements of A2 (in the A subbus), select A2[5x1]. Then click
Select>>.

• To write the second element of A2 in the C2 subbus, select the A2[5x1]
element. In the Specify element(s) to assign text box, edit the text to say
DSM.C.C2.A2(2,1).

58 Working with Data Stores

58-22

For more examples, see “Specifying Elements to Assign or Select” on page 58-23.
4 (Optional) Reorder the assigned elements, which changes the order of the ports of

the Data Store Write block.

• To reorder an assigned element, in the Assigned element(s) list, select the
element that you want to move, and click Up or Down.

• To remove an assigned element, click Remove.
5 To apply the assigned elements, click OK.

The Data Store Write block has a port for each assigned element. The names of
the selected elements that correspond to each port appear in the block icon. If you
assign several signals, these additions may diminish the readability of the model.
To improve readability, you can expand the size of the block or create multiple Data
Store Write blocks.

Reading Specific Elements from a Data Store

Reading specific elements from a data store involves very similar steps as described in
“Writing Specific Elements to a Data Store” on page 58-19. The Data Store Read
block differs slightly from the Data Store Write block. A Data Store Read block has:

 Access Data Stores with Simulink Blocks

58-23

• An Element Selection pane instead of an Element Assignment pane
• A Selected element(s) list instead of an Assigned element(s) list

Specifying Elements to Assign or Select

Use MATLAB matrix element syntax to specify specific elements. For details about
specifying matrices in MATLAB, see “Creating and Concatenating Matrices”.

Note: To select matrix elements, you cannot use dynamic indexing with the Element
Assignment and Element Selection panes of Data Store Read and Bus Assignment
block pairs or Data Store Write and Bus Selector block pairs. You can, however, use a
MATLAB Function block for dynamic indexing.

Valid element specifications

The following table shows examples of valid syntax for specifying elements to assign or
select. These examples use the A2 subbus of the A bus, as shown in the bus hierarchy
used in “Writing Specific Elements to a Data Store” on page 58-19.

58 Working with Data Stores

58-24

Valid Syntax Description

DSM.A.A2(:,:) Selects all elements in every dimension
DSM.A.A2([1,3,5],1) Selects the first, third, and fifth elements
DSM.A.A2(2:5,1) Selects the second through the fifth

element

Invalid element specifications

The following table shows examples of invalid syntax for specifying elements to assign
or select. These examples use the A2 subbus of the A bus, as shown in the bus hierarchy
used in “Writing Specific Elements to a Data Store” on page 58-19.

Invalid Syntax Reason the Syntax Is Invalid

DSM.A.A2(:) You must specify a colon for each
dimension. For the bus hierarchy used in
these examples, you must use two colons.

DSM.A.A2(2:end,1) You cannot use the end operator.
DSM.A.A2(idx,1) You cannot use variables to specify indices.

Consider using a MATLAB Function block.
DSM.A.A2(-1,1) The dimension –1 is not within the valid

dimension bounds.

Specification using the command line

To set the elements to write to or read from, use the DataStoreElements parameter.
Use a pound sign (#) to delimit multiple elements. For example, select the Data Store
Write or Data Store Read block for which you want to specify elements and enter a
command such as:

set_param(gcb, 'DataStoreElements', 'DSM.A#DSM.B#DSM.C(3,4)')

This specification results in the block now having three ports corresponding to the
elements that you specified.

See Also
Data Store Write | Data Store Memory | Data Store Read

 Access Data Stores with Simulink Blocks

58-25

Related Examples
• “Apply Data Stores” on page 58-6
• “Create Data Stores” on page 58-4
• “Rename Data Stores” on page 58-26
• “Log Data Stores” on page 58-31

More About
• “When to Use a Data Store” on page 58-3
• “Local and Global Data Stores” on page 58-2

58 Working with Data Stores

58-26

Rename Data Stores

In this section...

“Rename Data Store Defined by Block” on page 58-26
“Rename Data Store Defined by Signal Object” on page 58-26

Rename Data Store Defined by Block

Rename a data store everywhere it is used by Data Store Read and Data Store Write
blocks in a model.

1 In a Data Store Memory block dialog box, type a new name in the Data store name
box, and click Rename All.

2 In the Rename All dialog box, confirm the new data store name in the New name
field, and click OK

Note: You cannot use Rename All to rename a data store if you create a
Simulink.Signal object in a workspace to control the code generated for the data store.
Instead, you must rename the corresponding Simulink.Signal object using Model
Explorer. For an example, see “Rename Data Store Defined by Signal Object” on page
58-26.

Rename Data Store Defined by Signal Object

This example shows how to rename a data store defined by a Simulink.Signal object.
You can use Model Explorer to rename the object everywhere it is used by Data Store
Read and Data Store Write blocks in a model or in a model reference hierarchy.

1 Open the model sldemo_mdlref_dsm. The model creates a Simulink.Signal
object ErrorCond in the MATLAB base workspace and uses the object as a global
data store in a model reference hierarchy.

2 Open Model Explorer.
3 In the Model Hierarchy pane, select the base workspace.
4 In the Contents pane, right-click the data store ErrorCond and select Rename All.

 Rename Data Stores

58-27

5 In the Select a system dialog box, click the name of the model
sldemo_mdlref_dsm to select it as the context for renaming the data store
ErrorCond.

6 Select Search in referenced models since ErrorCond is a global data store that is
used in a referenced model. Click OK.

The Update diagram to include recent changes check box is cleared by default
to save time by avoiding unnecessary model diagram updates. Select the check box to
incorporate recent changes you made to the model by forcing a diagram update.

7 Click OK in response to the message to update the model diagram.

Since you just opened the model, you must update the model diagram at least once
before renaming a variable such as ErrorCond. You could have selected Update
diagram to include recent changes in the Select a system dialog box to force an
initial diagram update, though you typically use that option when you make changes
to the model while performing multiple variable renaming operations.

8 In the Rename All dialog box, type the new name for the data store in the New
name box and click OK.

See Also
Data Store Memory | Simulink.Signal

Related Examples
• “Apply Data Stores” on page 58-6
• “Create Data Stores” on page 58-4

More About
• “When to Use a Data Store” on page 58-3
• “Local and Global Data Stores” on page 58-2

58 Working with Data Stores

58-28

Data Store Examples

In this section...

“Overview” on page 58-28
“Local Data Store Example” on page 58-28
“Global Data Store Example” on page 58-29

Overview

The following examples illustrate techniques for defining and accessing data stores. See
“Order Data Store Access” on page 58-36 for techniques that control data store access
over time, such as ensuring that a given data store is always written before it is read. See
“Data Store Diagnostics” on page 58-43 for techniques you can use to help detect and
correct potential data store errors without needing to run any simulations.

Note: In addition to the following examples, see the sldemo_mdlref_dsm model, which
shows how to use global data stores to share data among referenced models.

Local Data Store Example

The following model illustrates creation and access of a local data store, which is visible
only in a model or particular subsystem.

 Data Store Examples

58-29

This model uses a data store to permit subsystem A to signal that its output is invalid. If
subsystem A's output is invalid, the model uses the output of subsystem B.

Global Data Store Example

The following model replaces the subsystems of the previous example with functionally
identical referenced models to illustrate use of a global data store to share data in a
model reference hierarchy.

58 Working with Data Stores

58-30

In this example, the top model uses a signal object in the MATLAB workspace to define
the error data store. This is necessary because data stores are visible across model
boundaries only if they are defined by signal objects in the MATLAB workspace.

Related Examples
• “Apply Data Stores” on page 58-6
• “Create Data Stores” on page 58-4
• “Data Stores with Buses and Arrays of Buses” on page 58-8
• “Data Stores and Software Verification” on page 58-52

More About
• “When to Use a Data Store” on page 58-3
• “Local and Global Data Stores” on page 58-2

 Log Data Stores

58-31

Log Data Stores
In this section...

“Logging Local and Global Data Store Values” on page 58-31
“Supported Data Types, Dimensions, and Complexity for Logging Data Stores” on page
58-31
“Data Store Logging Limitations” on page 58-31
“Logging Data Stores Created with a Data Store Memory Block” on page 58-32
“Logging Icon for the Data Store Memory Block” on page 58-32
“Logging Data Stores Created with a Simulink.Signal Object” on page 58-33
“Accessing Data Store Logging Data” on page 58-33

Logging Local and Global Data Store Values

You can log the values of a local or global data store data variable for all the steps in a
simulation. Two common uses of data store logging are for:

• Model debugging – view the order of all data store writes
• Confirming a model modification – use the logged data to establish a baseline for

comparing results for identifying the impact of a model modification

To see an example of logging a global data store, see the sldemo_mdlref_dsm model.

Supported Data Types, Dimensions, and Complexity for Logging Data
Stores

You can log data stores that use the following data types:

• All built-in data types
• Enumerated data types
• Fixed-point data types

You can log data stores that use any dimension level or complexity.

Data Store Logging Limitations

Limitations for using data store logging in a model are:

58 Working with Data Stores

58-32

• To log data for a data store memory:

• Simulate the top-level model in Normal mode.
• For local data stores, the model containing the Data Store Memory block must be

in Model Reference Normal mode.
• Any block in a referenced model that writes to the data store memory must be

executed in model reference Normal mode.
• If you set the Model Configuration Parameters > Solver > Tasking mode for

periodic sample times parameter to MultiTasking, then you cannot log Data
Store Memory blocks that use asynchronous sample times or hybrid sample times
(that is, sample times resulting from when different data sources for the data store
have different sample times).

For details about viewing information about sample times, see “View Sample Time
Information” on page 7-9.

• You cannot log data stores that use custom data types.

Logging Data Stores Created with a Data Store Memory Block

To log a local data store that you create with a Data Store Memory block:

1 In the Block Parameters dialog box for the Data Store Memory block that you want
to log, select the Logging pane.

2 Select the Log signal data check box.
3 Optionally, specify limits for the amount of data logged, using the Minimum and

Maximum parameters.
4 Enable data store logging with the Model Configuration Parameters > Data

Import/Export > Data stores parameter.
5 Simulate the model.

Logging Icon for the Data Store Memory Block

When you enable logging for a model, and you configure a local data store for logging, the
Data Store Memory block displays a blue icon. If you do not enable logging for the model,
then the icon is gray.

 Log Data Stores

58-33

Logging Data Stores Created with a Simulink.Signal Object

You can create local and global data stores using a Simulink.Signal object. See “Data
Stores with Signal Objects” on page 58-14 for details.

To log a data store that you create with a Simulink.Signal object:

1 Create a Simulink.Signal object in a workspace that is visible to every component
that needs to access the data store, as described in “Data Stores with Signal Objects”
on page 58-14.

2 Use the name of the Simulink.Signal object in the Data store name block
parameters of the Data Store Read and Data Store Write blocks that you want to
write to and read from the data store.

3 From the MATLAB command line, set DataLogging (which is a property of the
LoggingInfo property of Simulink.Signal) to 1.

For example, if you use a Simulink.Signal object called
DataStoreSignalObject to create a data store, use the following command:

DataStoreSignalObject.LoggingInfo.DataLogging = 1

4 Optionally, specify limits for the amount of data logged, using the following
properties, which are properties of the LoggingInfo property of the
Simulink.Signal object: Decimation, LimitDataPoints, and MaxPoints.

5 Enable data store logging with the Model Configuration Parameters > Data
Import/Export > Data stores parameter.

6 Simulate the model.

Accessing Data Store Logging Data

The following Simulink classes represent data from data store logging and provide
methods for accessing that data:

58 Working with Data Stores

58-34

Class Description

Simulink.SimulationData.BlockPath Represents a fully specified Simulink block
path; use for capturing the full model reference
hierarchy

Simulink.SimulationData.Dataset Stores logged data elements and provides
searching capabilities; use to group
Simulink.SimulationData.Element objects
in a single object

Simulink.SimulationData.DataStoreMemoryStores logging information from a data store
during simulation

You can also convert data logged in formats other than Dataset. For more information,
see “Data Set Conversion for Logged Data” on page 57-15.

Viewing Data Store Data

To view data store logging data from the command line, view the output data set in the
base workspace. The default variable for the data store logging data set is dsmout.

The sldemo_mdlref_dsm model illustrates approaches for viewing data store logging
data.

Accessing Elements in the Data Store Logging Data

To find an element in the data store logging data, based on the Name or BlockType
property, use the getElement method of Simulink.SimulationData.Dataset. For
example:

dsmout.getElement('RefSignalVal')

ans =

Simulink.SimulationData.DataStoreMemory

Package: Simulink.SimulationData

Properties:

 Name: 'RefSignalVal'

 Blockpath: [1x1 Simulink.SimulationData.BlockPath]

 Scope: 'local'

 DSMWriterBlockPaths: [1x2 Simulinkl.SimulationData.BlockPath]

 DSMWriters: [101x1 uint32]

 Values: 101x1 timeseries]

 Log Data Stores

58-35

To access an element by index, use the
Simulink.SimulationData.Dataset.getElement method.

See Also
Simulink.SimulationData.Dataset | Simulink.SimulationData.BlockPath |
Simulink.SimulationData.DataStoreMemory

Related Examples
• “Apply Data Stores” on page 58-6
• “Order Data Store Access” on page 58-36
• “Data Store Examples” on page 58-28
• “Data Stores with Signal Objects” on page 58-14
• “Data Stores with Data Store Memory Blocks” on page 58-10

More About
• “When to Use a Data Store” on page 58-3

58 Working with Data Stores

58-36

Order Data Store Access

In this section...

“About Data Store Access Order” on page 58-36
“Ordering Access Using Function Call Subsystems” on page 58-36
“Ordering Access Using Block Priorities” on page 58-40

About Data Store Access Order

To obtain correct results from data stores, you must control the order of execution of
the data store’s reads and writes. If a data store’s read occurs before its write, latency is
introduced into the algorithm: the read obtains the value that was computed and stored
in the previous time step, rather than the value computed and stored in the current time
step.

Such latency may cause the system to behave other than as designed, and in some cases
may destabilize the system. Even if these problems do not occur, an uncontrolled access
order could change from one release of Simulink to the next.

This section describes several strategies for explicitly controlling the order of execution
of a data store’s reads and writes. See “Data Store Diagnostics” on page 58-43 for
techniques you can use to detect and correct potential data store errors without running
simulations.

Ordering Access Using Function Call Subsystems

You can use function call subsystems to control the execution order of model components
that access data stores. The next figure shows this technique:

 Order Data Store Access

58-37

58 Working with Data Stores

58-38

 Order Data Store Access

58-39

58 Working with Data Stores

58-40

The subsystem Before contains the Data Store Write, and the Stateflow chart calls that
subsystem before it calls the subsystem After, which contains the Data Store Read.

Ordering Access Using Block Priorities

You can embed data store reads and writes inside atomic subsystems or Model blocks
whose priorities specify their relative execution order.

 Order Data Store Access

58-41

58 Working with Data Stores

58-42

The Model block beforeDSM has a lower priority then afterDSM, so it is guaranteed to
execute first. Since beforeDSM is atomic, all of its operations, including the Data Store
Write, will execute prior to afterDSM and all of its operations, including the Data Store
Read.

Related Examples
• “Apply Data Stores” on page 58-6
• “Data Store Examples” on page 58-28

More About
• “Data Store Diagnostics” on page 58-43
• “Data Stores and Software Verification” on page 58-52

 Data Store Diagnostics

58-43

Data Store Diagnostics

In this section...

“About Data Store Diagnostics” on page 58-43
“Detecting Access Order Errors” on page 58-43
“Detecting Multitasking Access Errors” on page 58-46
“Detecting Duplicate Name Errors” on page 58-48
“Data Store Diagnostics in the Model Advisor” on page 58-50

About Data Store Diagnostics

Simulink provides various run-time and compile-time diagnostics that you can use
to help avoid problems with data stores. Diagnostics are available in the Model
Configuration Parameters dialog box and the Data Store Memory block's parameters
dialog box. The Simulink Model Advisor provides support by listing cases where data
store errors are more likely because diagnostics are disabled.

Detecting Access Order Errors

• “Data Store Diagnostics and Models Referenced in Accelerator Mode” on page
58-45

• “Data Store Diagnostics and the MATLAB Function Block” on page 58-46

You can use data store run-time diagnostics to detect unintended sequences of data store
reads and writes that occur during simulation. You can apply these diagnostics to all
data stores, or allow each Data Store Memory block to set its own value. The diagnostics
are:

• Detect read before write: Detect when a data store is read from before written.
• Detect write after read: Detect when a data store is written.
• Detect write after write: Detect when a data store is written.

These diagnostics appear in the Model Configuration Parameters > Diagnostics
> Data Validity > Data Store Memory Block pane, where each can have one of the
following values:

58 Working with Data Stores

58-44

• Disable all — Disables this diagnostic for all data stores accessed by the model.
• Enable all as warnings — Displays the diagnostic as a warning in the MATLAB

Command Window.
• Enable all as errors — Halts the simulation and displays the diagnostic in an

error dialog box.
• Use local settings — Allow each Data Store Memory block to set its own value

for this diagnostic (default).

The same diagnostics also appear in each Data Store Memory block parameters dialog
box Diagnostics tab. You can set each diagnostic to none, warning, or error. The
value specified by an individual block takes effect only if the corresponding configuration
parameter is Use local settings. See “ Diagnostics Pane: Data Validity” and the
Data Store Memory documentation for more information.

The most conservative technique is to set all data store diagnostics to Enable all as
errors in Model Configuration Parameters > Diagnostics > Data Validity > Data
Store Memory Block. However, this setting is not best in all cases, because it can flag
intended behavior as erroneous. For example, the next figure shows a model that uses
block priorities to force the Data Store Read block to execute before the Data Store Write
block:

 Data Store Diagnostics

58-45

An error occurred during simulation because the data store A is read from the Data Store
Read block before the Data Store Write block updates the store. If the associated delay
is intended, you can suppress the error by setting the global parameter Detect read
before write to Use local settings, then setting that parameter to none in the
Diagnostics pane of the Data Store Memory block dialog box. If you use this technique,
set the parameter to error in all other Data Store Memory blocks aside from those that
are to be intentionally excluded from the diagnostic.

Data Store Diagnostics and Models Referenced in Accelerator Mode

For models referenced in Accelerator mode, Simulink ignores the following
Configuration Parameters > Diagnostics > Data Validity > Data Store Memory
Block parameters if you set them to a value other than Disable all.

• Detect read before write (ReadBeforeWriteMsg)
• Detect write after read (WriteAfterReadMsg)
• Detect write after write (WriteAfterWriteMsg)

You can use the Model Advisor to identify models referenced in Accelerator mode for
which Simulink ignores the configuration parameters listed above.

1 In the Simulink Editor, select Analysis > Model Advisor.
2 Select By Task.
3 Run the Check diagnostic settings ignored during accelerated model

reference simulation check.

58 Working with Data Stores

58-46

Data Store Diagnostics and the MATLAB Function Block

Diagnostics might be more conservative for data store memory used by MATLAB
Function blocks. For example, if you pass arrays of data store memory to MATLAB
functions, optimizations such as A=foo(A) might result in MATLAB marking the entire
contents of the array as read or written, even though only some elements were accessed.

Detecting Multitasking Access Errors

Data integrity may be compromised if a data store is read from in one task and written to
in another task. For example, suppose that:

1 A task is writing to a data store.
2 A second task interrupts the first task.
3 The second task reads from that data store.

If the first task had only partly updated the data store when the second task interrupted,
the resulting data in the data store is inconsistent. For example, if the value is a vector,
some of its elements may have been written in the current time step, while the rest were
written in the previous step. If the value is a multi-word, it may be left in an inconsistent
state that is not even partly correct.

Unless you are certain that task preemption cannot cause data integrity problems, set
the compile-time diagnostic Model Configuration Parameters > Diagnostics > Data
Validity > Data Store Memory Block > Multitask Data Store to warning (the
default) or error. This diagnostic flags any case of a data store that is read from and
written to in different tasks. The next figure illustrates a problem detected by setting
Multitask Data Store to error:

 Data Store Diagnostics

58-47

Since the data store A is written to in the fast task and read from in the slow task, an
error is reported, with suggested remedy. This diagnostic is applicable even in the case
that a data store read or write is inside of a conditional subsystem. Simulink correctly
identifies the task that the block is executing within, and uses that task for the purpose
of evaluating the diagnostic.

The next figure shows one solution to the problem shown above: place a rate transition
block after the data store read, which previously accessed the data store at the slower
rate.

With this change, the data store write can continue to occur at the faster rate. This may
be important if that data store must be read at that faster rate elsewhere in the model.

58 Working with Data Stores

58-48

The Multitask Data Store diagnostic also applies to data store reads and writes in
referenced models. If two different child models execute a data store’s reads and writes in
differing tasks, the error will be detected when Simulink compiles their common parent
model.

Detecting Duplicate Name Errors

Data store errors can occur due to duplicate uses of a data store name within a model.
For instance, data store shadowing occurs when two or more data store memories in
different nested scopes have the same data store name. In this situation, the data store
memory referenced by a data store read or write block at a low level may not be the
intended store.

To prevent errors caused by duplicate data store names, set the compile-time diagnostic
Model Configuration Parameters > Diagnostics > Data Validity > Data Store
Memory Block > Duplicate Data Store Names to warning or error. By default, the
value of the diagnostic is none, suppressing duplicate name detection. The next figure
shows a problem detected by setting Duplicate Data Store Names to error:

 Data Store Diagnostics

58-49

58 Working with Data Stores

58-50

The data store read at the bottom level of a subsystem hierarchy refers to a data store
named A, and two Data Store Memory blocks in the same model have that name, so an
error is reported. This diagnostic guards against assuming that the data store read refers
to the Data Store Memory block in the top level of the model. The read actually refers
to the Data Store Memory block at the intermediate level, which is closer in scope to the
Data Store Read block.

Data Store Diagnostics in the Model Advisor

The Model Advisor provides several diagnostics that you can use with data stores. See
these sections for information about Model Advisor diagnostics for data stores:

“Check Data Store Memory blocks for multitasking, strong typing, and shadowing issues”

“Check data store block sample times for modeling errors”

“Check if read/write diagnostics are enabled for data store blocks”

Related Examples
• “Data Store Examples” on page 58-28

 Data Store Diagnostics

58-51

• “Apply Data Stores” on page 58-6
• “Create Data Stores” on page 58-4

More About
• “When to Use a Data Store” on page 58-3
• “Local and Global Data Stores” on page 58-2
• “Data Stores and Software Verification” on page 58-52

58 Working with Data Stores

58-52

Data Stores and Software Verification

Data stores can have significant effects on software verification, especially in the area of
data coupling and control. Models and subsystems that use only inports and outports to
pass data result in clean, well-specified, and easily verifiable interfaces in the generated
code.

Data stores, like any type of global data, make verification more difficult. If your
development process includes software verification, consider planning for the effect of
data stores early in the design process.

For more information, see RTCA DO-331, “Model-Based Development and Verification
Supplement to DO-178C and DO-278A,” Section MB.6.3.3.b.

Related Examples
• “Data Store Examples” on page 58-28
• “Apply Data Stores” on page 58-6
• “Create Data Stores” on page 58-4

More About
• “When to Use a Data Store” on page 58-3
• “Local and Global Data Stores” on page 58-2
• “Data Store Diagnostics” on page 58-43

59

Simulink Data Dictionary

• “What Is a Data Dictionary?” on page 59-2
• “Considerations before Migrating to Data Dictionary” on page 59-5
• “Migrate Enumerated Types into Data Dictionary” on page 59-10
• “Enumerations in Data Dictionary” on page 59-15
• “Migrate Single Model to Use Dictionary” on page 59-17
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20
• “Import Data to Dictionary from File” on page 59-22
• “Export Design Data from Dictionary” on page 59-28
• “View and Revert Changes to Dictionary Entries” on page 59-29
• “View and Revert Changes to Entire Dictionary” on page 59-33
• “Partition Data Dictionary” on page 59-35
• “Partition Data for Model Reference Hierarchy Using Data Dictionaries” on page

59-37
• “Store Data in Dictionary Programmatically” on page 59-52

59 Simulink Data Dictionary

59-2

What Is a Data Dictionary?

A data dictionary is a persistent repository of data that are relevant to your model. You
can also use the base workspace to store design data that are used by your model during
simulation. However, a data dictionary provides more capabilities.

The dictionary stores design data, which define parameters and signals, and include
data that define the behavior of the model. The dictionary does not store simulation data,
which are inputs or outputs of model simulation.

In this section...

“Dictionary Capabilities” on page 59-2
“Sections of a Dictionary” on page 59-3
“Import and Export File Formats” on page 59-4

Dictionary Capabilities

Dictionary Capability Benefit

Dictionary as data source All entries in a dictionary are persistent. You do not
need to reload data during development.

Explicit data-model linkage You can define a data dictionary as the data source
for a model. During model simulation and code
generation, the model retrieves design data from the
data dictionary.

Change tracking When you modify an entry, its status is updated in the
dictionary and stored as metadata that can be tracked.
The dictionary also tracks who made the changes and
when. You can also view or revert changes.

Entry comparison Compare values of entries in two dictionaries.
Data grouping into reference
dictionaries

Partition and organize data items into reference
dictionaries.

Model-data dependency Discover how entries are used in the model.
Store and partition reference
data

Store and partition data that are relevant to a model,
such as equipment specifications, but not used by the
model during simulation.

 What Is a Data Dictionary?

59-3

Dictionary Capability Benefit

Unified interface for defining
data

Use the Model Explorer to work with design data in a
dictionary.

Incremental update in memory Improved performance and scalability with minimal
footprint on memory.

Requirements traceability
linking

Navigate from a data dictionary entry to a location in a
requirements document.

Sections of a Dictionary

A Simulink data dictionary is made up of three parts called sections.

1 Design Data: Contains the variables and data types that define parameters,
signals, and design data that determine the behavior of the model. Design data
created or imported in a dictionary are stored in this section.

This section can store only certain classes and data types. See “Valid Design Data
Classes” on page 59-7 for more information.

2 Configurations: Contains configuration sets, which are objects of the
Simulink.ConfigSet class, that determine how the model is configured during
simulation. These objects control attributes such as sample time and simulation
start time.

When you store configuration sets in a data dictionary, you use configuration
references to access the configuration sets. Models that are linked to a dictionary
resolve configuration references to configuration sets in the dictionary. For more
information about configuration references, see “About Configuration References” on
page 12-28.

This section can also store variant configuration objects, which belong to the
Simulink.VariantConfigurationData class. These objects store information about
variant configurations, active and default variant settings, and definitions of the
control variable associated with each configuration.

3 Other Data: Contains information that is relevant to your model but not used by
the model during simulation. Use this section to store reference information such as
data that describe physical equipment and processes that are represented by your
model.

59 Simulink Data Dictionary

59-4

This section can store almost any built-in or custom class or data type. See “Invalid
Other Data Classes” on page 59-7 for more information.

Import and Export File Formats

File Format Import to Dictionary Export from Dictionary

MAT-file ✓ ✓
MATLAB script ✓ ✓

Related Examples
• “Determine Where to Store Data for Simulink Models” on page 55-61
• “Migrate Single Model to Use Dictionary” on page 59-17
• “View and Revert Changes to Dictionary Entries” on page 59-29
• “Store Data in Dictionary Programmatically” on page 59-52
• “Link Requirements to Simulink Data Dictionary Entries”

More About
• “Considerations before Migrating to Data Dictionary” on page 59-5

 Considerations before Migrating to Data Dictionary

59-5

Considerations before Migrating to Data Dictionary

In this section...

“Check for Data-Loading Callbacks” on page 59-5
“Check Scripts” on page 59-5
“Check Tunable Parameters” on page 59-6
“Data Shared by Model References” on page 59-6
“Valid Design Data Classes” on page 59-7
“Invalid Other Data Classes” on page 59-7
“Data Dictionary Limitations” on page 59-8

Check for Data-Loading Callbacks

You can use model callbacks such as the PreLoadFcn callback to load design data from a
file into the base workspace when a model is loaded. For example, the following callback
loads design data from the MAT file myData.mat.

load myData

After you migrate to a data dictionary, these callbacks will continue to load design data
into the base workspace. Since the model then derives design data from the dictionary,
manually remove or comment out these data-loading callbacks.

You can use the Simulink Manifest Tools to find data-loading callbacks. See “Analyze
Model Dependencies” on page 17-19.

Check Scripts

If you make explicit references to the base workspace by using the handle base in your
scripts, consider changing these references. When you move any of your data to a data
dictionary, the model no longer looks into the base workspace to find design data.

After you migrate design data to a data dictionary, explicit references to the base
workspace cannot resolve and errors can occur.

Consider this example. Here, the script searches the base workspace for variable sensor
and sets the parameter enable depending on the value of sensor.noiseEnable.

if evalin('base','sensor.noiseEnable')

59 Simulink Data Dictionary

59-6

 enable = 'Enabled';

else

 enable = 'Disabled';

end

When you migrate to a data dictionary, replace these explicit references to base as
follows:

if Simulink.data.evalinGlobal(myExampleModel,...

'sensor.noiseEnable')

 enable = 'Enabled';

else

 enable = 'Disabled';

end

The Simulink.data.evalinGlobal function evaluates an expression in the global
scope of the specified model. Here, the global scope can be in a data dictionary or the base
workspace, if the model is not linked to a dictionary.

Check Tunable Parameters

• If your model is linked to a data dictionary, Simulink ignores storage class
information specified in the tunable parameters table of the model.

• If you use the Simulink interface to migrate a model to use a data dictionary,
Simulink also migrates the storage class information of the model. If your model
contains storage class information for variables in the base workspace, Simulink
converts these variables into Simulink.Parameter objects during migration. Then,
Simulink sets the storage class of these Simulink.Parameter objects using the
storage class information from the model.

• If you migrate this model back to the base workspace, Simulink does not restore
the storage class information in the model. To preserve the storage class for these
variables, use the parameter objects from the data dictionary. You can also manually
reset the storage class information in the model.

• If you set the DataDictionary property of a model from the command
line, convert tunable variables to Simulink.Parameter objects using the
tunablevars2parameterobjects function.

Data Shared by Model References

When you use model referencing to break a large system of models into smaller
components and subcomponents, you can create data dictionaries to segregate the design

 Considerations before Migrating to Data Dictionary

59-7

data. Design data is the set of workspace variables that the models use to specify block
parameters and signal characteristics.

The models in a model reference hierarchy typically share data. Data ownership, the
number of shared variables, and the complexity of your sharing strategy can influence
the way that you use dictionaries. For more information, see “Determine Where to Store
Data for Simulink Models” on page 55-61.

Valid Design Data Classes

You can import, store, or create design data objects of the following data classes in the
Design Data section of a Simulink data dictionary.

• Simulink.AliasType

• Simulink.Bus

• Simulink.NumericType

• Simulink.Parameter

• Simulink.Signal

• Simulink.Variant

• Simulink.data.dictionary.EnumTypeDefinition

• embedded.fi

• embedded.fimath

• numlti

In addition, you can import, store, or create configuration objects of the following classes
in the Configurations section of a Simulink data dictionary.

• Simulink.ConfigSet

• Simulink.VariantConfigurationData

Invalid Other Data Classes

You can import, store, or create data objects of many built-in and custom classes or data
types in the Other Data section of a Simulink data dictionary, except for the following:

• timeseries

• Function handles

59 Simulink Data Dictionary

59-8

• embedded.numerictype

• Classes in the Simulink or MATLAB packages that the Design Data and
Configurations sections do not accept

• Sparse matrices
• Simulink.ConfigSetRef

• Arrays of objects created from built-in or custom classes
• Custom classes that have a property with any of these names:

• LastModified

• LastModifiedBy

• DataSource

• Status

• Variant

Data Dictionary Limitations

• Simulink cannot automatically migrate variables used only by inactive variant models
into a data dictionary.

• You cannot import certain kinds of design data such as meta class objects and
timeseries objects into the Design Data section of a data dictionary.

• Simulink does not allow Explicit and Implicit signal resolution for a model linked
to a data dictionary. The Signal Resolution parameter of the model is specified in
Model Configuration Parameters > Diagnostics > Data Validity. To use a data
dictionary, set Signal Resolution to Explicit only.

• The data dictionary does not support models that contain From Workspace blocks.
Further, Simulink does not import simulation data such as timeseries objects into
the Design Data section of a data dictionary. You can migrate such models in one of
the following ways.

• Before migration, replace From Workspace blocks in your model with other source
blocks or a combination of source blocks.

• Migrate the model without replacing From Workspace blocks. After migration,
replace the From Workspace blocks.

• If a model reference hierarchy is already linked to a data dictionary, you can protect
a referenced model that is part of the hierarchy. However, if you migrate a model
reference hierarchy that includes a protected model, simulation will fail.

 Considerations before Migrating to Data Dictionary

59-9

In other words, migrate a model to use a data dictionary before protecting it.

See Also
“Protected Model” on page 8-71 | From Workspace

Related Examples
• “Determine Where to Store Data for Simulink Models” on page 55-61

More About
• “Analyze Model Dependencies” on page 17-19

59 Simulink Data Dictionary

59-10

Migrate Enumerated Types into Data Dictionary
This example shows how to migrate enumerated types that are used by a model into a
data dictionary.

Import Design Data

1 Open a model that uses enumerated types for design data or for blocks in the model.
2 In the Simulink Editor, click File > Model Properties > Link to Data

Dictionary.
3 In the Model Properties dialog box, set Defined in to Data Dictionary and click

New to create a data dictionary.

4 Name the data dictionary, save it, and click Apply.
5 Click Add path, if you see the message to add the dictionary location to the

MATLAB path.
6 Click Yes in response to the message that explains how Simulink migrates design

data stored in the base workspace.

 Migrate Enumerated Types into Data Dictionary

59-11

A message appears, reporting the number of items imported from the base
workspace to the data dictionary.

7 Simulink reports the enumerated types that were not imported into the data
dictionary.

8 Click OK.

A notification appears in the Simulink Editor, reporting that your model is now
linked to the data dictionary.

Import Enumerated Types

Import the definitions of enumerated types only after you import all the design data that
were creating using the types. When you import enumerated types to a data dictionary,
Simulink disables MATLAB files or P-files that contain the type definitions, causing
variables that remain in the MATLAB base workspace to lose their definitions.

1 At the MATLAB command prompt, get the names of enumerated types that are used
in model blocks.

% Find all variables and enumerated types used in model blocks

usedTypesVars = Simulink.findVars('EnumsReporting','IncludeEnumTypes',true);

% Here, EnumsReporting is the name of the model and

% usedTypesVars is an array of Simulink.VariableUsage objects

% Find indices of enumerated types that are defined by MATLAB files or P-files

59 Simulink Data Dictionary

59-12

enumTypesFile = strcmp({usedTypesVars.SourceType},'MATLAB file');

% Find indices of enumerated types that are defined using the function

% Simulink.defineIntEnumType

enumTypesDynamic = strcmp({usedTypesVars.SourceType},'dynamic class');

% In one array, represent indices of both kinds of enumerated types

enumTypesIndex = enumTypesFile | enumTypesDynamic;

% Use logical indexing to return the names of used enumerated types

enumTypeNames = {usedTypesVars(enumTypesIndex).Name}'

enumTypeNames =

 'dEnum1'

 'dEnum10'

 'dEnum2'

 'dEnum3'

 'dEnum4'

 'dEnum5'

 'dEnum6'

 'dEnum9'

2 Open the data dictionary, and represent it with a Simulink.data.Dictionary
object.

ddConnection = Simulink.data.dictionary.open('myEnumsDD.sldd')

ddConnection =

 Dictionary with properties:

 DataSources: {0x1 cell}

 HasUnsavedChanges: 0

 NumberOfEntries: 3

3 Import the enumerated types that are used by blocks in the model.
[successfulMigrations, unsuccessfulMigrations] = ...

importEnumTypes(ddConnection,enumTypeNames)

successfulMigrations =

1x6 struct array with fields:

 className

 renamedFiles

 Migrate Enumerated Types into Data Dictionary

59-13

unsuccessfulMigrations =

1x2 struct array with fields:

 className

 reasons

When enumerated types are imported, importEnumTypes renames the enumerated
class definition file by appending .save to the file name. For example, if the original
enumerated class definition is named Enum1.m, Simulink renamed the file as
Enum1.m.save.

The structure unsuccessfulMigrations reports enumerated types that are not be
migrated. In this example, two enumerated type instances are defined in the model
workspace and can be imported after closing the model. Close the model to import
these enumerated types.

4 Open the dictionary to view the migrated enumerated types.

59 Simulink Data Dictionary

59-14

Related Examples
• “Use Enumerated Data in Simulink Models” on page 56-7

More About
• “Simulink Enumerations” on page 56-2
• “Enumerations in Data Dictionary” on page 59-15

 Enumerations in Data Dictionary

59-15

Enumerations in Data Dictionary

These examples show how to operate on existing enumerations in a data dictionary.

In this section...

“Rename Enumerated Type Definition” on page 59-15
“Rename Enumeration Members” on page 59-15
“Delete Enumeration Members” on page 59-15
“Change Underlying Value of Enumeration Member” on page 59-16

Rename Enumerated Type Definition

1 In the data dictionary, create a copy of the enumerated type, and rename the copy
instead.

2 Find enumeration objects used by your model that are derived from the type with the
old name.

3 Replace these objects with those derived from the renamed type.
4 Delete the type with the old name.

Rename Enumeration Members

Use one of the following approaches.

• Select the enumeration within the dictionary, and rename one or more enumeration
members.

• If your model references enumeration members as strings, change these strings to
match the renamed member.

Delete Enumeration Members

1 Find references in your model to an enumeration member you want to delete.
2 Replace these references with an alternate member.
3 Delete the original member from the enumeration.

59 Simulink Data Dictionary

59-16

Change Underlying Value of Enumeration Member

You can change the values of enumeration members when you represent these values as
MATLAB variables or by using Value field of Simulink.Parameter objects.

1 Find references in your model to an enumeration member whose value you want to
change.

2 Make a note of these references.
3 Change the value of the enumeration member.
4 Manually update references to the enumeration member in your model.

Related Examples
• “Migrate Enumerated Types into Data Dictionary” on page 59-10
• “Use Enumerated Data in Simulink Models” on page 56-7

More About
• “Simulink Enumerations” on page 56-2

 Migrate Single Model to Use Dictionary

59-17

Migrate Single Model to Use Dictionary

This example shows how to link a model to a data dictionary and import model design
data from the base workspace into the data dictionary.

Note: Simulink does not import simulation data such as Timeseries objects into the data
dictionary.

1 Open the f14 model, which loads design data into the base workspace.
2 In the Simulink Editor, click File > Model Properties > Link to Data

Dictionary.
3 In the Model Properties dialog box, set Defined in to Data Dictionary and click

New to create a data dictionary.

4 Name the data dictionary, save it, and click Apply.
5 Click Add path, if you see the message to add the dictionary location to the

MATLAB path.
6 Click Yes in response to the message that explains how Simulink migrates design

data stored in the base workspace.

59 Simulink Data Dictionary

59-18

A message appears, reporting the number of items imported from the base
workspace to the data dictionary.

7 Click OK in the Model Properties dialog box.

A notification appears in the Simulink Editor, reporting that your model is now
linked to the data dictionary.

8
In the Simulink Editor, click the data dictionary badge in the bottom left corner
to open the dictionary.

9 Right-click the dictionary node and select Save Changes.

 Migrate Single Model to Use Dictionary

59-19

Related Examples
• “Import Data to Dictionary from File” on page 59-22
• “View and Revert Changes to Dictionary Entries” on page 59-29
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20
• “Programmatically Migrate Single Model to Use Dictionary” on page 59-55

59 Simulink Data Dictionary

59-20

Migrate Model Reference Hierarchy to Use Dictionary

This example shows how to link a parent model and all its referenced models to a single
data dictionary.

1 Open the top model containing the model reference hierarchy.
2 In the Simulink Editor, click File > Model Properties > Link to Data

Dictionary.
3 In the Model Properties dialog box, set Defined in to Data Dictionary and click

New to create a data dictionary.

4 Name the data dictionary, save it, and click Apply.
5 Click Yes in response to the message that explains how Simulink migrates design

data stored in the base workspace.

A message appears, reporting the number of items imported to the data dictionary.

 Migrate Model Reference Hierarchy to Use Dictionary

59-21

Related Examples
• “View and Revert Changes to Dictionary Entries” on page 59-29

59 Simulink Data Dictionary

59-22

Import Data to Dictionary from File

You can import data from a MATLAB file or MAT-file to a data dictionary using the
Model Explorer window. Import variables and data objects that are used by a model
during simulation to the Design Data section of a dictionary. Import variables and
objects that you want to store with a model, but that are not used by the model during
simulation, to the Other Data section of a dictionary.

Import Design Data from File

This example shows how to import design data from a file into the Design Data section of
a dictionary.

1 In the Simulink Editor, select View > Model Explorer to open the Model Explorer.
2 Click File > Open. Then browse to an existing dictionary.
3 In the Model Hierarchy pane, right-click the Design Data section of the dictionary

and select Import from File. Then browse to and select the MAT-file or MATLAB
file that contains the data to import.

 Import Data to Dictionary from File

59-23

Design data from the MAT-file populate the dictionary. Data appear with
DataSource set to the name of the dictionary.

59 Simulink Data Dictionary

59-24

If you import from the same MAT-file again, Simulink only imports changed or new
entries into the dictionary.

Import Other Data from File

This example shows how to import data from a file into the Other Data section of a data
dictionary. Use this section to store reference information that is not used by Simulink
during simulation, such as data that describe physical equipment and processes that are
represented by your model.

1 In the Simulink Editor, select View > Model Explorer to open the Model Explorer.
2 Click File > Open. Then browse to an existing dictionary.
3 In the Model Hierarchy pane, right-click the dictionary node and select Show

Empty Sections. Model Explorer reveals the Other Data and Configurations
sections of the dictionary, even if they are empty, in addition to the Design Data
section.

 Import Data to Dictionary from File

59-25

4 In the Model Hierarchy pane, right-click the Other Data section of the dictionary
and select Import from File. Then browse to and select the MAT-file or MATLAB
file that contains the reference data to import.

59 Simulink Data Dictionary

59-26

Data from the MAT-file populate the Other Data section of the dictionary. Data
appear with DataSource set to the name of the dictionary.

 Import Data to Dictionary from File

59-27

If you import from the same MAT-file again, Simulink only imports changed or new
entries into the dictionary.

Related Examples
• “View and Revert Changes to Dictionary Entries” on page 59-29
• “Migrate Single Model to Use Dictionary” on page 59-17
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20
• “Import Directly From External File to Dictionary” on page 59-56

59 Simulink Data Dictionary

59-28

Export Design Data from Dictionary

This example shows how to export model design data from a data dictionary into a MAT-
file or MATLAB script.

1 In the Simulink Editor, select View > Model Explorer to open the Model Explorer.
2 Open a data dictionary using File > Open Data Dictionary.
3 In the Model Hierarchy pane, expand the dictionary node and select Design Data

> Export to File. Then save the design data to a MAT-file or MATLAB script.

Related Examples
• “View and Revert Changes to Dictionary Entries” on page 59-29
• “Migrate Single Model to Use Dictionary” on page 59-17
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20

 View and Revert Changes to Dictionary Entries

59-29

View and Revert Changes to Dictionary Entries

This example shows how to view unsaved changes to dictionary entries, who made them,
and when. You can view changes to entries in any section, including data stored in the
Other Data section and configuration sets stored in the Configurations section.

1 Open the sldemo_fuelsys_dd_controller model.
2 Open the data dictionary linked to this model by clicking the data dictionary badge

 in the bottom left corner of each model.
3 In the Contents pane, change st_range to 0.0002 and zero_thresh to 200.

The Status column of these entries changes to Mod, indicating that they have been
modified.

4 Click the heading of the Status column to sort the entries. Then, select the modified
entries, which are indicated by the Mod status.

5 Right-click and select Show Changes.

59 Simulink Data Dictionary

59-30

The Comparison Tool appears, displaying changed entries in separate tabs. The tool
highlights changed values.

6 In the Contents pane of the Model Explorer, right-click zero_thresh and select
Revert to Saved.

 View and Revert Changes to Dictionary Entries

59-31

Simulink reverts zero_thresh to its value at the time of the last save action.
7 You can merge entries between dictionaries using the Comparison Tool. From the

MATLAB desktop, on the Home tab, in the File section, click Compare.
8 Select the dictionaries to compare and merge.

9 In the comparison report, select the merge direction for each dictionary entry.

59 Simulink Data Dictionary

59-32

Related Examples
• “Import Data to Dictionary from File” on page 59-22
• “View and Revert Changes to Entire Dictionary” on page 59-33
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20

 View and Revert Changes to Entire Dictionary

59-33

View and Revert Changes to Entire Dictionary

If you store model variables in a data dictionary, you can view and manage the changes
that you make while you work. You can use the Comparison Tool to see the changes
made to a dictionary, which compares the modified dictionary with the most recent saved
version.

When you view the changes to a dictionary, you can choose to discard changes to
individual entries or dictionary references, which reverts to the last saved state. You
can use this technique to recover entries that you delete in your modified version or
dictionary references that you remove.

If you view changes to a dictionary that references other dictionaries, the Comparison
Tool also reports changes made to the entries in the referenced dictionaries.

1 View the example data dictionary sldemo_fuelsys_dd in Model Explorer.

dictionary = Simulink.data.dictionary.open('sldemo_fuelsys_dd.sldd');

show(dictionary)

The dictionary contains entries that are defined in several referenced dictionaries,
including sldemo_fuelsys_dd_controller and sldemo_fuelsys_dd_plant.

2 Run the script ex_dictionary_changes, which makes changes to
sldemo_fuelsys_dd. Later, you can use the Comparison Tool to investigate the
changes.

3 In the Model Hierarchy pane of Model Explorer, right-click the node
sldemo_fuelsys_dd and select Show Changes.

The Comparison Tool displays the changes made to the dictionary.

4 In the table at the top of the report, click compare in the Change Summary column
of the row that corresponds to the entry min_throt.

59 Simulink Data Dictionary

59-34

A new tab shows the changes made to min_throt. The script changed the
parameter data type from auto to int8 and the parameter value from 3 to 4.

5 Click the tab that shows the changes made to the dictionary. In the Action column of
the row that corresponds to the entry min_throt, click Revert to Saved.

The entry reverts to the definition from the last saved version of the dictionary.
6 The remaining row in the report shows that the script deleted the entry PressVect,

which was defined in the referenced dictionary sldemo_fuelsys_dd_controller.
Click Recover from Saved, which recovers the entry in the referenced dictionary.

7 The table Dictionary references in sldemo_fuelsys_dd.sldd shows that the
script removed the reference to the dictionary sldemo_fuelsys_dd_plant. In the
Action column, click Recover Reference.

The report shows that there are no more unsaved changes to sldemo_fuelsys_dd.

Related Examples
• “View and Revert Changes to Dictionary Entries” on page 59-29
• “Import Data to Dictionary from File” on page 59-22

More About
• “What Is a Data Dictionary?” on page 59-2

 Partition Data Dictionary

59-35

Partition Data Dictionary

This example shows how to partition a data dictionary into reference dictionaries that
can be shared in a team.

Open dictionary for partitioning

1 Open the Model Explorer. In the Simulink Editor, select View > Model Explorer.
2 Click File > Open.

Browse and locate your dictionary.

Create reference dictionary

Use a reference dictionary to store a subset of entries from the main dictionary.

1 Click File > New > Data Dictionary.

Name the reference dictionary and save it.

Both dictionaries appear as nodes in the Model Hierarchy pane.
2 In the Model Hierarchy pane, select the dictionary that serves as the parent.
3 In the dialog box pane, click Add Reference in the Referenced Dictionaries

section. Browse to the location of the reference dictionary and add it as a reference.

59 Simulink Data Dictionary

59-36

Move entries into reference dictionary

1 In the Model Hierarchy pane, select Design Data node of the parent dictionary.
2 In the Contents pane, select the entries you want to move to the reference

dictionary.
3 For one of the selected entries, set DataSource to the reference dictionary using the

dropdown menu. You can also drag and drop entries between dictionaries.

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-37

Partition Data for Model Reference Hierarchy Using Data
Dictionaries

When you use model referencing to break a large system of models into smaller
components and subcomponents, you can create data dictionaries to segregate the design
data. Design data is the set of workspace variables that the models use to specify block
parameters and signal characteristics. For basic information about data dictionaries, see
“What Is a Data Dictionary?” on page 59-2.

You can migrate all of the models in a model reference hierarchy to use one or more data
dictionaries using either of these techniques:

• Migrate all of the models in the hierarchy at once to use a single dictionary. Then,
create separate referenced dictionaries to organize the design data.

• Incrementally migrate by beginning with the models at the bottom of the hierarchy.
Use this technique if you cannot migrate all of the models at once.

Create a Dictionary for Each Component

This example shows how to partition design data into dictionaries. When you finish, each
component and subcomponent in the system has a dictionary, and dictionary references
allow the components and subcomponents to share data.

Explore Example Model Hierarchy

1 Navigate to the folder matlabroot/help/toolbox/simulink/examples (open).
2 Copy these files to a writable folder:

• ProjectData.mat

• ex_SystemModel

• ex_PlantComp_Lvl1

• ex_PlantComp_Lvl2

• ex_ContrComp

• ex_ContrComp_Sub1_Lvl1

• ex_ContrComp_Sub1_Lvl2

• ex_ContrComp_Sub2_Lvl1

59 Simulink Data Dictionary

59-38

• ex_ContrComp_Sub2_Lvl2

3 Load the MAT-file ProjectData.mat to create design data in the base workspace.
4 Open the example model ex_SystemModel. This model is at the top of a reference

hierarchy that includes the other example models.
5 Select Analysis > Model Dependencies > Model Dependency Viewer > Models

Only. The model reference hierarchy contains a system model, a plant component
with two models, and a controller component. The controller component contains two
subcomponents, each of which consist of two models.

6 In the model, update the diagram. The signals in the model use the Simulink.Bus
objects SensorBus and CtrlBus in the base workspace.

The referenced models ex_PlantComp_Lvl1 and ex_ContrComp also use the bus
objects. Therefore, the plant and controller components share the objects.

7 In the MATLAB base workspace, double-click the bus object SensorBus to view it in
the Bus Editor. The data type of each signal element is set to FloatType, which is a
Simulink.NumericType object in the base workspace.

All of the models in the hierarchy use FloatType to control the data types of signals
and parameters.

8 In the Model Explorer Model Hierarchy pane, expand the node ex_SystemModel.

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-39

The node Reference to SimConfigSet appears. SimConfigSet is a
Simulink.ConfigSet object in the base workspace. All of the models in the
hierarchy use references to SimConfigSet to maintain configuration parameter
uniformity for simulation.

9 Right-click the node Controller (ex_ContrComp) and select Open. In the Model
Explorer Model Hierarchy pane, expand the new node ex_ContrComp.

The nodes Reference to SimConfigSet and Reference to CodeGenConfigSet appear.
CodeGenConfigSet is a Simulink.ConfigSet object in the base workspace. All
of the models in the controller component use references to CodeGenConfigSet to
maintain configuration parameter uniformity for code generation. The models in the
plant component do not use CodeGenConfigSet.

10 In the Model Hierarchy pane, select Base Workspace. In the Contents pane,
right-click the variable diff and select Find Where Used. In the Select a system
dialog box, select ex_SystemModel and click OK. If you see a message about
updating the diagram, click OK.

In the Contents pane, the variable diff is used by Constant blocks in the models
ex_ContrComp_Sub1_Lvl1 and ex_ContrComp_Sub1_Lvl2, which make up the
first controller subcomponent. Similarly, other models in the hierarchy share the
base workspace variables coeff, init, and mu.

The table shows the models that share each variable in the base workspace.

Variable Name Models Using the Variable Scope of Sharing

SimConfigSet All models in the hierarchy Shared globally by entire
system

FloatType All models in the hierarchy Shared globally by entire
system

CtrlBus All models in the hierarchy Shared globally by entire
system

SensorBus All models in the hierarchy Shared globally by entire
system

CodeGenConfigSet All models in the controller
component

Shared by controller
subcomponents

59 Simulink Data Dictionary

59-40

Variable Name Models Using the Variable Scope of Sharing

init ex_ContrComp_Sub1_Lvl1

and
ex_ContrComp_Sub2_Lvl1

Shared by controller
subcomponents

diff ex_ContrComp_Sub1_Lvl1

and
ex_ContrComp_Sub1_Lvl2

Shared by models in the first
controller subcomponent

coeff ex_ContrComp_Sub2_Lvl1

and
ex_ContrComp_Sub2_Lvl2

Shared by models in
the second controller
subcomponent

mu ex_PlantComp_Lvl1 and
ex_PlantComp_Lvl2

Shared by models in plant
component

Suppose that three teams of developers maintain the plant component and the two
controller subcomponents. You can use data dictionaries to store and scope the shared
design data.

Create System Dictionary

1 In the model ex_SystemModel, select File > Model Properties > Link to Data
Dictionary.

2 In the dialog box, under Defined in, select Data Dictionary. Click New.
3 Set the new dictionary name to System and click Save.
4 In the Model Properties dialog box, click OK.
5 Click Yes in response to the message about migrating workspace data.
6 Click Yes in response to the message about removing imported items from the base

workspace.
7 Save the model.

You can simulate and generate code from the models in the hierarchy. All of the models
in the hierarchy are linked to the dictionary. All of the variables in the base workspace
now reside in the new dictionary System.sldd.

Create Dictionary for Plant Component

1 Open the model ex_PlantComp_Lvl1.
2 Select File > Model Properties > Link to Data Dictionary.

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-41

3 In the dialog box, under Defined in, click New.
4 Set the new dictionary name to Plant and click Save.
5 In the Model Properties dialog box, click OK.
6 In response to the message, click Move Data.
7 Click Yes in response to the message about migrating data.
8 Save the model.

The models in the plant component, ex_PlantComp_Lvl1 and ex_PlantComp_Lvl2,
are linked to the new dictionary Plant.sldd. The other models in the hierarchy remain
linked to System.sldd. Because the model ex_PlantComp_Lvl1 uses globally shared
variables such as CtrlBus and FloatType, the migration process moves the variables
to Plant.sldd. However, System.sldd references Plant.sldd, so all of the models in
the hierarchy can continue to use the globally shared variables.

The variable that the plant models share, mu, also resides in Plant.sldd. Other
variables such as init and diff remain in System.sldd.

The plant component can stand alone from the rest of the system because all of its data
is in Plant.sldd. However, the controller component depends on the shared data that is
also defined in Plant.sldd.

Create Dictionary for Controller Component

Open the model ex_ContrComp, which is the top model in the controller component.
Link this model to a new dictionary named Contr.sldd. Then, save the model.

When you finish, the five models in the controller component are linked to Contr.sldd.
Because the globally shared variables such as CtrlBus and FloatType still reside in
the dictionary Plant.sldd, the dictionary Contr.sldd references Plant.sldd. Due
to this reference, the models in the controller component can continue to use the globally
shared variables.

The variables that the controller models share, such as diff, init, and
CodeGenConfigSet, now reside in Contr.sldd.

Create Dictionary for First Controller Subcomponent

Open the model ex_ContrComp_Sub1_Lvl1. Link this model to a new dictionary named
ContrSub1.sldd. Then, save the model.

59 Simulink Data Dictionary

59-42

When you finish, the models in the first controller subcomponent,
ex_ContrComp_Sub1_Lvl1 and ex_ContrComp_Sub1_Lvl2, are linked to
ContrSub1.sldd. The models in the second subcomponent remain linked to the
dictionary Contr.sldd.

Create Dictionary for Second Controller Subcomponent

Open the model ex_ContrComp_Sub2_Lvl1. Link this model to a new dictionary named
ContrSub2.sldd. Then, save the model.

The controller dictionary Contr.sldd references the subcomponent dictionaries,
ContrSub1.sldd and ContrSub2.sldd. Therefore, the controller dictionary can use all
of the data defined in the subcomponent dictionaries.

The first subcomponent dictionary, ContrSub1.sldd, defines data that the
subcomponents share, such as CodeGenConfigSet. The second subcomponent
dictionary, ContrSub2.sldd, references ContrSub1.sldd so that the second
subcomponent can use this shared data.

The subcomponent dictionaries ContrSub1.sldd and ContrSub2.sldd reference
Plant.sldd. Therefore, all of the models in the hierarchy can continue to use globally
shared variables such as SensorBus and SimConfigSet, which are defined in
Plant.sldd.

Inspect Data Storage

In the Model Explorer Model Hierarchy pane, select the dictionary node System. In the
Contents pane, to view the contents of System.sldd, click the Show Current System

and Below button . The contents of the Design Data and Configurations sections
appear.

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-43

The DataSource column shows the variables that each dictionary stores.

All of the globally shared variables, such as FloatType and SimConfigSet, reside in
Plant.sldd. The variable init, which both of the controller subcomponents share,
resides in ContrSub1.sldd. Due to dictionary references created by the migration
process, the models can still share these variables.

If the development teams assigned to the controller subcomponents must make changes
to the globally shared variables, they must access the plant dictionary file. Similarly,
if the team assigned to the second controller subcomponent must make changes to the
variable init, they must access the first subcomponent dictionary file.

Optimize Data Sharing Using Reference Dictionaries

To share global variables such as SimConfigSet, FloatType, and SensorBus by
clearly defining variable scope, you can create a reference dictionary. Add the new
dictionary as a reference to all of the component and subcomponent dictionaries that
require the shared data.

1 Close all of the models that you have open.

bdclose all

59 Simulink Data Dictionary

59-44

2 In Model Explorer, select File > New > Data Dictionary.
3 Set the new dictionary name to GlobalShare and click Save.
4 In the Model Hierarchy pane, select the node ContrSub2. In the Dialog pane, click

Add Reference.
5 Double-click GlobalShare.sldd.
6 In the Model Hierarchy pane, right-click the node ContrSub2 and select Save

Changes.
7 Add GlobalShare.sldd as a reference to the dictionaries ContrSub1.sldd and

Plant.sldd. Save each dictionary after you add the reference.
8 In the Model Hierarchy pane, select the node System.
9 In the Contents pane, select the globally shared variables:

• CtrlBus

• SensorBus

• SimConfigSet

• FloatType

10 In the DataSource column, select GlobalShare.sldd for any of the selected
variables.

All of the variables move from Plant.sldd to GlobalShare.sldd.
11 Save changes to the dictionary System.sldd.

Now, if any of the three development teams need to make changes to the globally
shared variables such as SimConfigSet and CtrlBus, they can access the dictionary
GlobalShare.sldd. This dictionary contains only the variables that all of the models in
the system share. Because the component and subcomponent dictionaries Plant.sldd,
ContrSub1.sldd, and ContrSub2.sldd all reference the globally shared dictionary
GlobalShare.sldd, all of the models in the hierarchy can use the data.

To further partition and scope the shared data, create another reference dictionary
to contain the variables that the controller subcomponents share: init and
CodeGenConfigSet.

1 In Model Explorer, select File > New > Data Dictionary.
2 Set the new dictionary name to ContrShare and click Save.
3 In the Model Hierarchy pane, select the dictionary node ContrSub2. In the Dialog

pane, select Add Reference.

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-45

4 In the dialog box, double-click ContrShare.sldd.
5 In the Model Hierarchy pane, right-click the node ContrSub2 and select Save

Changes.
6 Add ContrShare.sldd as a reference to ContrSub1.sldd and save the dictionary

ContrSub1.sldd.
7 Add GlobalShare.sldd as a reference to ContrShare.sldd and save the

dictionary ContrShare.sldd.
8 In the Model Hierarchy pane, select the node System.
9 In the Contents pane, select these variables:

• CodeGenConfigSet

• init

10 In the DataSource column, select ContrShare.sldd for any of the selected
variables.

All of the variables move from ContrSub2.sldd to ContrShare.sldd.
11 Save changes to the dictionary System.sldd.

To further optimize the dictionary hierarchy, remove the unnecessary references
that the migration process created. Also, remove the unnecessary references that
you created from ContrSub1.sldd and ContrSub2.sldd to GlobalShare.sldd.
Because ContrShare.sldd references GlobalShare.sldd, the controller
subcomponent dictionaries can use the data in GlobalShare.sldd without referencing
GlobalShare.sldd.

1 In the Model Explorer Model Hierarchy pane, select the dictionary node
ContrSub2. In the Dialog pane, in the Referenced Dictionaries list, select
Plant and click Remove. Remove the references to GlobalShare.sldd and
ContrSub1.sldd. Save the changes to ContrSub2.sldd.

2 Remove the references to GlobalShare.sldd and Plant.sldd from
ContrSub1.sldd. Save the changes to ContrSub1.sldd.

3 Remove the reference to Plant.sldd from Contr.sldd. Save the changes to
Contr.sldd.

Inspect Dictionary Hierarchy

To view the entire dictionary and model hierarchy, you can perform a dependency
analysis in a Simulink project.

59 Simulink Data Dictionary

59-46

1 Open your saved model ex_SystemModel. Select File > Simulink Project >
Create Project from Model.

2 Specify a name for the project in the Project name box. Click Create.
3 In the Simulink Project, click Dependency Analysis. Click Analyze.

The system model, ex_SystemModel, is linked to the dictionary System.sldd. The
plant component, the controller component, and the controller subcomponents are each
linked to a separate dictionary. These dictionaries form a reference hierarchy. To access
the shared data, the component and subcomponent dictionaries reference the dictionaries
ContrShare.sldd and GlobalShare.sldd.

To inspect the data in the dictionaries, use Model Explorer.

1 In your saved model ex_SystemModel, click the data dictionary badge .
2 In the Model Explorer Contents pane, click the column name DataSource to sort

the design data. The dictionaries in the hierarchy partition the data based on the
shared scope of each variable.

3 In the Model Hierarchy pane, under the node System, click the node
Configurations. In the Contents pane, the Simulink.ConfigSet objects
CodeGenConfigSet and SimConfigSet are stored in the shared dictionaries.

Strategies to Discover Shared Data

To learn how the models in a model reference hierarchy share data, use these techniques:

• In an open model, select Edit > Find Referenced Variables. The Model Explorer
displays the variables that the model uses, as well as the variables that referenced

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-47

models use. You can then right-click a variable and select Find Where Used to
display all of the models that use the variable. For more information, see “Workspace
Variables in Model Explorer” on page 11-47.

• At the command prompt, use the function Simulink.findVars to determine the
variables a model uses. You can then use the function intersect to determine the
variables two models, components, or subcomponents share.

Migrate Model Hierarchy to Dictionaries Incrementally

If you cannot migrate all of the models in a model reference hierarchy to a single
dictionary at once, you can migrate an individual model, component, or subcomponent in
the hierarchy. Over time, you can migrate the entire hierarchy.

The component that you migrate cannot share any design data with other models
in the hierarchy. In the example “Create a Dictionary for Each Component” on page
59-37, the components and subcomponents of a model reference hierarchy share
data in the base workspace, such as Simulink.Bus and Simulink.Parameter objects.
Due to these dependencies, you cannot independently migrate the components and
subcomponents.

If you use configuration set references to maintain configuration parameter uniformity
throughout the hierarchy, the component that you choose to migrate cannot share a
configuration set with other models in the hierarchy. When you migrate the component,
you must choose one of these options:

• Move the shared configuration set into the new dictionary. In this case, the other
models in the hierarchy cannot use the configuration set.

• Copy the shared configuration set into the new dictionary. In this case, the models in
the component no longer share the configuration set with the rest of the models in the
hierarchy.

To migrate the component, you must first eliminate the dependency that the component
has on the shared configuration set.

If you choose to migrate a model reference hierarchy incrementally by using this
technique, you must begin with the models or components at the bottom of the hierarchy.
In the example “Create a Dictionary for Each Component” on page 59-37, a
controller model references two subcomponents, each of which contains two models.
You cannot migrate the controller model before you migrate the models in the controller
subcomponents.

59 Simulink Data Dictionary

59-48

Explore Example Model Hierarchy

1 Navigate to the folder matlabroot/help/toolbox/simulink/examples (open).
2 Copy these files to a writable folder:

• ProjectData_ind.mat

• ex_SystemModel_ind

• ex_Plant_L1_ind

• ex_Plant_L2_ind

• ex_Contr_L1_ind

• ex_Contr_L2_ind

3 Load the MAT-file ProjectData_ind.mat to create design data in the base
workspace.

4 Open the example model ex_SystemModel_ind. This model is at the top of a
reference hierarchy that includes the other example models.

5 Select Analysis > Model Dependencies > Model Dependency Viewer > Models
Only. The model reference hierarchy contains a system model, a plant component
with two models, and a controller component with two models.

6 In the Model Explorer Model Hierarchy pane, select Base Workspace. In the
Contents pane, right-click the variable diff and select Find Where Used. In the

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-49

Select a system dialog box, select ex_SystemModel_ind and click OK. If you see a
message about updating the diagram, click OK.

In the Contents pane, the variable diff is used by Constant blocks in the
models ex_Contr_L1_ind and ex_Contr_L2_ind, which make up the controller
component. Similarly, other models in the hierarchy share the base workspace
variable mu.

The table shows the models that share each workspace variable.

Variable Name Models Using the Variable Scope of Sharing

diff ex_ContrComp_Lvl1 and
ex_ContrComp_Lvl2

Shared by models in the
controller component

mu ex_PlantComp_Lvl1 and
ex_PlantComp_Lvl2

Shared by models in plant
component

Suppose that two teams of developers maintain the plant component and the controller
component. You can use data dictionaries to store and scope the design data. The teams
can incrementally migrate the components to use data dictionaries.

Create Data Dictionary for Controller Component

Suppose that only the controller component team is ready to migrate their models to a
data dictionary. You can independently migrate these two models.

1 Open the example model ex_Contr_L1_ind. This model is at the top of the
controller component.

2 Select File > Model Properties > Link to Data Dictionary.
3 In the dialog box, under Defined in, select Data Dictionary and click New.
4 Set the new dictionary name to Contr and click Save.
5 In the Model Properties dialog box, click OK.
6 Click Yes in response to the message about migrating workspace data.
7 Click Yes in response to the message about removing imported items from the base

workspace.
8 Save the model.

You can simulate and generate code from the model hierarchy. The models in the
controller component use the data in the dictionary Contr, which contains the variable
diff. The other models in the hierarchy continue to use the data in the base workspace.

59 Simulink Data Dictionary

59-50

Create Data Dictionary for Plant Component

Open the example model ex_Plant_L1_ind. Link this model to a new data dictionary
Plant.sldd. After you link the model to the new dictionary, save the model.

The migration process moves the variable mu into the new dictionary.

Create Data Dictionary for System Model

Open the example model ex_SystemModel_ind. Link this model to a new data
dictionary System.sldd. After you link the model to the new dictionary, save the model.

The migration process causes the new dictionary, System.sldd, to reference the other
dictionaries that you created.

Inspect Dictionary Hierarchy

Each of the components has a data dictionary. To view the entire dictionary and model
hierarchy, you can perform a dependency analysis in a Simulink project.

1 In your saved model ex_SystemModel_ind, select File > Simulink Project >
Create Project from Model.

2 Specify a name for the project in the Project name box. Click Create.
3 In the Simulink Project, click Dependency Analysis. Click Analyze.

Each team’s models are linked to the appropriate dictionaries. The system dictionary
references the component dictionaries.

To inspect the data in the dictionaries, use the Model Explorer.

 Partition Data for Model Reference Hierarchy Using Data Dictionaries

59-51

1 In your saved model ex_SystemModel_ind, click the data dictionary badge .
2 In the Model Explorer Contents pane, the data source for each entry is the

dictionary for the appropriate component.

Related Examples
• “Determine Where to Store Data for Simulink Models” on page 55-61
• “Store Data in Dictionary Programmatically” on page 59-52

More About
• “Componentization Guidelines” on page 14-28
• “What Are Simulink Projects?” on page 15-3

59 Simulink Data Dictionary

59-52

Store Data in Dictionary Programmatically

In this section...

“Data Dictionary Management” on page 59-52
“Dictionary Section Management” on page 59-53
“Dictionary Entry Manipulation” on page 59-54
“Transition to Using Data Dictionary” on page 59-55
“Programmatically Migrate Single Model to Use Dictionary” on page 59-55
“Import Directly From External File to Dictionary” on page 59-56
“Programmatically Partition Data Dictionary” on page 59-58
“Sweep Data Dictionary Parameter Using Parallel Simulation” on page 59-59

Data Dictionary Management

A data dictionary stores Simulink model data and offers more data management
features than the MATLAB base workspace or the model workspace. Use
Simulink.data.Dictionary objects to interact with entire data dictionaries.

Goal Use

Represent existing
data dictionary with
Simulink.data.Dictionary

object

Simulink.data.dictionary.open

Create and represent
data dictionary with
Simulink.data.Dictionary

object

Simulink.data.dictionary.create

Interact with data dictionary Simulink.data.Dictionary class
Import variables to data
dictionary from MATLAB base
workspace

Simulink.data.Dictionary.importFromBaseWorkspace

method

Add reference dictionary to a
data dictionary

Simulink.data.Dictionary.addDataSource method

 Store Data in Dictionary Programmatically

59-53

Goal Use

Remove reference dictionary from
a data dictionary

Simulink.data.Dictionary.removeDataSource method

Save changes to data dictionary Simulink.data.Dictionary.saveChanges method
Discard changes to data
dictionary

Simulink.data.Dictionary.discardChanges method

View a list of entries stored in
data dictionary

Simulink.data.Dictionary.listEntry method

Import enumerated type
definitions to data dictionary

Simulink.data.Dictionary.importEnumTypes method

Return file name and path of
data dictionary

Simulink.data.Dictionary.filepath method

Show data dictionary in Model
Explorer window

Simulink.data.Dictionary.show method

Hide data dictionary from Model
Explorer window

Simulink.data.Dictionary.hide method

Close connection between
data dictionary and
Simulink.data.Dictionary

object

Simulink.data.Dictionary.close method

Dictionary Section Management

Data dictionaries store data as entries contained in sections, and by default all
dictionaries have at least three sections named Design Data, Other Data, and
Configurations. Use Simulink.data.dictionary.Section objects to interact with
data dictionary sections.

Goal Use

Represent data dictionary section
with Section object.

Simulink.data.Dictionary.getSection method

Interact with data dictionary
section

Simulink.data.dictionary.Section class

59 Simulink Data Dictionary

59-54

Goal Use

Import variables to data
dictionary section from MAT-file
or MATLAB file

Simulink.data.dictionary.Section.importFromFile

method

Export entries in data dictionary
section to MAT-file or MATLAB
file

Simulink.data.dictionary.Section.exportToFile

method

Delete entry from data dictionary
section

Simulink.data.dictionary.Section.deleteEntry

method
Evaluate MATLAB expression in
data dictionary section

Simulink.data.dictionary.Section.evalin method

Search for entries in data
dictionary section

Simulink.data.dictionary.Section.find method

Determine whether entry exists
in data dictionary section

Simulink.data.dictionary.Section.exist method

Dictionary Entry Manipulation

A variable that is stored in a data dictionary is called an entry of the dictionary. Entries
have additional properties that store status information, such as the time and date
the entry was last modified. Use Simulink.data.dictionary.Entry objects to
manipulate data dictionary entries.

Goal Use

Represent data dictionary entry
with Entry object

Simulink.data.dictionary.Section.getEntry method

Add data dictionary entry to
section and represent with Entry
object

Simulink.data.dictionary.Section.addEntry method

Manipulate data dictionary entry Simulink.data.dictionary.Entry class
Assign new value to data
dictionary entry

Simulink.data.dictionary.Entry.setValue method

Display changes made to data
dictionary entry

Simulink.data.dictionary.Entry.showChanges method

 Store Data in Dictionary Programmatically

59-55

Goal Use

Save changes made to data
dictionary

Simulink.data.Dictionary.saveChanges method

Discard changes made to data
dictionary entry

Simulink.data.dictionary.Entry.discardChanges

method
Search in an array of data
dictionary entries

Simulink.data.dictionary.Entry.find method

Return value of data dictionary
entry

Simulink.data.dictionary.Entry.getValue method

Delete data dictionary entry Simulink.data.dictionary.Entry.deleteEntry method
Store enumerated type definition
in dictionary

Simulink.data.dictionary.EnumTypeDefinition class

Transition to Using Data Dictionary

These functions help you transition to data dictionaries by operating on Simulink model
data either in the base workspace or in a data dictionary, as appropriate for the model.

Goal Use

Change value of data dictionary
entry or workspace variable in
context of Simulink model

Simulink.data.assigninGlobal

Evaluate MATLAB expression in
context of Simulink model

Simulink.data.evalinGlobal

Determine existence of data
dictionary entry or workspace
variable in context of Simulink
model

Simulink.data.existsInGlobal

Programmatically Migrate Single Model to Use Dictionary

To change the data source of a Simulink model from the MATLAB base workspace to a
new data dictionary, use this example code as a template.

% Define the model name and the data dictionary name

59 Simulink Data Dictionary

59-56

modelName = 'f14';

dictionaryName = 'myNewDictionary.sldd';

% Load the target model

load_system(modelName);

% Identify all model variables that are defined in the base workspace

varsToImport = Simulink.findVars(modelName,'SourceType','base workspace');

varNames = {varsToImport.Name};

% Create the data dictionary

dictionaryObj = Simulink.data.dictionary.create(dictionaryName);

% Import to the dictionary the model variables defined in the base

% workspace, and clear the variables from the base workspace

[importSuccess,importFailure] = importFromBaseWorkspace(dictionaryObj,...

 'varList',varNames,'clearWorkspaceVars',true);

% Link the dictionary to the model

set_param(modelName,'DataDictionary',dictionaryName);

Note: This code does not migrate the definitions of enumerated data types that were used
to define model variables. If you import model variables of enumerated data types to a
data dictionary but do not migrate the enumerated type definitions, the dictionary is less
portable and might not function properly if used by someone else. To migrate enumerated
data type definitions to a data dictionary, see “Migrate Enumerated Types into Data
Dictionary” on page 59-10.

Import Directly From External File to Dictionary

This example shows how to use a custom MATLAB function to import data directly from
an external file to a data dictionary without creating or altering variables in the base
workspace.

1 Create a two-dimensional lookup table in one sheet of a Microsoft Excel workbook.
Use the upper-left corner of the sheet to provide names for the two breakpoints and
for the table. Use column B and row 2 to store the two breakpoints, and use the rest
of the sheet to store the table. For example, your lookup table might look like this:

 Store Data in Dictionary Programmatically

59-57

Save the workbook in your current folder as my2DLUT.xlsx.
2 Copy this custom function definition into a MATLAB file, and save the file in your

current folder as importLUTToDD.m.

function importLUTToDD(workbookFile,dictionaryName)

 % IMPORTLUTTODD(workbookFile,dictionaryName) imports data for a

 % two-dimensional lookup table from a workbook directly into a data

 % dictionary. The two-dimensional lookup table in the workbook can be

 % any size but must follow a standard format.

 % Read in the entire first sheet of the workbook.

 [data,names,~] = xlsread(workbookFile,1,'');

 % Divide the raw imported data into the breakpoints, the table, and their

 % names.

 % Assume breakpoint 1 is in the first column and breakpoint 2 is in the

 % first row.

 % Assume cells A1, B1, and B2 define the breakpoint names and table name.

 bkpt1 = data(2:end,1);

 bkpt2 = data(1,2:end);

 table = data(2:end,2:end);

 bkpt1Name = names{2,1};

 bkpt2Name = names{1,2};

 tableName = names{2,2};

 % Prepare to import to the Design Data section of the target data

 % dictionary.

 myDictionaryObj = Simulink.data.dictionary.open(dictionaryName);

 dDataSectObj = getSection(myDictionaryObj,'Design Data');

 % Create entries in the dictionary to store the imported breakpoints and

 % table. Name the entries using the breakpoint and table names imported

 % from the workbook.

 addEntry(dDataSectObj,bkpt1Name,bkpt1);

59 Simulink Data Dictionary

59-58

 addEntry(dDataSectObj,bkpt2Name,bkpt2);

 addEntry(dDataSectObj,tableName,table);

 % Save changes to the dictionary and close it.

 saveChanges(myDictionaryObj)

 close(myDictionaryObj)

3 At the MATLAB command prompt, create a data dictionary to store the lookup table
data.

myDictionaryObj = Simulink.data.dictionary.create('myLUTDD.sldd');

4 Call the custom function to import your lookup table to the new data dictionary.

importLUTToDD('my2DLUT.xlsx','myLUTDD.sldd')

5 Open the data dictionary in Model Explorer.

show(myDictionaryObj)

Three new entries store the imported breakpoints and lookup table. These entries
are ready to use in a 2-D Lookup Table block.

Programmatically Partition Data Dictionary

To partition a data dictionary into reference dictionaries, use this example code as
a template. You can use reference dictionaries to make large data dictionaries more
manageable and to contain standardized data that is useful for multiple models.

% Define the names of a parent data dictionary and two

% reference data dictionaries

parentDDName = 'myParentDictionary.sldd';

typesDDName = 'myTypesDictionary.sldd';

paramsDDName = 'myParamsDictionary.sldd';

% Create the parent data dictionary and a

% Simulink.data.Dictionary object to represent it

parentDD = Simulink.data.dictionary.create(parentDDName);

% Create a Simulink.data.dictionary.Section object to represent

% the Design Data section of the parent dictionary

designData_parentDD = getSection(parentDD,'Design Data');

% Import some data to the parent dictionary from the file partDD_Data_ex_API.m

importFromFile(designData_parentDD,'partDD_Data_ex_API.m');

 Store Data in Dictionary Programmatically

59-59

% Create two reference dictionaries

Simulink.data.dictionary.create(typesDDName);

Simulink.data.dictionary.create(paramsDDName);

% Create a reference dictionary hierarchy by adding reference dictionaries

% to the parent dictionary

addDataSource(parentDD,typesDDName);

addDataSource(parentDD,paramsDDName);

% Migrate all Simulink.Parameter objects from the parent data dictionary to

% a reference dictionary

paramEntries = find(designData_parentDD,'-value','-class','Simulink.Parameter');

for i = 1:length(paramEntries)

 paramEntries(i).DataSource = 'myParamsDictionary.sldd';

end

% Migrate all Simulink.NumericType objects from the parent data dictionary

% to a reference dictionary

typeEntries = find(designData_parentDD,'-value','-class','Simulink.NumericType');

for i = 1:length(typeEntries)

 typeEntries(i).DataSource = 'myTypesDictionary.sldd';

end

% Save all changes to the parent data dictionary

saveChanges(parentDD)

Sweep Data Dictionary Parameter Using Parallel Simulation

To use parallel simulation to sweep a model parameter that is defined in a data
dictionary, use this code as a template. Change the names and values of the model, data
dictionary, and swept parameter to match your application.

You cannot use this code for parallel Rapid Accelerator Mode or Accelerator Mode
simulation. For an example of parallel simulation using Rapid Accelerator Mode, see
“Parallel Simulations Using Parfor: Parameter Sweep in Rapid Accelerator Mode”.

You must have a Parallel Computing Toolbox license to perform parallel simulation.

% For convenience, define names of model and data dictionary

model = 'myParamSweepMdl';

dd = 'myParamSweepDD.sldd';

% Define parameter sweeping values

ParamValues = [20 35 49 78 106 123 148 192 205 225];

59 Simulink Data Dictionary

59-60

% Grant each worker in the parallel pool an independent data dictionary

% so they can use the data without interference

spmd

 Simulink.data.dictionary.setupWorkerCache

end

% Determine the number of times to simulate

numberOfSims = length(ParamValues);

% Prepare a nondistributed array to contain simulation output

simOut = cell(1,numberOfSims);

parfor index = 1:numberOfSims

 % Create objects to interact with dictionary data

 % You must create these objects for every iteration of the parfor-loop

 dictObj = Simulink.data.dictionary.open(dd);

 sectObj = getSection(dictObj,'Design Data');

 entryObj = getEntry(sectObj,'SpeedVect');

 % Suppose SpeedVect is a Simulink.Parameter stored in the data dictionary

 % Modify the value of the Simulink.Parameter stored in the data dictionary

 temp = getValue(entryObj);

 temp.Value = ParamValues(index);

 setValue(entryObj,temp);

 % Simulate and store simulation output in the nondistributed array

 simOut{index} = sim(model);

 % Each worker must discard all changes to the data dictionary and

 % close the dictionary when finished with an interation of the parfor-loop

 discardChanges(dictObj);

 close(dictObj);

end

% Restore default settings that were changed by the function

% Simulink.data.dictionary.setupWorkerCache

spmd

 Simulink.data.dictionary.cleanupWorkerCache

end

 Store Data in Dictionary Programmatically

59-61

See Also
set_param | Simulink.data.dictionary.cleanupWorkerCache |
Simulink.data.dictionary.setupWorkerCache | Simulink.findVars

Related Examples
• “Migrate Enumerated Types into Data Dictionary” on page 59-10
• “Migrate Model Reference Hierarchy to Use Dictionary” on page 59-20

More About
• “What Is a Data Dictionary?” on page 59-2

Managing Signals

60

Working with Signals

• “Signal Basics” on page 60-2
• “Signal Types” on page 60-8
• “Virtual Signals” on page 60-11
• “Signal Values” on page 60-15
• “Signal Label Propagation” on page 60-19
• “Signal Dimensions” on page 60-30
• “Determine Output Signal Dimensions” on page 60-32
• “Display Signal Sources and Destinations” on page 60-38
• “Signal Ranges” on page 60-41
• “Initialize Signals and Discrete States” on page 60-48
• “Test Points” on page 60-57
• “Display Signal Attributes” on page 60-60
• “Signal Groups” on page 60-65

60 Working with Signals

60-2

Signal Basics

In this section...

“About Signals” on page 60-2
“Creating Signals” on page 60-3
“Signal Line Styles” on page 60-3
“Signal Properties” on page 60-4
“Testing Signals” on page 60-6

About Signals

A signal is a time-varying quantity that has values at all points in time. You can specify
a wide range of signal attributes, including:

• Signal name
• Data type (for example, 8-bit, 16-bit, or 32-bit integer)
• Numeric type (real or complex)
• Dimensionality (one-dimensional, two-dimensional, or multidimensional array)

Many blocks can accept or output signals of any data or numeric type and
dimensionality. Other blocks impose restrictions on the attributes of the signals that they
can handle.

In Simulink, signals are the outputs of dynamic systems represented by blocks in a
Simulink diagram and by the diagram itself. The lines in a block diagram represent
mathematical relationships among the signals defined by the block diagram. For
example, a line connecting the output of block A to the input of block B indicates that the
signal output of B depends on the signal output of A.

Simulink block diagrams represent signals with lines that have an arrowhead. The
source of the signal corresponds to the block that writes to the signal during evaluation
of its block methods (equations). The destinations of the signal are blocks that read the
signal during the evaluation of the block methods (equations).

Note Simulink signals are mathematical, not physical, entities. The lines in a block
diagram represent mathematical, not physical, relationships among blocks. Simulink

 Signal Basics

60-3

signals do not travel along the lines that connect blocks in the same way that electrical
signals travel along a wire. Block diagrams do not represent physical connections
between blocks.

Creating Signals

Create a signal by adding a source block to your model. For example, you can create a
signal that varies sinusoidally with time by adding an instance of the Sine block from
the Simulink Sources library into your model. For information about blocks that create
signals in a model, see “Sources” .

You can use the Signal & Scope Manager to create signals in your model without using
blocks. For more information, see “Signal and Scope Manager” on page 24-57 .

Signal Line Styles

A Simulink model can include many different types of signals. For details, see “Signal
Types” on page 60-8. Different line styles help you to differentiate the signal types.

As you construct a block diagram, all signal types appear as a thin, solid line. After you
update the diagram or start simulation, the signals appear with the specified line styles.
The only line style that you can customize is the nonscalar signal type. For information
about this option, see “Wide Nonscalar Lines” on page 60-63.

Signal Type Line Style

Scalar and nonscalar

Nonscalar (with the Wide nonscalar lines option enabled—
see “Display Signal Attributes” on page 60-60)
Control signal

Virtual bus

Nonvirtual bus

Array of buses

60 Working with Signals

60-4

Signal Type Line Style

Variable-size

Signal Properties

Specifying Signal Properties

Use the Signal Properties dialog box to specify properties for:

• Signal names and labels
• Signal logging
• Simulink Coder to use to generate code
• Documentation of the signal

To open the Signal Properties dialog box, right-click a signal and choose Properties.

 Signal Basics

60-5

Signal Names and Labels

You can name a signal. By default, the signal name appears below a signal, displayed as
a signal label. You can name a signal interactively in the model or by using the Signal
Properties dialog box. You can also name the signal at the command prompt (see “Name
a Signal Programmatically” on page 1-12). For a summary of how to work with signal
names and labels in the Simulink Editor, see “Signal Name and Label Actions” on page
1-78.

The syntactic requirements for a signal name depend on how you use the name. The most
common cases are:

• The signal name can resolve to a Simulink.Signal object. (See Simulink.Signal.)
The signal name must then be a legal MATLAB identifier. This identifier starts with
an alphabetic character, followed by alphanumeric or underscore characters up to the
length given by the function namelengthmax.

• The signal has a name so the signal can be identified and referenced by name in a
data log. (See “Export Signal Data Using Signal Logging” on page 57-36.) Such a
signal name can contain space and newline characters. These characters can improve
readability but sometimes require special handling techniques, as described in
“Handling Spaces and Newlines in Logged Names” on page 57-72

• The signal name exists only to clarify the diagram and has no computational
significance. Such a signal name can contain anything and does not need special
handling.

• The signal is an element of a bus object. Use a valid C language identifier for the
signal name.

• Inputs to a Bus Creator block must have unique names. If there are duplicate names,
the Bus Creator block appends (signal#) to all input signal names, where # is the
input port index.

Making every signal name a legal MATLAB identifier handles a wide range of model
configurations. Unexpected requirements can require changing signal names to follow
a more restrictive syntax. You can use the function isvarname to determine whether a
signal name is a legal MATLAB identifier.

Signal Display Options

Displaying signal attributes in the model diagram can make the model easier to read. For
example, in the Simulink Editor, use the Display > Signals & Ports menu to include in
the model layout information about signal attributes, such as:

60 Working with Signals

60-6

• Port data types
• Design ranges
• Signal dimensions
• Signal resolution

For details, see “Display Signal Attributes” on page 60-60.

You can also highlight a signal and its source or destination blocks. For details, see
“Display Signal Sources and Destinations” on page 60-38.

Testing Signals

You can perform the following kinds of tests on signals:

• “Minimum and Maximum Values” on page 60-6
• “Connection Validation” on page 60-6

Minimum and Maximum Values

For many Simulink blocks, you can specify a range of valid values for the output signals.
Simulink provides a diagnostic for detecting when blocks generate signals that exceed
their specified ranges during simulation. For details, see “Signal Ranges” on page
60-41.

Connection Validation

Many Simulink blocks have limitations on the types of signals that they accept.
Before simulating a model, Simulink checks all blocks to ensure that the blocks can
accommodate the types of signals output by the ports to which the blocks connect and
reports errors about incompatibilities.

To detect signal compatibility errors before running a simulation, update the diagram.

Signal Groups

The Signal Builder block displays interchangeable groups of signal sources. Use the
Signal Builder to create or edit groups of signals and to switch the groups into and out of
a model.

Signal groups can help with testing a model, especially when you use them with
Simulink Assertion blocks and the Model Coverage Tool in the Simulink Verification
and Validation product.

 Signal Basics

60-7

For details, see “Signal Groups” on page 60-65.

Related Examples
• “Control Signal Data Types” on page 55-7

More About
• “Signal Label Propagation” on page 60-19
• “Signal Name and Label Actions” on page 1-78

60 Working with Signals

60-8

Signal Types
In this section...

“Summary of Signal Types” on page 60-8
“Control Signals” on page 60-8
“Composite (Bus) Signals” on page 60-9

Summary of Signal Types

You can use many different kinds of signals in a model. The following table summarizes
the signal types, and links to sections that describe each type in detail.

Signal Type Description

Array of buses An array whose elements are buses. See “Combine Buses into an
Array of Buses” on page 61-82.

Bus (Composite) A Simulink composite signal made up of other signals, optionally
including other bus signals. See “Composite (Bus) Signals” on
page 60-9.

Control Signal used by one block to initiate execution of another block.
For example, a signal that executes a function-call or action
subsystem. For details, see “Control Signals” on page 60-8.

Nonvirtual Signal that occupies its own storage. A nonvirtual bus reads
inputs and writes outputs by accessing copies of the component
signals.

Mux A virtual vector created with a Mux block. See “Mux Signals” on
page 60-11.

Variable-Size Signal whose size (the number of elements in a dimension), in
addition to its values, can change during a model simulation.

Virtual Signal that represents another signal or set of signals. A virtual
signal is used for graphical purposes and has no functional effect.
See “Virtual Signals” on page 60-11.

Control Signals

A control signal is a signal used by one block to initiate execution of another block. For
example, a signal that executes a function-call or action subsystem is a control signal.

 Signal Types

60-9

When you update or simulate a block diagram, Simulink uses a dash-dot pattern to
redraw lines representing the control signals.

Composite (Bus) Signals

You can group multiple signals into a hierarchical composite signal, called a bus, route
the bus from block to block, and extract constituent signals from the bus where needed.
When you have many parallel signals, buses can simplify the appearance of a model and
help to clarify generated code. A bus can be either virtual or nonvirtual.

For example, if you open and simulate the Bus Signal example model, the bus1, bus2,
and main_bus signals are bus signals. These virtual bus signals use the triple line style.

60 Working with Signals

60-10

For details, see “Composite Signals” on page 61-3.

Related Examples
• “Display Signal Attributes” on page 60-60
• “Control Signal Data Types” on page 55-7

More About
• “Signal Basics” on page 60-2

 Virtual Signals

60-11

Virtual Signals

In this section...

“About Virtual Signals” on page 60-11
“Mux Signals” on page 60-11

About Virtual Signals

A virtual signal is a signal that graphically represents other signals or parts of other
signals. Virtual signals are purely graphical entities; they have no mathematical or
physical significance. Simulink ignores them when simulating a model, and they do not
exist in generated code. Some blocks, such as the Mux block, always generate virtual
signals. Others, such as Bus Creator, can generate either virtual or nonvirtual signals.

The nonvirtual components of a virtual signal are called regions. A virtual signal can
contain the same region more than once. For example, if the same nonvirtual signal is
connected to two input ports of a Mux block, the block outputs a virtual signal that has
two regions. The regions behave as they would if they had originated in two different
nonvirtual signals, even though the resulting behavior duplicates information.

Bus signals can also be virtual or nonvirtual. For details, see “Types of Simulink Buses”
on page 61-6.

Mux Signals

A Simulink mux is a virtual signal that graphically combines two or more scalar or
vector signals into one signal line. A Simulink mux is not a hardware multiplexer, which
combines multiple data streams into a single channel. A Simulink mux does not combine
signals in any functional sense: it exists only virtually, and its only purpose is to simplify
the visual appearance of a model. Using a mux has no effect on simulation or generated
code.

You can use a mux anywhere that you could use an ordinary (contiguous) vector.
For example, you can perform calculations on a mux. The computation affects each
constituent value in the mux just as if the values existed in a contiguous vector, and
the result is a contiguous vector, not a mux. Using a mux to perform computations
on multiple vectors avoids the overhead of copying the separate values to contiguous
storage.

60 Working with Signals

60-12

The Simulink documentation refers, sometimes interchangeably, to “muxes”, “vectors”,
and “wide signals”, and all three terms appear in Simulink GUI labels and API names.
This terminology can be confusing, because most vector signals, which are also called
wide signals, are nonvirtual and hence are not muxes. To avoid confusion, reserve the
term “mux” to refer specifically to a virtual vector.

A mux is a virtual vector signal. The constituent signals of a mux retain their separate
existence in every way, except visually. You can also combine scalar and vector signals
into a nonvirtual vector signal, by using a Vector Concatenate block. The signal
output by a Vector Concatenate block is an ordinary contiguous vector, inheriting no
special properties from the fact that it was created from separate signals.

To create a composite signal whose constituent signals retain their identities and can
have different data types, use a Bus Creator block rather than a Mux block. For
details, see “Composite Signals” on page 61-3. Although you can use a Mux block
to create a composite signal in some cases, MathWorks discourages this practice. See
“Prevent Bus and Mux Mixtures” on page 61-113 for more information.

Using Muxes

The Signal Routing library provides two virtual blocks for implementing muxes:

Mux

Combine several input signals into a mux (virtual vector) signal
Demux

Extract and output the values in a mux (virtual vector) signal

To implement a mux signal:

1 Select a Mux and Demux block from the Signal Routing library.
2 Set the Mux block Number of inputs and the Demux block Number of outputs

block parameters to the desired values.
3 Connect the Mux, Demux, and other blocks as needed to implement the desired

signal.

The next figure shows three signals that are input to a Mux block, transmitted as a mux
signal to a Demux block, and output as separate signals.

 Virtual Signals

60-13

The Mux and Demux blocks are the left and right vertical bars, respectively. To reduce
visual complexity, neither block displays a name. In this example, the line connecting
the blocks, representing the mux signal, is wide because the model has been built with
Display > Signals & Ports > Wide Nonscalar Lines option enabled. See “Display
Signal Attributes” on page 60-60 for details.

Signals input to a Mux block can be any combination of scalars, vectors, and muxes. The
signals in the output mux appear in the order in which they were input to the Mux block.
You can use multiple Mux blocks to create a mux in several stages, but the result is flat,
not hierarchical, just as if the constituent signals had been combined using a single mux
block.

The values in all signals input to a Mux block must have the same data type.

If a Demux block attempts to output more values than exist in the input signal, an error
occurs. A Demux block can output fewer values than exist in the input mux, and can
group the values it outputs into different scalars and vectors than were input to the Mux
block. However, the Demux block cannot rearrange the order of those values. For details,
see Demux.

Note: MathWorks discourages using Mux and Demux blocks to create and access buses
under any circumstances. See “Prevent Bus and Mux Mixtures” on page 61-113 for
details.

60 Working with Signals

60-14

More About
• “Signal Basics” on page 60-2
• “Signal Types” on page 60-8

 Signal Values

60-15

Signal Values

In this section...

“Signal Data Types” on page 60-15
“Signal Dimensions, Size, and Width” on page 60-15
“Complex Signals” on page 60-15
“Initializing Signal Values” on page 60-16
“Viewing Signal Values” on page 60-16
“Displaying Signal Values in Model Diagrams” on page 60-17
“Exporting Signal Data” on page 60-18

Signal Data Types

Data type refers to the format used to represent signal values internally. By default,
the data type of Simulink signals is double. You can create signals of other data types.
Simulink signals support the same range of data types as MATLAB. See “About Data
Types in Simulink” on page 55-2 for more information.

Signal Dimensions, Size, and Width

Simulink blocks can output one-dimensional, two-dimensional, or multidimensional
signals. The Simulink user interface and documentation generally refer to 1-D signals
as vectors and 2-D or multidimensional signals as matrices. A one-element array is
frequently referred to as a scalar.

The size of a signal refers to the number of elements that a signal contains. The size of a
matrix (2-D) signal is generally expressed as M-by-N, where M is the number of columns
and N is the number of rows making up the signal. The size of a vector signal is referred
to as the width of the signal.

For more information, see “Signal Dimensions” on page 60-30.

Complex Signals

The values of signals can be complex numbers or real numbers. A signal whose values
are complex numbers is a complex signal. Create a complex-valued signal using one of
the following approaches:

60 Working with Signals

60-16

• Load complex-valued signal data from the MATLAB workspace into the model via a
root-level Inport block.

• Create a Constant block in your model and set its value to a complex number.
• Create real signals corresponding to the real and imaginary parts of a complex signal,

then combine the parts into a complex signal, using the Real-Imag to Complex
conversion block.

Manipulate complex signals via blocks that accept them. If you are not sure whether a
block accepts complex signals, see the documentation for the block.

Initializing Signal Values

If a signal does not have an explicit initial value, the initial value that Simulink uses
depends on the data type of the signal.

Signal Data Type Default Initial Value

Numeric (other than fixed-point) Zero
Fixed-point Ground value
Boolean False
Enumerated Default value

You can specify the non-default initial values of signals for Simulink to use at the
beginning of simulation.

• For any signal, you can define a signal object (Simulink.Signal), and use that
signal object to specify an initial value for the signal.

• For some blocks, such as Outport, Data Store Memory, and Memory, you can use
either a signal object or a block parameter, or both, to specify the initial value of a
block state or output.

For details, see “Initialize Signals and Discrete States” on page 60-48.

Viewing Signal Values

You can use either blocks or the signal viewers (such as the Signal & Scope Manager)
to display the values of signals during a simulation. For example, you can use either

 Signal Values

60-17

the Scope block or the Signal & Scope Manager to graph time-varying signals on an
oscilloscope-like display during simulation. For general information about options for
viewing signal values, see “Scope Blocks and Scope Viewer Overview” on page 24-2. For
detailed information about:

• Blocks that you can use to display signals in a model, see “Sinks”
• Signal viewers, see “Floating Scope and Scope Viewer Tasks” on page 24-48
• The Signal & Scope Manager, see “Signal and Scope Manager” on page 24-57
• Test points, which are signals that Simulink guarantees to be observable when using

a Floating Scope block in a model, see “Test Points” on page 60-57.

Displaying Signal Values in Model Diagrams

To include graphical displays of signal values in a model diagram, use one of the
following approaches:

• “Display Data Tips During Simulation” on page 60-17
• “Display Signal Value After Simulation” on page 60-17

Display Data Tips During Simulation

For many blocks, Simulink can display block output (port values) as data tips on the
block diagram while a simulation is running.

1 In the Simulink Editor, select Display > Data Display in Simulation.
2 From the submenu, select either Show Value Labels When Hovering or Show

Value Labels When Clicked.
3 To change display options, use the Options submenu.

For details, see “Display Port Values for Debugging” on page 31-18.

Display Signal Value After Simulation

To display, below a specific signal, the signal value after simulation:

1 Right-click the signal.
2 In the context menu, select Show Value Label of Selected Port.

60 Working with Signals

60-18

Exporting Signal Data

You can save signal values to the MATLAB workspace during simulation, for later
retrieval and postprocessing. For a summary of different approaches, see “Approaches for
Exporting Signal Data” on page 57-4.

Related Examples
• “Control Signal Data Types” on page 55-7
• “Initialize Signals and Discrete States” on page 60-48

More About
• “Signal Basics” on page 60-2
• “Signal Types” on page 60-8
• “Signal Ranges” on page 60-41
• “Test Points” on page 60-57

 Signal Label Propagation

60-19

Signal Label Propagation

In this section...

“Propagated Signal Labels” on page 60-19
“Blocks That Support Signal Label Propagation” on page 60-19
“Display Propagated Signal Labels” on page 60-20
“How Simulink Propagates Signal Labels” on page 60-21

Propagated Signal Labels

When you enable the display of signal label propagation for output signals of the blocks
listed in “Blocks That Support Signal Label Propagation” on page 60-19:

• If there is a user-specified signal name that Simulink can propagate, the propagated
signal label includes the name in angle brackets (for example, <sig1>).

• If there is no signal name to propagate, Simulink displays an empty set of angle
brackets (<>) for the label.

For example, in the following model, the output signal from the Subsystem block is
configured for signal label propagation. The propagated signal label (<const>) is based
on the name of the upstream output signal of the Constant block (const).

For more information on how Simulink creates propagated signal labels, see “How
Simulink Propagates Signal Labels” on page 60-21.

Blocks That Support Signal Label Propagation

You can use signal label propagation with output signals for several connection blocks,
which route signals through the model without changing the data. Connection blocks
perform no signal transformation.

Also, Model blocks support signal label propagation.

60 Working with Signals

60-20

The connection blocks that support signal label propagation are:

• Enable
• From
• Function Call Split
• Goto
• Inport (subsystem only; not root inports)
• Signal Specification
• Subsystem (through subsystem Inport and Outport blocks)
• Trigger
• Two-Way Connection (a Simscape block)

The Bus Creator and Bus Selector blocks do not support signal label propagation.
However, if you want to view the hierarchy for any bus signal, use the “Signal Hierarchy
Viewer” on page 61-7.

The Signal Properties dialog box for a signal indicates whether that signal supports
signal label propagation. The Show propagated signals parameter is available only for
blocks that support signal label propagation. For details, see “Display Propagated Signal
Labels” on page 60-20.

Display Propagated Signal Labels

To display a propagated signal label:

1 Set Model Configuration Parameters > Diagnostics > Connectivity > Mux
blocks used to create bus signals to error.

2 Right-click the signal for which you want to display a propagated signal label and
select Properties.

3 In the Signal Properties dialog box, select Show propagated signals.

 Signal Label Propagation

60-21

The Show propagated signals parameter is available only for output signals from
blocks that support signal label propagation.

To enable this signal property programmatically, create a handle to the signal line, and
specify signalPropagation as 'on'. For example, you can use this code to enable or
disable the property for all of the signals in a model diagram.

% Create an array of handles to every signal line in the diagram

signalLines = find_system(gcs,'FindAll','on','type','line');

% Enable or disable the property for each signal line

for i = 1:length(signalLines)

 %set(signalLines(i),'signalPropagation','off');

 set(signalLines(i),'signalPropagation','on');

end

If a signal already has a label, then an alternative approach for displaying a propagated
signal label is:

1 In the model diagram, click the signal label.
2 Remove the label text.
3 In the signal label text box, enter an angle bracket (<).
4 Click outside the signal label.

Simulink displays the propagated signal label.

How Simulink Propagates Signal Labels

Understanding how Simulink propagates signal labels helps you to:

• Anticipate the scope of the signal label propagation, from source to final destination
• Configure your model to display signal labels for the signals that you want

For output signals from supported blocks, you can choose to have Simulink display
propagated signal labels. For a list of supported blocks, see “Blocks That Support Signal
Label Propagation” on page 60-19.

In general, Simulink performs signal label propagation consistently:

60 Working with Signals

60-22

• For different modeling constructs (for example, non-bus and bus signals, virtual and
nonvirtual buses, subsystem and model variants, model referencing, and libraries)

• In models with or without hidden blocks, which Simulink inserts in certain cases to
enable simulation

• At model load, edit, update, and simulation times

For information about some special cases, see:

• “Processing for Referenced Models” on page 60-26
• “Processing for Variants and Configurable Subsystems” on page 60-28

General Signal Label Propagation Processing

In general, when you enable signal label propagation for an output signal of a block (for
example, BlockA), Simulink performs the following processing to find the source signal
name to propagate:

1 Checks the block whose output signal connects to BlockA, and if necessary, continues
checking upstream blocks, working backward from the closest block to the farthest
block.

2 Stops when it encounters a block that either:

• Supports signal label propagation and has a signal name
• Does not support signal label propagation

3 Obtains the signal name, if any, of the output signal for the block at which Simulink
stops.

4 Uses that signal name for the propagated signal label of any output signals of
downstream blocks for which you enable signal label propagation.

For example, in the following model, suppose that you enable signal label propagation for
the output signal for the Subsystem block (that is, the signal connected to the Out1 port).

 Signal Label Propagation

60-23

60 Working with Signals

60-24

Simulink checks inside the subsystem, checks upstream from the From and GoTo blocks
(which support signal label propagation and do not have a name), and then checks
farther upstream, to the Constant block, which does not support signal label propagation.

Simulink uses the signal name of the Constant block output signal, const. The
propagated signal label for the Subsystem output signal is <const>.

If the output signal from the Constant block did not have a signal name, then the
propagated signal label would be an empty set of angle brackets (<>).

 Signal Label Propagation

60-25

Suppose that in the Subsystem block you enable signal label propagation for the output
signal from the In1 block, and you use the Signal Properties dialog box to specify the
signal name const-from for the output signal of the From block, as shown below.

The propagated signal label for the Subsystem output signal changes to <const-from>,
because that is the first named signal that Simulink encounters in its signal label
propagation processing.

In the following model, the signal label propagation for the output signal of the
Subsystem block uses the signal name bus1, which is the name of the output bus signal
of the Bus Creator block. The propagated signal label does not include the names of the
bus element signals (a and b).

60 Working with Signals

60-26

Processing for Referenced Models

To enable signal label propagation for referenced models, in addition to the steps
described in “Display Propagated Signal Labels” on page 60-20, enable the Model
Configuration Parameters > Model Referencing > Propagate all signal labels
out of the model parameter.

If you make a change inside a referenced model that affects signal label propagation,
the propagated signal labels outside of the referenced model do not reflect those changes
until after you update the diagram or simulate the model.

For example, the model ex_signal_label_prop_model_ref has a referenced model
that includes an output signal from the In1 block that has a signal name of input_1.

If you enable signal label propagation for the signal from the Out1 port of the Model
block, that signal does not reflect the name input_1 until after you update the diagram
or simulate the model.

 Signal Label Propagation

60-27

60 Working with Signals

60-28

Processing for Variants and Configurable Subsystems

Simulink updates the propagated signal label (if enabled) for the output signal of the
Subsystem or Model block, when both of these conditions occur:

• The output signals for model reference variants have different signal names.
• You change the active variant model or variant subsystem.

For Subsystem blocks, the signal label updates at edit time. For Model blocks, the update
occurs when you update diagram or simulate the model.

Related Examples
• “Display Signal Attributes” on page 60-60
• “Display Signal Sources and Destinations” on page 60-38

 Signal Label Propagation

60-29

More About
• “Signal Basics” on page 60-2
• “Virtual Signals” on page 60-11

60 Working with Signals

60-30

Signal Dimensions

In this section...

“About Signal Dimensions” on page 60-30
“Simulink Blocks that Support Multidimensional Signals” on page 60-31

About Signal Dimensions

Simulink blocks can output one-dimensional, two-dimensional, or multidimensional
signals. The Simulink user interface and documentation generally refer to 1-D signals
as vectors and 2-D or multidimensional signals as matrices. A one-element array is
frequently referred to as a scalar. A row vector is a 2-D array that has one row. A column
vector is a 2-D array that has one column.

• A one-dimensional (1-D) signal consists of a series of one-dimensional arrays output
at a frequency of one array (vector) per simulation time step.

• A two-dimensional (2-D) signal consists of a series of two-dimensional arrays output
at a frequency of one 2-D array (matrix) per block sample time.

• A multidimensional signal consists of a series of multidimensional (two or more
dimensions) arrays output at a frequency of one array per block sample time. You
can specify multidimensional arrays with any valid MATLAB multidimensional
expression, such as [4 3]. See “Multidimensional Arrays” for information on
multidimensional arrays.

Simulink blocks vary in the dimensionality of the signals they can accept or output. Some
blocks can accept or output signals of any dimension. Some can accept or output only
scalar or vector signals. To determine the signal dimensionality of a particular block, see
the block documentation. See “Determine Output Signal Dimensions” on page 60-32
for information on what determines the dimensions of output signals for blocks that can
output nonscalar signals.

Note: Simulink does not support dynamic signal dimensions during a simulation. That
is, the dimension of a signal must remain constant while a simulation is executing.
However, you can change the size of a signal during a simulation. See “Variable-Size
Signal Basics” on page 62-2.

 Signal Dimensions

60-31

Simulink Blocks that Support Multidimensional Signals

The Simulink Block Data Type Support table includes a column identifying the blocks
with multi-dimension signal support.

1 In the Simulink editor, from the Help menu, click Simulink > Block Data Types
& Code Generation Support > All Tables.

A separate window with the Simulink Block Data Type Support table opens.
2 In the Block column, locate the name of a Simulink block. Columns to the right are

data types or features. An a X in a column indicates support for that feature.

Simulink supports signals with up to 32 dimensions. Do not use signals with more than
32 dimensions.

Related Examples
• “Determine Output Signal Dimensions” on page 60-32
• “Display Signal Attributes” on page 60-60

More About
• “Signal Basics” on page 60-2
• “Signal Values” on page 60-15

60 Working with Signals

60-32

Determine Output Signal Dimensions

In this section...

“About Signal Dimensions” on page 60-32
“Determining the Output Dimensions of Source Blocks” on page 60-32
“Determining the Output Dimensions of Nonsource Blocks” on page 60-33
“Signal and Parameter Dimension Rules” on page 60-33
“Scalar Expansion of Inputs and Parameters” on page 60-34

About Signal Dimensions

If a block can emit nonscalar signals, the dimensions of the signals that the block outputs
depend on the block parameters, if the block is a source block; otherwise, the output
dimensions depend on the dimensions of the block input and parameters.

Determining the Output Dimensions of Source Blocks

A source block is a block that has no inputs. Examples of source blocks include the
Constant block and the Sine Wave block. See “Sources” for a complete listing of
Simulink source blocks. The output dimensions of a source block are the same as those
of its output value parameters if the block's Interpret vector parameters as 1-D
parameter is off (that is, not selected in the block parameter dialog box). If the Interpret
vector parameters as 1-D parameter is on, the output dimensions equal the output
value parameter dimensions unless the parameter dimensions are N-by-1 or 1-by-N. In
the latter case, the block outputs a vector signal of width N.

As an example of how a source block's output value parameter(s) and Interpret vector
parameters as 1-D parameter determine the dimensionality of its output, consider
the Constant block. This block outputs a constant signal equal to its Constant value
parameter. The following table illustrates how the dimensionality of the Constant value
parameter and the setting of the Interpret vector parameters as 1-D parameter
determine the dimensionality of the block's output.

Constant Value Interpret vector parameters as
1-D

Output

scalar off one-element array
scalar on one-element array

 Determine Output Signal Dimensions

60-33

Constant Value Interpret vector parameters as
1-D

Output

1-by-N matrix off 1-by-N matrix
1-by-N matrix on N-element vector
N-by-1 matrix off N-by-1 matrix
N-by-1 matrix on N-element vector
M-by-N matrix off M-by-N matrix
M-by-N matrix on M-by-N matrix

Simulink source blocks allow you either to specify the dimensions of the signals that they
output or specify values from which Simulink infers the dimensions. You can therefore
use the source blocks to introduce signals of various dimensions into your model.

Determining the Output Dimensions of Nonsource Blocks

If a block has inputs, the dimensions of its outputs are, after scalar expansion, the same
as those of its inputs. (All inputs must have the same dimensions, as discussed in “Signal
and Parameter Dimension Rules” on page 60-33).

Signal and Parameter Dimension Rules

When creating a Simulink model, you must observe the following rules regarding signal
and parameter dimensions.

Input Signal Dimension Rule

All nonscalar inputs to a block must have the same dimensions.

A block can have a mix of scalar and nonscalar inputs as long as all the nonscalar
inputs have the same dimensions. Simulink expands the scalar inputs to have the same
dimensions as the nonscalar inputs (see “Scalar Expansion of Inputs and Parameters” on
page 60-34).

Block Parameter Dimension Rule

In general, block parameters must have the same dimensions as the dimensions of the
inputs to the block. Simulink performs some processing that provides flexibility relating
to that general rule.

60 Working with Signals

60-34

• A block can have scalar parameters corresponding to nonscalar inputs. In this
case, Simulink expands a scalar parameter to have the same dimensions as the
corresponding input (see “Scalar Expansion of Inputs and Parameters” on page
60-34).

• If an input is a vector, the corresponding parameter can be either an N-by-1 or a 1-by-
N matrix. In this case, Simulink applies the N matrix elements to the corresponding
elements of the input vector. This exception allows use of MATLAB row or column
vectors, which are actually 1-by-N or N-by-1 matrices, respectively, to specify
parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules

Simulink converts vectors to row or column matrices and row or column matrices to
vectors under the following circumstances:

• If a vector signal is connected to an input that requires a matrix, Simulink converts
the vector to a one-row or one-column matrix.

• If a one-column or one-row matrix is connected to an input that requires a vector,
Simulink converts the matrix to a vector.

• If the inputs to a block consist of a mixture of vectors and matrices and the matrix
inputs all have one column or one row, Simulink converts the vectors to matrices
having one column or one row, respectively.

Note You can configure Simulink to display a warning or error message if a vector
or matrix conversion occurs during a simulation. See “Vector/matrix block input
conversion” for more information.

Scalar Expansion of Inputs and Parameters

Scalar expansion is the conversion of a scalar value into a nonscalar array. Many
Simulink blocks support scalar expansion of inputs and parameters. Block-specific
descriptions indicate whether Simulink applies scalar expansion to a block's inputs and
parameters.

Scalar expansion of inputs refers to the expansion of scalar inputs to match the
dimensions of other nonscalar inputs or nonscalar parameters. When the input to a
block is a mix of scalar and nonscalar signals, Simulink expands the scalar inputs
into nonscalar signals having the same dimensions as the other nonscalar inputs. For

 Determine Output Signal Dimensions

60-35

example, a scalar of 4 is expanded to the vector [4 4 4] if the associated nonscalar has a
dimension of 3.

Scalar expansion of parameters refers to the expansion of scalar block parameters to
match the dimensions of nonscalar inputs.

Input(s) Associated Block Parameter Scalar Expansion

Scalar Nonscalar Input expanded to match
parameter dimensions.

See “Scalar Input and
Nonscalar Parameter” on
page 60-35.

Nonscalar Scalar Scalar parameter expanded
to match number of elements
of input.

See “Nonscalar Input and
Scalar Parameter” on page
60-36.

Combination of scalar and
nonscalar

No corresponding
parameter

Scalar inputs expanded to
match dimensions of largest
nonscalar input.

See “Scalar and Nonscalar
Inputs and No Associated
Parameter” on page
60-36.

Scalar Input and Nonscalar Parameter

In this example, the Constant block input to the Gain block is scalar. The Gain block
Gain parameter is a nonscalar. Simulink expands the scalar input to match the
dimensions of a nonscalar Gain parameter, as reflected in the simulation results in the
Display block.

60 Working with Signals

60-36

Nonscalar Input and Scalar Parameter

In this example, the Constant block input to the Gain block is nonscalar. The Gain
block Gain parameter is a scalar. Simulink expands the scalar parameter to match the
dimensions of a nonscalar input from the Constant block, as reflected in the simulation
results in the Display block.

Scalar and Nonscalar Inputs and No Associated Parameter

In this example, the Constant1 block input to the Sum block is nonscalar, and the
Constant2 block input is scalar. The Sum block has no associated parameter. Simulink
expands the scalar input from Constant2 to match to the dimensions of the nonscalar
Constant1 block input. The input is expanded to the vector [3 3 3].

 Determine Output Signal Dimensions

60-37

Related Examples
• “Display Signal Attributes” on page 60-60

More About
• “Signal Dimensions” on page 60-30
• “Signal Basics” on page 60-2
• “Signal Values” on page 60-15

60 Working with Signals

60-38

Display Signal Sources and Destinations

In this section...

“About Signal Highlighting” on page 60-38
“Highlighting Signal Sources” on page 60-38
“Highlighting Signal Destinations” on page 60-39
“Removing Highlighting” on page 60-40
“Resolving Incomplete Highlighting to Library Blocks” on page 60-40

About Signal Highlighting

You can highlight a signal and its source or destination block(s), then remove the
highlighting once it has served its purpose. Signal highlighting crosses subsystem
boundaries, allowing you to trace a signal across multiple subsystem levels. Highlighting
does not cross the boundary into or out of a referenced model. If a signal is composite, all
source or destination blocks are highlighted. (See “Composite Signals” on page 61-3.)

Highlighting Signal Sources

To display the source block(s) of a signal, select the Highlight Signal to Source option
from the context menu for the signal. This option highlights:

• All branches of the signal anywhere in the model
• All virtual blocks through which the signal passes
• The nonvirtual block(s) that write the value of the signal

 Display Signal Sources and Destinations

60-39

Highlighting Signal Destinations

To display the destination blocks of a signal, select the Highlight Signal to
Destination option from the context menu for the signal. This option highlights:

• All branches of the signal anywhere in the model
• All virtual blocks through which the signal passes
• The nonvirtual block(s) that read the value of the signal
• The signal and destination block for all blocks that are duplicates of the inport block

for the line that you select

In this example, the selected signal highlights the Gain block as the destination block.

In the next example, selecting the signal from In2 and choosing the Highlight Signal to
Destination option highlights the signal and destination block for In2 and In1, because
In1 and In2 are duplicate inport blocks.

60 Working with Signals

60-40

Removing Highlighting

To remove all highlighting, select Remove Highlighting from the model's context
menu, or select Display > Remove Highlighting.

Resolving Incomplete Highlighting to Library Blocks

If the path from a source block or to a destination block includes an unresolved reference
to a library block, the highlighting options highlight the path from or to the library block,
respectively. To display the complete path, first update the diagram (for example, by
pressing Ctrl+D). The update of the diagram resolves all library references and displays
the complete path to a destination block or from a source block.

Related Examples
• “Display Signal Attributes” on page 60-60

More About
• “Signal Label Propagation” on page 60-19
• “Signal Basics” on page 60-2

 Signal Ranges

60-41

Signal Ranges

In this section...

“About Signal Ranges” on page 60-41
“Blocks That Allow Signal Range Specification” on page 60-41
“Specifying Ranges for Signals” on page 60-42
“Checking for Signal Range Errors” on page 60-43

About Signal Ranges

Many Simulink blocks allow you to specify a range of valid values for their output
signals. Simulink provides a diagnostic that you can enable to detect when blocks
generate signals that exceed their specified ranges during simulation. See the sections
that follow for more information.

Blocks That Allow Signal Range Specification

The following blocks allow you to specify ranges for their output signals:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

• Discrete Derivative

• Discrete-Time Integrator

• Gain

• Inport

• Interpolation Using Prelookup

• 1-D Lookup Table

• 2-D Lookup Table

• n-D Lookup Table

• Math Function

60 Working with Signals

60-42

• MinMax

• Multiport Switch

• Outport

• Product, Divide, Product of Elements
• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

• Saturation

• Saturation Dynamic

• Signal Specification

• Sum, Add, Subtract, Sum of Elements
• Switch

Specifying Ranges for Signals

In general, use the Output minimum and Output maximum parameters that appear
on a block parameter dialog box to specify a range of valid values for the block output
signal. Exceptions include the Data Store Memory, Inport, Outport, and Signal
Specification blocks, for which you use their Minimum and Maximum parameters
to specify a signal range. See “Blocks That Allow Signal Range Specification” on page
60-41 for a list of applicable blocks.

When specifying minimum and maximum values that constitute a range, enter only
expressions that evaluate to a scalar, real number with double data type. The default
values for the minimum and maximum are [] (unspecified). The scalar values that you
specify are subject to expansion, for example, when the block inputs are nonscalar or bus
signals (see “Scalar Expansion of Inputs and Parameters” on page 60-34).

Note: You cannot specify the minimum or maximum value as NaN, inf, or -inf.

Specifying Ranges for Complex Numbers

When you specify an Output minimum and/or Output maximum for a signal that is
a complex number, the specified minimum and maximum values apply separately to the

 Signal Ranges

60-43

real part and to the imaginary part of the complex number. If the value of either part
of the number is less than the minimum, or greater than the maximum, the complex
number is outside the specified range. No range checking occurs against any combination
of the real and imaginary parts, such as (sqrt(a^2+b^2))

Checking for Signal Range Errors

Simulink provides a diagnostic named Simulation range checking, which you can
enable to detect when signals exceed their specified ranges during simulation. When
enabled, Simulink compares the signal values that a block outputs with both the
specified range (see “Specifying Ranges for Signals” on page 60-42) and the block data
type. That is, Simulink performs the following check:

DataTypeMin ≤ MinValue ≤ VALUE ≤ MaxValue ≤ DataTypeMax

where

• DataTypeMin is the minimum value representable by the block data type.
• MinValue is the minimum value the block should output, specified by, e.g., Output

minimum.
• VALUE is the signal value that the block outputs.
• MaxValue is the maximum value the block should output, specified by, e.g., Output

maximum.
• DataTypeMax is the maximum value representable by the block data type.

Note: It is possible to overspecify how a block handles signals that exceed particular
ranges. For example, you can specify values (other than the default values) for both
signal range parameters and enable the Saturate on integer overflow parameter. In
this case, Simulink displays a warning message that advises you to disable the Saturate
on integer overflow parameter.

Enabling Simulation Range Checking

To enable the Simulation range checking diagnostic:

1 In your model window, select Simulation > Model Configuration Parameters.

Simulink displays the Configuration Parameters dialog box.

60 Working with Signals

60-44

2 In the Select tree on the left side of the Configuration Parameters dialog box, click
the Diagnostics > Data Validity category. On the right side under Signals, set
the Simulation range checking diagnostic to error or warning.

3 Click OK to apply your changes and close the Configuration Parameters dialog box.

See “Simulation range checking” for more information.

Simulating Models with Simulation Range Checking

To check for signal range errors or warnings:

1 Enable the Simulation range checking diagnostic for your model (see “Enabling
Simulation Range Checking” on page 60-43).

2 In your model window, select Simulation > Run to simulate the model.

Simulink simulates your model and performs signal range checking. If a signal
exceeds its specified range when the Simulation range checking diagnostic
specifies error, Simulink stops the simulation and displays an error message:

 Signal Ranges

60-45

Otherwise, if a signal exceeds its specified range when the Simulation range
checking diagnostic specifies warning, Simulink displays a warning message in the
MATLAB Command Window:
Warning: Inconsistent numeric values for port 1

of 'example/Gain': Output value (21) at major

time step 4.2 is greater than maximum (20) from

'example/Gain'.

Each message identifies the block whose output signal exceeds its specified range,
and the time step at which this violation occurs.

Signal Range Propagation for Virtual Blocks

Some virtual blocks (see “Nonvirtual and Virtual Blocks” on page 31-2) allow you to
specify ranges for their output signals, for example, the Inport and Outport blocks.
When the Simulation range checking diagnostic is enabled for a model that contains
such blocks, the signal range of the virtual block propagates backward to the first
instance of a nonvirtual block whose output signal it receives. If the nonvirtual block
specifies different values for its own range, Simulink performs signal range checking
with the tightest range possible. That is, Simulink checks the signal using the larger
minimum value and the smaller maximum value.

For example, consider the following model:

60 Working with Signals

60-46

In this model, the Constant block specifies its Output maximum parameter as 300,
and that of the Inport block is set to 100. Suppose you enable the Simulation range
checking diagnostic and simulate the model. The Inport block back propagates its
maximum value to the nonvirtual block that precedes it, i.e., the Constant block.
Simulink then uses the smaller of the two maximum values to check the signal that the
Constant block outputs. Because the Constant block outputs a signal whose value (200)
exceeds the tightest range, Simulink displays the following error message:

 Signal Ranges

60-47

Related Examples
• “Display Signal Attributes” on page 60-60
• “Control Signal Data Types” on page 55-7

More About
• “Signal Basics” on page 60-2
• “Signal Values” on page 60-15
• “Design Minimum and Maximum” on page 55-71
• “Fixed Point”

60 Working with Signals

60-48

Initialize Signals and Discrete States

In this section...

“About Initialization” on page 60-48
“Using Block Parameters to Initialize Signals and Discrete States” on page 60-49
“Use Signal Objects to Initialize Signals and Discrete States” on page 60-49
“Using Signal Objects to Tune Initial Values” on page 60-53
“Example: Using a Signal Object to Initialize a Subsystem Output” on page 60-53
“Initialization Behavior Summary for Signal Objects” on page 60-54

About Initialization

Note: For information about initializing bus signals, see “Specify Initial Conditions for
Bus Signals” on page 61-65.

Simulink allows you to specify the initial values of signals and discrete states, i.e., the
values of the signals and discrete states at the Start time of the simulation. You can use
signal objects to specify the initial values of any signal or discrete state in a model. In
addition, for some blocks, e.g., Outport, Data Store Memory, or Memory, you can use
either a signal object or a block parameter or both to specify the initial value of a block
state or output. In such cases, Simulink checks to ensure that the values specified by the
signal object and the parameter are consistent.

When you specify a signal object for signal or discrete state initialization, or a variable
as the value of a block parameter, Simulink resolves the name that you specify to an
appropriate object or variable, as described in “Symbol Resolution” on page 4-95.

A given signal can be associated with at most one signal object under any circumstances.
The signal can refer to the object more than once, but every reference must resolve to
exactly the same object. A different signal object that has exactly the same properties
will not meet the requirement for uniqueness. A compile-time error occurs if a model
associates more than one signal object with any signal. For more information, see
Simulink.Signal and the Merge block.

 Initialize Signals and Discrete States

60-49

Using Block Parameters to Initialize Signals and Discrete States

For blocks that have an initial value or initial condition parameter, you can use that
parameter to initialize a signal. For example, the following Block Parameters dialog box
initializes the signal for a Unit Delay block with an initial condition of 0.

Use Signal Objects to Initialize Signals and Discrete States

You can use signal objects that have a storage class other than 'auto' or
'SimulinkGlobal' to initialize

• Discrete states with an initial condition parameter
• Signals in a model except bus signals and blocks that output constant value

To specify an initial value, use the Model Explorer or MATLAB commands to do the
following:

1 Create the signal object.

Model Explorer

60 Working with Signals

60-50

MATLAB Command

S1 = Simulink.Signal;

The name of the signal object must be the same as the name of the signal that the
object is initializing. Although not required, consider setting the Signal name must
resolve to Simulink signal object option in the Signal Properties dialog box. This
setting makes signal objects in the MATLAB workspace consistent with signals that
appear in your model.

Consider using the Data Object Wizard to create signal objects. The Data Object
Wizard searches a model for signals for which signal objects do not exist. You can
then selectively create signal objects for multiple signals listed in the search results
with a single operation. For more information about the Data Object Wizard, see
“Create Data Objects for a Model Using Data Object Wizard” on page 55-45 in the
Simulink documentation.

 Initialize Signals and Discrete States

60-51

2 Set the signal object's storage class to a value other than 'auto'or
'SimulinkGlobal'.

Model Explorer

MATLAB Command

S1.CoderInfo.StorageClass='ExportedGlobal';

3 Set the initial value. You can specify a MATLAB expression, including the name of a
workspace variable, that evaluates to a numeric scalar value or array.

The Simulink engine converts the initial value so the type, complexity, and
dimension are consistent with the corresponding block parameter value. If you
specify an invalid value or expression, an error message appears when you update
the model.

Model Explorer

60 Working with Signals

60-52

MATLAB Command

S1.InitialValue = '0.5'

If you can also use a block parameter to set the initial value of the signal or state,
you should set the parameter either to empty ([]) or to the same value as the initial
value of the signal object. If you set the parameter value to empty, Simulink uses
the value specified by the signal object to initialize the signal or state. If you set the
parameter to any other value, Simulink compares the parameter value to the signal
object value and displays an error if they differ.

Some initial value settings may depend on the initialization mode. For more information,
see “Underspecified initialization detection”.

Classic initialization mode: In this mode, initial value settings for signal objects that
represent the following signals and states override the corresponding block parameter
initial values if undefined (specified as []):

 Initialize Signals and Discrete States

60-53

• Output signals of conditionally executed subsystems and Merge blocks
• Block states

Simplified initialization mode: In this mode, initial values of signal objects
associated with the output of the following blocks are ignored. The initial values of the
corresponding blocks are used instead.

• Output signals of conditionally executed subsystems
• Merge blocks

Using Signal Objects to Tune Initial Values

Simulink allows you to use signal objects as an alternative to parameter objects (see)
to tune the initial values of block outputs and states that can be specified via a tunable
parameter. To use a signal object to tune an initial value, create a signal object with the
same name as the signal or state and set the signal object's initial value to an expression
that includes a variable defined in the MATLAB workspace. You can then tune the
initial value by changing the value of the corresponding workspace variable during the
simulation.

For example, suppose you want to tune the initial value of a Memory block state named
M1. To do this, you might create a signal object named M1, set its storage class to
'ExportedGlobal', set its initial value to K (M1.InitialValue='K'), where K
is a workspace variable in the MATLAB workspace, and set the corresponding initial
condition parameter of the Memory block to [] to avoid consistency errors. You could
then change the initial value of the Memory block's state any time during the simulation
by changing the value of K at the MATLAB command line and updating the block
diagram (e.g., by typing Ctrl+D).

Example: Using a Signal Object to Initialize a Subsystem Output

The following example shows a signal object specifying the initial output of an enabled
subsystem.

60 Working with Signals

60-54

Sine Wave
Amplitude = 1

Period = 10 samples
Ts = 0.1

Scope

In1 Out1

Enabled
Subsystem

Enable
Ts = 0.1

Phase Delay = 10 samples

e

s

1

Out1
Initial Output = []

2

Gain

Enable

1

In1

Signal s is initialized to 4.5. To avoid a consistency error, the initial value of the enabled
subsystem's Outport block must be [] or 4.5.

If you need a signal object and its initial value setting to persist across Simulink
sessions, see “Create Persistent Data Objects” on page 55-55.

Initialization Behavior Summary for Signal Objects

The following model and table show different types of signals and discrete states that you
can initialize and the simulation behavior that results for each.

 Initialize Signals and Discrete States

60-55

Signal or
Discrete State

Description Behavior

S1 Root inport • Initialized to S1.InitialValue.
• If you use the Data Import/Export pane of the Configuration

Parameters dialog to specify values for the root inputs, the
initial value is overwritten and may differ at each time step.
Otherwise, the value remains constant.

X1 Unit Delay
block — Block
with a discrete
state that
has an initial
condition

• Initialized to X1.InitialValue.
• Simulink checks whether X1.InitialValue matches the

initial condition specified for the block and displays an error if
a mismatch occurs.

• At first write, the output equals X1.InitialValue and the
state equals S1.

• At each time step after the first write, the output equals the
state and the state is updated to equal S1.

60 Working with Signals

60-56

Signal or
Discrete State

Description Behavior

• If the block is inside an enabled subsystem, you can use the
initial value as a reset value if the subsystem's Enable block
parameter States when enabling is set to reset.

X2 Data Store
Memory block

• Data type work (DWork) vector initialized to
X2.InitialValue. For information on work vectors, see
“DWork Vector Basics”.

• Simulink checks whether X2.InitialValue matches the
initial condition specified for the block, and displays an error if
a mismatch occurs.

• Data Store Write blocks overwrite the value.
S2 Output of

an enabled
subsystem

• Initialized to S2.InitialValue or the value of the Outport
block. If multiple initial values are specified for the same
signal, all initial values must be the same.

• The first write occurs when the subsystem is enabled. The
block feeding the subsystem output sets the value.

• The initial value is also used as a reset value if the subsystem's
Enable block parameter States when enabling or Outport
block parameter Output when disabled is set to reset.

S3 Persistent
signals

• Initialized to S3.InitialValue.
• The output value is reset by the block at each time step.
• Affects code generation only. For simulation, setting the initial

value for S3 is irrelevant because the values are overwritten at
the model's simulation start time.

Related Examples
• “Specify Block Parameter Values” on page 32-2
• “Specify Initial Conditions for Bus Signals” on page 61-65

More About
• “Signal Basics” on page 60-2
• “Signal Values” on page 60-15

 Test Points

60-57

Test Points

In this section...

“What Is a Test Point?” on page 60-57
“Designating a Signal as a Test Point” on page 60-57
“Displaying Test Point Indicators” on page 60-58

What Is a Test Point?

A test point is a signal that Simulink guarantees to be observable when using a
Floating Scope block in a model. Simulink allows you to designate any signal in a
model as a test point.

Designating a signal as a test point exempts the signal from model optimizations,
such as signal storage reuse (see “Signal storage reuse ”) and block reduction (see
“Implement logic signals as Boolean data (vs. double) ”). These optimizations render
signals inaccessible and hence unobservable during simulation.

Signals designated as test points will not have algebraic loops minimized, even if
Minimize algebraic loop occurrences is selected (for more information about
algebraic loops, see “Algebraic Loops” on page 3-37).

Test points are primarily intended for use when generating code from a model with
Simulink Coder. For more information about test points in the context of code generation,
see “Signals with Test Points”.

Marking a signal as a test point has no impact on signal logging that uses the Dataset
logging format. For information about logging signals, see “Export Signal Data Using
Signal Logging” on page 57-36.

Designating a Signal as a Test Point

Use one of the following ways to designate a signal as a test point:

• Open the signal's Signal Properties dialog and check Test Point in the Logging
and accessibility section.

• Resolve the signal to a base workspace Simulink.Signal object whose storage class
is SimulinkGlobal.

60 Working with Signals

60-58

The second method is more convenient when you want to control test pointing without
having to alter the model.

Model Referencing Limitation

Simulink might not log all signals configured for signal logging in a referenced model, if
all of these conditions exist:

• The referenced model sets the Model Configuration Parameters > Data Import/
Export > Signal logging format parameter to ModelDataLogs.

• The referenced model uses a library and you make a change that affects the set of test
points in a library, or that changes the set of models that a library references.

To ensure proper signal logging for the referenced model:

1 Open the referenced model.
2 Perform an update diagram on the referenced model (for example, by pressing Ctrl

+D).
3 Save the referenced model.

Displaying Test Point Indicators

By default, Simulink displays an indicator on each signal whose Signal Properties >
Test point option is enabled. For example, in the following model signals s2 and s3 are
test points:

Note: Simulink does not display an indicator on a signal that is specified as a test point
by a Simulink.Signal object, because such a specification is external to the graphical
model.

A signal that is a test point can also be logged. See “Export Signal Data Using Signal
Logging” on page 57-36 for information about signal logging. The appearance of the
indicator changes to indicate signals for which logging is also enabled.

 Test Points

60-59

To turn display of test point indicators on or off, in the Simulink Editor, select or clear
Display > Signals & Ports > Testpoint & Logging Indicators.

More About
• “Signal Values” on page 60-15
• “Signal Basics” on page 60-2

60 Working with Signals

60-60

Display Signal Attributes

In this section...

“Ports & Signals Menu” on page 60-60
“Port Data Types” on page 60-61
“Design Ranges” on page 60-61
“Signal Dimensions” on page 60-62
“Signal to Object Resolution Indicator” on page 60-62
“Wide Nonscalar Lines” on page 60-63

Ports & Signals Menu

The Display > Signals & Ports submenu of the Simulink Editor offers the following
options for displaying signal properties on the block diagram:

• Linearization Indicators
• Port Data Types (See “Port Data Types” on page 60-61)
• Design Ranges (See “Design Ranges” on page 60-61)
• Signal Dimensions (See “Signal Dimensions” on page 60-62)
• Storage Class
• Testpoint/Logging Indicators
• Signal Resolution Indicators (See “Signal to Object Resolution Indicator” on page

60-62)
• Viewer Indicators
• Wide Nonscalar Lines (See “Wide Nonscalar Lines” on page 60-63)

In addition, you can display sample time information. If you first select Display >
Sample Time, a submenu provides the choices of Colors, Annotations and All. The
Colors option allows the block diagram signal lines and blocks to be color-coded based
on the sample time types and relative rates. The Annotations option provides black
codes on the signal lines which indicate the type of sample time. All causes both the
colors and the annotations to display. All of these options cause a Sample Time Legend to
appear. The legend contains a description of the type of sample time and the sample time

 Display Signal Attributes

60-61

rate. If Colors is turned 'on', color codes also appear in the legend. The same is true if
Annotations are turned 'on'.

Port Data Types

Displays the data type of a signal next to the output port that emits the signal.

The notation (c) following the data type of a signal indicates that the signal is complex.

Design Ranges

Displays the compiled design range of a signal next to the output port that emits the
signal. The ranges are computed during an update diagram.

Ranges are displayed in the format [min..max]. In the above example, the design range
at the output port of the Mux block is displayed as [-10..mixed], because the two

60 Working with Signals

60-62

signals the Mux block combines have the same design minimum but different design
maximums.

You can also use command-line parameters CompiledPortDesignMin and
CompiledPortDesignMax to access the design minimum and maximum of port signals,
respectively, at compile time. For more information, see “Common Block Properties”.

Signal Dimensions

Display the dimensions of nonscalar signals next to the line that carries the signal.

The format of the display depends on whether the line represents a single signal or a
bus. If the line represents a single vector signal, Simulink displays the width of the
signal. If the line represents a single matrix signal, Simulink displays its dimensions
as [N1xN2] where Ni is the size of the ith dimension of the signal. If the line represents
a bus carrying signals of the same data type, Simulink displays N{M} where N is the
number of signals carried by the bus and M is the total number of signal elements carried
by the bus. If the bus carries signals of different data types, Simulink displays only the
total number of signal elements {M}.

Signal to Object Resolution Indicator

The Simulink Editor by default graphically indicates signals that must resolve to signal
objects. For any labeled signal whose Signal name must resolve to signal object
property is enabled, a signal resolution icon appears to the left of the signal name. The
icon looks like this:

 Display Signal Attributes

60-63

A signal resolution icon indicates only that a signal's Signal name must resolve to
signal object property is enabled. The icon does not indicate whether the signal is
actually resolved, and does not appear on a signal that is implicitly resolved without its
Signal name must resolve to signal object property being enabled.

Where multiple labels exist, each label displays a signal resolution icon. No icon appears
on an unlabeled branch. In the next figure, signal x2 must resolve to a signal object, so a
signal resolution icon appears to the left of the signal name in each label:

To suppress the display of signal resolution icons, in the model window deselect Display
> Signals & Ports > Signal to Object Resolution Indicator, which is selected
by default. To restore signal resolution icons, reselect Signal to Object Resolution
Indicator. Individual signals cannot be set to show or hide signal resolution indicators
independently of the setting for the whole model. For additional information, see:

• “Symbol Resolution” on page 4-95
• “Initialize Signals and Discrete States” on page 60-48
• Simulink.Signal

Wide Nonscalar Lines

Draws lines that carry vector or matrix signals wider than lines that carry scalar signals.

60 Working with Signals

60-64

See “Composite Signals” on page 61-3 for more information about vector and matrix
signals.

Related Examples
• “Determine Output Signal Dimensions” on page 60-32
• “Display Signal Sources and Destinations” on page 60-38

More About
• “Signal Basics” on page 60-2

 Signal Groups

60-65

Signal Groups

In this section...

“About Signal Groups” on page 60-65
“Using the Signal Builder Block with Fast Restart” on page 60-65
“Signal Builder Window” on page 60-66
“Creating Signal Group Sets” on page 60-79
“Editing Waveforms” on page 60-106
“Signal Builder Time Range” on page 60-111
“Exporting Signal Group Data” on page 60-112
“Printing, Exporting, and Copying Waveforms” on page 60-113
“Simulating with Signal Groups” on page 60-113
“Simulation Options Dialog Box” on page 60-114

About Signal Groups

The Signal Builder block displays and allows you to create or edit interchangeable
groups of signal sources and quickly switch the groups into and out of a model.

Signal groups can greatly facilitate testing a model, especially when you use them with
conjunction with Simulink Assertion blocks and the Model Coverage Tool from the
Simulink Verification and Validation. For a description of the Model Coverage Tool, see
“Model Coverage Collection Workflow”.

Model Configuration Parameter Solver pane settings can affect the Signal Builder block
output. See “Simulation Phases in Dynamic Systems” on page 3-17 and “Solvers” on page
3-21 for a description of how solvers affect simulation.

Using the Signal Builder Block with Fast Restart

After you turn on fast restart:

• In between runs, you can change data, rename signals and signal groups, and add
new groups. You cannot:

• Import signals or signal groups

60 Working with Signals

60-66

• Change signal output settings
• You can click the Run all button once. To reenable the Run all button, toggle the fast

restart button on the Simulink Editor tool bar. However, Run all does not use fast
restart.

Signal Builder Window

The Signal Builder block window allows you to define the shape of the signals (waveform)
output by the block. You can specify any waveform that is piecewise linear.

To open the window, double-click the block. The Signal Builder window appears.

List of groups

Group panes

Selection status area

Help area Signal

name

Waveform

The Signal Builder window allows you to create and modify signal groups represented by
a Signal Builder block. The Signal Builder window includes the following controls.

 Signal Groups

60-67

Group Pane

Displays the set of interchangeable signal source groups represented by the block. The
pane for each group displays an editable representation of each waveform in the group.
The name of the group appears at the top of the pane. Only one pane is visible at a time.
To display a group that is not visible, from the list, select the group name. The block
outputs the group of signals whose pane is currently visible. Each pane occupies a pane
in the Signal Builder block dialog box.

Signal Axes

The signals appear on separate axes that share a common time range (see “Signal
Builder Time Range” on page 60-111). This presentation allows you to compare the
relative timing of changes in each signal. The Signal Builder automatically scales the
range of each axis to accommodate the signal that it displays. Use the Signal Builder
Axes menu to change the time (T) and amplitude (Y) ranges of the selected axis.

Signal List

Displays the names and visibility (see “Editing Signals” on page 60-69) of the signals
that belong to the currently selected signal group. Clicking an entry in the list selects the
signal. Double-clicking a signal entry in the list hides or displays the waveform on the
group pane.

Selection Status Area

Displays the name of the currently selected signal and the index of the currently selected
waveform segment or point.

Waveform Coordinates

Displays the coordinates of the currently selected waveform segment or point. You can
change the coordinates by editing the displayed values (see “Editing Waveforms” on page
60-106).

Name

Name of the currently selected signal. You can change the name of a signal by editing
this field (see “Renaming a Signal” on page 60-75).

Index

Index of the currently selected signal. The index indicates the output port at which the
signal appears. An index of 1 indicates the topmost output port, 2 indicates the second

60 Working with Signals

60-68

port from the top, and so on. You can change the index of a signal by editing this field
(see “Changing a Signal Index” on page 60-78).

Help Area

Displays context-sensitive tips on using Signal Builder window features.

Editing Signal Groups

The Signal Builder window allows you to create, rename, move, then delete signal groups
from the set of groups represented by a Signal Builder block.
Creating and Deleting Signal Groups

To create a signal group:

1 In Signal Builder, copy an existing signal group.
2 Modify it to suit your needs.

To copy an existing signal group:

1 In Signal Builder, select the group from the list.
2 Select Group > Copy.

A new group is created.

To delete a group, select the group from the list, and select Group > Delete.
Renaming Signal Groups

To rename a signal group:

1 In Signal Builder, select the group from the list,
2 Select Group > Rename.

A dialog box appears.
3 Edit the existing name in the dialog box or enter a new name. Click OK.

Moving Signal Groups

To reposition a group in the stack of group panes:

1 In Signal Builder, select the pane.
2 To move the group lower in the stack, select Group > Move Down.
3 To move the pane higher in the stack, select Group > Move Up.

 Signal Groups

60-69

Editing Signals

Signal Builder allows you to create, cut and paste, hide, and delete signals from signal
groups.

Creating Signals

To create a signal in the currently selected signal group:

1 In Signal Builder, from the Active Group list, select the group you want to add the
signal to.

2 Select Signal > New.

The menu lists the waveforms you can add (described in the table).

Waveform Description Inputs

Constant Constant waveform None.
Step Step waveform None.
Pulse Pulse waveform None.
Square Square waveform • Frequency

Waveform frequency, in hertz
• Amplitude

Waveform amplitude
• Offset

Waveform vertical offset
• % Duty cycle

Percent of the period the signal is
positive (a value between 0 and
100)

Triangle Triangle waveform • Frequency

Waveform frequency, in hertz.
• Amplitude

Waveform amplitude

60 Working with Signals

60-70

Waveform Description Inputs

• Offset

Waveform vertical offset
Sampled Sin Sampled sinewave waveform • Frequency (Hz)

Waveform frequency, in hertz
• Amplitude

Waveform amplitude
• Offset

Waveform vertical offset
• Samples Per Period

Number of samples per waveform
period

Sampled Gaussian
Noise

Sampled Gaussian noise waveform
based on a Gaussian distribution
with input mean and standard
deviation at input frequency

• Frequency

Waveform frequency, in hertz
• Mean

The mean value of the random
variable output

• Standard Deviation

The standard deviation squared of
the random variable output

• Seed (empty to use current
state)

The initial seed value for the
random number generator

 Signal Groups

60-71

Waveform Description Inputs

Pseudorandom Noise Pseudorandom noise waveform
based on a binomial distribution
with upper and lower values at
input frequency

• Frequency

Frequency with which waveform
fluctuates between Upper value
and Lower value, in hertz

• Upper value

Upper limit of signal
• Lower value

Lower limit of signal
• Seed

The initial seed value for the
random number generator

Poisson Random
Noise

Poisson random noise waveform that
alternates between 0 and 1

• Avg rate (1/sec)

Average rate of transition between
0 and 1

• Seed (empty to use current
state)

The initial seed value for the
random number generator

60 Working with Signals

60-72

Waveform Description Inputs

Custom Custom piecewise linear waveform;
custom values must fit within the
display area

• Time values

Vector of two or more time
coordinates

• Y values

Vector of two or more signal
amplitudes that correspond to the
values in Time values

The entries in either field can be any
MATLAB expression that evaluates
to a vector, including the results
from the evaluation of a MATLAB
workspace variable. The resulting
vectors must be of equal length.

Note: Signal Builder displays
a warning if you add a custom
waveform with a large number of
data points (100,000,000 or more).

3 Select the waveform you want to add.
4 Specify the inputs (in prompt), and click OK.

If you select a standard waveform, Signal Builder adds a signal with that waveform to
the group. If you select a custom waveform, you are prompted for Time values and Y
values.

You can also use MATLAB workspace variables to create new signals.

1 In the MATLAB Command Window, create data for two variables, t and y.

t = 1:10

y = 1:10

These vectors must be the same size.
2 Create a model and add a Signal Builder block.
3 Double-click the Signal Builder block.

 Signal Groups

60-73

4 Select Signal > New > Custom.
5 In the Custom Waveform window, enter t in the Time values field and y in the Y

values field and then click OK.

The Signal Builder block window displays the new signal as Signal 2.

Defining Signal Output

To specify the type of output to use for sending test signals:

1 In Signal Builder, select Signal > Output.
2 From the list, select:

• Ports

60 Working with Signals

60-74

Default. Sends individual signals from the block. An output port named Signal N
appears for each Signal N.

• Bus

Sends single, virtual, nonhierarchical bus of signals from the block. An output
port named Bus appears.

Tip

• You cannot use the Bus option to create a bus of nonvirtual signals.

• The Bus option enables you to change your model layout without having to
reroute Signal Builder block signals. Use the Bus Selector block to select
the signals from this bus.

• If you create a Signal Builder block using the Signal & Scope Manager or
using the Create & Connect Generator option from a signal line context
menu, you cannot define signal output. In these cases, the block sends
individual signals.

Copying and Pasting Signals

To copy a signal from one group and paste it into another group as a new signal:

1 In Signal Builder, select the signal you want to copy.
2 Select Edit > Copy.
3 Select the group you want to paste the signal into.
4 Select Edit > Paste.

To copy a signal from one axis and paste it into another axis to replace its signal:

1 Select the signal you want to copy.
2 Select Edit > Copy.
3 Select the signal on the axis that you want to update.
4 Select Edit > Paste.

Deleting Signals

To delete a signal, in Signal Builder, select the signal and choose Delete or Cut from
the Edit menu. Signal Builder deletes the signal from the current group. Because each

 Signal Groups

60-75

signal group must contain the same number of signals, Signal Builder also deletes all
signals sharing the same index in the other groups.
Renaming a Signal

To rename a signal:

1 In Signal Builder, select Signal > Rename.

A dialog box appears with an edit field that displays the current name of the signal.
2 Edit or replace the current name with a new name.
3 Click OK.

You can also edit the signal name in the Name field in the lower-left corner of the Signal
Builder window.
Replacing a Signal

To replace a signal:

1 In Signal Builder, select the signal, then select Signal > Replace with .

A menu of waveforms appears. It includes a set of standard waveforms (Constant,
Step, and so on) and a Custom waveform option.

2 Select one of the waveforms.

If you select a standard waveform, the Signal Builder replaces a signal in the
currently selected group with that waveform. For other waveforms, the Signal
Builder displays a dialog to allow you to provide input for the requested waveform.

Waveform Description Inputs

Constant Constant waveform. None.
Step Step waveform. None.
Pulse Pulse waveform. None.
Square Square waveform. • Frequency

Waveform frequency, in
Hertz.

• Amplitude

Waveform amplitude.

60 Working with Signals

60-76

Waveform Description Inputs

• Offset

Waveform vertical offset.
• % Duty cycle

Percent of the period in which
the signal is positive. Enter a
value between 0 and 100.

Triangle Triangle waveform. • Frequency

Waveform frequency, in
Hertz.

• Amplitude

Waveform amplitude
• Offset

Waveform vertical offset.
Sampled Sin Sampled sinewave waveform. • Frequency (Hz)

Waveform frequency, in
Hertz.

• Amplitude

Waveform amplitude
• Offset

Waveform vertical offset.
• Samples Per Period

Number of samples per
waveform period.

 Signal Groups

60-77

Waveform Description Inputs

Sampled Gaussian
Noise

Sampled Gaussian noise
waveform based on a Gaussian
distribution with input mean
and standard deviation at input
frequency.

• Frequency

Waveform frequency, in
Hertz.

• Mean

The mean value of the random
variable output.

• Standard Deviation

The standard deviation
squared of the random
variable output.

• Seed (empty to use current
state)

The initial seed value for the
random number generator.

Pseudorandom
Noise

Pseudorandom noise waveform
based on a binomial distribution
with upper and lower values at
input frequency.

• Frequency

Frequency with which
waveform fluctuates between
Upper value and Lower
value, in Hertz.

• Upper value

Upper limit of signal.
• Lower value

Lower limit of signal.
• Seed

The initial seed value for the
random number generator

60 Working with Signals

60-78

Waveform Description Inputs

Poisson Random
Noise

Poisson random noise waveform
that alternates between 0 and 1.

• Avg rate (1/sec)

Average rate of transition
between 0 and 1.

• Seed (empty to use current
state)

The initial seed value for the
random number generator

Custom Custom piecewise linear
waveform. Custom values must
fit within the display area.

• Time values

Vector of two or more time
coordinates.

• Y values

Vector of two or more signal
amplitudes that correspond to
the values in Time values.

The entries in either field can
be any MATLAB expression
that evaluates to a vector. The
resulting vectors must be of equal
length.

Note: Signal Builder returns
a warning if you add a custom
waveform with a large number
of data points (100,000,000 or
more). You can then cancel the
action.

You can also edit the signal name in the Name field in the lower-left corner of the Signal
Builder window.

Changing a Signal Index

To change a signal index:

 Signal Groups

60-79

1 In Signal Builder, select the signal, then select Signal > Change Index.

A dialog box appears with a drop-down list field containing the existing index of the
signal.

2 From the drop-down list, another index and select OK. Or select an index from the
Index list in the lower-left corner of the Signal Builder window.

Hiding Signals

By default, the Signal Builder window displays the group waveforms in the group pane.
To hide a waveform:

1 In Signal Builder, select the waveform, then select Signal > Hide.
2 To redisplay a hidden waveform, select the Group pane, then select Signal > Show.
3 Select the signal from the list. Alternatively, you can hide and redisplay a hidden

waveform by double-clicking its name in the Signal Builder signal list (see “Signal
List” on page 60-67).

Creating Signal Group Sets

You can create signal groups in the Signal Builder block by:

• “Creating Signal Group Sets Manually” on page 60-79
• “Importing Signal Group Sets” on page 60-80
• “Importing Data with Custom Formats” on page 60-105

You can also use the signalbuilder function to populate the Signal Builder block.

Creating Signal Group Sets Manually

This topic describes how to create signal group sets manually. If you have signal
data files, such as those from test cases, consider importing this data as described in
“Importing Signal Group Sets” on page 60-80.

To create an interchangeable set of signal groups:

1 Drag an instance of the Signal Builder block from the Simulink Sources library and
drop it into your model.

60 Working with Signals

60-80

By default, the block represents a single signal group containing a single signal
source that outputs a square wave pulse.

2 Use the block signal editor (see “Signal Builder Window” on page 60-66) to create
additional signal groups, add signals to the signal groups, modify existing signals
and signal groups, and select the signal group that the block outputs.

Note: Each signal group must contain the same number of signals.

3 Connect the output of the block to your diagram.

The block displays an output port for each signal that the block can output.

You can create as many Signal Builder blocks as you like in a model, each representing
a distinct set of interchangeable groups of signal sources. When a group has multiple
signals, the signals might have different end times. However, Signal Builder block
requires the end times of signals within a group to match. If a mismatch occurs, Signal
Builder block matches the end times by holding the last value of the signal with the
smaller end time.

See “Simulating with Signal Groups” on page 60-113 for information on using signal
groups in a model.

Importing Signal Group Sets

The topics in this section describe how to import signal data into the Signal Builder
block. You should already have a signal data file whose contents you want to import.
For example, you might have signal data from previously run test cases. See “Importing

 Signal Groups

60-81

Signal Groups from Existing Data Sets” on page 60-81 for a description of the data
formats that the Signal Builder block accepts. The procedures in the following topics
use the file 3Grp_3Sig.xls in the folder matlabroot\help\toolbox\simulink\ug
\examples\signals (open).

Signal Builder accepts signals only of type double.

Importing Signal Groups from Existing Data Sets

You might have existing signal data sets that you want to enter into the Signal Builder
block. The File > Import from File command on the Signal Builder window starts the
Import File dialog box. This dialog box is modal, which means that focus cannot change
to another MATLAB window while the dialog box is running. If you want to see changes
in the Signal Builder window after you import data, do one of the following:

• Close the Import File dialog box.
• Set up the Import File dialog box and Signal Builder window side by side.

Note: You cannot undo the results of importing a signal data file. In addition, you cannot
undo the last action performed before opening the Import File dialog box. When you close
the Import File dialog box, the Undo last edit and Redo last edit buttons on the Signal
Builder window are grayed out. These buttons are grayed out regardless of whether you
imported a data file.

The Import File dialog box accepts the following appropriately formatted file types:

• Microsoft Excel (.xls, .xlsx)
• Comma-separated value (CSV) text files (.csv)
• MAT-files (.mat)

Note: Signal Builder block uses the xlsread function. See the xlsread documentation
for information on supported platforms.

You can import your data set file only if it is appropriately formatted.

For Microsoft Excel spreadsheets:

60 Working with Signals

60-82

• The Signal Builder block interprets the first row as signal name. If you do not
specify a signal name, the Signal Builder block assigns a default one with the format
Imported_Signal #, where # increments with each additional unnamed signal.

• The Signal Builder block interprets the first column as time. In this column, the time
values must increase.

• The Signal Builder block interprets the remaining columns as signals.
• If there are multiple sheets:

• Each sheet must have the same number of signals (columns).
• Each sheet must have the same set of signal names (if any).
• Each column on each sheet must have the same number of rows.

• Signal Builder block interprets each worksheet as a signal group.

This example contains an acceptably formatted Microsoft Excel spreadsheet. It has three
worksheets named Group1, Group2, and Group3, representing three signal groups.

 Signal Groups

60-83

Signal names (optional)

Worksheets - equivalent
to signal group

Time must be first column

For CSV text files:

• Each file contains only numbers. Do not name signals in a CSV file.
• The Signal Builder block interprets the first column as time. In this column, the time

values must increase.
• The Signal Builder block interprets the remaining columns as signals.
• Each column must have the same number of entries.
• The Signal Builder block interprets each file as one signal group.
• The Signal Builder block assigns a default signal name to each signal with the format

Imported_Signal #, where # increments with each additional signal.

60 Working with Signals

60-84

This example contains an acceptably formatted CSV file. The contents represent one
signal group.

0,0,0,5,0

1,0,1,5,0

2,0,1,5,0

3,0,1,5,0

4,5,1,5,0

5,5,1,5,0

6,5,1,5,0

7,0,1,5,0

8,0,1,5,1

9,0,1,5,1

10,0,1,5,0

For MAT-files:

• The Signal Builder block supports data store logging that the
Simulink.SimulationData.Dataset object represents and interprets this data as a
single group.

• The Signal Builder block supports Simulink output saved as a structure with time.
• The Signal Builder block supports the Signal Builder data format. This format is a

group of cell arrays that must be labeled:

• time

• data

• sigName

• groupName

sigName and groupName are optional.
• For backwards compatibility, the Signal Builder block supports logged data from the

Simulink.ModelDataLogs object and interprets this data as a single group. The
ModelDataLogs format will be removed in a future release.

• Signal Builder block does not support:

• Simulink output as only a structure
• Simulink output as only an array

 Signal Groups

60-85

Note: Signal Builder returns a warning if you import a large number of data points
(100,000,000 or more). You can then cancel the action.

This example contains an acceptably logged MATLAB workspace. Use the MATLAB
workspace Save command to save the variables to a MAT-file. Import this file to the
Signal Builder block.

Signal Builder Block Import File Dialog Box

The Signal Builder Import File dialog box allows you to import existing signal data files
into the Signal Builder block.

60 Working with Signals

60-86

Signal data file to import

Tree view of signal data file contents Drop-down list of import actions
for signal data

Repository of data import
status messages

Replacing All Signal Data with Selected Data

Simulink software creates a default Signal Builder block with one signal. To replace this
signal and all other signal data that the block might display:

1 Create a model and drag a Signal Builder block into that model.
2 Double-click the block.

 Signal Groups

60-87

The Signal Builder window appears with its default Signal 1.
3 In Signal Builder, select File > Import from File.

The Import File dialog box appears.
4 In the File to Import field, enter a signal data file name or click Browse.

The file browser appears.
5 If you select the file browser, navigate to and select a signal data file. For example,

select 3Grp_3Sig.xls.

Note: If you try to import an improperly formatted data file, an error message pops
up. When you click to dismiss this window, the Status History pane displays a
more detailed error message (if there is one). For example:

The Data to Import pane contains the signal data from the file. Click the expander
to display all the signals.

60 Working with Signals

60-88

6 Select the signals you want to import. To import all the signals, click Select All.
7 From the Placement for Selected Data list, select the action to take on the signal

data. For example, select Replace existing dataset.

The Confirm Selection button is activated. Validate your signal selection before
the Signal Builder block performs the specified action. If the signal data selection is
not appropriate, Confirm Selection remains grayed out. For example, Confirm
Selection remains grayed out if the number of signals you select is not the same as
the number of signals in the Signal Builder group that you want to replace.

8 Click the Confirm Selection button.

If the requested action is a valid one, the Status History pane displays messages to
indicate the status. For example:

 Signal Groups

60-89

The confirmation also enables the OK and Apply buttons.
9 If you are satisfied with the status message, click Apply to replace the existing

signal data with the contents of this file.

When selecting Replace existing dataset, the software gives you the
opportunity to save the existing contents of the Signal Builder block.

10 Click a button, as follows:

To... Click...

Save the contents of the Signal Builder
block before replacing it with the new
signal data.

Yes, save as

60 Working with Signals

60-90

To... Click...

Note: This selection prompts you to save
the Signal Builder block in a model name
of your choice. The software saves only
the Signal Builder block and no other
model content.
Replace the contents of the Signal
Builder block without saving them first.

No, import without saving

Stop the replacement process. Cancel

For this example, select No, import without saving to replace the contents of the
Signal Builder block.

11 The Signal Builder block updates with the new signal data. Click OK to close the
Import File dialog box and inspect the Signal Builder block.

 Signal Groups

60-91

12 Click OK.
13 Inspect the updated Signal Builder window to confirm that your signal data is intact.
14 Close the Signal Builder window and save and close the model. For example, save

the model as signalbuilder1.

Appending Selected Signals to All Existing Signal Groups

You can import signals from a signal data file and append selected signals to the end
of all existing signal groups. If the signal names to be appended are not unique, the
software renames them by incrementing each name by 1 or higher until it is a unique
signal name. For example, if the block and data file contain signals named thermostat,
the software renames the imported signal to thermostat1 upon appending. If you
add another signal named thermostat, the software names that latest version
thermostat2.

This topic uses signalbuilder1 from the procedure in “Replacing All Signal Data with
Selected Data” on page 60-86.

60 Working with Signals

60-92

1 In the MATLAB Command Window, type signalbuilder1.
2 Double-click the Signal Builder block.

The Signal Builder window appears.
3 In the Signal Builder window, select File > Import from File.

The Import File dialog box appears.
4 In the File to Import field, enter a signal data file name or click Browse.

The file browser is displayed.
5 If you select the file browser, navigate to and select a signal data file. For example,

select 3Grp_3Sig.xls.

Note: If you try to import an improperly formatted signal data file, an error message
pops up. When you click to dismiss this window, the Status History pane displays
an error message. For example:

The Data to Import pane contains the signal data from the file. Click the expander
to display all the signals.

6 Select the signals you want to import. In this example, there are three groups,
myGroup1, myGroupB, and myGroup_Three. Select all the signals in myGroup1.

7 From the Placement for Selected Data list, select the action to take on the signal
data. For example, select Append selected signals to all groups.

 Signal Groups

60-93

The Confirm Selection button is activated. Validate your signal selection before
the Signal Builder block performs the specified action. If the signal data selection is
not appropriate, Confirm Selection remains grayed out. For example, Confirm
Selection remains grayed out if the number of signals you select is not the same as
the number of signals in the Signal Builder group that you want to replace.

8 Click the Confirm Selection button.

If the requested action is a valid one, the Status History pane displays messages to
indicate the state. For example:

The confirmation also enables the OK and Apply buttons.

Observe the Before and After headings for the signals. These sections indicate the
names of the block and imported data signals before and after the append action.

9 If you are satisfied with the status message, click Apply to append the selected
signals to all the signal groups in the Signal Builder block.

10 The Signal Builder block updates with the new signal data. Click OK to close the
Import File dialog box and inspect the Signal Builder block.

60 Working with Signals

60-94

11 Click OK.
12 Inspect the updated Signal Builder window to confirm that your signal data is intact.

Notice that the software has renamed the signals Sig1, Sig2, and Sig3 from the
signal data file to Sig4, Sig5, and Sig6 in the Signal Builder block.

13 Close the Signal Builder window and save and close the model. For example, save
the model as signalbuilder2.

Appending Selected Signals to Sequential Existing Signal Groups

You can append signals, in the order in which they are selected, to the end of sequential
signal groups. This statement means that you select the same number of signals as there
are signal groups, and sequentially append each signal to a different group. The software
renames each appended signal to the name of the last appended signal.

 Signal Groups

60-95

This topic uses signalbuilder1 from the procedure in “Replacing All Signal Data with
Selected Data” on page 60-86.

1 In the MATLAB Command Window, type signalbuilder1.
2 Double-click the Signal Builder block.

The Signal Builder window appears.
3 Note how many groups exist in the Signal Builder block. For example, this Signal

Builder block has three groups, myGroup1, myGroupB, and myGroup_Three.

4 In the Signal Builder window, select File > Import from File.

The Import File dialog box appears.
5 In the File to Import field, enter a signal data file name or click Browse.

60 Working with Signals

60-96

The file browser appears.
6 If you select the file browser, navigate to and select a signal data file. For example,

select 3Grp_3Sig.xls.

Note: If you try to import an improperly formatted signal data file, an error message
popup window. When you click to dismiss this window, the Status History pane
displays an error message. For example:

The Data to Import pane contains the signal data from the file. Click the expander
to display all the signals.

7 Select the signals you want to import. In this example, there are three groups,
myGroup1, myGroupB, and myGroup_Three. Select all the signals in myGroup1.

8 From the Placement for Selected Data list, select the action to take on the signal
data. For example, select Append selected signals to different groups
(in order).

The Confirm Selection button is activated. Validate your signal selection before
the Signal Builder block performs the specified action.

9 Click the Confirm Selection button.

If the requested action is a valid one, the Status History pane displays messages to
indicate the state. For example:

 Signal Groups

60-97

The confirmation also enables the OK and Apply buttons.
10 If you are satisfied with the status message, click Apply to append the signals.

The Signal Builder block updates with the new signal data. Click OK to close the
Import File dialog box and inspect the three groups of the Signal Builder block.

The topmost signal group, myGroup1, shows all signals by default, including the new
Sig4.

60 Working with Signals

60-98

11 Click another group name, for example, myGroupB. Notice that Sig4 exists for the
group, hidden by default.

 Signal Groups

60-99

Sig4 appears in signal list, but does not appear in group pane

12 To show Sig4 on this pane, double-click Sig4 in the Selection Status area of the pane.
The graph is updated to reflect Sig4.

60 Working with Signals

60-100

13 Close the Signal Builder window and save and close the model. For example, save
the model as signalbuilder3.

Appending Signal Groups to Existing Groups

You can append one or more signal groups to the end of the list of existing signal groups.
If the block already has a signal group with the same name as the one you are adding,
the software increments the group name by 1 or higher until it is unique before adding
it. For example, if the block and data file contain groups named MyGroup1, the software
renames the imported group to MyGroup2 upon appending. If you add another group
named MyGroup1, the software names that latest version MyGroup3.

This topic uses signalbuilder1 from the procedure in “Replacing All Signal Data with
Selected Data” on page 60-86.

 Signal Groups

60-101

1 In the MATLAB Command Window, type signalbuilder1.
2 Double-click the Signal Builder block.

The Signal Builder window appears.
3 Note how many groups exist in the Signal Builder block, and how many signals

exist in each group. The Signal Builder block requires that all groups have the
same number of signals. For example, this Signal Builder block has three groups,
myGroup1, myGroupB, and myGroup_Three. Three signals exist in each group.

4 Double-click the block.

The Import File dialog box appears.
5 In the File to Import text field, enter a signal data file name or click Browse.

The file browser appears.
6 If you select the file browser, navigate to and select a signal data file. For example,

select 3Grp_3Sig.xls.

60 Working with Signals

60-102

The Data to Import pane contains the signal data from the file. Click the expander
to display all the signals.

7 Evaluate the number of signals in the groups of this data file. If the number of
signals in each group equals the number of signals in the groups that exist in the
block, you can append one of these groups to the block.

8 Select the group you want to import. In this example, there are three groups,
myGroup1, myGroupB, and myGroup_Three. Select myGroupB.

9 From the Placement for Selected Data list, select the action to take on the signal
group. For example, select Append groups.

The Confirm Selection button is activated. Validate your signal selection before
the Signal Builder block performs the specified action.

10 Click the Confirm Selection button.

If the requested action is a valid one, the Status History pane displays messages to
indicate the state. For example:

 Signal Groups

60-103

The confirmation also enables the OK and Apply buttons.
11 If you are satisfied with the status message, click Apply to append the signals.

The Signal Builder block updates with the new signal data. Click OK to close the
Import File dialog box and inspect the groups of the Signal Builder block.

Notice the addition of the new signal group as the last pane. Because there is already
a signal group named myGroupB, the software automatically increments the new
signal group name by 1. Select myGroupB.

60 Working with Signals

60-104

12 Close the Signal Builder window and save and close the model. For example, save
the model as signalbuilder4.

Appending Signals with the Same Name to Existing Signal Groups

If you append a signal whose name is the same as a signal that exists in the Signal
Builder block, the software increments the name of the appended signal by 1. The
software repeats incrementing until the appended signal name is unique. For example:

1 Assume your Signal Builder block has a signal group, myGroup1, with the signals
Sig1, Sig2, and Sig3.

2 Append a signal named Sig1 to myGroup1.
3 Observe that the software increments Sig1 to Sig4 before appending it to myGroup1.

 Signal Groups

60-105

Appending a Group of Signals with Different Signal Names

If you append a signal group whose signal names differ from those that exist in the
Signal Builder block, the software changes the names of the existing signals to be the
same as the appended signals. For example,

1 Assume your Signal Builder block has a signal group, myGroup1, with the signals
Sig1, Sig2, and Sig3.

2 Append a signal group named myGroup2 whose signal names are SigA, SigB, and
SigC.

3 Observe that the software:

• Appends myGroup2.
• Renames the signals in myGroup1 to be the same as those in myGroup2.

Importing Data with Custom Formats

This topic describes how to import signal data formatted in a custom format. You should
already have a signal data from a file whose contents you want to import. See “Importing
Signal Groups from Existing Data Sets” on page 60-81 for a description of the data
formats that the Signal Builder block accepts. If your data is not formatted using one
of these data formats, use the following workflow to import the custom formatted data.
This workflow uses the following files, located in the folder matlabroot\help\toolbox
\simulink\examples (open), as examples:

• SigBldCustomFile.xls — Signal data Microsoft Excel file using a format that
Signal Builder block does not accept, for example:

• createSignalBuilderSupportedFormat.m — Custom MATLAB function that
uses xlsread to read Microsoft Excel spreadsheets. This example function reformats
the custom data, in a format that the Signal Builder block supports, as follows:

• grpNames — Cell array that contains group name strings with number of rows =
1, number of columns = number of groups.

60 Working with Signals

60-106

• sigNames — Cell array that contains signal name strings with number of rows =
1, columns = number of signals.

• time — Cell array that contains time data with number of rows = number of
signals, columns = number of groups.

• data — Cell array that contains signal data with number of rows = number of
signals, columns = number of groups.

Signal Builder has the following requirements for this custom function:

• Number of signals in each group must be the same.
• Signal names in each group must be the same.
• Number of data points in each signal must be the same.
• Each element in the time and data cell array holds a matrix of real numbers. This

matrix can be [1xN] or [Nx1], where N is the number of data points in every signal.

1 Identify the format of your custom signal data, for example:

SigBldCustomFile.xls

2 Create a custom MATLAB function that:

a Uses a MATLAB I/O function, such as xlsread, to read your custom formatted
signal data. For example, createSignalBuilderSupportedFormat.m.

b Formats the custom formatted signal data to one that the Signal Builder block
accepts, for example, a MAT-file.

3 Use your custom MATLAB function to write your custom formatted signal data to a
file that Signal Builder block accepts. For example:
createSignalBuilderSupportedFormat('SigBldCustomFile.xls', 'OutputData.mat')

4 Import the reformatted signal data file, OutputData.mat, into the Signal Builder
block (see “Importing Signal Group Sets” on page 60-80).

Editing Waveforms

Signal Builder allows you to change the shape, color, and line style and thickness of the
waveforms output by a group.

 Signal Groups

60-107

Reshaping a Waveform

Signal Builder allows you to change the waveform by selecting and dragging its line
segments and points with the mouse or arrow keys or by editing the coordinates of
segments or points.
Selecting a Waveform

To select a waveform, left-click the mouse on any point on the waveform.

The Signal Builder displays the waveform points to indicate that the waveform is
selected.

To deselect a waveform, left-click any point on the waveform axis that is not on the
waveform itself or press the Esc key.

60 Working with Signals

60-108

Selecting Points

To select a point of a waveform, first select the waveform. Then position the mouse cursor
over the point. The cursor changes shape to indicate that it is over a point.

Left-click the point with the mouse. The Signal Builder draws a circle around the point to
indicate your selection.

To deselect the point, press the Esc key.

Selecting Segments

To select a line segment, first select the waveform that contains it. Then left-click the
segment. The Signal Builder thickens the segment to indicate that it is selected.

 Signal Groups

60-109

To deselect the segment, press the Esc key.
Moving Waveforms

To move a waveform, select it and use the arrow keys on your keyboard to move the
waveform in the desired direction. Each key stroke moves the waveform to the next
location on the snap grid (see “Snap Grid” on page 60-110) or by 0.1 inches if the snap
grid is not enabled.
Dragging Segments

To drag a line segment to a new location, position the mouse cursor over the line
segment. The mouse cursor changes shape to show the direction in which you can drag
the segment.

60 Working with Signals

60-110

Press the left mouse button and drag the segment in the direction indicated to the
desired location. You can also use the arrow keys on your keyboard to move the selected
line segment.
Dragging points

To drag a point along the signal amplitude (vertical) axis, move the mouse cursor over
the point. The cursor changes shape to a circle to indicate that you can drag the point.
Drag the point parallel to the y-axis to the desired location. To drag the point along the
time (horizontal) axis, press the Shift key while dragging the point. You can also use the
arrow keys on your keyboard to move the selected point.
Snap Grid

Each waveform axis contains an invisible snap grid that facilitates precise positioning of
waveform points. The origin of the snap grid coincides with the origin of the waveform
axis. When you drop a point or segment that you have been dragging, the Signal
Builder moves the point or the segment points to the nearest point or points on the grid,
respectively. The Signal Builder Axes menu allows you to specify the grid horizontal
(time) axis and vertical (amplitude) axis spacing independently. The finer the spacing,
the more freedom you have in placing points but the harder it is to position points
precisely. By default, the grid spacing is 0, which means that you can place points
anywhere on the grid; i.e., the grid is effectively off. Use the Axes menu to select the
spacing that you prefer.
Inserting and Deleting points

To insert a point, first select the waveform. Then hold down the Shift key and left-click
the waveform at the point where you want to insert the point. To delete a point, select
the point and press the Del key.
Editing Point Coordinates

To change the coordinates of a point, first select the point. The Signal Builder displays
the current coordinates of the point in the Left Point edit fields at the bottom of the
Signal Builder window. To change the amplitude of the selected point, edit or replace the
value in the Y field with the new value and press Enter. The Signal Builder moves the
point to its new location. Similarly edit the value in the T field to change the time of the
selected point.
Editing Segment Coordinates

To change the coordinates of a segment, first select the segment. The Signal Builder
displays the current coordinates of the endpoints of the segment in the Left Point

 Signal Groups

60-111

and Right Point edit fields at the bottom of the Signal Builder window. To change a
coordinate, edit the value in its corresponding edit field and press Enter.

Changing the Color of a Waveform

To change the color of a waveform, select the waveform and then select Color from the
Signal Builder Signal menu. The Signal Builder displays the MATLAB color chooser.
Choose a new color for the waveform. Click OK.

Changing a Waveform Line Style and Thickness

The Signal Builder can display a waveform as a solid, dashed, or dotted line. It uses a
solid line by default. To change the line style of a waveform, select the waveform, then
select Line Style from the Signal Builder Signal menu. A menu of line styles pops up.
Select a line style from the menu.

To change the line thickness of a waveform, select the waveform, then select Line Width
from the Signal menu. A dialog box appears with the line current thickness. Edit the
thickness value and click OK.

Signal Builder Time Range

The Signal Builder time range determines the span of time over which its output is
explicitly defined. By default, the time range runs from 0 to 10 seconds. You can change
both the beginning and ending times of a block time range (see “Changing a Signal
Builder Time Range” on page 60-112).

If the simulation starts before the start time of a block time range, the block extrapolates
its initial output from its first two defined outputs. If the simulation runs beyond the
block time range, the block by default outputs values extrapolated from the last defined
signal values for the remainder of the simulation. The Signal Builder Simulation
Options dialog box allows you to specify other final output options (see “Signal values
after final time” on page 60-115 for more information).

Note: When you click the Start simulation button on the Signal Builder block toolbar,
the simulation uses the stop time of the model. The end of the time range specified in the
waveform is not the stop time for the model.

60 Working with Signals

60-112

Changing a Signal Builder Time Range

To change the time range, select Change Time Range from the Signal Builder Axes
menu. A dialog box appears.

Edit the Min time and Max time fields as necessary to reflect the beginning and ending
times of the new time range, respectively. Click OK.

Exporting Signal Group Data

To export the data that define a Signal Builder block signal groups to the MATLAB
workspace, select Export to Workspace from the block File menu. A dialog box
appears.

The Signal Builder exports the data by default to a workspace variable named
channels. To export to a differently named variable, enter the variable name in the
Variable name field. Click OK. The Signal Builder exports the data to the workspace as
the value of the specified variable.

The exported data is an array of structures. The structure xData and yData fields
contain the coordinate points defining signals in the currently selected signal group. You
can access the coordinate values defining signals associated with other signal groups
from the structure allXData and allYData fields.

 Signal Groups

60-113

Printing, Exporting, and Copying Waveforms

Signal Builder allows you to print, export, and copy the waveforms visible in the active
signal group.

To print the waveforms to a printer, select Print from the block File menu.

You can also export the waveforms to other destinations by using the Export option from
the block File menu. From this submenu, select one of the following destinations:

• To File — Converts the current view to a graphics file.

Select the format of the graphics file from the Save as type drop-down list on the
resulting Export dialog box.

• To Figure — Converts the current view to a MATLAB figure window.

To copy the waveforms to the system clipboard for pasting into other applications, select
Copy Figure To Clipboard from the block Edit menu.

Simulating with Signal Groups

You can use standard simulation commands to run models containing Signal Builder
blocks or you can use the Run or Run all button in the Signal Builder window (see
“Running All Signal Groups” on page 60-114).

If you want to capture inputs and outputs that the Run all button generates, consider
using the SystemTest™ software.

Activating a Signal Group

During a simulation, a Signal Builder block always outputs the active signal group. The
active signal group is the group selected in the Signal Builder window for that block, if
the dialog box is open. Otherwise, the active group is the group that was selected when
the dialog box was last closed. To activate a group, open the group Signal Builder window
and select the group.

Running Different Signal Groups in Succession

The Signal Builder toolbar includes the standard Simulink buttons for running a
simulation. This facilitates running several different signal groups in succession. For
example, you can open the dialog box, select a group, run a simulation, select another
group, run a simulation, etc., all from the Signal Builder window.

60 Working with Signals

60-114

Running All Signal Groups

To run all the signal groups defined by a Signal Builder block, open the block dialog box
and click the Run all button

from the Signal Builder toolbar. The Run all button runs a series of simulations, one
for each signal group defined by the block. If you installed Simulink Verification and
Validation on your system and are using the Model Coverage Tool, the Run all button
configures the tool to collect and save coverage data for each simulation in the MATLAB
workspace and display a report of the combined coverage results at the end of the last
simulation. This allows you to quickly determine how well a set of signal groups tests
your model.

Note To stop a series of simulations started by the Run all command, enter Ctrl+C at
the MATLAB command line.

Simulation Options Dialog Box

The Simulation Options dialog box allows you to specify simulation options pertaining
to the Signal Builder. To display the dialog box, select Simulation Options from the
File menu of the Signal Builder window. The dialog box appears.

The dialog box allows you to specify the following options.

 Signal Groups

60-115

Signal values after final time

The setting of this control determines the output of the Signal Builder block if a
simulation runs longer than the period defined by the block. The options are

• Hold final value

Selecting this option causes the Signal Builder block to output the last defined value
of each signal in the currently active group for the remainder of the simulation.

• Extrapolate

Selecting this option causes the Signal Builder block to output values extrapolated
from the last defined value of each signal in the currently active group for the
remainder of the simulation.

60 Working with Signals

60-116

• Set to zero

Selecting this option causes the Signal Builder block to output zero for the remainder
of the simulation.

Sample time

Determines whether the Signal Builder block outputs a continuous (the default) or a
discrete signal. If you want the block to output a continuous signal, enter 0 in this field.
For example, the following display shows the output of a Signal Builder block set to
output a continuous Gaussian waveform over a period of 10 seconds.

 Signal Groups

60-117

If you want the block to output a discrete signal, enter the sample time of the signal in
this field. The following example shows the output of a Signal Builder block set to emit a
discrete Gaussian waveform having a 0.5 second sample time.

Enable zero crossing

Specifies whether the Signal Builder block detects zero-crossing events (enabled by
default). This block sets the zero-crossing detection on the From Workspace block that
you use to create the Signal Builder signal groups. For more information, see “Zero-
Crossing Detection” on page 3-23.

61

Using Composite Signals

• “Composite Signals” on page 61-3
• “Buses” on page 61-5
• “Virtual and Nonvirtual Buses” on page 61-11
• “Create Bus Signals” on page 61-15
• “Nest Buses” on page 61-19
• “Bus-Capable Blocks” on page 61-21
• “Bus Objects” on page 61-23
• “Bus Object API” on page 61-26
• “Manage Bus Objects with the Bus Editor” on page 61-27
• “Store and Load Bus Objects” on page 61-47
• “Map Bus Objects to Models” on page 61-49
• “Filter Displayed Bus Objects” on page 61-51
• “Customize Bus Object Import and Export” on page 61-57
• “Use Buses for Inports and Outports” on page 61-62
• “Specify Initial Conditions for Bus Signals” on page 61-65
• “Combine Buses into an Array of Buses” on page 61-82
• “Arrays of Buses in Models” on page 61-88
• “Convert Models to Use Arrays of Buses” on page 61-95
• “Repeat an Algorithm Using a For Each Subsystem” on page 61-98
• “Code Generation for Arrays of Buses” on page 61-109
• “Bus Data Crossing Model Reference Boundaries” on page 61-110
• “Buses and Libraries” on page 61-112
• “Prevent Bus and Mux Mixtures” on page 61-113
• “Correct Mux Blocks That Create Bus Signals” on page 61-117
• “Correct Buses Used as Muxes” on page 61-122

61 Using Composite Signals

61-2

• “Buses in Generated Code” on page 61-126
• “Composite Signal Limitations” on page 61-127

 Composite Signals

61-3

Composite Signals

In this section...

“What is a Composite Signal?” on page 61-3
“Techniques for Combining Signals” on page 61-3

What is a Composite Signal?

A composite signal is a signal that is composed of other signals. The constituent signals
originate separately and join to form the composite signal. You can then extract
individual signals from the composite signal downstream and use the signal as if it had
never been part of a composite signal.

Composite signals can reduce visual complexity in models by grouping signals that run
in parallel over some or all of their courses. Composite signals offer other benefits, as
described in the documentation for each technique for combining signals.

Techniques for Combining Signals

Simulink provides several techniques for combining signals into a composite signal,
depending on your modeling requirements.

Composite Signal Technique When to Use

Virtual bus Combine signals of any type and
dimension, without affecting the memory
layout. Use for graphical convenience.

See “Choose Between Virtual and
Nonvirtual Buses” on page 61-12.

Nonvirtual bus Combine signals of different types and
dimensions such that they are contiguous
in memory. Produces a structure in the
generated code.

See “Choose Between Virtual and
Nonvirtual Buses” on page 61-12.

61 Using Composite Signals

61-4

Composite Signal Technique When to Use

Mux block Graphically combine signals of same type.
See “Buses and Muxes” on page 61-4.

Vector Concatenate and Matrix
Concatenate block

Create a vector or matrix, for example to
be used in mathematical operations. The
resulting vector is stored in contiguous
memory.

Array of buses Combine multiple buses with identical
properties. Array of buses is equivalent to
an array of structures in MATLAB.

See “Combine Buses into an Array of
Buses” on page 61-82.

Buses and Muxes

If all signals in a bus are the same type, you may be able to use a contiguous vector or a
virtual vector (mux) instead of a bus. For more information, see “Mux Signals” on page
60-11.

In the context of a model, do not use bus and mux mixtures. A bus and mux mixture
occurs when some blocks treat a signal as a mux, while other blocks treat that same
signal as a bus. For more information, see “Prevent Bus and Mux Mixtures” on page
61-113.

Bus Code

The various techniques for defining buses are essentially equivalent for simulation,
but the techniques used can make a significant difference in the efficiency, size, and
readability of generated code. If you intend to generate production code for a model that
uses buses, for information about the best techniques to use, in the Embedded Coder
documentation, see “Code Generation with Buses”.

Function-Call Signals

To combine function-call signals to call a single system, use a Mux block.

If you use a Bus Creator block to group function-call signals into one bus, then use a Bus
Selector block to separate out specific function-call signals.

 Buses

61-5

Buses

In this section...

“What is a Bus?” on page 61-5
“Types of Simulink Buses” on page 61-6
“Bus Objects” on page 61-6
“View Information about Buses” on page 61-6

Tip Simulink provides several techniques for combining signals into a composite signal.
For a comparison of techniques, see “Techniques for Combining Signals” on page 61-3.

What is a Bus?

A Simulink composite signal is called a bus signal, or just a bus. A Simulink bus is
analogous to a bundle of wires held together by tie wraps. Simulink implements a bus
as a name-based hierarchical structure. A Simulink bus should not be confused with
a hardware bus, like the bus in the backplane of many computers. It is more like a
programmatic structure defined in a language like C.

The signals that constitute a bus are called elements. The constituent signals retain their
separate identities within the bus and can be of any type or types, including other buses
nested to any level. The elements of a bus can be any of the following:

• Mixed data type signals (e.g. double, integer, fixed point)
• Mixture of scalar and vector elements
• Buses as elements
• N-D signals
• Mixture of Real and Complex signals

Some requirements and limitations apply when you connect buses to blocks or to
nonvirtual subsystems. See “Bus-Capable Blocks” on page 61-21, “Use Buses for
Inports and Outports” on page 61-62, and “Composite Signal Limitations” on page
61-127 for more information.

61 Using Composite Signals

61-6

Types of Simulink Buses

A bus can be either virtual or nonvirtual. Both virtual and nonvirtual buses provide the
same visual simplification, but their implementations are different.

• Virtual buses exist only graphically. They have no functional effects and do not
appear in generated code; only the constituent signals appear. See “Virtual Signals”
on page 60-11 for details. Simulink implements virtual buses with pointers, so virtual
buses add no data copying overhead and do not affect performance.

• Nonvirtual buses may have functional effects. They appear as structures in generated
code, which can simplify the code and clarify its correspondence with the model.
Simulink implements nonvirtual buses by copying data from the source signals to the
bus, which can affect performance.

The two types of buses are interchangeable for many purposes, but some situations
require a nonvirtual bus. See “Virtual and Nonvirtual Buses” on page 61-11 for more
information.

Bus Objects

A bus can have an associated bus object, which can both provide and validate bus
properties. A bus object is an instance of class Simulink.Bus that is defined in the base
workspace. The object defines the structure of the bus and the properties of its elements,
such as nesting, data type, and size. Bus objects are optional for virtual buses and
required for nonvirtual buses. See “Bus Objects” on page 61-23 for more information.
You can create bus objects programmatically or by using the Simulink Bus Editor, which
facilitates bus object creation and management. See “Manage Bus Objects with the Bus
Editor” on page 61-27 for more information.

View Information about Buses

To view information about buses, use one of the following approaches:

• Use the Signal Hierarchy Viewer to interactively display bus hierarchy (for bus
signals)

• From the MATLAB command line, display the type and hierarchy of a bus signal in a
compiled model. For details, see “CompiledBusType and SignalHierarchy Parameters”
on page 61-9.

 Buses

61-7

Signal Hierarchy Viewer

Use the Signal Hierarchy Viewer to interactively display information about a signal. For
a bus signal, the Signal Hierarchy Viewer displays the bus hierarchy.

1 Check that the Configuration Parameters > Diagnostics > Connectivity >
Mux blocks used to create bus signals parameter is set to error.

2 Right-click a signal line.
3 Select the Signal Hierarchy option. The Signal Hierarchy Viewer dialog box

appears.

For example, open the busdemo model.

Right-click the main_bus signal (output signal for the Bus Creator block), and select
Signal Hierarchy. The following information appears:

61 Using Composite Signals

61-8

Each Signal Hierarchy Viewer is associated with a specific model. If you edit a model
while the associated Signal Hierarchy Viewer is open, the Signal Hierarchy Viewer
reflects those updates.

You can also open the Signal Hierarchy Viewer in the Simulink Editor.

1 Select Diagram > Signals & Ports > Signal Hierarchy.
2 Select a signal

Note: To produce accurate results at edit time, the Signal Hierarchy Viewer requires that
the model compiles successfully.

To filter the displayed signals, click the Options button on the right-hand side of the

Filter by name edit box ().

• To use MATLAB regular expressions for filtering signal names, select Enable
regular expression. For example, entering r$ in the Filter by name edit box
displays all signals whose names end with a lowercase r (and their immediate
parents). For details, see “Regular Expressions”.

• To use a flat list format to display the list of filtered signals, based on the search text
in the Filter by name edit box, select Show filtered results as a flat list. The flat
list format uses dot notation to reflect the hierarchy of bus signals. The following is an
example of a flat list format for a filtered set of nested bus signals.

 Buses

61-9

CompiledBusType and SignalHierarchy Parameters

To get information about the type and hierarchy of a bus signal in a compiled model, use
these parameters with the get_param command:

• CompiledBusType — For a compiled model, returns information about whether
the signal connected to a port is a bus, and if so, whether the signal is a virtual or
nonvirtual bus.

• SignalHierarchy — If the signal is a bus, returns the name and hierarchy of the
signals in the bus.

Before you use these commands:

1 Set the Configuration Parameters > Diagnostics > Connectivity > Mux
blocks used to create bus signals diagnostic to error.

2 Update the diagram or simulate the model.

For example, if you open and simulate the busdemo model, the model looks as shown
below:

61 Using Composite Signals

61-10

The following code illustrates how you can use the SignalHierarchy and
CompiledBusType parameters:

mdl = 'busdemo';

open_system(mdl)

% Obtain the handle a port

ph = get_param([mdl '/Bus Creator'], 'PortHandles');

% SignalHierarchy is available at edit time

sh = get_param(ph.Outport, 'SignalHierarchy')

% Compile the model

busdemo([],[],[],'compile');

bt = get_param(ph.Outport, 'CompiledBusType')

% Terminate the model

busdemo([],[],[],'term');

 Virtual and Nonvirtual Buses

61-11

Virtual and Nonvirtual Buses

In this section...

“About Virtual and Nonvirtual Buses” on page 61-11
“Choose Between Virtual and Nonvirtual Buses” on page 61-12
“Nonvirtual Bus Sample Times” on page 61-13
“Automatic Bus Conversion” on page 61-13
“Explicit Bus Conversion” on page 61-13

About Virtual and Nonvirtual Buses

A bus signal can be virtual, meaning that it is just a graphical convenience that has no
functional effect, or nonvirtual, meaning that the signal occupies its own storage.

Bus Signal Lines

When you simulate a model that contains buses, Simulink uses different line styles for
virtual and nonvirtual bus signals.

Virtual Bus

Nonvirtual Bus

Bus Storage

During simulation:

• A block connected to a virtual bus reads inputs and writes outputs by accessing
the memory allocated to the component signals. These signals are typically
noncontiguous, and no intermediate memory exists.

• A block connected to a nonvirtual bus reads inputs and writes outputs by accessing
copies of the component signals. The copies are maintained in a contiguous area of
memory allocated to the bus.

Compared with nonvirtual buses, virtual buses reduce memory requirements because
they do not require a separate contiguous storage block, and execute faster because they
do not require copying data to and from that block.

61 Using Composite Signals

61-12

A nonvirtual bus is represented by a structure in generated code, which can be helpful
when tracing the correspondence between the model and the code.

Simulation Results and Generated Code

For a virtual bus, simulation results and generated code are exactly the same as if the
bus did not exist, which functionally it does not.

Generated code for a nonvirtual bus represents the bus data with a structure. The use
of a structure in the generated code can be helpful when tracing the correspondence
between the model and the code. For example, below is the generated code for Bus
Creator block in the ex_bus_logging model.

Choose Between Virtual and Nonvirtual Buses

Whether to use a virtual or nonvirtual bus depends on your modeling goal. Frequently, a
model contains both virtual and nonvirtual buses.

Modeling Goal Type of Bus

Use bus signals within a functional units,
such as within a referenced model

Virtual

Use signals with different sample rates in a
bus

Virtual (required)

Have bus data packaged as data structures
in the generated code

Nonvirtual

Have bus data cross model reference,
MATLAB Function block, or Stateflow
chart boundaries

Nonvirtual

 Virtual and Nonvirtual Buses

61-13

Not all blocks can accept buses. See “Bus-Capable Blocks” on page 61-21 for more
about which blocks can handle which types of buses. Virtual buses are the default except
where nonvirtual buses are explicitly required. See “Use Buses for Inports and Outports”
on page 61-62 for more information.

For additional guidelines for generated code for buses, see “About Buses and Code
Generation”.

Nonvirtual Bus Sample Times

All signals in a nonvirtual bus must have the same sample time, even if the elements of
the associated bus object specify inherited sample times. Any bus operation that would
result in a nonvirtual bus that violates this requirement generates an error.

All buses and signals input to a Bus Creator block that outputs a nonvirtual bus must
therefore have the same sample time. You can use a Rate Transition block to change
the sample time of an individual signal, or of all signals in a bus, to allow the signal or
bus to be included in a nonvirtual bus.

Automatic Bus Conversion

When updating a diagram prior to simulation or code generation, Simulink automatically
converts a virtual bus to a nonvirtual bus (or vice versa) in cases such as when the
virtual bus is an input to, or output from:

• A referenced model
• An S-Function block
• A Stateflow chart

The conversion consists of inserting hidden Signal Conversion blocks into the model
where needed. Conversion to a nonvirtual bus fails if no bus object is specified at the port
to which the virtual bus connects.

Explicit Bus Conversion

You can eliminate the need for the automatic conversion by using one of these
approaches:

• Specify a nonvirtual bus in the block where the bus originates. For example, if you
use a Bus Creator block to create a bus, then to specify a nonvirtual bus, set the Bus
Creator block Data type parameter to use a Simulink.Bus object.

61 Using Composite Signals

61-14

• Manually insert a Signal Conversion block. Using a Signal Conversion block can
reduce memory usage, support modeling constructs such as Model blocks that require
that input buses be nonvirtual, and reduce generated code. For details, see the
Signal Conversion documentation.

Related Examples
• “Create Bus Signals” on page 61-15

 Create Bus Signals

61-15

Create Bus Signals

You can combine signals into a bus signal and then access the bus as a whole or select
specific signals from the bus.

The busdemo top-level model uses a Bus Creator block to combine the Clock, Pulse,
and Sine signals into the bus2 bus signal. The model combines the bus2 signal and the
subsystem signal to form the main_bus signal. The model uses a Bus Selector to select
two signals (bus elements) from the bus and output the signals to a Scope block.

Create a Bus

1 In the Simulink Editor, drag to select multiple blocks or signals that you want to
create a bus for.

2 In the action bar that appears, click Create Bus.

61 Using Composite Signals

61-16

Using the Create Bus button to create a bus automatically performs these actions:

• Creates a Bus Creator block with the right number of inputs
• Resizes the Bus Creator block to an appropriate size for the number of input signals
• Orients the Bus Creator block to the direction of the input signals
• Connects the signals to the Bus Creator block

As an alternative, you can add a Bus Creator block to a model and manually connect
signals to that block to create a bus.

Create a Nonvirtual Bus

Bus signals do not specify whether they are virtual or nonvirtual; they inherit that
specification from the block in which they originate. Every block that creates or requires
a nonvirtual bus must have an associated bus object. Those blocks are:

• Bus Creator

• Inport

 Create Bus Signals

61-17

• Outport

• Constant

• Data Store Memory

To specify that a bus is nonvirtual:

1 Associate the block with a bus object, as described in “Associating Bus Objects with
Simulink Blocks” on page 61-24.

2 For the block that creates the bus, open the Block Parameters dialog box.
3 Set the data type to Bus: <object name> and replace <object name> with the

bus object name.

• For Inport, Outport, and Data Store Memory blocks, use the Data type
parameter to set the data type.

• For Bus Creator and Constant blocks, use the Output data type parameter to
set the data type.

4 For any Bus Creator, Inport, or Outport blocks that have an associated bus object,
enable the output as a nonvirtual bus.

• For Bus Creator and Inport blocks, use the Output as nonvirtual bus
parameter.

• For Outport blocks, use the Output as nonvirtual bus in parent model
parameter.

5 Click OK or Apply.

The Signal Attributes parameter is applicable only to root Inport and Outport blocks.
It does not appear in the parameters of a subsystem Inport or Outport block. In a root
Outport block, setting Signal Attributes > Output as nonvirtual bus in parent
model specifies that the bus emerging in the parent model is nonvirtual. The input bus
of the root Outport can be virtual or nonvirtual.

See Also

Blocks
Bus Creator | Bus Selector

Related Examples
• “Nest Buses” on page 61-19

61 Using Composite Signals

61-18

More About
• “Buses” on page 61-5
• “Virtual and Nonvirtual Buses” on page 61-11

 Nest Buses

61-19

Nest Buses

You can nest buses to any depth. To create a nested bus, use a Bus Creator block. If
one of the inputs to the Bus Creator block is a bus, then the output is a nested bus. To
select a signal within a nested bus, use a Bus Selector block.

For example, in the next model, the Bus3 bus signal combines two signals, motor3 and
motor4. The Bus2 signal combines the Bus3 bus signal and the motor1 and motor2
signals. The Bus1 signal combines the Bus2 bus signal and the motor5 signal.

All of the signals retain their separate identities, just as if no bus creation and selection
occurred. You can use Bus Selector blocks to select individual signals from a nested bus.

The Simulink software automatically handles most of the complexities involved. For
example, you can specify to have Simulink repair broken selections in the Bus Selector
and Bus Assignment block parameter dialog boxes due to upstream bus hierarchy
changes. To enable these automatic repairs, in theConfiguration Parameters >
Diagnostics > Connectivity pane, set the Repair bus selections diagnostic to Warn
and repair. The repairs occur when you update a model. To save the repairs, save the
model.

61 Using Composite Signals

61-20

Circular Bus Definitions

The ability to nest a bus as an element of another bus creates the possibility of a loop
of Bus Creator blocks, Bus Selector blocks, and bus-capable blocks that inadvertently
includes a bus as an element of itself. The resulting circular definition cannot be resolved
and therefore causes an error.

The error message that appears specifies the location at which the Simulink software
determined that the circular structure exists. The error is not really at any one location:
the structure as a whole is in error. Nonetheless, the location cited in the error message
can be useful for beginning to trace the definition cycle; its structure may not be obvious
on visual inspection.

1 Begin by selecting a signal line associated with the location cited in the error
message.

2 Choose Highlight to Signal to Source or Highlight Signal to Destination from
the signal's context menu. (See “Display Signal Sources and Destinations” on page
60-38 for more information.)

3 Continue choosing signals and highlighting their sources and destinations until the
cycle becomes clear.

4 Restructure the model as needed to eliminate the circular bus definition.

Because the problem is a circular definition rather than a circular computation, the cycle
cannot be broken by inserting additional blocks, in the way that an algebraic loop can
be broken by inserting a Unit Delay block. No alternative exists but to restructure the
model to eliminate the circular bus definition.

 Bus-Capable Blocks

61-21

Bus-Capable Blocks

All virtual blocks are bus-capable. The following blocks are also bus-capable. Some blocks
only support nonvirtual buses.

• Bus Assignment

• Bus Creator

• Bus Selector

• Constant (nonvirtual buses)
• Data Store Memory (nonvirtual buses)
• Data Store Read (nonvirtual buses)
• Data Store Write (nonvirtual buses)
• From Workspace (nonvirtual buses)
• Memory

• Merge

• Multiport Switch

• Rate Transition

• Signal Conversion

• Signal Specification

• Switch

• To Workspace

• Unit Delay

• Zero-Order Hold

All signals in a nonvirtual bus input to a bus-capable block must have the same sample
time, even if the elements of the associated bus object specify inherited sample times.
You can use a Rate Transition block to change the sample time of an individual
signal, or of all signals in a bus.

Some bus-capable blocks impose other constraints on bus propagation through them. See
the documentation for specific blocks for more information.

Subsystems, model referencing and S-functions support the use of buses. See the
documentation for those features for any special considerations relating to the use of
buses.

61 Using Composite Signals

61-22

See Also

Blocks
Bus Creator | Bus Selector

Related Examples
• “Create Bus Signals” on page 61-15

More About
• “Buses” on page 61-5
• “Virtual and Nonvirtual Buses” on page 61-11

 Bus Objects

61-23

Bus Objects

In this section...

“About Bus Objects” on page 61-23
“Bus Object Capabilities” on page 61-24
“Associating Bus Objects with Simulink Blocks” on page 61-24

About Bus Objects

The properties that you specify for a bus signal by using Bus Creator block parameters
are inherited by all downstream blocks that use the bus. Using Bus Creator block
parameters is adequate for defining virtual buses and performing limited error checking.
However, to define a nonvirtual bus, or to perform complete error checking on any bus,
use a bus object to specify additional information.

Creating a bus object establishes a composite data type whose name is the name of the
bus object and whose properties are given by the object. A bus object specifies only the
architectural properties of a bus, as distinct from the values of the signals it contains.
For example, a bus object can specify the number of elements in a bus, the order of
those elements, whether and how elements are nested, and the data types of constituent
signals; but not the signal values.

A bus object is analogous to a structure definition in C: it defines the members of the
bus but does not create a bus. A bus object is an instance of class Simulink.Bus
that is defined in the base workspace. A bus object serves as the root of an ordered
hierarchy of bus elements, which are instances of class Simulink.BusElement. Each
element completely specifies the properties of one signal in a bus: its name, data type,
dimensionality, etc. The order of the elements contained in the bus object defines the
order of the signals in the bus.

Referenced models, Stateflow charts, and MATLAB Function blocks that input and
output buses require those buses to be defined with bus objects. Inport and Outport
blocks can use bus objects to specify the structure of the bus passing through them. Root
inport blocks use bus objects to specify the structure of the bus. Root outport blocks use
bus objects to check the structure of the incoming bus and to specify the structure of the
bus in the parent model, if any.

61 Using Composite Signals

61-24

Bus Object Capabilities

You can associate a bus object with several blocks. For details, see “Associating Bus
Objects with Simulink Blocks” on page 61-24.

When a bus object governs a signal output by a block, the signal is a bus that has exactly
the properties specified by the object. When a bus object governs a signal input by a
block, the signal must be a bus that has exactly the properties specified by the object; any
variance causes an error.

A bus object can also specify properties that were not defined by constituent signals, but
were left to be inherited. A property specification in a bus object can either validate or
provide the corresponding property in the bus. If the bus specifies a different property,
an error occurs. If the bus does not specify the property, but leaves it to be inherited, the
bus inherits the property from the bus object. Note again that such inheritance never
includes signal values.

You can use the Simulink Bus Editor to create and manage bus objects, as described
in “Manage Bus Objects with the Bus Editor” on page 61-27, or you can use the
Simulink API, as described in “Bus Object API” on page 61-26. After you create a bus
object and specify its attributes, you can associate it with any block that needs to use the
bus definition that the object provides.

Associating Bus Objects with Simulink Blocks

You can associate a bus object with the following blocks:

• Bus Creator

• Data Store Memory

• Data Store Read

• Data Store Write

• From File

• From Workspace

• Inport

• Outport

• Permute Dimensions

• Probe

 Bus Objects

61-25

• Reshape

• Signal Conversion

• Signal Specification

In the Block Parameters dialog box for the block that you want to associate with a bus,
set Data type to Bus: <object name> and replace <object name> with the bus
object name.

Note: Do not set the minimum and maximum values for bus data on blocks with
bus object data type. Simulink ignores these settings. Instead, set the minimum and
maximum values for bus elements of the bus object specified as the data type. The values
should be finite real double scalar.

For information on the Minimum and Maximum properties of a bus element, see
Simulink.BusElement.

61 Using Composite Signals

61-26

Bus Object API

The Simulink software provides all Bus Editor capabilities programmatically. Many of
these capabilities, like importing and exporting MATLAB code files and MAT-files, are
not specific to bus objects, and are described elsewhere in the MATLAB and Simulink
documentation.

The classes that implement bus objects are:

Simulink.Bus

Specify the properties of a signal bus
Simulink.BusElement

Describe an element of a signal bus

The functions that create and save bus objects are:

Simulink.Bus.createObject

Create bus objects for blocks, optionally saving them in a MATLAB file in a specified
format

Simulink.Bus.cellToObject

Convert a cell array containing bus information to bus objects in the base workspace
Simulink.Bus.objectToCell

Convert bus objects in the base workspace to a cell array containing bus information
Simulink.Bus.save

Export specified bus objects or all bus objects from the base workspace to a MATLAB
file in a specified format

Simulink.Bus.createMATLABStruct

Create MATLAB structure with same hierarchy, names, and attributes as the bus
signal

In addition, when you use Simulink.SubSystem.convertToModelReference to
convert an atomic subsystem to a referenced model, you can save any bus objects created
during the conversion to a MATLAB file.

 Manage Bus Objects with the Bus Editor

61-27

Manage Bus Objects with the Bus Editor

In this section...

“Introduction” on page 61-27
“Open the Bus Editor” on page 61-28
“Display Bus Objects” on page 61-29
“Create Bus Objects” on page 61-31
“Create Bus Elements” on page 61-34
“Nest Bus Definitions” on page 61-37
“Change Bus Entities” on page 61-40
“Export Bus Objects” on page 61-44
“Import Bus Objects” on page 61-45
“Close the Bus Editor” on page 61-46

Introduction

The Simulink Bus Editor is a tool similar to the Model Explorer, but is customized for
use with bus objects. You can use the Simulink Bus Editor to:

• Create new bus objects and elements
• Navigate, change, and nest bus objects
• Import existing bus objects from a MATLAB code file or MAT-file
• Export bus objects to a MATLAB code file or MAT-file

For a description of bus objects and their use, see “Bus Objects” on page 61-23.

Base Workspace Bus Objects

All bus objects exist in the MATLAB base workspace. Bus Editor actions take effect in
the base workspace immediately, and can be used by Simulink models as soon as each
action is complete. The Bus Editor does not have a workspace of its own: it acts only on
the base workspace. Bus Editor actions do not directly affect bus object definitions in
saved MATLAB code files or MAT-files. To save changed bus object definitions, export
them from the base workspace into MATLAB code files or MAT-files, as described in
“Export Bus Objects” on page 61-44.

61 Using Composite Signals

61-28

Open the Bus Editor

You can open the Bus Editor in any of these ways:

• In the Simulink Editor, select Edit > Bus Editor.
• In a bus object's dialog box in the Model Explorer, click the Launch Bus Editor

button.
• Enter buseditor at the command line of the MATLAB software.

If no bus objects exist, the Bus Editor looks like the one shown here:

Bus Editor Commands

The Bus Editor provides menu choices that you can use to execute all Bus Editor
commands. The editor also provides toolbar icons and keyboard shortcuts for all
commonly used commands, including the standard MATLAB shortcuts for Cut, Copy,
Paste, and Delete. The Toolbar Tip for each icon describes the command, and the menu
entry for each command shows any shortcut. The icons for commands that are specific to
the Bus Editor are:

Command Icon Description

Import Import the contents of a
MATLAB code file or MAT-file
into the base workspace.

Export Export all bus objects and
elements to a MATLAB code
file or MAT-file.

 Manage Bus Objects with the Bus Editor

61-29

Command Icon Description

Create Create a new bus object in the
base workspace.

Insert Add a bus element below the
currently selected bus entity.

Move Up Move the selected element
up in the list of a bus object's
elements.

Move Down Move the selected element
down in the list of bus object
elements.

Create/Edit a
Simulink.Parameter object

Create or edit a
Simulink.Parameter object
for the selected bus object.

Create a MATLAB
structure

Create a MATLAB structure
for the selected bus object.

You can use toolbar icons and keyboard shortcuts instead of menu commands whenever
you prefer.

Display Bus Objects

The Bus Editor is similar to the Model Explorer (which can display bus objects but
cannot edit them) and uses the same three panes to display bus objects:

• Hierarchy pane (left) — Displays the bus objects defined in the base workspace
• Contents pane (center) — Displays the elements of the bus object selected in the

Hierarchy pane
• Dialog pane (right) — Displays for editing the current selection in the Contents or

Hierarchy pane

Items that appear in the Hierarchy pane or the Contents pane have Context menus that
provide immediate access to the capabilities most likely to be useful with that item. The
contents of an item's Context menu depend on the item and the current state within the
Bus Editor. All Context menu options are also available from the menu bar and/or the
toolbar. Right-click any item in the Hierarchy or Contents pane to see its Context menu.

61 Using Composite Signals

61-30

Hierarchy Pane

If no bus objects exist in the base workspace, the Hierarchy pane shows only Base
Workspace, which is the root of the hierarchy of bus objects. The Bus Editor then looks
as shown in the previous figure. As you create or import bus objects, they appear in the
Hierarchy Pane as nodes subordinate to Base Workspace. The bus objects appear in
alphabetical order. The next figure shows the Bus Editor with two bus objects, control
and main, defined in the base workspace:

The Hierarchy pane displays each bus object as an expandable node. The root of the node
displays the name of the bus object, and (if the bus contains any elements) a button for
expanding and collapsing the node. Expanding a bus node displays named subnodes that
represent the bus's top-level elements. In the preceding figure, both bus objects are fully
expanded , and control is selected.

Contents Pane

Selecting any top-level bus object in the Hierarchy Pane displays the object's elements in
the Contents pane. In the previous figure, the elements of bus object control, valve1
and valve2, appear. Each element's properties appear to the right of the element's

 Manage Bus Objects with the Bus Editor

61-31

name. These properties are editable, and you can edit the properties of multiple elements
in one operation, as described in “Editing in the Contents Pane” on page 61-40.

Dialog Pane

When a bus object is selected in the Hierarchy pane, or a bus object or element is selected
in the Contents pane, the properties of the selected item appear in the Dialog pane. In
the previous figure, valve1 is selected in the Contents pane, so the Dialog pane shows
its properties. These properties are editable, and changes can be reverted or applied
using the buttons below the Dialog pane, as described in “Editing in the Dialog Pane” on
page 61-42.

Filter Boxes

By default, the Bus Editor displays all bus objects that exist in the base workspace.
Where a model contains large numbers of bus objects, seeing them all at the same time
can be inconvenient. To facilitate working efficiently with large collections of bus objects,
you can use the Filter boxes, to the right of the iconic tools in the toolbar, to show a
selected subset of bus objects. See “Filter Displayed Bus Objects” on page 61-51 for
details.

Create Bus Objects

To use the Bus Editor to create a new bus object in the base workspace:

1 Choose File > Add Bus.

A new bus object with a default name and properties is created immediately in the
base workspace. The object appears in the Hierarchy pane, and its default properties
appear in the Dialog pane:

61 Using Composite Signals

61-32

2 To specify the bus object name and other properties, in the Dialog pane:

a Specify the Name of the of the new bus object (or you can retain the default
name). The name must be unique in the base workspace. See “Signal Names and
Labels” on page 60-5 for guidelines for signal names.

b Optionally, specify a C Header file that defines a user-defined type
corresponding to this bus object. This header file has no effect on Simulink
simulation; it is used only by Simulink Coder software to generate code.

c Optionally, specify a Description that provides information about the bus
object to human readers. This description has no effect on Simulink simulation;
it exists only for human convenience.

3 Click Apply.

The properties of the bus object on the base workspace change as specified. If you
rename BusObject to main, the Bus Editor looks like this:

 Manage Bus Objects with the Bus Editor

61-33

You can use Add Bus at any time to create a new bus object in the base workspace,
then set the name and properties of the object as needed. You can intersperse creating
bus objects and specifying their properties in any order. The hierarchy pane reorders as
needed to display all bus objects in alphabetical order. If you add an additional bus object
named control, the Bus Editor looks like this:

61 Using Composite Signals

61-34

You can also use capabilities outside the Bus Editor to create new bus objects. Such
objects do not appear in the Bus Editor until the next time its window is selected.

Create Bus Elements

Every bus element belongs to a specific bus. To create a new bus element:

1 In the Hierarchy pane, select the entity below which to create the new element. The
entity can be a bus or a bus element. The new element will belong to the selected bus
object, or to the bus object that contains the selected element. The previous figure
shows the control bus object selected.

2 Choose File > Add/Insert BusElement.

A new bus element with a default name and properties is created immediately in the
applicable bus object. The object appears in the Hierarchy pane immediately below
the previously selected entity, and its default properties appear in the Dialog pane:

 Manage Bus Objects with the Bus Editor

61-35

3 To specify the bus element name and other properties, in the Dialog pane:

a Specify the Name of the of the new bus element (or you can retain the default
name). The name must be unique among the elements of the bus object. See
“Signal Names and Labels” on page 60-5 for guidelines for signal names.

b Specify the other properties of the element. The properties must match the
properties of the corresponding signal within the bus exactly, and can be
anything that a legal signal might have. The Data Type Assistant appears in
the Dialog pane to help specify the element's data type. You can specify any
available data type, including a user-defined data type.

4 Click Apply.

The properties of the bus element of the bus object in the base workspace change as
specified. If you rename the new element a to valve1, the Bus Editor looks like this:

61 Using Composite Signals

61-36

You can use Add/Insert BusElement at any time to create a new bus element in any
bus object. You can intersperse creating bus objects and specifying their properties in any
order. The order of the other bus elements in the bus object does not change when a new
element is added. If you add element valve2 to control, and secondary and primary
to main, the Bus Editor looks like this:

 Manage Bus Objects with the Bus Editor

61-37

You can also use capabilities outside the Bus Editor to add new bus elements to a bus
object. Such an addition changes an existing bus object, so any new bus element appears
immediately in the Bus Editor.

Nest Bus Definitions

As described in “Nest Buses” on page 61-19, any signal in a bus can be another bus,
which can in turn contain subordinate buses, and so on to any depth. Describing nested
buses with bus objects requires nesting the bus definitions that the objects provide.

Every bus object inherently defines a data type whose properties are those specified by
the object. To nest one bus definition in another, you assign to an element of one bus
object a data type that is defined by another bus object. The element then represents a
nested bus whose structure is given by the bus object that provides its data type.

A data type defined by a bus object is called a bus type. Nesting buses by assigning bus
types to elements, rather than by subordinating the bus objects that define the types,
allows the same bus definition to be used conveniently in multiple contexts without
unwanted interactions. To specify that an element of a bus object represents a nested bus
definition:

61 Using Composite Signals

61-38

1 Create a bus element to represent the nested bus definition, in the appropriate
position under the containing bus object, and give the element the desired name.
(You can also use an existing element.)

2 Use the Dialog pane to set the data type of the element to the name of a bus object.
The Data Type Assistant shows the names of all available bus types. (You can also
specify a nonexistent bus type and define the object later.)

In the preceding figure, if you add to bus object main a third element named valves, set
the data type of valves to be control (the name of the other defined bus object) and
expand the new element valves, the Bus Editor looks like this:

The bus object main shown in the Bus Editor now defines the same structure used by the
bus signal main in the next figure:

 Manage Bus Objects with the Bus Editor

61-39

The distinction between a bus object and the bus type that it defines can be useful
for initially understanding how nested bus objects work and how the Bus Editor
handles them. In other contexts, the distinction is mostly an implementation detail, and
describing bus objects themselves as being nested is more convenient. The rest of this
chapter follows that convention.

You can nest a bus object in as many different bus objects as desired, and as many times
in the same bus object as desired. You can nest bus objects to any depth, but you cannot
define a circular structure by directly or indirectly nesting a bus object within itself.

If you try to define a circular structure, the Bus Editor posts a warning and sets the data
type of the element that would have completed the cycle to double. Click OK to dismiss
the Notice and continue using the editor.

You can use the Hierarchy pane to explore nested bus objects by expanding the objects,
but you cannot change any property of a bus object anywhere that it appears in nested
form. To change the properties of a nested bus object, you must change the source
object, which is accessible at the top level in the Hierarchy pane. You can jump from a
nested bus object to its source object by selecting the nested object and choosing Go to
'element' from its Context menu.

61 Using Composite Signals

61-40

Change Bus Entities

You can use the Bus Editor to change and delete existing bus objects and elements at any
time. All three panes allow you to change the entities that they display. Changes that
create, reorder, or delete entities take effect immediately in the base workspace. Changes
to properties take effect when you apply them, or can be canceled, leaving the properties
unchanged. The Bus Editor does not provide an Undo capability.

The Bus Editor provides comprehensive GUI capabilities for changing bus entities.
You can Cut, Copy, and Paste within and between panes in any way that has a legal
result. The Hierarchy and Dialog panes provide a Context menu for the current selection.
Pasting a Copied entity always creates a copy, as distinct from a pointer to the original.
The Bus Editor automatically changes names when needed to avoid duplication.

Changes made outside the bus editor can affect the information on display within it. Any
change to an existing bus object or bus element is visible immediately in the editor. Any
change that creates or deletes a bus object becomes visible in the bus editor next time its
window is selected.

Editing in the Hierarchy pane

You can select the root node Base Workspace and perform various operations, like
export, cut, copy, paste, and delete. The operation simultaneously affects all bus objects
displayed in the Hierarchy pane, but does not affect any that are invisible because a filter
is in effect. See “Filter Displayed Bus Objects” on page 61-51 for details.

As you use the Bus Editor, the Hierarchy pane automatically reorders the bus objects it
displays to maintain alphabetical order. This behavior cannot be changed. However, the
elements under a bus object can appear in any order. To change that order, cut and paste
elements as needed, or move elements up and down as follows:

1 Select the element to be moved.
2 Choose Edit > Move Element Up or Edit > Move Element Down.

You cannot Paste one bus object under another to create a nested bus object specification.
To specify a nested bus, you must change the data type of a bus element to be the type of
an existing bus object, as described in “Nest Buses” on page 61-19.

Editing in the Contents Pane

Selecting any top-level bus object in the Hierarchy pane displays the object's elements in
the Contents pane. Each element's properties appear to the right of the element's name,

 Manage Bus Objects with the Bus Editor

61-41

and can be edited. To change a property displayed in the Contents pane, click the value,
enter a new value, then press Return.

Choose View > Dialog View to hide the Dialog pane to provide more room to display
properties in the Contents pane. Choose the command again to redisplay the Dialog
pane.

You can use the mouse and keyboard to select multiple elements in the Contents pane.
The selected entities need not be contiguous. You can then perform any operation that
you could on a single entity selected in the pane, including operations performed with the
Context menu. Clicking and editing a value in any selected element changes that value
in them all.

The next figure shows the Bus Editor with Dialog View enabled, two elements selected
in the Contents pane, and the DataType property selected for editing in the second
element:

If you change the value of DataType to single and press Return, the value changes
for both elements. The effect is the same no matter which element you edit in a multiple
selection:

61 Using Composite Signals

61-42

Editing in the Dialog Pane

When a bus object is selected in the Hierarchy pane, or a bus object or element is selected
in the Contents pane, the properties of the selected item appear in the Dialog pane. In
the next figure, valve1 is selected in the Contents pane, so the Dialog pane shows its
properties:

 Manage Bus Objects with the Bus Editor

61-43

The properties shown in the Dialog pane are editable, and the pane includes the Data
Type Assistant. Click Apply to save changes, or Revert to cancel them and restore the
values that existed before any unapplied changes. You can edit only one element at a
time in the Dialog pane. If multiple entities are selected in the Contents pane, all fields
in the Dialog pane are grayed out:

61 Using Composite Signals

61-44

If you use the Dialog pane to change any property of a bus entity, then navigate
elsewhere without clicking either Apply or Revert, a query box appears by default. The
query box asks whether to apply changes, ignore changes, or continue as if the navigation
had not been tried. You can suppress this query for future operations by checking
Never ask me again in the box, or by selecting Options > Auto Apply/Ignore Dialog
Changes.

If you suppress the query, and thereafter navigate away from a change without clicking
Apply or Revert, the Bus Editor automatically applies or discards changes, depending
on which action you most recently chose in the box. You can re-enable the query box for
future operations by deselecting Options > Auto Apply/Ignore Dialog Changes.

Export Bus Objects

Like all base workspace objects, bus objects are not saved with a model that uses them,
but exist separately in a MATLAB code file or MAT-file. You can use the Bus Editor to
export some or all bus objects to either type of file.

• If you export bus objects to a MATLAB code file, the Bus Editor asks whether to store
them in object format or cell format (the default). Specify the desired format.

 Manage Bus Objects with the Bus Editor

61-45

• If exporting would overwrite an existing MATLAB code file or MAT-file, a
confirmation dialog box appears. Confirm the export or cancel it and try a different
filename.

To export all bus objects from the base workspace to a file:

1 In the Bus Editor, choose File > Export to File.

The Export dialog box appears.
2 Specify the desired name and format of the export file.
3 Click Save.

All bus objects, and nothing else, are exported to the specified file in the specified
format.

To export only selected bus objects from the base workspace to a file:

1 Select a bus object in the Hierarchy pane, or one or more bus objects in the Contents
pane.

2 Right-click to display the Context menu.
3 Choose Export to File to export only the selected bus objects, or Export with

Related Bus Objects to File to also export any nested bus objects used by the
selected objects.

4 Use the Export dialog box to export the selected bus object(s).

Clicking the Export icon in the toolbar is equivalent to choosing File > Export, which
exports all bus objects whether or not any are selected.

Customizing Bus Object Export

You can customize bus object export by providing a custom function that writes the
exported objects to something other than the default destination, a MATLAB code file or
MAT-file stored in the file system. For example, the exported bus objects could be saved
as records in a corporate database. See “Customize Bus Object Import and Export” on
page 61-57 for details.

Import Bus Objects

You can use the Bus Editor to import the definitions in a MATLAB code file or MAT-file
to the base workspace. Importing the file imports the complete contents of the file, not

61 Using Composite Signals

61-46

just any bus objects that it contains. If you import a file not exported by the Bus Editor,
be careful that it does not contain unwanted definitions previously exported from the
base workspace or created programmatically.

To import bus objects from a file to the base workspace:

1 Choose File > Import into Base Workspace.
2 Use the Open File dialog box to navigate to and import the desired file.

Before importing the file, the Bus Editor posts a warning that importing the file will
overwrite any variable in the base workspace that has the same name as an entity in
the file. Click Yes or No as appropriate. The imported bus objects appear immediately
in the editor. You can also use capabilities outside the Bus Editor to import bus objects.
Such objects do not appear in the Bus Editor until the next time its window becomes the
current window.

Customizing Bus Object Import

You can customize bus object import by providing a custom function that imports the
objects from something other than the default source, a MATLAB code file or MAT-file
stored in the file system. For example, the bus objects could be retrieved from records in
a corporate database. See “Customize Bus Object Import and Export” on page 61-57
for details.

Close the Bus Editor

To close the Bus Editor, choose File > Close. Closing the Bus Editor neither saves
nor discards changes to bus objects, which remain unaffected in the base workspace.
However, if you also close MATLAB without saving changes to bus objects, the changes
will be lost. To save bus objects without saving other base workspace contents, use the
techniques described in “Export Bus Objects” on page 61-44. You can also save bus
objects using any MATLAB technique that saves the contents of the base workspace, but
the resulting file will contain everything in the base workspace, not just bus objects.

You can configure the Bus Editor so that closing it posts a reminder to save bus objects.
To enable the reminder, select Options > Always Warn Before Closing. When this
option is selected and you try to close the Bus Editor, a reminder appears that asks
whether the editor should save bus objects before closing. Click Yes to save bus objects
and close, No to close without saving bus objects, or Cancel to dismiss the reminder
and continue in the Bus Editor. You can disable the reminder by deselecting Options >
Always Warn Before Closing.

 Store and Load Bus Objects

61-47

Store and Load Bus Objects

In this section...

“Data Dictionary” on page 61-47
“MATLAB Code Files” on page 61-47
“MATLAB Data Files (MAT-Files)” on page 61-48
“Database or Other External Source Files” on page 61-48

You can store bus object objects in a variety of ways.

Format When to Use

In a data dictionary For large model componentization
As a MATLAB code file For traceability and model differencing

using MATLAB code
As a MATLAB data file (MAT-file) For faster bus loading and saving
In a database or other external data source For comparing bus interface information

with design documents stored in an
external data source.

Data Dictionary

You can use the Model Explorer to create a new data dictionary that includes bus objects
and link it to a model. For details, see “Migrate Single Model to Use Dictionary” on page
59-17.

MATLAB Code Files

You can read and save bus data with MATLAB code files.

To save all bus objects (instances of the Simulink.Bus class) in the MATLAB base
workspace to a MATLAB code file, use one of the following approaches:

• Use the Bus Editor (see “Export Bus Objects” on page 61-44 and “Import Bus Objects”
on page 61-45).

• From the MATLAB command line, use the Simulink.Bus.save command.

61 Using Composite Signals

61-48

To save variables from the base workspace to a MATLAB code file, use the
Simulink.saveVars command. The file containing the variables is formatted to be
easily understood and editable. Running the file restores the saved variables to the base
workspace.

For traceability, consider using a clearly named separate file for each model.

MATLAB Data Files (MAT-Files)

You can load bus objects in MATLAB data files (MAT-files), using one of the following
approaches:

• Use the Bus Editor (see “Export Bus Objects” on page 61-44 and “Import Bus Objects”
on page 61-45).

• From the MATLAB command line, use the load command.

Loading large data from MAT-files is faster than loading from MATLAB code files.

Database or Other External Source Files

You can capture bus interface information in a database or other external source, and use
scripts and Database Toolbox™ functionality to read that information into MATLAB.

You can use sl_customization.m to customize the Bus Editor to import bus data from
a database or other external source. For details, see “Customize Bus Object Import and
Export” on page 61-57.

Related Examples
• “Map Bus Objects to Models” on page 61-49

 Map Bus Objects to Models

61-49

Map Bus Objects to Models

As models become complex, you need to keep track of which models use which bus
objects. From any model or bus object, you should be able to tell what component it needs
or is needed by.

A model must load all of its bus objects before you execute the model. For automation and
consistency across models, it is important to map bus objects to models.

• By identifying all of the bus objects a model needs, you can ensure that those objects
are loaded before model execution.

• By identifying all models that use a bus object, you can ensure that changes to a bus
object do not cause unexpected changes in any of the models that use that bus object.

To map bus objects to models, consider:

• Including the bus objects in a data dictionary. You can link the data dictionary to one
or more models. For details, see “Migrate Single Model to Use Dictionary” on page
59-17.

• Using Simulink Projects by:

1 Serializing the files that contain the bus objects as part of a project
2 Loading that data upon project open

For details, see “Project Management ”.
• Capturing the mapping information in an external data source, such as a database.

Use a Rigorous Naming Convention

Using a rigorous and standard naming convention for bus mapping information is a
straightforward approach. For example, consider the model and data required for an
actuator control function. You could name the model Actuator and name the input and
output ports Actuator_bus_in and Actuator_bus_out, respectively. This naming
convention makes it clear to what models a particular bus object is related, and vice
versa.

Note that this approach can cause issues if the output from one model reference is fed
directly to another model reference. In this case, the naming mismatch results in an
error.

61 Using Composite Signals

61-50

Related Examples
• “Store and Load Bus Objects” on page 61-47

 Filter Displayed Bus Objects

61-51

Filter Displayed Bus Objects

In this section...

“Filter by Name” on page 61-52
“Filter by Relationship” on page 61-53
“Change Filtered Objects” on page 61-55
“Clear the Filter” on page 61-56

By default, the Bus Editor displays all bus objects that exist in the base workspace,
always in alphabetical order. When a model contains large numbers of bus objects, seeing
them all at the same time can be inconvenient. To facilitate working efficiently with large
collections of bus objects, you can set the Bus Editor to display only bus objects that:

• Have names that match a given string or regular expression
• Have a specified relationship to a bus object specified by name

To set a filter, you specify values in the Filter boxes to the right of the tools in the
toolbar. The left Filter box specifies the type of filtering. This box always appears, and
is called the Filter Type box. Depending on the specified type of filtering, one or two
boxes appear to the right of the Filter Type box. The next figure includes the Filter
boxes (near the top of the dialog box) and shows that six bus objects exist in the Base
Workspace:

The bus objects shown form two disjoint hierarchies. A1_Top is the parent of A2_Mid,
which is the parent of A3_Bot. Similarly, B1_Top > B2_Mid > B3_Bot. See “Nest Buses”
on page 61-19 for information about bus object hierarchies.

61 Using Composite Signals

61-52

Filter by Name

To filter bus objects by name, set the Filter Type box to by Bus Name (which is the
default). The right Filter box is the Object Name box. Type any MATLAB regular
expression (which can just be a string) into the Object Name box. As you type, the Bus
Editor updates dynamically to show only bus objects whose names match the expression
you have typed. The comparison is case-sensitive. For example, entering A displays:

Note that FILTERED VIEW appears in three locations, as shown in the preceding
figure. This indicator appears whenever any filter is in effect. Entering the additional
character 3 into the Object Name box displays:

In a MATLAB regular expression, the metacharacter dot (.) matches any character, so
entering .2 displays:

 Filter Displayed Bus Objects

61-53

See “Regular Expressions” for complete information about MATLAB regular expression
syntax.

Filter by Relationship

To filter bus objects by relationship, set the Filter Type box to by Bus Object
Dependency. A third Filter box, called the Relationship box, appears between the
Filter Type box and the Object Name box. You may have to widen the Bus Editor to
see all three boxes:

In the Relationship box, select the type of relationship to display. The options are:

• Bus Object and Parents — Show a specified bus object and all superior bus
objects in the hierarchy (default)

• Bus Object and Dependents — Show a specified bus object and all subordinate
bus objects in the hierarchy

61 Using Composite Signals

61-54

• Bus Object and Related Objects — Show a specified bus object and all superior
and subordinate bus objects

In the Object Name box, specify a bus object by name. You can use the list to select any
existing bus object name, or you can type a name. As you type, the editor:

• Dynamically completes the field to indicate the first bus object that alphabetically
matches what you have typed.

• Updates the display panes to show only that object and any objects that have the
specified relationship to it.

When filtering by relationship, you must enter a string, not a regular expression, in the
Object Name box. The match is case-sensitive. For example, assuming that A1_Top
is the parent of A2_Mid, which is the parent of A3_Bot (as previously described) if you
enter B2 (or any leftmost substring that matches only B2_Mid) in the Object Name box,
the Bus Editor displays the following for each of the three choices of relationship type:

Bus Object and Parents

Bus Object and Dependents

 Filter Displayed Bus Objects

61-55

Bus Object and Related Objects

Note that FILTERED VIEW appears in each the preceding figures, as it does when any
filter is in effect.

Change Filtered Objects

You can work with any bus object that is visible in a filtered display exactly as you could
in an unfiltered display. If you change the name or dependency of an object so that it no
longer passes the current filter, the object vanishes from the display. Conversely, if some
activity outside the Bus Editor changes a filtered object so that it passes the current
filter, the object immediately becomes visible.

A new bus object created within the Bus Editor with a filter in effect may or may not
appear, depending on the filter. If you create a new bus object but do not see it in the

61 Using Composite Signals

61-56

editor, check the filter. The new object (whose name always begins with BusObject) may
exist but be invisible. Bus objects created or imported using capabilities outside the Bus
Editor are not visible until the Bus Editor window is next selected, regardless of whether
a filter is in effect.

Operations performed on the root node Base Workspace in the Hierarchy pane, such as
exporting bus objects, affect only visible objects. An object that is invisible because a filter
is in effect is unaffected by the operation. If you want to export all existing bus objects, be
sure to clear any filter that may be in effect before performing the export.

Clear the Filter

To clear any filter currently in effect, click the Clear Filter button at the right of the
Filter subpane, or press the F5 key. The subpane reverts to its default state, in which all
bus objects appear:

If you jump from a nested bus object to its source object by selecting the nested object
and choosing Go to 'element' from its Context menu, and the source object is invisible
due to a filter, the Bus Editor automatically clears the filter and selects the source object.
Jumping to an object that is already visible leaves the filter unchanged.

 Customize Bus Object Import and Export

61-57

Customize Bus Object Import and Export

In this section...

“Prerequisites for Customization” on page 61-58
“Writing a Bus Object Import Function” on page 61-58
“Writing a Bus Object Export Function” on page 61-59
“Registering Customizations” on page 61-59
“Changing Customizations” on page 61-61

You can use the Bus Editor to import bus objects to the base workspace, as described in
“Import Bus Objects” on page 61-45, and to export bus objects from the base workspace,
as described in “Export Bus Objects” on page 61-44. By default, the Bus Editor can
import bus objects only from a MATLAB code file or MAT-file, and can export bus
objects only to a MATLAB code file or MAT-file, with the files stored somewhere that is
accessible using an ordinary Open or Save dialog.

Alternatively, you can customize the Bus Editor's import and export commands by
writing MATLAB functions that provide the desired capabilities, and registering these
functions using the Simulink Customization Manager. When a custom bus object import
or export function exists, and you use the Bus Editor to import or export bus objects,
the editor calls the custom import or export function rather than using its default
capabilities.

A customized import or export function can have any desired effect and use any available
technique. For example, rather than storing bus objects in MATLAB code files or MAT-
files in the file system, you could provide customized functions that store the objects as
records in a corporate database, perhaps in a format that also meets other corporate data
management requirements.

This section describes techniques for designing and implementing a custom bus object
import or export function, and for using the Simulink Customization Manager to register
such a custom function. The registration process establishes the custom import and
export functions as callbacks for the Bus Editor Import to Base Workspace and
Export to File commands, replacing the default capabilities of the editor.

Customizing the Bus Editor's import and export capabilities has no effect on any
MATLAB or Simulink API function: it affects only the behavior of the Bus Editor. You
can customize bus object import, export, or both. You can establish, change, and cancel

61 Using Composite Signals

61-58

import or export customization at any time. Canceling import or export customization
restores the default Bus Editor capabilities for that operation without affecting the other.

Prerequisites for Customization

To perform bus object import or export customization, you must understand:

• The MATLAB language and programming techniques that you will need.
• Simulink bus object syntax. See “About Bus Objects” on page 61-23, Simulink.Bus,

Simulink.BusElement, and “Nest Bus Definitions” on page 61-37.
• The proprietary format into which you will translate bus objects, and all techniques

necessary to access the facility that stores the objects.
• Any platform-specific techniques needed to obtain data from the user, such as the

name of the location in which to store or access bus objects.

The rest of the information that you will need, including all necessary information about
the Simulink Customization Manager appears in this section. For complete information
about the Customization Manager, see “Simulink Environment Customization”.

Writing a Bus Object Import Function

A function that customizes bus import can use any MATLAB programming construct or
technique. The function can take zero or more arguments, which can be anything that
the function needs to perform its task. You can use functions, global variables, or any
other MATLAB technique to provide argument values. The function can also poll the
user for information, such as a designation of where to obtain bus object information. The
general algorithm of a custom bus object import function is:

1 Obtain bus object information from the local repository.
2 Translate each bus object definition to a Simulink bus object.
3 Save each bus object to the MATLAB base workspace.

An example of the syntactic shell of an import callback function is:

function myImportCallBack

disp('Custom import was called!');

Although this function does not import any bus objects, it is syntactically valid and could
be registered with the Simulink Customization Manager. A real import function would

 Customize Bus Object Import and Export

61-59

somehow obtain a designation of where to obtain the bus object(s) to import; convert each
one to a Simulink bus object; and store the object in the base workspace. The additional
logic needed is enterprise-specific.

Writing a Bus Object Export Function

A callback function that customizes bus export can use any MATLAB programming
construct or technique. The function must take one argument, and can take zero or more
additional arguments, which can be anything that the function needs to perform its task.
When the Bus Editor calls the function, the value of the first argument is a cell array
containing the names of all bus objects selected within the editor to be exported. You can
use functions, global variables, or any other MATLAB technique to provide values for any
additional arguments. The general algorithm of a customized export function is:

1 Iterate over the list of object names in the first argument.
2 Obtain the bus object corresponding to each name.
3 Translate the bus object to the proprietary syntax.
4 Save the translated bus object in the local repository.

An example of the syntactic shell of such an export callback function is:

function myExportCallBack(selectedBusObjects)

disp('Custom export was called!');

for idx = 1:length(selectedBusObjects)

 disp([selectedBusObjects{idx} ' was selected for export.']);

end

Although this function does not export any bus objects, it is syntactically valid and could
be registered. It accepts a cell array of bus object names, iterates over them, and prints
each name. A real export function would use each name to retrieve the corresponding bus
object from the base workspace; convert the object to proprietary format; and store the
converted object somewhere. The additional logic needed is enterprise-specific.

Registering Customizations

To customize bus object import or export, you provide a customization registration
function that inputs and configures the Customization Manager whenever you start the
Simulink software or subsequently refresh Simulink customizations. The steps for using
a customization registration function are:

61 Using Composite Signals

61-60

1 Create a file named sl_customization.m to contain the customization registration
function (or use an existing customization file).

2 At the top of the file, create a function named sl_customization that takes a
single argument (or use the customization function in an existing file). When the
function is invoked, the value of this argument will be the Customization Manager.

3 Configure the sl_customization function to set importCallbackFcn and
exportCallbackFcn to be function handles that specify your customized bus object
import and export functions.

4 If sl_customization.m is a new customization file, put it anywhere on the
MATLAB search path. Two frequently-used locations are matlabroot and the
current working directory; or you may want to extend the search path.

A simple example of a customization registration function is:

function sl_customization(cm)

disp('My customization file was loaded.');

cm.BusEditorCustomizer.importCallbackFcn = @myImportCallBack;

cm.BusEditorCustomizer.exportCallbackFcn = @(x)myExportCallBack(x);

When the Simulink software starts up, it traverses the MATLAB search path looking for
files named sl_customization.m. The software loads each such file that it finds (not
just the first file) and executes the sl_customization function at its top, establishing
the customizations that the function specifies.

Executing the previous customization function will display a message (which
an actual function probably would not) and establish that the Bus Editor uses a
function named myImportCallBack() to import bus objects, and a function named
myExportCallBack(x) to export bus objects.

The function corresponding to a handle that appears in a callback registration need not
be defined when the registration occurs, but it must be defined when the Bus Editor later
calls the function. The same latitude and requirement applies to any functions or global
variables used to provide the values of any additional arguments.

Other functions can also exist in the sl_customization.m file. However, the Simulink
software ignores files named sl_customization.m except when it starts up or
refreshes customizations, so any changes to functions in the customization file will be
ignored until one of those events occurs. By contrast, changes to other MATLAB code
files on the MATLAB path take effect immediately.

 Customize Bus Object Import and Export

61-61

Changing Customizations

You can change the handles established in the sl_customization function by changing
the function to specify the changed handles, saving the function, then refreshing
customizations by executing:

sl_refresh_customizations

The Simulink software then traverses the MATLAB path and reloads all
sl_customization.m files that it finds, executing the first function in each one, just as
it did on Simulink startup.

You can revert to default import or export behavior by setting the appropriate
BusEditorCustomizer element to [] in the sl_customization function, then
refreshing customizations. Alternatively, you can eliminate both customizations in one
operation by executing:

cm.BusEditorCustomizer.clear

where cm was previously set to a customization manager object (see “Registering
Customizations” on page 61-59).

Changes to the import and export callback functions themselves, as distinct from changes
to the handles that register them as customizations, take effect immediately unless they
are in the sl_customization.m file itself, in which case they take effect next time you
refresh customizations. Keeping the callback functions in separate files usually provides
more flexible and modular results.

61 Using Composite Signals

61-62

Use Buses for Inports and Outports

In this section...

“Use Buses with Root Level Inports” on page 61-62
“Use Buses with Root Level Outports” on page 61-62
“Use Buses with Nonvirtual Inports” on page 61-62

This topic describes how to use buses with Inport and Outport blocks in a model.

For information about using buses as inputs to, or outputs from, a referenced model, see
“Bus Data Crossing Model Reference Boundaries” on page 61-110.

Use Buses with Root Level Inports

If you want a root level Inport of a model to produce a bus signal, in the Inport block
parameters dialog box, set Data type to Bus: <object name> and replace <object
name> with the name of the bus object name that defines the bus that the Inport
produces. See “Bus Objects” on page 61-23 for more information.

Use Buses with Root Level Outports

A root level Outport of a model can accept a virtual bus only if all elements of the bus
have the same data type. The Outport block automatically unifies the bus to a vector
having the same number of elements as the bus, and outputs that vector.

If you want a root level Outport of a model to accept a bus signal that contains mixed
types, in the Outport block parameters dialog box, set Data type to Bus: <object
name> and replace <object name> with the name of the bus object name that defines
the bus that the Inport produces. If the bus signal is virtual, it will be converted to
nonvirtual, as described in “Automatic Bus Conversion” on page 61-13. See “Bus Objects”
on page 61-23 more information.

Use Buses with Nonvirtual Inports

By default, an Inport block is a virtual block and accepts a bus as input. However, an
Inport block is nonvirtual if:

• The Inport block is in a conditionally executed or atomic subsystem, or in a referenced
model.

 Use Buses for Inports and Outports

61-63

• The bus or any of its elements are directly connected to the output of the subsystem or
referenced model.

In such a case, the Inport block can accept a bus only if all elements of the bus have the
same data type or the bus is a nonvirtual bus.

If the bus elements are of differing data types, attempting to simulate the model causes
the Simulink software to halt the simulation and display an error message. You can
avoid this problem, without changing the semantics of your model, by inserting a Signal
Conversion block between the Inport block and the Outport block to which it was
originally connected.

For example, the following model, which includes an atomic subsystem, does not
simulate.

Starting the simulation generates the following error messages:

61 Using Composite Signals

61-64

Opening the subsystem reveals that in this model, the Inport block labeled nonvirtual
is nonvirtual because it resides in an atomic subsystem and one of its bus elements
(labeled a) is directly connected to one of the subsystem's outputs. Further, the bus
(bus1) connected to the subsystem's inputs has elements of differing data types. As a
result, you cannot simulate this model.

To break the direct connection to the subsystem's output, insert a Signal Conversion
block. Set the Signal Conversion block Output parameter to Signal copy. Inserting
the Signal Conversion block enables the Simulink software to simulate the model.

 Specify Initial Conditions for Bus Signals

61-65

Specify Initial Conditions for Bus Signals

In this section...

“Bus Signal Initialization” on page 61-65
“Create Initial Condition (IC) Structures” on page 61-66
“Three Ways to Initialize Bus Signals Using Block Parameters” on page 61-74
“Initialize Arrays of Buses” on page 61-78
“Setting Diagnostics to Support Bus Signal Initialization” on page 61-80

Bus Signal Initialization

Bus signal initialization is a special kind of signal initialization. For general information
about initializing signals, see “Initialize Signals and Discrete States” on page 60-48.

Bus signal initialization specifies the bus element values that Simulink uses for the
first execution of a block that uses that bus signal. By default, the initial value for a bus
element is the ground value (represented by 0). Bus initialization, as described in this
section, involves specifying nonzero initial conditions (ICs).

You can use bus signal initialization features to:

• Specify initial conditions for signals that have different data types
• Apply a different initial condition for each signal in the bus
• Specify initial conditions for a subset of signals in a bus without specifying initial

conditions for all the signals
• Use the same initial conditions for multiple blocks, signals, or models

Blocks that Support Bus Signal Initialization

You can initialize bus signal values that input to a block, if that block meets both of these
conditions:

• It has an initial value or initial condition block parameter
• It supports bus signals

The following blocks support bus signal initialization:

61 Using Composite Signals

61-66

• Data Store Memory
• Memory
• Merge
• Outport (when the block is inside a conditionally executed context)
• Rate Transition
• Unit Delay

For example, the Unit Delay block is a bus-capable block and the Block Parameters
dialog box for the Unit Delay block has an Initial conditions parameter.

Initialization Is Not Supported for Bus Signals with Variable-Size or Frame-Based Elements

You cannot initialize a bus that has:

• Variable-size signals
• Frame-based signals

Workflow for Initializing Bus Signals Using Initial Condition Structures

You need to set up your model properly to use initial condition structures to initialize bus
signals. The general workflow involves the tasks listed in the following table. You can
vary the order of the tasks, but before you update the diagram or run a simulation, you
need to ensure your model is set up properly.

Task Documentation

Define an IC structure “Create Initial Condition (IC) Structures”
on page 61-66

Use an IC structure to specify a nonzero
initial condition.

“Three Ways to Initialize Bus Signals
Using Block Parameters” on page 61-74

Set Configuration Parameters dialog box
diagnostics

“Setting Diagnostics to Support Bus Signal
Initialization” on page 61-80

Create Initial Condition (IC) Structures

You can create partial or full IC structures to represent initial values for a bus signal.
Create an IC structure by either:

 Specify Initial Conditions for Bus Signals

61-67

• Defining a MATLAB structure in the MATLAB base or Simulink model workspace
• Specifying an expression that evaluates to a structure for the initial condition

parameter in the Block Parameters dialog box for a block that supports bus signal
initialization

For information about defining MATLAB structures, see “Create a Structure Array” in
the MATLAB documentation.

Full and Partial IC Structures

A full IC structure provides an initial value for every element of a bus signal. This IC
structure mirrors the bus hierarchy and reflects the attributes of the bus elements.

A partial IC structure provides initial values for a subset of the elements of a bus signal.
If you use a partial IC structure, during simulation, Simulink creates a full IC structure
to represent all of the bus signal elements, assigning the respective ground value to each
element for which the partial IC structure does not explicitly assign a value.

Specifying partial structures for block parameter values can be useful during the
iterative process of creating a model. Partial structures enable you to focus on a subset of
signals in a bus. When you use partial structures, Simulink initializes unspecified signals
implicitly.

Specifying full structures during code generation offers these advantages:

• Generates more readable code
• Supports a modeling style that explicitly initializes all signals

Match IC Structure Values to Corresponding Bus Element Data Characteristics

The field that you specify in an IC structure must match the following data attributes of
the bus element exactly:

• Name
• Dimension
• Complexity

For example, if you define a bus element to be a real [2x2] double array, then in the IC
structure, define the value to initialize that bus element to be a real [2x2] double array.

61 Using Composite Signals

61-68

You must explicitly specify fields in the IC structure for every bus element that has an
enumerated (enum) data type.

When you define a partial IC structure:

• Include only fields that are in the bus.
• You can omit fields that are in the bus.
• Make the field in the IC structure correspond to the nesting level of the bus element.
• Within the same nesting level in both the structure and the bus, you can specify the

structure fields in a different order than the order of the elements in the bus.

Note: The value of an IC structure must lie within the design minimum and maximum
range of the corresponding bus element. Simulink performs this range checking during
an update diagram and when you run the model.

Examples of Partial Structures

Suppose you have a bus, Top, composed of three elements: A, B, and C, with these
characteristics:

• A is a nested bus, with two signal elements.
• B is a single signal.
• C is a nested bus that includes bus A as a nested bus.

The following model, ex_busic includes the nested Top bus. The screen capture below
shows the model after it has been updated. .

 Specify Initial Conditions for Bus Signals

61-69

The following diagram summarizes the Top bus hierarchy and the data type, dimension,
and complexity of the bus elements .

Top

 A (sub1)

 A1 (double)

 A2 (int8, 5x1, complex)

 B (double)

 C (sub2)

 C1 (int16)

 C2 (sub1)

 A1 (double)

 A2 (int8, 5x1, complex)

Valid partial IC structures

In the following examples, K is an IC structure specified for the initial value of the Unit
Delay block. The IC structure corresponds to the Top bus in the ex_busic model.

61 Using Composite Signals

61-70

The following table shows valid initial condition specifications.

Valid Syntax Description

K.A.A1 = 3 Initializes the bus element Top.A.A1 using the
value 3.

K = struct('C',struct('C1',int16(4))) The bus element Top.C.C1 is int16. The
corresponding structure field explicitly specifies
int16(4). Alternatively, you could specify the
field value as 4 without specifying an explicit
data type.

K = struct('B',3,'A',struct('A1',4)) Bus element Top.B and Top.A are at the same
nesting level in the bus. For bus elements at the
same nesting level, the order of corresponding
structure fields does not matter.

Invalid partial IC structures

In the following examples, K is an IC structure specified for the initial value of the Unit
Delay block. The IC structure corresponds to the Top bus in the ex_busic model.

These three initial condition specifications are not valid:

Invalid Syntax Reason the Syntax Is Invalid

K.A.A2 = 3 Value dimension and complexity do not match.
The bus element Top.A.A2 is 5x1, but K.A.A2
is 1x1; Top.A.A2 is complex, but K.A.A2 is
real.

K.C.C2 = 3 You cannot use a scalar value to initialize IC
substructures.

K = struct('B',3,'X',4) You cannot specify fields that are not in the bus
(X does not exist in the bus).

Creating Full IC Structures Using Simulink.Bus.createMATLABStruct

Use the Simulink.Bus.createMATLABStruct function to streamline the process of
creating a full MATLAB initial condition structure with the same hierarchy, names, and
data attributes as a bus signal. This function fills all the elements that you do not specify
with the ground values for those elements.

 Specify Initial Conditions for Bus Signals

61-71

You can use several different kinds of input with the
Simulink.Bus.createMATLABStruct function, including

• A bus object name
• An array of port handles

You can invoke the Simulink.Bus.createMATLABStruct function from the Bus
Editor, using one of these approaches:

• Select the File > Create a MATLAB structure menu item.
• Select the bus object for which you want to create a full MATLAB structure and click

the Create a MATLAB structure icon () from the toolbar.

You can then edit the MATLAB structure in the MATLAB Editor.

See the Simulink.Bus.createMATLABStruct documentation for details.

Decide Whether to Specify Data Types for Structure Fields

To specify a field value, you can use either of these techniques:

• Use an untyped expression such as 4. The field implicitly uses the data type double.
If the corresponding bus signal elements use data types other than double, the bus
elements cast the values of the structure fields prior to simulation. This technique
allows you to avoid explicitly specifying a data type for each structure field.

If you have a Simulink Coder license, and if you set Configuration Parameters
> Optimization > Signals and Parameters > Default parameter behavior to
Inlined, you can use this technique to create the structure. The structure appears
nontunable in the generated code. However, it is a best practice for code generation to
match the structure field types with the bus element types.

• Use a typed expression such as int16(4). If you use this technique, match the data
type of the structure field with the data type of the corresponding bus element.

If you have a Simulink Coder license, this technique allows you to:

• Eliminate unnecessary runtime casts from the structure field type to the bus
element type.

• Create tunable initial condition structures.

For examples and more information about initial conditions in the generated code, see
“Control Signal and State Initialization in the Generated Code”.

61 Using Composite Signals

61-72

Whether you use typed or untyped expressions, you can use a Simulink.Bus object to
specify the data type of the entire initial condition structure. This technique allows you
to manage the field values and data types independently. If you have a Simulink Coder
license, this technique allows you to more easily match the structure field types with the
bus element types for code generation. If you have a Fixed-Point Designer license, this
technique helps you to avoid data type mismatches when you perform data type override
on a system that contains bus signals.

For basic information about bus objects, see “Bus Objects” on page 61-23. For information
about using bus objects in the fixed-point workflow, see “Bus Objects in the Fixed-Point
Workflow”.
Use Untyped Expressions

You can use untyped expressions to specify the structure field values. Use the structure
fields to represent the ideal real-world initialization values. Use the bus signal elements
to control the data types. If you use this technique, you do not need to change the data
types of the structure fields if you later change the data types of the bus elements.

Suppose that you create a bus signal myBus with these signal elements. Each element
uses a specific data type.

myBus

 signalElement1 (int32)

 signalElement2 (boolean)

 signalElement3 (single)

Create an initial condition structure initStruct. Use untyped expressions to specify
the field values. To enhance readability of the Boolean field signalElement2, use the
value false.

initStruct.signalElement1 = 3;

initStruct.signalElement2 = false;

initStruct.signalElement3 = 17.35;

All of the structure fields, except signalElement2, implicitly use the data type double.
Prior to simulation, the bus signal elements cast the values of the structure fields.
Use Typed Expressions

Suppose that you create a bus signal myBus with this hierarchy of signal elements. Each
element uses a specific data type.

myBus

 signalElement1 (int32)

 Specify Initial Conditions for Bus Signals

61-73

 signalElement2 (boolean)

 signalElement3 (single)

Create an initial condition structure initStruct. Match the data types of the structure
fields with the data types of the corresponding bus elements.

initStruct.signalElement1 = int32(3);

initStruct.signalElement2 = false;

initStruct.signalElement3 = single(17.35);

If you later change the data type of a bus element and forget to change the data type of
the corresponding structure field, the bus element casts the value of the structure field
prior to simulation. To detect quantization effects, downcasts, and losses of precision
due to this cast, adjust the settings on the Diagnostics > Data Validity pane of the
Configuration Parameters dialog box.
Use Bus Object as Data Type for Initial Condition Structure

To control the data types that the structure fields and the signal elements use during
simulation and in the generated code, you can create a Simulink.Bus object.

Suppose that you use a Bus Creator block to create a bus signal myBus with these signal
elements.

myBus

 signalElement1 (int32)

 signalElement2 (boolean)

 signalElement3 (single)

1 Open the Bus Editor.

buseditor

2 Create a bus object myBus that corresponds to the bus signal.

3 Create an initial condition structure initStruct.

initStruct.signalElement1 = 3;

61 Using Composite Signals

61-74

initStruct.signalElement2 = false;

initStruct.signalElement3 = 17.35;

4 Create a Simulink.Parameter object to represent the structure.

initStruct = Simulink.Parameter(initStruct);

5 Use the parameter object to specify an initial condition for the bus signal. For
example, in a Unit Delay block dialog box, set Initial condition to initStruct.

6 Use the bus object to specify the data type of the parameter object.

initStruct.DataType = 'Bus: myBus';

7 Use the bus object to specify the data type of the bus signal. For example, in the Bus
Creator block dialog box, set Output data type to Bus: myBus.

During simulation and in the generated code, the structure fields and the signal elements
use the data types that you specify in the bus object. Prior to simulation and code
generation, the parameter object casts the structure fields to the data types that you
specify in the bus object.
Convert Between Untyped and Typed Expressions

To convert all of the fields of an initial condition structure from typed expressions to
doubles, you can write a custom function. Use the example function castStructToDbl as a
template.

To convert a structure that uses doubles to one that uses typed expressions, you can
create a reference structure using the function Simulink.Bus.createMATLABStruct.
You can then write a custom function to perform the type conversions. Use the example
function castStructFromDbl as a template.

Using Model Advisor to Check for Partial Structures

To detect when structure parameters are not consistent in shape (hierarchy and names)
with the associated bus signal, in the Simulink Editor, use the Analysis > Model
Advisor > By Product > Simulink “Check for partial structure parameter
usage with bus signals” check. This check identifies partial IC structures.

Three Ways to Initialize Bus Signals Using Block Parameters

Initialize a bus signal by setting the initial condition parameter for a block that receives
a bus signal as input and that supports bus initialization (see “Blocks that Support Bus
Signal Initialization” on page 61-65).

 Specify Initial Conditions for Bus Signals

61-75

For example, the Block Parameters dialog box for the Unit Delay block has an Initial
conditions parameter.

For a block that supports bus signal initialization, you can replace the default value of 0
using one of these approaches:

• “MATLAB Structure for Initialization” on page 61-75
• “MATLAB Variable for Initialization” on page 61-76
• “Simulink.Parameter for Initialization” on page 61-77

All three approaches require that you define an IC structure (see “Create Initial
Condition (IC) Structures” on page 61-66). You cannot specify a nonzero scalar value
or any other type of value other than 0, an IC structure, or Simulink.Parameter object
to initialize a bus signal.

Defining an IC structure as a MATLAB variable, rather than specifying the IC structure
directly in the block parameters dialog box offers several advantages, including:

• Reuse of the IC structure for multiple blocks
• Using the IC structure as a tunable parameter in the generated code

MATLAB Structure for Initialization

You can initialize a bus signal using a MATLAB structure that explicitly defines the
initial conditions for the bus signal.

61 Using Composite Signals

61-76

For example, in the Initial conditions parameter of the Unit Delay block, you could
type in a structure such as shown below:

MATLAB Variable for Initialization

You can initialize a bus signal using a MATLAB variable that you define as an IC
structure with the appropriate values.

For example, you could define the following partial structure in the base workspace:

K = struct('A', struct('A1', 3), 'B', 4);

You can then specify the K structure as the Initial conditions parameter of the Unit
Delay block:

 Specify Initial Conditions for Bus Signals

61-77

Simulink.Parameter for Initialization

You can initialize a bus signal using a Simulink.Parameter object that uses an IC
structure for the Value property.

For example, you could define the partial structure P in the base workspace (reflecting
the ex_busic model discussed in the previous section):

P = Simulink.Parameter;

P.DataType = 'Bus: Top';

P.Value = Simulink.Bus.createMATLABStruct('Top');

P.Value.A.A1 = 3;

P.Value.B = 5;

You can then specify the P structure as the Initial conditions parameter of the Unit
Delay block:

61 Using Composite Signals

61-78

Initialize Arrays of Buses

To specify a unique initial value for each of the individual signals in an array of
buses, you can use an array of initial condition structures. Each structure in the array
initializes one of the buses.

Initialize an Array of Buses

Suppose that you define the bus types MyData and PressureBus.

Suppose that you set the data type of the signal element temperature to int16, and the
data type of the elements s1 and s2 to double.

To specify initial conditions for an array of buses, you can create a variable whose value
is an array of initial condition structures.

 Specify Initial Conditions for Bus Signals

61-79

initValues(1).temperature = int16(5);

initValues(1).pressure.s1 = 9.87;

initValues(1).pressure.s2 = 8.71;

initValues(2).temperature = int16(20);

initValues(2).pressure.s1 = 10.21;

initValues(2).pressure.s2 = 9.56;

initValues(3).temperature = int16(35);

initValues(3).pressure.s1 = 8.98;

initValues(3).pressure.s2 = 9.17;

The variable initValues provides initial conditions for a signal that is an array of three
buses. You can use initValues to specify the Initial condition parameter of a block
such as Unit Delay.

Alternatively, you can use a single scalar structure to specify the same initial conditions
for all of the buses in the array.

initStruct.temperature = int16(15);

initStruct.pressure.s1 = 10.32;

initStruct.pressure.s2 = 9.46;

If you specify initStruct in the Initial condition parameter of a block, each bus
in the array uses the same initial value, 15, for the signal element temperature.
Similarly, the buses use the initial value 10.32 for the element pressure.s1 and the
value 9.46 for the element pressure.s2.

To create an array of structures for a bus that uses a large hierarchy of signal elements,
consider using the function Simulink.Bus.createMATLABStruct.

Initialize Nested Arrays of Buses

Create an initial condition structure for a complicated signal hierarchy that includes
nested arrays of buses.

1 In the Bus Editor, create the bus objects MyData and PressureBus.

61 Using Composite Signals

61-80

2 In the hierarchy pane, select the bus element pressure. Set the Dimensions
property to [1 3].

3 Create an array of four initialization structures by using the function
Simulink.Bus.createMATLABStruct. Store the array in the variable
initStruct. Initialize all of the individual signals to the ground value, 0.

initStruct=Simulink.Bus.createMATLABStruct('MyData',[],[1 4]);

4 In the base workspace, double-click the variable initStruct to view it in the
variable editor.

The four structures in the array each have the fields temperature and pressure.
5 Double-click one of the pressure fields to inspect it.

The value of each of the four pressure fields is an array of three substructures.
Each substructure has the fields s1 and s2.

6 To provide unique initialization values for the signals in an array of buses, you can
specify the values manually using the variable editor.

Alternatively, you can write a script. For example, to access the field s1 of the second
substructure pressure in the third structure of initStruct, use this code:

initStruct(3).pressure(2).s1 = 15.35;

Setting Diagnostics to Support Bus Signal Initialization

To enable bus signal initialization, before you start a simulation, set the following two
Configuration Parameter diagnostics as indicated:

 Specify Initial Conditions for Bus Signals

61-81

• In the Configuration Parameters > Diagnostics > Connectivity pane, set “Mux
blocks used to create bus signals” to error.

• Configuration Parameters > Diagnostics > Data Validity pane, set
“Underspecified initialization detection” to simplified.

The documentation for these diagnostics explains how convert your model to handle error
messages the diagnostics generate.

61 Using Composite Signals

61-82

Combine Buses into an Array of Buses

In this section...

“What Is an Array of Buses?” on page 61-82
“Benefits of an Array of Buses” on page 61-83
“Array of Buses Limitations” on page 61-84
“Define an Array of Buses” on page 61-86
“See Also” on page 61-87

Tip Simulink provides several techniques for combining signals into a composite signal.
For a comparison of techniques, see “Techniques for Combining Signals” on page 61-3.

What Is an Array of Buses?

An array of buses is an array whose elements are buses. Each element in an array of
buses must be nonvirtual and must have the same bus type. Each bus object has the
same signal name, hierarchy, and attributes for its bus elements.

An example of using an array of buses is to model a multi-channel communication
system. You can model all of the channels using the same bus object, although each of the
channels could have a different value.

Using arrays of buses involves:

• Using a bus object as a data type (see “Specify a Bus Object Data Type” on page 55-34)
• Specifying dimensions for the bus and bus elements

For an example of a model that uses an array of buses, open the sldemo_bus_arrays
model. In this example, the nonvirtual bus input signals connect to a Vector Concatenate
or Matrix Concatenate block that creates an array of bus signals. When you update the
diagram, the model looks like the following figure:

 Combine Buses into an Array of Buses

61-83

The model uses the array of buses with:

• An Assignment block, to assign a bus in the array
• A For Each Subsystem block, to perform iterative processing over each bus in the

array
• A Memory block, to output the array of buses input from the previous time step

Benefits of an Array of Buses

Using an array of buses:

• Represents structured data compactly

61 Using Composite Signals

61-84

• Reduces model complexity
• Reduces maintenance by centralizing algorithms used for processing multiple

buses
• Streamlines iterative processing of multiple buses of the same type, for example, by

using a For Each Subsystem with the array of buses
• Simplifies changing the number of buses, without your having to restructure the rest

of the model or make updates in multiple places in the model
• Allows models to use built-in blocks, such as the Assignment or Selector blocks,

to manipulate arrays of buses just like arrays of any other type, rather than your
creating custom S-functions to manage packing and unpacking structure signals

• Supports using the combined bus data across subsystem boundaries, model reference
boundaries, and into or out of a MATLAB Function block

• Allows you to keep all the logic in the Simulink model, rather than splitting the logic
between C code and the Simulink model

• Supports integrated consistency and correctness checking, maintaining metadata
in the model, and avoids your keeping track of model components in two different
environments

• Generates code that has an array of C structures, which you can integrate with legacy
C code that uses arrays of structures

• Simplifies indexing into an array for Simulink computations, using a for loop on
indexed structures

Array of Buses Limitations

Bus Limitations

The buses combined into an array must all:

• Be nonvirtual
• Have the same bus type (that is, same name, hierarchies, and attributes for the bus

elements)
• Have no variable-size signals or frame-based signals

Supported Blocks

You can use arrays of buses with the following blocks:

 Combine Buses into an Array of Buses

61-85

• Virtual blocks
• Several nonvirtual blocks, such as:

• Some signal routing blocks (for example, Data Store Memory, Merge, and Switch)
• Rate Transition and Zero-Order Hold blocks

• Several additional blocks, such as Assignment, MATLAB Function, and Signal
Conversion

For a complete list, see “Blocks That Support Arrays of Buses” on page 61-88. That
section describes requirements for using the supported blocks.

Structure Parameter Limitations

To initialize an array of buses with structure parameters, you can use:

• The number 0. In this case, all of the individual signals in the array of buses use the
initial value 0.

• A scalar struct that represents the same hierarchy of fields and field names as the
bus type. In this case, the scalar structure expands to initialize each of the individual
signals in the array of buses.

• An array of structures that specifies an initial value for each of the individual signals
in the array of buses.

You cannot use partial structures.

If you use an array of structures, all of the structures in the array must have the same
hierarchy of fields. Each field in the hierarchy must have the same characteristics across
the array:

• Field name
• Numeric data type, such as single or int32
• Complexity
• Dimensions

For more information about specifying initial conditions for bus signals, see “Specify
Initial Conditions for Bus Signals” on page 61-65.

Signal Logging Limitation

Simulink does not log signals inside referenced models in Rapid Accelerator mode.

61 Using Composite Signals

61-86

Stateflow Limitations

Stateflow action language does not support arrays of buses.

Define an Array of Buses

For information about the kinds of buses that you can combine into an array of buses, see
“Bus Limitations” on page 61-84.

To define an array of buses, use a Concatenate block. The table describes the array of
buses input requirements and output for each of the Vector Concatenate and the Matrix
Concatenate versions of the Concatenate block.

Block Bus Signal Input Requirement Output

Vector
Concatenate

Vectors, row vectors, or
columns vectors

If any of the inputs are row or
column vectors, output is a row or
column vector.

Matrix
Concatenate

Signals of any dimensionality
(scalars, vectors, and matrices)

Trailing dimensions are assumed to
be 1 for lower dimensionality inputs.

Concatenation is on the dimension
that you specify with the
Concatenate dimension
parameter.

Note: Do not use a Mux block or a Bus Creator block to define an array of buses. Instead,
use a Bus Creator block to create scalar bus signals.

1 Define one bus object to use for all of the buses that you want to combine into an
array of buses. For information about defining bus objects, see “Create Bus Objects”
on page 61-31.

The sldemo_bus_arrays model defines an sldemo_bus_arrays_busobject bus
object, which both of the Bus Creator blocks use for the input bus signals (Scalar
Bus) for the array of buses.

2 Add a Vector Concatenate or Matrix Concatenate block to the model and open
the block’s parameters dialog box.

 Combine Buses into an Array of Buses

61-87

The sldemo_bus_arrays_busobject model uses a Vector Concatenate block,
because the inputs are scalars.

3 Set the Number of inputs parameter to be the number of buses that you want to be
in the array of buses.

The block icon displays the number of input ports that you specify.
4 Set the Mode parameter to match the type of the input bus data.

In the sldemo_bus_arrays model, the input bus data is scalar, so the Mode
setting is Vector.

5 If you use a Matrix Concatenation block, set the Concatenate dimension
parameter to specify the output dimension along which to concatenate the input
arrays. Enter one of the following values:

• 1 — concatenate input arrays vertically
• 2 — concatenate input arrays horizontally
• A higher dimension than 2 — perform multidimensional concatenation on the

inputs
6 Connect to the Concatenate block all of the buses that you want to be in the array of

buses.

See Also

For details about working with an array of buses, see:

• “Arrays of Buses in Models” on page 61-88
• “Code Generation for Arrays of Buses” on page 61-109

For information about converting an existing model, see “Convert Models to Use Arrays
of Buses” on page 61-95.

61 Using Composite Signals

61-88

Arrays of Buses in Models

In this section...

“Blocks That Support Arrays of Buses” on page 61-88
“Arrays of Buses with Bus-Related Blocks” on page 61-90
“Set Up a Model to Use Arrays of Buses” on page 61-90
“Set Diagnostic” on page 61-94
“Signal Line Style” on page 61-94

Blocks That Support Arrays of Buses

The following blocks support arrays of buses:

• Virtual blocks (see “Nonvirtual and Virtual Blocks” on page 31-2)
• These nonvirtual blocks:

• Data Store Memory

• Data Store Read

• Data Store Write

• Memory

• Merge

• Multiport Switch

• Rate Transition

• Switch

• Unit Delay

• Zero-Order Hold

• Assignment

• MATLAB Function

• Matrix Concatenate

• Selector

• Signal Conversion

• Vector Concatenate

• Width

 Arrays of Buses in Models

61-89

• Two-Way Connection (a Simscape block)

Block Parameter Settings

The following table describes the block parameter settings for blocks that support arrays
of buses. This information is also in the reference pages for each of these blocks.

For usage information for bus-related blocks, see “Arrays of Buses with Bus-Related
Blocks” on page 61-90.

Block Block Parameters Settings

Memory Initial condition — You can specify this parameter
with:

• The value 0. In this case, all of the individual signals
in the array of buses use the initial value 0.

• An array of structures that specifies an initial
condition for each of the individual signals in the
array of buses.

• A single scalar structure that specifies an initial
condition for each of the elements that the bus type
defines. Use this technique to specify the same initial
conditions for each of the buses in the array.

Merge • Allow unequal port widths — Clear this parameter.
• Number of inputs — Set to a value of 2 or greater.
• Initial condition — You can specify this parameter

with:

• The value 0. In this case, all of the individual
signals in the array of buses use the initial value 0.

• An array of structures that specifies an initial
condition for each of the individual signals in the
array of buses.

• A single scalar structure that specifies an initial
condition for each of the elements that the bus type
defines. Use this technique to specify the same
initial conditions for each of the bus signals in the
array.

61 Using Composite Signals

61-90

Block Block Parameters Settings

Multiport Switch Number of data ports — Set to a value of 2 or greater.
Signal Conversion Output — Set to Signal copy.
Switch Threshold — Specify a scalar threshold.

Arrays of Buses with Bus-Related Blocks

To select a signal within an array of buses:

1 Use a Selector block to find the appropriate bus within the array of buses.
2 Use a Bus Selector block to select the signal.

To assign a value to a signal within an array of buses:

1 Use a Bus Assignment block to assign a value to a bus element.
2 Use the Assignment block to assign the bus to the array of buses.

Bus Selector and Bus Assignment blocks can only accept scalar buses, not arrays of
buses.

A Bus Creator block can accept an array of buses as input, but cannot have an array of
buses as output.

For details, see “Set Up a Model to Use Arrays of Buses” on page 61-90.

Set Up a Model to Use Arrays of Buses

Setting up a model to use an array of buses usually involves basic tasks similar to these:

1 Define the array of buses (see “Define an Array of Buses” on page 61-86).
2 Add a subsystem for performing iterative processing on each element of the array of

buses. For example, use a For Each Subsystem block or an Iterator block.

Perform Iterative Processing

You can perform iterative processing on the bus signal data of an array of
buses using blocks such as a For Each Subsystem block, a While Iterator

 Arrays of Buses in Models

61-91

Subsystem block, or a For Iterator Subsystem block. You can use one of these
blocks to perform the same kind of processing on each bus in the array of buses, or on
a selected subset of buses in the array of buses.

3 Connect the array of buses signal from the Concatenate block to the iterative
processing subsystem.

4 Model your scalar algorithm within the iterative processing subsystem (for example,
a For Each subsystem).

a Operate on the array of buses (using Selector and Assignment blocks).
b Use the Bus Selector and Bus Assignment blocks to select elements from, or

assign elements to, a scalar bus within the subsystem.

Assign values into an array of buses

Use an Assignment block to assign values to specified elements in a bus array.

For example, in the sldemo_bus_arrays model, the Assignment block assigns the
value to the first element of the array of buses.

To assign bus elements within a bus signal, use the Bus Assignment block. The
input for the Bus Assignment block must be a scalar bus signal.

61 Using Composite Signals

61-92

Select bus elements from an array of buses

Use a Selector block to select elements of an array of buses. The input array
of buses can have any dimension. The output bus signal of the Selector block is a
selected or reordered set of elements from the input array of buses.

For example, the sldemo_bus_arrays model uses Selector blocks to select elements
from the array of buses signal that the Assignment and For Each Subsystem blocks
outputs. In this example, the block parameters dialog box for the Selector block that
selects the first element looks like this:

To select bus elements within a bus signal, use the Bus Selector block. The input
for the Bus Selector block must be a scalar bus signal.

5 Optionally, import or log array of buses data.

Import array of buses data

Use a root Inport block to import (load) an array of structures of MATLAB
timeseries objects for an array of buses. You can import partial data into the array
of buses.

 Arrays of Buses in Models

61-93

For details, see “Import Array of Buses Data” on page 57-94.

You cannot use a From Workspace or From File block to import data for an array of
buses.

Log Array of Buses Signals

To export an array of buses signal, you must log the signal, using the Signal
Properties dialog box.

Set the Configuration Parameters > Data Import/Export > Signal logging
format to Dataset. For more information, see “Save Runtime Data from
Simulation”.

Note: Simulink does not log signals inside referenced models in Rapid Accelerator
mode.

To access the signal logging data for a specific signal in an array of buses, navigate
through the structure hierarchy and specify the index to the specific signal. For
details, see “Access Array of Buses Signal Logging Data” on page 57-25.

The resulting model includes these components.

61 Using Composite Signals

61-94

Set Diagnostic

Before you run a simulation on a model that uses an array of buses, in the
Configuration Parameters > Diagnostics > Connectivity pane, check that the
Mux blocks used to create bus signals parameter uses the default setting of error.

Signal Line Style

After you create an array of buses and update the diagram, the line style for the array of
buses signal is a thicker version of the signal line style for a nonvirtual bus signal.

For example, in the sldemo_bus_arrays model, the Scalar Bus signal is a nonvirtual
bus signal, and the Bus Array output signal of the Concatenate block is an array of
buses signal.

 Convert Models to Use Arrays of Buses

61-95

Convert Models to Use Arrays of Buses

There are several reasons to convert a model to use an array of buses (see “Benefits of an
Array of Buses” on page 61-83). For example:

• The model was developed before Simulink supported arrays of buses (introduced in
R2010b), and the model contains many subsystems that perform the same kind of
processing.

• The model that has grown in complexity.

General Conversion Approach

This section presents a general approach for converting a model that contains buses to
a model that uses an array of buses. The method that you use depends on your model.
For details about these techniques, see “Combine Buses into an Array of Buses” on page
61-82 and “Arrays of Buses in Models” on page 61-88.

This workflow refers to a stylized example model. The example shows the original
modeling pattern and a new modeling pattern that uses an array of buses.

61 Using Composite Signals

61-96

In the original modeling pattern:

• The target bus signal to be converted is named MainBus, and it has three elements,
each of type BusObject.

• The ScalarAlgorithm1, ScalarAlgorithm2, and ScalarAlgorithm3 subsystems
encapsulate the algorithms that operate on each of the bus elements. The subsystems
all have the same content.

• A Bus Selector block picks out each element of MainBus to drive the subsystems.

The construction in the original modeling pattern is inefficient for two reasons:

 Convert Models to Use Arrays of Buses

61-97

• A copy of the subsystem that encapsulates the algorithm is made for each element of
the bus that is to be processed.

• Adding another element to MainBus involves changing the bus object definition
and the Bus Selector block, and adding a new subsystem. Each of these changes is a
potential source of error.

To convert the original modeling pattern to use an array of buses:

1 Identify the target bus and associated algorithm that you want to convert. Typically,
the target bus signal is a bus of buses, where each element bus signal is of the same
type.

• The bus that you convert must be a nonvirtual bus. You can convert a virtual bus
to a nonvirtual bus if all elements of the target bus have the same sample time
(or if the sample time is inherited).

• The target bus cannot have variable-dimensioned and frame-based elements.
2 Use a Concatenate block to convert the original bus of buses signal to an array of

buses.

In the example, the new modeling pattern uses a Vector Concatenate block to
replace the Bus Creator block that creates the MainBus signal. The output of the
Vector Concatenate block is an array of buses, where the type of the bus signal is
BusObject. The new model eliminates the wrapper bus signal (MainBus).

3 Replace all identical copies of the algorithm subsystem with a single For-Each
subsystem that encapsulates the scalar algorithm. Connect the array of buses signal
to the For-Each subsystem.

The new model eliminates the Bus Selector blocks that separate out the elements of
the MainBus signal in the original model.

4 Configure the For Each Subsystem block to iterate over the input array of buses
signal and concatenate the output bus signal.

The scalar algorithm within the For-Each subsystem cannot have continuous states.
For additional limitations, see the For Each Subsystem block documentation.

61 Using Composite Signals

61-98

Repeat an Algorithm Using a For Each Subsystem

If you repeat algorithms in a diagram by copying and pasting blocks and subsystems,
maintaining the model can become difficult. Individual signal lines and subsystems can
crowd the diagram, reducing readability and making simple changes difficult. At the
same time, many variables can crowd workspaces, reducing model portability. A model
can develop these efficiency issues as you add to the design over time.

To repeat an algorithm, you can iterate the algorithm over signals, subsystems, and
parameters that are grouped into arrays and structures. This example shows how to
convert an inefficiently complex repetitive algorithm into a compact form that is easier to
manage.

In this section...

“Explore Example Model” on page 61-98
“Reduce Signal Line Density with Buses” on page 61-99
“Repeat Algorithm Using For Each Subsystem Blocks and Arrays of Buses” on page
61-102
“Organize Parameters into Arrays of Structures” on page 61-105
“Inspect the Converted Model” on page 61-107

Explore Example Model

1 Open the example model ex_repeat_algorithm. The model creates about 30 variables
in the base workspace.

2 Inspect the subsystem Burner_1_Analysis. This subsystem executes an algorithm by
using the base workspace variables as parameters in blocks such as Constant and
Discrete-Time Integrator.

3 Inspect the subsystems Burner_2_Analysis and Burner_3_Analysis. All three
subsystems execute the same algorithm but use different workspace variables to
parameterize the blocks.

4 Inspect the three Analysis_Delay subsystems. These subsystems repeat a different
algorithm from the one in the Analysis subsystems.

5 Return to the top level of the model. The Memory blocks delay the input signals
before they enter the Analysis_Delay subsystems.

 Repeat an Algorithm Using a For Each Subsystem

61-99

6 Look at the Data Import/Export pane of the Configuration Parameters dialog box.
The model uses the variables SensorsInput and t as simulation inputs.

During simulation, each of the nine columns in the matrix variable SensorsInput
provides input data for an Inport block at the top level of the model.

Reduce Signal Line Density with Buses

You can use buses to group related signals into a single structured signal, reducing line
density and improving model readability.

Each subsystem in the example model requires three signal inputs. You can combine
each group of three signals into a single bus.

You could modify all of the subsystems in the example model to use buses. However,
because some of the subsystems are identical, you can delete them and later replace them
with For Each Subsystem blocks.

1 Open the Bus Editor.

buseditor

2 Create a bus type SensorData with three signal elements: sensor1, sensor2, and
sensor3.

3 Delete the blocks as shown in the figure, leaving only the Burner_1_Sensor1 and
Burner_1_Delay1 blocks as inputs to the two remaining subsystems.

61 Using Composite Signals

61-100

4 On the Signal Attributes tab of the Burner_1_Sensor1 Inport block dialog box, set
Data type to Bus: SensorData.

The output of the block is a bus signal that contains the three signal elements
sensor1, sensor2, and sensor3.

5 Open the subsystem Burner_1_Analysis. Delete the signal output lines of the three
Inport blocks. Delete the In2 and In3 Inport blocks.

6 Add a Bus Selector block to the right of the In1 Inport block. Connect the Inport
block output to the Bus Selector block.

7 In the Bus Selector block dialog box, select the signals sensor1, sensor2, and
sensor3.

 Repeat an Algorithm Using a For Each Subsystem

61-101

The Bus Selector block extracts the three signal elements from the input bus. Other
blocks in the model can use the extracted signal elements.

8 In the subsystem, connect the blocks as shown.

61 Using Composite Signals

61-102

9 In the subsystem Burner_1_Analysis_Delay, use a Bus Selector block to extract
the signals in the bus. Use the same technique as you did in the subsystem
Burner_1_Analysis.

Repeat Algorithm Using For Each Subsystem Blocks and Arrays of Buses

A For Each Subsystem block partitions an input signal, and sequentially executes an
algorithm on each partition. For example, if the input to the subsystem is an array of six
signals, you can configure the subsystem to execute the same algorithm on each of the six
signals.

You can use For Each subsystems to repeat an algorithm in an iterative fashion. This
approach improves model readability and allows you to easily change the repeated
algorithm.

1 Add two For Each Subsystem blocks to the model. Name one of the subsystems
Burner_Analysis. Name the other subsystem Burner_Analysis_Delay.

2 Copy the contents of the subsystem Burner_1_Analysis into the subsystem
Burner_Analysis. Before you paste the blocks, delete the Inport and Outport blocks
in the For Each subsystem.

3 In the For Each block dialog box in the Burner_Analysis subsystem, select the check
box to partition the input In1.

4 Copy the contents of the subsystem Burner_1_Analysis_Delay into the subsystem
Burner_Analysis_Delay.

 Repeat an Algorithm Using a For Each Subsystem

61-103

5 In the For Each block dialog box in the Burner_Analysis_Delay subsystem, select the
check box to partition the input In1.

6 At the top level of the model, delete the subsystems Burner_1_Analysis and
Burner_1_Analysis_Delay. Connect the new For Each Subsystem blocks in their
place.

7 On the Signal Attributes tab of the Burner_1_Sensor1 Inport block dialog box, set
Port dimensions to 3.

The block output is a three-element array of buses. The For Each subsystems in the
model repeat an algorithm for each of the three buses in the array.

8 Create a Simulink.SimulationData.Dataset object that the Inport block can use to
import the simulation data. You can use this code to create the object and store it in
the variable SensorsInput.

% First, create an array of structures whose field values are

% timeseries objects.

for i = 1:3 % Burner number

 % Sensor 1

 eval(['tempInput(1,' num2str(i) ').sensor1 = ' ...

 'timeseries(t,SensorsInput(:,' num2str(3*(i-1)+1) '));'])

 % Sensor 2

 eval(['tempInput(1,' num2str(i) ').sensor2 = ' ...

 'timeseries(t,SensorsInput(:,' num2str(3*(i-1)+2) '));'])

 % Sensor 3

 eval(['tempInput(1,' num2str(i) ').sensor3 = ' ...

 'timeseries(t,SensorsInput(:,' num2str(3*(i-1)+3) '));'])

end

% Create the Dataset object.

SensorsInput = Simulink.SimulationData.Dataset;

SensorsInput = addElement(SensorsInput,tempInput,'element1');

clear tempInput t i

The code first creates a variable tempInput that contains an array of three
structures. Each structure has three fields that correspond to the signal elements

61 Using Composite Signals

61-104

in the bus type SensorData, and each field stores a MATLAB timeseries object.
Each timeseries object stores one of the nine columns of data from the variable
SensorsInput, which stored the simulation input data for each of the sensors.

The code then overwrites SensorsInput with a new
Simulink.SimulationData.Dataset object, and adds tempInput as an element
of the object.

9 On the Data Import/Export pane of the Configuration Parameters dialog box, set
Input to SensorsInput.

Since SensorsInput provides simulation input data in the form of timeseries
objects, you do not need to specify a variable that contains time data.

10 Create an array of structures to initialize the remaining Memory block, and store the
array in the variable initForDelay. Specify the structure fields with the values of
the existing initialization variables such as initDelay_1_sensor1.

for i = 1:3 % Burner number

 % Sensor 1

 eval(['initForDelay(' num2str(i) ').sensor1 = ' ...

 'initDelay_' num2str(i) '_sensor1;'])

 % Sensor 2

 eval(['initForDelay(' num2str(i) ').sensor2 = ' ...

 'initDelay_' num2str(i) '_sensor2;'])

 % Sensor 3

 eval(['initForDelay(' num2str(i) ').sensor3 = ' ...

 'initDelay_' num2str(i) '_sensor3;'])

end

To view the contents of the new variable initForDelay, double-click the variable
name in the base workspace. The variable contains an array of three structures that
each has three fields: sensor1, sensor2, and sensor3.

 Repeat an Algorithm Using a For Each Subsystem

61-105

11 In the Memory block dialog box, set Initial condition to initForDelay.

The Memory block output is an array of buses that requires initialization. Each
signal element in the array of buses acquires an initial value from the corresponding
field in the array of structures.

Organize Parameters into Arrays of Structures

The base workspace contains many variables that the example model uses for block
parameters. To reduce the number of workspace variables, package them into arrays of
structures, and use the individual structure fields to specify block parameters.

A For Each Subsystem block can partition an array of values that you specify as a mask
parameter. Each iteration of the subsystem uses a single partition of the array to specify
block parameters. If you specify the parameter as an array of structures, each iteration of
the subsystem can use one of the structures in the array.

1 Create an array of structures to parameterize the Burner_Analysis For Each
subsystem, and store the array in the variable paramsNormal. Specify the structure
fields by using the values of existing parameter variables such as gainNormal_1,
offsetNormal_1, and initDelayed_1.

for i = 1:3

 eval(['paramsNormal(' num2str(i) ').gain = gainNormal_' num2str(i) ';'])

 eval(['paramsNormal(' num2str(i) ').offset = offsetNormal_' num2str(i) ';'])

 eval(['paramsNormal(' num2str(i) ').init = initNormal_' num2str(i) ';'])

end

The variable contains an array of three structures that each has three fields: gain,
offset, and init.

61 Using Composite Signals

61-106

2 In the model, right-click the Burner_Analysis For Each subsystem and select Mask
> Create Mask.

3 On the Parameters & Dialog pane of the dialog box, under Controls, click Edit.
For the new mask parameter, set Prompt to Parameter structure and Name to
paramStruct. Click OK.

4 In the mask for the Burner_Analysis subsystem, set Parameter structure to
paramsNormal.

5 Open the subsystem. In the For Each block dialog box, on the Parameter Partition
pane, select the check box to partition the parameter paramStruct. Set Partition
dimension to 2.

6 For the blocks in the subsystem, set these parameters.

Block Parameter Name Parameter Value

Gain Gain paramStruct.gain

Discrete-Time Integrator Initial condition paramStruct.init

Constant Constant value paramStruct.offset

7 Create an array of structures to parameterize the Burner_Analysis_Delay For Each
subsystem, and store the array in the variable paramsForDelay.

for i = 1:3

 eval(['paramsForDelay(' num2str(i) ').gain = gainDelayed_' num2str(i) ';'])

 eval(['paramsForDelay(' num2str(i) ').offset = offsetDelayed_' num2str(i) ';'])

 eval(['paramsForDelay(' num2str(i) ').init = initDelayed_' num2str(i) ';'])

end

8 At the top level of the model, right-click the Burner_Analysis_Delay For Each
subsystem and select Mask > Create Mask.

9 On the Parameters & Dialog pane of the dialog box, under Controls, click Edit.
For the new mask parameter, set Prompt to Parameter structure and Name to
paramStruct. Click OK.

10 In the mask for the For Each Subsystem block, set Parameter structure to
paramsForDelay.

11 Open the subsystem. In the For Each block dialog box, on the Parameter Partition
pane, select the check box to partition the parameter paramStruct. Set Partition
dimension to 2.

12 For the blocks in the subsystem, set these parameters.

 Repeat an Algorithm Using a For Each Subsystem

61-107

Block Parameter Name Parameter Value

Gain Gain paramStruct.gain

Discrete-Time Integrator Initial condition paramStruct.init

Constant Constant value paramStruct.offset

13 Clear the unnecessary variables from the base workspace.

% Clear the old parameter variables that you replaced

% with arrays of structures

clear -regexp _

% Clear the iteration variables

clear i

The model requires very few variables in the base workspace.

Inspect the Converted Model

Update the diagram to view the new signal and subsystem organization.

The model input is an array of three bus signals. The model uses two For Each
subsystems to execute the two algorithms on each of the three bus signals in the input
array.

61 Using Composite Signals

61-108

In the base workspace, arrays of structures replace the many variables that the model
used. Mathematically, the modified model behaves the same way it did when you started
because the arrays of structures contain the values of all of the old variables.

To view the completed model, open the example model ex_repeat_algorithm_complete.

See Also
For Each Subsystem | Simulink.Bus

Related Examples
• “Convert Models to Use Arrays of Buses” on page 61-95
• “Import Bus Data to Root-Level Input Ports” on page 57-91
• “Specify Initial Conditions for Bus Signals” on page 61-65
• “Organize Related Parameters in Structures and Arrays of Structures” on page

32-20
• “Create Block Libraries” on page 36-19

More About
• “Buses” on page 61-5
• “Bus Objects” on page 61-23

 Code Generation for Arrays of Buses

61-109

Code Generation for Arrays of Buses

When you generate code for a model that includes an array of buses, a typedef that
represents the underlying bus type appears in the *_types.h file.

Code generation produces an array of C structures that you can integrate with legacy
C code that uses arrays of structures. As necessary, code for bus variables (arrays) are
generated in the following structures:

• Block IO
• States
• External inputs
• External outputs

Here is a simplified example of some generated code for an array of buses.

61 Using Composite Signals

61-110

Bus Data Crossing Model Reference Boundaries

A model reference boundary refers to the boundary between a model that contains a
Model block and the referenced model. If you have bus data in a model that is passed to a
Model block, then that data crosses the boundary to the referenced model.

To have bus data cross model reference boundaries:

1 Use a bus object (Simulink.Bus) to define the bus. For details, see “Create a
Nonvirtual Bus” on page 61-16.

You can use a nonvirtual or a virtual bus as an input to a referenced model. If you
use a virtual bus, Simulink automatically converts it to a nonvirtual bus (for details,
see “Automatic Bus Conversion” on page 61-13). Simulink requires that each model
reference inport use contiguous memory, which nonvirtual buses provide. Using a
nonvirtual bus provides a well-defined data interface for code generation.

2 Consider stripping out unneeded data from bus objects crossing model reference
boundaries.

In large models, bus objects can become quite large and have several levels of
hierarchy. Often referenced models need some, but not all, of the data contained
in large buses. Passing unneeded data across model reference boundaries impacts
performance negatively. The interface definition for a model should specify exactly
what data the model uses.

Connect Multi-Rate Buses to Referenced Models

In a model that uses a fixed-rate solver, referenced models can input only single-rate
buses. However, you can input the signals in a multi-rate bus to a referenced model by
inserting blocks into the parent and referenced model as follows:

1 In the parent model: Insert a Rate Transition block to convert the multi-rate
bus to a single-rate bus. The Rate Transition block must specify a rate in its Block
Parameters > Output port sample time field unless one of the following is true:

• The Configuration Parameters > Solver pane specifies a rate:

• Periodic sample time constraint is Specified
• Sample time properties contains the specified rate.

 Bus Data Crossing Model Reference Boundaries

61-111

• The Inport that accepts the bus in the referenced model specifies a rate in its
Block Properties > Signal Attributes > Sample time field.

2 In the referenced model: Use a Bus Selector block to pick out signals of
interest, and use Rate Transition blocks to convert the signals to the desired
rates.

61 Using Composite Signals

61-112

Buses and Libraries

When you define a library block, the block can input, process, and output buses just as an
ordinary subsystem can.

You need to provide the appropriate input bus signal if:

• You have a bus routing block (Bus Creator, Bus Selector, or Bus Assignment) block
that is in a library.

• That block depends on signals that are input to the library.

To change that block in a library, perform these steps. For details about modifying
library links, see “Work with Library Links” on page 36-8.

1 Copy the library block that uses that block to a model that connects an input bus.
2 Disable the link to the library block in this model.
3 Edit the bus routing block within the context of the outside model.
4 Resolve the link to the library.
5 In the Link Tool, in Push/Restore Mode, select Push to place the edited content

into the library.
6 Save the library.

Alternatively, to configure the library to supply an appropriate bus signal, use a bus
object to lock in the data type at the interface of a library subsystem block .

 Prevent Bus and Mux Mixtures

61-113

Prevent Bus and Mux Mixtures

In this section...

“What Are Bus and Mux Signal Mixtures?” on page 61-113
“Why Avoid Mixing Bus and Mux Signals?” on page 61-114
“When to Configure a Model to Prevent Bus and Mux Mixtures?” on page 61-115
“Two Upgrade Procedures” on page 61-115

What Are Bus and Mux Signal Mixtures?

A Simulink mux signal is a virtual signal that graphically combines two or more scalar or
vector signals into one signal line. All of the signals in a mux signal must have the same
data type and complexity. For more information, see “Mux Signals” on page 60-11.

Bus signals can contain signals of different data types and complexities.

A bus and mux mixture occurs when some blocks treat a signal as a mux, while other
blocks treat that same signal as a bus, as described below.

Mux Block That Creates a Virtual Bus

One way that a model can mix bus and mux signals is when a Mux block creates a virtual
bus. For example:

• A signal from a Mux block connects to a Bus Selector block.

• Mux and Demux blocks combine a signal with different attributes (for example, data
type or complexity).

61 Using Composite Signals

61-114

Bus Signal Treated as a Mux Signal

A second way that a model can mix bus and mux signals is when the model treats a bus
signal as if it is a mux signal. For example:

• Bus Creator block that creates a signal to be used as a vector.

• Bus Creator block that creates a signal to be used as a vector.

Why Avoid Mixing Bus and Mux Signals?

Mixing bus and mux signals in a model causes your model to be less robust. Configuring
your model to prevent bus and mux mixtures:

• Improves loop handling
• Produces clear error messages

 Prevent Bus and Mux Mixtures

61-115

• Contributes to consistent edit and compile time behavior

Configuring your model to prevent bus and mux mixtures not only makes your model
more robust, it also allows you to update your model to take advantage of several
features that you could not otherwise use, including:

• Nonzero initialization of bus signals
• Bus support for blocks such as Constant, Data Store Memory, From File, From

Workspace, To File, and To Workspace
• Signal Hierarchy Viewer
• Signal label propagation enhancements
• Arrays of buses

When to Configure a Model to Prevent Bus and Mux Mixtures?

Configure a model to prevent bus and mux mixtures if all of the following conditions
apply — the model:

• Was created before R2013b
• Contains one of the following: Bus Creator, Bus Selector, or Bus Assignment block, or

a bus object
• Has Configuration Parameters > Diagnostics > Connectivity > Mux blocks

used to create bus signals set to none or warning

Even if a model created before R2013b does not require that you configure it to prevent
bus and mux mixtures, you may want to update it anyway. Doing so facilitates making
future modifications to the model to use buses or features that require that the model is
configured to prevent bus and mux mixtures.

Starting in R2013b, when you create a new model, Simulink automatically configures the
model to avoid bus and mux mixtures. Simulink sets the Mux blocks used to create
bus signals parameter to error. Then, when you do a model update or simulate the
model, Simulink reports an error if you introduce a bus and mux mixture.

Two Upgrade Procedures

Configuring a model to prevent bus and mux mixtures involves performing these
procedures:

61 Using Composite Signals

61-116

• “Correct Mux Blocks That Create Bus Signals” on page 61-117
• “Correct Buses Used as Muxes” on page 61-122

The procedure to correct muxes that create bus signals not only configures your model to
identify when you introduce a bus and mux mixture, it also automatically changes your
model to correct many of the instances of such mixtures.

 Correct Mux Blocks That Create Bus Signals

61-117

Correct Mux Blocks That Create Bus Signals

In this section...

“Choose the Appropriate Procedure” on page 61-117
“Models Without Model Referencing” on page 61-117
“Models With Model Referencing” on page 61-118
“Address Compatibility Issues After Running Upgrade Advisor” on page 61-119

Choose the Appropriate Procedure

The procedure that you perform depends on whether or not a model uses model
referencing. Use the appropriate procedure, as described in:

• “Models Without Model Referencing” on page 61-117
• “Models With Model Referencing” on page 61-118

Models Without Model Referencing

1 Save a copy of the existing model and simulation results for the model.

Because you might need to make several changes to your model during the
conversion process, it can help to have the original model for reference and for
comparing simulation results.

2 Open the Upgrade Advisor. In the Simulink Editor, select Analysis > Model
Advisor > Upgrade Advisor.

3 Select Check for Mux blocks used to create bus signals.
4 Click Run this check.
5 Click Modify. The Upgrade Advisor replaces Mux blocks with Bus Creator blocks

and sets the Mux blocks used to create bus signals configuration parameter to
error.

The Upgrade Advisor closes any models that it checks that contain library links.
6 If necessary, reopen the model. Rerun the check to confirm that the model passes.

If the check fails, go to step 7.

61 Using Composite Signals

61-118

7 Update your model to address the applicable modeling patterns described in
“Address Compatibility Issues After Running Upgrade Advisor” on page 61-119
and rerun the check.

Models With Model Referencing

In a model that uses model referencing, the Upgrade Advisor upgrades the top model, but
not the referenced model. To make the upgrade process more efficient for models that use
model referencing, use one of the following approaches:

• For models that reference a small number of models (for example, five), in the
Upgrade Advisor, run the Analyze model hierarchy for upgrade issues check.
This check addresses bus and mux signal mixture issues for each referenced model.

The steps for using the Upgrade Advisor are the same as described in “Models
Without Model Referencing” on page 61-117.

• For models that have many referenced models (for example, more than five), use
find_mdlrefs and slreplace_mux to find Mux blocks and replace them with Bus
Creator blocks. You can create a script based on the following pattern.

[refMdls,~] = find_mdlrefs(mdl, true);

% run through reference models and top model

 for i = 1:length(refMdls)

 load_system(refMdls{i});

 % Add code if any model uses referenced configuration sets

 slreplace_mux(refMdls{i},false) % reportonly = false;

 save_system(refMdls{i});

 close_system(refMdls{i});

 end

If a model does not compile, address the applicable modeling patterns described in
“Address Compatibility Issues After Running Upgrade Advisor” on page 61-119 and
rerun the Analyze model hierarchy for upgrade issues check or, for models with
many referenced models, the script.

 Correct Mux Blocks That Create Bus Signals

61-119

Address Compatibility Issues After Running Upgrade Advisor

For many models, running the Upgrade Advisor modifies your model so that Mux
blocks no longer create bus signals. However, for some models you might encounter
compatibility issues even after running the check. You need to modify your model
manually to address those issues.

Also, after you compile the model using Upgrade Advisor, the Simulink Editor sometimes
indicates that the model needs to be saved (that is, that the model is dirty), even though
you did not make any changes. Save the model to prevent this issue from reoccurring for
this model.

Modeling Pattern Issue Solution

Demux block with
Bus selection mode
enabled

You cannot use a Demux block
to select bus signals.

Replace the Demux block with a
Bus Selector block.

If a Demux block has input
from a Mux block, change the
Mux block to a Bus Creator.

Data Store Memory
block with Data
Type set to
Inherit: auto

A Data Store Memory block
whose associated Data Store
Read or Data Store Write
blocks read or write bus signal
data must use a bus object.

In the Data Store Memory
block, set the Data Type
signal attribute to Bus:
<BusObject>.

Signal Conversion
block Output
parameter matches
input bus type

A Signal Conversion block
whose Output parameter is set
to Nonvirtual bus requires a
virtual bus input.

A Signal Conversion block
whose Output parameter is
set to Virtual bus requires a
nonvirtual bus input.

To create a copy of the input
signal, set Output to Signal
copy.

Merge, Switch, or
Multiport Switch
block with multiple
bus inputs

Merge, Switch, and Multiport
Switch blocks with multiple
bus inputs require all of those
inputs to have the same names
and hierarchy.

Reconfigure the model so that
the bus inputs all have the
same names and hierarchy.

To view the names and
hierarchy of the bus signals,

61 Using Composite Signals

61-120

Modeling Pattern Issue Solution

use the “Signal Hierarchy
Viewer” on page 61-7 .

Root Inport block
outputting a virtual
bus and specifying
a value for Port
dimensions

A root Inport block that outputs
to a virtual bus must inherit
the dimensions.

Set the Inport block Port
dimensions signal attribute to
1 or -1 (inherit).

Mux block with
nonvirtual bus inputs

A Mux block cannot accept
nonvirtual bus signals.

To treat the output as an array,
replace the Mux block with a
Vector Concatenate block.

If you want a virtual bus
output, use a Bus Creator block
to combine the signals.

Bus to Vector block
without a virtual bus
signal input

A nonbus signal does not need a
Bus to Vector block.

Remove the Bus to Vector
block.

Assignment block
with virtual bus
inputs

The Upgrade Advisor converts
the Assignment block Y0 port
bus input to a vector.

Add a Bus to Vector block
before the Assignment block.

S-function using a
nonvirtual bus

An S-function that is not a
Level-2 C S-function does not
support nonvirtual bus signals.

Change the S-function to be a
Level-2 C S-function.

Consider using an S-Function
Builder block to create a
Level-2 C S-function.

Stateflow chart with
parameterized data
type

In a Stateflow chart, you cannot
parameterize the data type of
an input or output in terms of
another input or output if the
data type is a bus object.

For the parameterized port, set
Data Type to Bus: <object
name>.

Subsystem with
bus operations in a
Stateflow chart

An Inport block inside a
subsystem in a Stateflow chart
requires a bus object data type
if its signal is a bus.

In the Inport block, set Data
type to Bus: <object name>.

 Correct Mux Blocks That Create Bus Signals

61-121

Modeling Pattern Issue Solution

Ground block used as
a bus source

The output signal of a Ground
block cannot be a source for a
bus.

Use a Constant block with
Constant value set to 0 and
the Output data type signal
attribute set to Bus: <object
name>.

Root Outport block
with a single-element
bus object data type

The input to the Outport block
must be a bus if it specifies a
bus object as its data type.

In the Outport block, set Data
type to Inherit: auto.

61 Using Composite Signals

61-122

Correct Buses Used as Muxes
In this section...

“Three Approaches” on page 61-122
“Use the Model Advisor” on page 61-122
“Explicitly Add Bus to Vector Blocks” on page 61-122
“Reorganize the Model” on page 61-124
“Bus to Vector Block Compatibility Issues” on page 61-125

Three Approaches

The three approaches that you can use to correct bus signals used as muxes are:

• “Use the Model Advisor” on page 61-122
• “Explicitly Add Bus to Vector Blocks” on page 61-122
• “Reorganize the Model” on page 61-124

Generally, using the Model Advisor is the most efficient approach.

Use the Model Advisor

Before you use the Model Advisor to correct bus signals used as a muxes, perform the
steps described in “Correct Mux Blocks That Create Bus Signals” on page 61-117.

1 Open the Model Advisor from the Upgrade Advisor, or in the Simulink Editor, select
Analysis > Model Advisor > Model Advisor.

2 Select and run the Simulink > Check bus usage check.

The Model Advisor reports any cases of bus signals treated as muxes.
3 Follow the Model Advisor suggestions to correct any errors reported by the check.

For additional information about using the Model Advisor, see “Consulting the Model
Advisor” on page 5-2.

Explicitly Add Bus to Vector Blocks

You can explicitly add Bus to Vector blocks to convert the bus signal to a mux
(vector), using one of these approaches:

 Correct Buses Used as Muxes

61-123

• Insert the Bus to Vector block into any bus used implicitly as a mux to explicitly
convert the bus to a mux (vector).

• Use the Simulink.BlockDiagram.addBusToVector function, which automatically
inserts Bus to Vector blocks wherever needed.

For example, this model uses a bus signal as a mux signal by using the bus as an input to
a Gain block. The Scope block shows the simulation results.

This figure shows the same model, rebuilt after inserting a Bus to Vector block after the
Bus Creator block.

61 Using Composite Signals

61-124

The results of simulation are the same in either case. The Bus to Vector block is virtual,
and does not affect simulation results, code generation, or performance.

Reorganize the Model

You can replace blocks manually to avoid using bus signals as muxes. Change the
sources for a block that require vector inputs to avoid feeding a bus signal into a block
that requires vector input.

For example, in the following model, the Gain block requires a vector signal. However,
the input signal is a bus signal created by a Bus Creator block.

Change the Bus Creator block to a Mux block to provide the required vector signal for the
Gain block.

 Correct Buses Used as Muxes

61-125

Challenges with reorganizing the model manually include:

• Identifying all of the occurrences in a model. (The Model Advisor check identifies all
occurrences in the model and helps you to correct them.)

• Dealing with many occurrences in a model is time-consuming and error-prone.
• Reorganizing the model to address this issue can interfere with other aspects of the

model.

Bus to Vector Block Compatibility Issues

If you use Save As to save a model in a version of the Simulink product before R2007a
(V6.6), Simulink:

• Sets the StrictBusMsg parameter to error if its value is
WarnOnBusTreatedAsVector or ErrorOnBusTreatedAsVector.

• Replaces each Bus to Vector block in the model with a null subsystem that outputs
nothing.

The resulting model specifies strong type checking for Mux blocks used to create buses.
Before you can use the model, you must reconnect or otherwise correct each signal that
contained a Bus to Vector block but is now interrupted by a null subsystem.

61 Using Composite Signals

61-126

Buses in Generated Code

If you have a Simulink Coder license, the various techniques for defining buses are
essentially equivalent for simulation, but the techniques used can make a significant
difference in the efficiency, size, and readability of generated code. For example, a
nonvirtual bus appears as a structure in generated code, and only one copy exists of any
algorithm that uses the bus. The use of a structure in the generated code can be helpful
when tracing the correspondence between the model and the code. For example, below is
the generated code for Bus Creator block in the ex_bus_logging model.

A virtual bus does not appear as a structure or any other coherent unit in generated code,
and a separate copy of any algorithm that manipulates the bus exists for each element.

Using buses properly results in efficient code and visually clean models. If you intend to
generate production code for a model that uses buses, see “Code Generation with Buses”
for information about the best techniques to use.

 Composite Signal Limitations

61-127

Composite Signal Limitations

• Buses that contain signals of enumerated data types cannot pass through a block that
requires a nonzero scalar initial value (such as a Unit Delay block).

• Root level bus outputs cannot be logged using the Configuration Parameters >
Data Import/Export > Save to Workspace > Output option. Use standard signal
logging instead, as described in “Export Signal Data Using Signal Logging” on page
57-36.

• Inputs to a Bus Creator block must have unique names. If there are duplicate names,
the Bus Creator block appends (signal#) to all input signal names, where # is the
input port index.

62

Working with Variable-Size Signals

• “Variable-Size Signal Basics” on page 62-2
• “Simulink Models Using Variable-Size Signals” on page 62-6
• “S-Functions Using Variable-Size Signals” on page 62-20
• “Simulink Block Support for Variable-Size Signals” on page 62-23
• “Variable-Size Signal Limitations” on page 62-27

62 Working with Variable-Size Signals

62-2

Variable-Size Signal Basics

In this section...

“About Variable-Size Signals” on page 62-2
“Creating Variable-Size Signals” on page 62-2
“How Variable-Size Signals Propagate” on page 62-3
“Empty Signals” on page 62-4
“Subsystem Initialization of Variable-Size Signals” on page 62-4
“See Also” on page 62-5

About Variable-Size Signals

A Simulink signal can be a scalar, vector (1-D), matrix (2-D), or N-D. For information
about these types of signals, see “Signal Basics” on page 60-2 in the Simulink User's
Guide.

A Simulink variable-size signal is a signal whose size (the number of elements in a
dimension), in addition to its values, can change during a model simulation. However,
during a simulation, the number of dimensions cannot change. This capability allows you
to model systems with varying resources, constraints, and environments.

Creating Variable-Size Signals

You can create variable-size signals in your Simulink model by using:

• Switch or Multiport Switch blocks with different input ports having fixed-size signals
with different sizes. The output is a variable-size signal.

• A selector block and the Starting and ending indices (port) indexing option.
The index port signal can specify different subregions of the input data signal which
produce an output signal of variable size as the simulation progresses.

• The S-function block with the output port configured for a variable-size signal. The
output includes not only the values but also the dimension of the signal.

 Variable-Size Signal Basics

62-3

How Variable-Size Signals Propagate

In the Simulink environment, variable-size signals can change their size during model
execution in one of two ways:

• At every step of model execution.

Various blocks in the model modify the sizes of the signals during execution of the
output method.

• Only during initialization of conditionally executed subsystems.

Size changes occur during distinct mode-switching events in subsystems such as
Action, Enable, and Function-Call subsystems.

You can see the key difference by considering a Discrete 2-Tap Filter block with states.

Discrete 2-Tap Filter

Assume that the input signal dimension to this filter changes from 4 to 1 during
simulation. It is ambiguous when and how the states of the Unit Delay blocks should
adapt from 4 to 1 to continue processing the input. To ensure consistency, both Unit
Delay blocks must change their state behavior synchronously. To prevent ambiguity,
Simulink generally disallows blocks whose number of states depends on input signal
sizes in contexts where signal sizes change at any point during execution.

In contrast, consider the same Discrete 2-Tap Filter block in a Function-Call subsystem.
Assume that this subsystem is using the second way to propagate variable-size signals.
In this case, the size of the input signal changes from 4 to 1 only at the initialization
of the subsystem. At initialization, the subsystem resets all of its states (including the

62 Working with Variable-Size Signals

62-4

states of the two Unit Delay blocks) to their initial values. Resetting the subsystem
ensures no ambiguity on the assignment of states to the input signal of the filter.

“Mode-Dependent Variable-Size Signals” on page 62-14 shows how you can use the
two ways of propagating variable-size signals in a complementary fashion to model
complex systems.

Empty Signals

An empty signal is a signal with a length of 0. For example, signals with size [0], [0x3],
[2x0], and [2x0x3] are all empty signals. Simulink allows empty signals with variable-
size signals and supports most element-wise operations. However, Simulink does not
support empty signals for blocks that modify signal dimensions. Unsupported blocks
include Reshape, Permute, and Sum along a specified dimension.

Subsystem Initialization of Variable-Size Signals

The initial signal size from an Outport block in a conditionally executed subsystem varies
depending on the parameters you select.

If you set the Propagate sizes of variable-size signals parameter in the parent
subsystem to During execution, the Initial output parameter for the Output block
must not exceed the maximum size of the input port. If the Initial output parameter
value is:

Initial output parameter Initial output signal size

A nonscalar matrix The initial output signal size is the size of
the Initial output parameter.

A scalar The initial output signal size is a scalar.
The default [] The initial output size is an empty signal

(dimensions are all zeros).

If you set the Propagate sizes of variable-size signals parameter in the parent
subsystem to Only when enabling, the Initial output parameter for the Output block
must be a scalar value.

• When size is repropagated for the input of the Outport block, the initial output value
is set using scalar expansion from the scalar parameter value.

 Variable-Size Signal Basics

62-5

• If the Initial output parameter is the default value [], Simulink treats the initial
output as a grounded value.

• If the model does not activate the parent subsystem at start time (t = 0), the current
size of the subsystem output corresponding to the Outport block is set to maximum
size.

• When its parent subsystem repropagates signal sizes, the values of the subsystem
variable-size output signals are also reset to their initial output parameter values.

See Also

• “Simulink Models Using Variable-Size Signals” on page 62-6
• “S-Functions Using Variable-Size Signals” on page 62-20
• “Simulink Block Support for Variable-Size Signals” on page 62-23
• “Variable-Size Signal Limitations” on page 62-27

62 Working with Variable-Size Signals

62-6

Simulink Models Using Variable-Size Signals

In this section...

“Variable-Size Signal Generation and Operations” on page 62-6
“Variable-Size Signal Length Adaptation” on page 62-10
“Mode-Dependent Variable-Size Signals” on page 62-14
“See Also” on page 62-19

Variable-Size Signal Generation and Operations

This example model shows how to create a variable-size signal from multiple fixed-size
signals and from a single data signal. It also shows some of the operations you can apply
to variable-size signals.

For a complete list of blocks that support variable-size signals, see “Simulink Block
Support for Variable-Size Signals” on page 62-23.

1 In the MATLAB Command Window, type

sldemo_varsize_basic

2 In the Simulink Editor, select Display > Signals & Ports > Signal Dimensions.
Run a simulation or press Ctrl-D.

The Simulink Editor displays the signal dimensions and line styles. See “Signal
Basics” on page 60-2 for an interpretation of signal line styles.

 Simulink Models Using Variable-Size Signals

62-7

Creating a Variable-Size Signal from Fixed-Size Signals

One way to create a variable-size signal is to use the Switch block. The input signals to
the Switch block can differ in their number of dimensions and in their size.

62 Working with Variable-Size Signals

62-8

Output from the Switch block is a 2-D variable-size signal with a maximum size of 3x2.
When you select the Allow different data input sizes parameter on the Switch block,
Simulink does not expand the scalar value from the Constant1 block.

Saving Variable-Size Signal Data

You could add a To Workspace block to the output from the Switch block. Since the
model already has a To Workspace block, the second To Workspace block would save
data to a signal array named simout2 The values field logs the actual signal values.
If logged signal data is smaller than the maximum size, values are padded with NaNs or
appropriate values. To obtain these signal values, type:

simout2.signals.values

ans(:,:,1) =

 1 -1

 -2 2

 -3 3

ans(:,:,2) =

 1 -1

 -2 2

 -3 3

ans(:,:,3) =

 Simulink Models Using Variable-Size Signals

62-9

 0 NaN

 NaN NaN

 NaN NaN

The valueDimensions field logs the dimensions of a variable-size signal. To obtain the
dimensions, type:

simout2.signals.valueDimensions

The signal dimensions for the first three time steps are shown.

ans =

 3 2

 3 2

 1 1

Creating a Variable-Size Signal from a Single Data Signal

The data signal (Constant5) is a 3x4 matrix. The Pulse Generator represents a control
signal that selects a starting and ending index value ([1 2] or [1 3]). The Selector
block then uses the index values to select different parts of the data signal at each time
step and output a variable-size signal.

62 Working with Variable-Size Signals

62-10

Viewing Changes in Signal Size

The output from the Selector block is either a 2x2 or 3x3 matrix. Because the maximum
dimension for a variable-size signal is the 3x4 matrix from the data signal, the logged
output signals are padded with NaNs.

Use the Probe or Width blocks to inspect the current dimensions and width of a variable-
size signal. In addition, you can display variable-size signals on Scope blocks and save
variable-size signals to the workspace using the To Workspace block.

Processing Variable-Size Signals

The remainder of the model shows various operations that are possible with variable-
size signals. Operations include using the Gain block, the Sum block, the Math Function
block, the Matrix Concatenate block. You can connect variable-size signals with the
From, Goto, Bus Assignment, Bus Creator, and Bus Selector blocks.

Variable-Size Signal Length Adaptation

This example model corresponds to a hypothetical system where the model adapts the
length of a signal over time. Length adaptation is based on the value of a control signal.
When the control signal falls within one of three predefined ranges, the fixed-size raw
data signal changes to a variable-size data signal.

The variable-size signal connects to a processing block, where blocks that support
variable-size signals operate on it. A MATLAB Function block with both input and
output signals of variable size allow more flexibility than other blocks supporting
variable-size signals. See “Simulink Block Support for Variable-Size Signals” on page
62-23.

To open the example model, in the MATLAB Command Window, type:

sldemo_varsize_dataLengthAdapt

 Simulink Models Using Variable-Size Signals

62-11

Creating a Variable-Size Signal by Adapting the Length of a Data Signal

This model generates a data signal and converts the signal to a variable-size signal.
The size of the signal depends on the value of a control signal. The raw data signal is a
column vector with values from 1 to 9.

[1:9].'

ans =

 1

 2

 3

 4

 5

 6

 7

 8

 9

The Size Selection subsystem determines the quality of the data signal and outputs a
quality value (1, 2, or 3). This value helps to select the length of the data signal in the
Length Adaptation subsystem.

62 Working with Variable-Size Signals

62-12

In the Length Adaptation subsystem, the Signal Size subsystem generates an index
based on the quality value from the Size Selection subsystem (In2). The Data Selector
block uses the starting and ending indices to adapt the length of the data signal (In1) and
output a variable-size signal.

Processing a Variable-Size Signal

The center section of the model processes the variable-size signal. The MATLAB
Function block adds zeros between the data values in a way that is similar to upsampling
a signal. The dimension of the signal changes from 9 to 18. The Math Function blocks
shows various manipulations you can do with variable-size signals.

 Simulink Models Using Variable-Size Signals

62-13

Visualizing a Variable-Size Signal

The right section of the model determines the signal width (size) and uses a scope to
visualize the width and the processed data signal.

62 Working with Variable-Size Signals

62-14

Mode-Dependent Variable-Size Signals

This example model represents a system that has three operation modes. For each mode,
the data signal to process has a different size.

The Process subsystem in this model receives a variable-size signal where the size of the
signal depends on the operation mode of the system. For each mode change, the Stateflow
chart, Mode Control Logic, detects when the data signal size changes. It then generates a
function call to reset the blocks in the Process subsystem.

To open the model, In the MATLAB Command Window, type:

sldemo_varsize_multimode

Creating a Variable-Size Signal Based on Mode

The Mode Selection subsystem determines the mode for processing a data signal and
outputs a mode value (1, 2, or 3). This value helps to select the length of the data signal
using the Size Selection and Data subsystems.

The Size Selection subsystem creates an index value from the mode value. In this
example, the index values are [1 3], [1 2], and [1 1].

 Simulink Models Using Variable-Size Signals

62-15

The Data subsystem takes a data signal (Constant block) and selects part of the data
signal dependent on the mode. The output is a variable-size signal with a matrix size of
3x3, 2x2, and 1x1.

The dimensions of the raw data signal (Constant block) is a 3x3. After connecting a To
Workspace block to a signal line, you can view the signal in the MATLAB Command
Window by typing:

simout.signals.values

ans(:,:,1) =

 1 4 7

 2 5 8

 3 6 9

The variable-size signal generated from the Data subsystem is also a 3x3 matrix. For
shorter signals, the matrix is padded with NaNs.

62 Working with Variable-Size Signals

62-16

simout.signals.values

ans(:,:,1) =

 1 NaN NaN

 NaN NaN NaN

 NaN NaN NaN

ans(:,:,2) =

 1 4 NaN

 2 5 NaN

 NaN NaN NaN

ans(:,:,3) =

 1 4 7

 2 5 8

 3 6 9

Processing a Variable-Size Signal with a Conditionally Executed Subsystem

Because the Process subsystem contains a Delay block, the subsystem resets and
repropagates the signal at each time step. This model uses a Stateflow chart to detect a
signal size change and reset the Process subsystem.

In the function block dialog, and from the Propagate sizes of variable-size signals
list, choose Only when enabling. When the model enables this subsystem, selecting
this option directs the Simulink software to propagate sizes for variable-size signals
inside the conditionally executed subsystem. Signal sizes can change only when they
transition from disabled to enabled. For an explanation of handling signal-size changes
with blocks containing states, see “How Variable-Size Signals Propagate” on page 62-3.

 Simulink Models Using Variable-Size Signals

62-17

The Stateflow chart determines if there is a change in the size of the signal. The function
size_detect calculates the width of the variable-size signal at each time step, and
compares the current width to the previous width. If there is a change in signal size, the
chart outputs a function-call output event that resets and repropagates the signal sizes
within the Process subsystem.

Visualizing Data

Use the Probe block to visualize signal size and signal dimension.

62 Working with Variable-Size Signals

62-18

Since the signals are n x n matrices, the signal dimension lines overlap in the Scope
display.

You can use a Display block and the Simulink Debugger to visualize signal values at
each time step.

 Simulink Models Using Variable-Size Signals

62-19

See Also

• “Variable-Size Signal Basics” on page 62-2
• “S-Functions Using Variable-Size Signals” on page 62-20
• “Simulink Block Support for Variable-Size Signals” on page 62-23
• “Variable-Size Signal Limitations” on page 62-27

62 Working with Variable-Size Signals

62-20

S-Functions Using Variable-Size Signals

In this section...

“Level-2 MATLAB S-Function with Variable-Size Signals” on page 62-20
“C S-Function with Variable-Size Signals” on page 62-21
“See Also” on page 62-22

Level-2 MATLAB S-Function with Variable-Size Signals

Both Level-2 MATLAB S-Functions and C S-Functions support variable-size signals
when you set the DimensionMode for the output port to Variable. You also need to
consider the current dimension of the input and output signals in the input and output
update methods.

To open this example model, in the MATLAB Command Window, type:

msfcndemo_varsize

 S-Functions Using Variable-Size Signals

62-21

The Enabled subsystem includes a Level-2 MATLAB S-Function which shows how to
implement a block that holds its states until reset. Because this block contains states and
delays the input signal, the input size can change only when a reset occurs.

The Expand block is a Level-2 MATLAB S-Function that takes a scalar input and
outputs a vector of length indicated by its input value. The output is by 1:n where n is
the input value.

C S-Function with Variable-Size Signals

To open this example model, in the MATLAB Command Window, type:

sfcndemo_varsize

The enabled subsystems have two S-Functions:

• sfun_varsize_holdStatesUntilReset is a C S-Function that has states and requires its
DWorks vector to reset whenever the sizes of the input signal changes.

62 Working with Variable-Size Signals

62-22

• sfun_varsize_concat1D is a C S-function that implements the concatenation of two
unoriented vectors. You can use this function within an enabled subsystem by itself.

See Also

• “Variable-Size Signal Basics” on page 62-2
• “Simulink Models Using Variable-Size Signals” on page 62-6
• “Simulink Block Support for Variable-Size Signals” on page 62-23
• “Variable-Size Signal Limitations” on page 62-27

 Simulink Block Support for Variable-Size Signals

62-23

Simulink Block Support for Variable-Size Signals

In this section...

“Simulink Block Data Type Support” on page 62-23
“Conditionally Executed Subsystem Blocks” on page 62-23
“Switching Blocks” on page 62-24
“See Also” on page 62-26

Simulink Block Data Type Support

The Simulink Block Data Type Support table includes a complete list of blocks that
support variable-size signals.

To view the table:

1 Open a Simulink model.
2 Select Help > Simulink > Block Data Types & Code Generation Support >

Simulink.

An X in the Variable-Size Support column indicates support for that block.

Tip You can also view the table by entering showblockdatatypetable at the command
prompt.

Conditionally Executed Subsystem Blocks

Control port blocks are in conditionally executed subsystems. You can set the Propagate
sizes of variable-size signals parameter for these blocks to During exection, Only
when execution is resumed (Action Port), and Only when enabling (Enable and
Trigger or Function-Call).

62 Working with Variable-Size Signals

62-24

• Action Port

• Enable

• Trigger — Trigger type set to function-call

Switching Blocks

Switching blocks support variable-size signals by allowing input signals with different
sizes and propagating the size of the input signal to the output signal. You can set the

 Simulink Block Support for Variable-Size Signals

62-25

Allow different data input sizes parameter for these blocks on the Signal Attributes
pane to either on or off.

• Switch

• Multiport Switch

• Manual Switch

62 Working with Variable-Size Signals

62-26

See Also

• “Variable-Size Signal Basics” on page 62-2
• “Simulink Models Using Variable-Size Signals” on page 62-6
• “S-Functions Using Variable-Size Signals” on page 62-20
• “Variable-Size Signal Limitations” on page 62-27

 Variable-Size Signal Limitations

62-27

Variable-Size Signal Limitations

The following table is a list of known limitations and workarounds.

Limitation Workaround

Array format logging does not support
variable-size signals.

Use a Structure or Structure With
Time format for logging variable-size
signals.

Right-click signal logging does not support
variable-size signals.

Use a To Workspace block (with
Structure or Structure With Time
format) or a root Outport block for logging
variable-size signals.

A frame-based variable-size signal cannot
change the frame length (first dimension
size), but it can change the second
dimension size (number of channels). Using
frame-based signals requires DSP System
Toolbox software.

Use the Frame Conversion block to convert
a signal into sample-based signal.

Variable-size signals must have a discrete
sample time.

—

Embedded Coder does not support variable-
size signals with ERT S-functions, custom
storage classes, function prototype control,
the AUTOSAR, C++ interface, and the ERT
reusable code interface.

—

Simulink does not support variable-size
parameter or DWork vectors.

—

Rapid accelerator mode does not support
models having root-level input ports with
variable-size signals.

—

See Also

• “Variable-Size Signal Basics” on page 62-2
• “Simulink Models Using Variable-Size Signals” on page 62-6
• “S-Functions Using Variable-Size Signals” on page 62-20

62 Working with Variable-Size Signals

62-28

• “Simulink Block Support for Variable-Size Signals” on page 62-23

Customizing Simulink
Environment and Printed Models

63

Customizing the Simulink User
Interface

• “Add Items to Model Editor Menus” on page 63-2
• “Disable and Hide Model Editor Menu Items” on page 63-15
• “Disable and Hide Dialog Box Controls” on page 63-17
• “Customize the Library Browser” on page 63-22
• “Registering Customizations” on page 63-25

63 Customizing the Simulink User Interface

63-2

Add Items to Model Editor Menus
In this section...

“About Adding Items” on page 63-2
“Code for Adding Menu Items” on page 63-2
“Define Menu Items” on page 63-4
“Register Menu Customizations” on page 63-9
“Callback Info Object” on page 63-10
“Debugging Custom Menu Callbacks” on page 63-10
“Menu Tags” on page 63-11

About Adding Items

You can add commands and submenus to the following menu locations for the Simulink
Editor and Stateflow Editor:

• The end of top-level menus
• The menu bar
• The beginning or end of a context menu

To add an item to an editor menu:

• For each item, create a function, called a schema function, that defines the item (see
“Define Menu Items” on page 63-4).

• Register the menu customizations with the Simulink customization manager at
startup, e.g., in an sl_customization.m file on the MATLAB path (see “Register
Menu Customizations” on page 63-9).

• Create callback functions that implement the commands triggered by the items that
you add to the menus.

Code for Adding Menu Items

The following sl_customization.m file adds four items to the Simulink Editor’s Tools
menu.
function sl_customization(cm)

 Add Items to Model Editor Menus

63-3

 %% Register custom menu function.

 cm.addCustomMenuFcn('Simulink:ToolsMenu', @getMyMenuItems);

end

%% Define the custom menu function.

function schemaFcns = getMyMenuItems(callbackInfo)

 schemaFcns = {@getItem1,...

 @getItem2,...

 {@getItem3,3}... %% Pass 3 as user data to getItem3.

 @getItem4};

end

%% Define the schema function for first menu item.

function schema = getItem1(callbackInfo)

 schema = sl_action_schema;

 schema.label = 'Item One';

 schema.userdata = 'item one';

 schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)

 disp(['Callback for item ' callbackInfo.userdata ' was called']);

end

function schema = getItem2(callbackInfo)

 % Make a submenu label 'Item Two' with

 % the menu item above three times.

 schema = sl_container_schema;

 schema.label = 'Item Two';

 schema.childrenFcns = {@getItem1, @getItem1, @getItem1};

end

function schema = getItem3(callbackInfo)

 % Create a menu item whose label is

 % 'Item Three: 3', with the 3 being passed

 % from getMyItems above.

 schema = sl_action_schema;

 schema.label = ['Item Three: ' num2str(callbackInfo.userdata)];

end

function myToggleCallback(callbackInfo)

 if strcmp(get_param(gcs, 'ScreenColor'), 'red') == 0

 set_param(gcs, 'ScreenColor', 'red');

 else

 set_param(gcs, 'ScreenColor', 'white');

 end

end

%% Define the schema function for a toggle menu item.

function schema = getItem4(callbackInfo)

 schema = sl_toggle_schema;

 schema.label = 'Red Screen';

 if strcmp(get_param(gcs, 'ScreenColor'), 'red') == 1

 schema.checked = 'checked';

63 Customizing the Simulink User Interface

63-4

 else

 schema.checked = 'unchecked';

 end

 schema.callback = @myToggleCallback;

end

Define Menu Items

You define a menu item by creating a function that returns an object, called a schema
object, that specifies the information needed to create the menu item. The menu item
that you define may trigger a custom action or display a custom submenu. See the
following sections for more information.

• “Defining Menu Items That Trigger Custom Commands” on page 63-4
• “Defining Custom Submenus” on page 63-7

Defining Menu Items That Trigger Custom Commands

To define an item that triggers a custom command, your schema function must accept a
callback info object (see “Callback Info Object” on page 63-10) and create and return
an action schema object (see “Action Schema Object” on page 63-5) that specifies
the item's label and a function, called a callback, to be invoked when the user selects the
item. For example, the following schema function defines a menu item that displays a
message when selected by the user.

function schema = getItem1(callbackInfo)

 %% Create an instance of an action schema.

 schema = sl_action_schema;

%% Specify the menu item’s label.

 schema.label = 'My Item 1';

 schema.userdata = 'item1';

 %% Specify the menu item’s callback function.

 schema.callback = @myCallback1;

end

function myCallback1(callbackInfo)

 disp(['Callback for item ' callbackInfo.userdata

 ' was called']);

end

 Add Items to Model Editor Menus

63-5

Action Schema Object

This object specifies information about menu items that trigger commands that you
define, including the label that appears on the menu item and the function to be invoked
when the user selects the menu item. Use the function sl_action_schema to create
instances of this object in your schema functions. Its properties include

• tag

Optional string that identifies this action, for example, so that it can be referenced by
a filter function.

• label

String specifying the label that appears on a menu item that triggers this action.
• state

Property that specifies the state of this action. Valid values are 'Enabled' (the
default), 'Disabled', and 'Hidden'.

• statustip

String specifying text to appear in the editor's status bar when the user selects the
menu item that triggers this action.

• userdata

Data that you specify. May be of any type.
• accelerator

String specifying a keyboard shortcut that a user may use to trigger this action. The
string must be of the form 'Ctrl+K', where K is the shortcut key. For example,
'Ctrl+T' specifies that the user may invoke this action by holding down the Ctrl key
and pressing the T key.

• callback

String specifying a MATLAB expression to be evaluated or a handle to a function to
be invoked when a user selects the menu item that triggers this action. This function
must accept one argument: a callback info object.

• autoDisableWhen

Property that controls when a menu item is automatically disabled.

63 Customizing the Simulink User Interface

63-6

Setting When Menu Items Are Disabled

'Locked' (default) When the active editor is locked
or when the model is busy

'Busy' Only if the model is busy
'Never' Never

Toggle Schema Object

This object specifies information about a menu item that toggles some object on or off.
Use the function sl_toggle_schema to create instances of this object in your schema
functions. Its properties include

• tag

Optional string that identifies this toggle action, for example, so that it can be
referenced by a filter function.

• label

String specifying the label that appears on a menu item that triggers this toggle
action.

• checked

Specify whether the menu item displays a check mark. Valid values are
'unchecked' (default) and 'checked'

• state

String that specifies the state of this toggle action. Valid values are 'Enabled'
(default), 'Disabled', and 'Hidden'.

• statustip

String specifying text to appear in the editor's status bar when the user selects the
menu item that triggers this toggle action.

• userdata

Data that you specify. May be of any type.
• accelerator

 Add Items to Model Editor Menus

63-7

String specifying a keyboard shortcut that a user may use to trigger this action. The
string must be of the form 'Ctrl+K', where K is the shortcut key. For example,
'Ctrl+T' specifies that the user may invoke this action by holding down the Ctrl key
and pressing the T key.

• callback

String specifying a MATLAB expression to be evaluated or a handle to a function to
be invoked when a user selects the menu item that triggers this action. This function
must accept one argument: a callback info object.

• autoDisableWhen

Property that controls when a menu item is automatically disabled.

Setting When Menu Items Are Disabled

'Locked' (default) When the active editor is locked
or when the model is busy

'Busy' Only if the model is busy
'Never' Never

Defining Custom Submenus

To define a submenu, create a schema function that accepts a callback info object and
returns a container schema object (see “Container Schema Object” on page 63-7)
that specifies the schemas that define the items on the submenu. For example, the
following schema function defines a submenu that contains three instances of the menu
item defined in the example in “Defining Menu Items That Trigger Custom Commands”
on page 63-4.

function schema = getItem2(callbackInfo)

 schema = sl_container_schema;

 schema.label = 'Item Two';

 schema.childrenFcns = {@getItem1, @getItem1, @getItem1};

end

Container Schema Object

A container schema object specifies a submenu’s label and its contents. Use the function
sl_container_schema to create instances of this object in your schema functions.
Properties of the object include

63 Customizing the Simulink User Interface

63-8

• tag

Optional string that identifies this submenu.
• label

String specifying the submenu’s label.
• state

String that specifies the state of this submenu. Valid values are 'Enabled' (the
default), 'Disabled', and 'Hidden'.

• statustip

String specifying text to appear in the editor's status bar when the user selects this
submenu.

• childrenFcns

Cell array that specifies the contents of the submenu. Each entry in the cell array can
be

• A pointer to a schema function that defines an item on the submenu (see “Define
Menu Items” on page 63-4)

• A two-element cell array whose first element is a pointer to a schema function that
defines an item entry and whose second element is data to be inserted as user data
in the callback info object (see “Callback Info Object” on page 63-10) passed to
the schema function

• 'separator', which causes a separator to appear between the item defined by
the preceding entry in the cell array and the item defined in the following entry.
The case is ignored for this entry (for example, 'SEPARATOR' and 'Separator'
are both valid entries). A separator is also suppressed if it appears at the
beginning or end of the submenu and separators that would appear successively
are combined into a single separator (for example, as a result of an item being
hidden).

For example, the following cell array specifies two submenu entries:

{@getItem1, 'separator', {@getItem2, 1}}

In this example, a 1 is passed to getItem2 via a callback info object.
• generateFcn

 Add Items to Model Editor Menus

63-9

Pointer to a function that returns a cell array defining the contents of the submenu.
The cell array must have the same format as that specified for the container schema
objects childrenFcns property.

Note: The generateFcn property takes precedence over the childrenFcns
property. If you set both, the childrenFcns property is ignored and the cell array
returned by the generateFcn is used to create the submenu.

• userdata

Data of any type that is passed to generateFcn.
• autoDisableWhen

Property that controls when a menu item is automatically disabled.

Setting When Menu Items Are Disabled

'Locked' (default) When the active editor is locked
or when the model is busy

'Busy' Only if the model is busy
'Never' Never

Register Menu Customizations

You must register custom items to be included on a Simulink menu with the
customization manager. Use the sl_customization.m file for a Simulink installation
(see “Registering Customizations” on page 63-25) to perform this task. In particular,
for each menu that you want to customize, your system's sl_customization
function must invoke the customization manager's addCustomMenuFcn method (see
“Customization Manager” on page 63-25). Each invocation should pass the tag of
the menu (see “Menu Tags” on page 63-11) to be customized and a custom menu
function that specifies the items to be added to the menu (see “Creating the Custom
Menu Function” on page 63-10) . For example, the following sl_customization
function adds custom items to the Simulink Tools menu.

function sl_customization(cm)

 %% Register custom menu function.

 cm.addCustomMenuFcn('Simulink:ToolsMenu', @getMyItems);

63 Customizing the Simulink User Interface

63-10

Creating the Custom Menu Function

The custom menu function returns a cell array of schema functions that define custom
items that you want to appear on the model editor menus (see “Define Menu Items” on
page 63-4). The custom menu function returns a cell array similar to that returned
by the generateFcn function.

Your custom menu function should accept a callback info object (see “Callback Info
Object” on page 63-10) and return a cell array that lists the schema functions. Each
element of the cell array can be either a handle to a schema function or a two-element
cell array whose first element is a handle to a schema function and whose second element
is user-defined data to be passed to the schema function. For example, the following
custom menu function returns a cell array that lists three schema functions.

function schemas = getMyItems(callbackInfo)

 schemas = {@getItem1, ...

 @getItem2, ...

 {@getItem3,3} }; % Pass 3 as userdata to getItem3.

end

Callback Info Object

Instances of these objects are passed to menu customization functions. Methods and
properties of these objects include:

• uiObject

Method to get the handle to the owner of the menu for which this is the callback. The
owner can be the Simulink Editor or the Stateflow Editor.

• model

Method to get the handle to the model being displayed in the editor window.
• userdata

User data property. The value of this property can be any type of data.

Debugging Custom Menu Callbacks

On systems using the Microsoft Windows operating system, selecting a custom menu
item whose callback contains a breakpoint can cause the mouse to become unresponsive

 Add Items to Model Editor Menus

63-11

or the menu to remain open and on top of other windows. To fix these problems, use the
MATLAB code debugger keyboard commands to continue execution of the callback.

Menu Tags

A menu tag is a string that identifies a Simulink Editor or the Stateflow Editor menu
bar or menu. You need to know a menu's tag to add custom items to it (see “Register
Menu Customizations” on page 63-9). You can configure the editor to display all (see
“Displaying Menu Tags” on page 63-12) but the following tags:

Tag Add...

Simulink tags
Simulink:MenuBar Menu to Simulink Editor's menu bar
Simulink:PreContextMenu Item to the beginning of Simulink Editor's context

menu
Simulink:ContextMenu Item to the end of Simulink Editor's context menu
Simulink:FileMenu Item near the end of the Simulink Editor's File

menu, but before the Exit MATLAB item
Simulink:EditMenu Item to the end of the Simulink Editor's Edit

menu
Simulink:ViewMenu Item to the end of the Simulink Editor's View

menu
Simulink:DisplayMenu Item to the end of the Simulink Editor's Display

menu
Simulink:DiagramMenu Item to the end of the Simulink Editor's Diagram

menu
Simulink:SimulationMenu Item to the end of the Simulink Editor's

Simulation menu
Simulink:AnalysisMenu Item to the end of the Simulink Editor's Analysis

menu
Simulink:CodeMenu Item to the end of the Simulink Editor's Code

menu
Simulink:ToolsMenu Item to the end of the Simulink Editor's Tools

menu
Simulink:HelpMenu Item to the end of Simulink Editor's Help menu

63 Customizing the Simulink User Interface

63-12

Tag Add...

Stateflow tags
Stateflow:MenuBar Menu to Stateflow Editor's menu bar
Stateflow:PreContextMenu Item to the beginning of Stateflow Editor's context

menu.
Stateflow:ContextMenu Items to the end of Stateflow Editor's context

menu.
Stateflow:FileMenu Item near the end of the Stateflow Editor's File

menu, but before the Exit MATLAB item
Stateflow:EditMenu Item to the end of Stateflow Editor's Edit menu
Stateflow:ViewMenu Item to the end of the Stateflow Editor's View

menu
Stateflow:DisplayMenu Item to the end of the Stateflow Editor's Display

menu
Stateflow:ChartMenu Item to the end of the Stateflow Editor's Chart

menu
Stateflow:SimulationMenu Item to the end of the Stateflow Editor's

Simulation menu
Stateflow:AnalysisMenu Item to the end of the Stateflow Editor's Analysis

menu
Stateflow:CodeMenu Item to the end of the Stateflow Editor's Code

menu
Stateflow:ToolsMenu Item to the end of the Stateflow Editor's Tools

menu
Stateflow:HelpMenu Item to the end of the Stateflow Editor's Help

menu

Displaying Menu Tags

You can configure the Simulink and Stateflow software to display the tag for a menu
item next to the item's label, allowing you to determine at a glance the tag for a menu.
The Simulink:TagName customizations appear only if the current editor is the Simulink
Editor. The Stateflow:TagName customizations appear only if the current editor is the
Stateflow Editor.

 Add Items to Model Editor Menus

63-13

To configure the editor to display menu tags, at the MATLAB command line, set the
customization manager's showWidgetIdAsToolTip property to true. For example:

cm = sl_customization_manager;

cm.showWidgetIdAsToolTip=true;

The tag of each menu item appears next to the item's label on the menu:

To turn off tag display, enter the following command at the command line:

63 Customizing the Simulink User Interface

63-14

cm.showWidgetIdAsToolTip=false;

Note: Some menu items may not work while menu tag display is enabled. To ensure that
all items work, turn off menu tag display before using the menus.

Simulink and Stateflow Editor Menu Customization

Use the same general procedures to customize Stateflow Editor menus as you use for
Simulink Editor. The addition of custom menu functions to the ends of top-level menus
depends on the active editor:

• Menus bound to Simulink:FileMenu only appear when the Simulink Editor is
active.

• Menus bound to Stateflow:FileMenu only appear when the Stateflow Editor is
active.

• To have a menu to appear in both of the editors, call addCustomMenuFcn twice, once
for each tag. Check that the code works in both editors.

 Disable and Hide Model Editor Menu Items

63-15

Disable and Hide Model Editor Menu Items

In this section...

“About Disabling and Hiding Model Editor Menu Items” on page 63-15
“Example: Disabling the New Model Command on the Simulink Editor's File Menu” on
page 63-15
“Creating a Filter Function” on page 63-15
“Registering a Filter Function” on page 63-16

About Disabling and Hiding Model Editor Menu Items

You can disable or hide items that appear on the Simulink model editor menus. To
disable or hide a menu item, you must:

• Create a filter function that disables or hides the menu item (see “Creating a Filter
Function” on page 63-15).

• Register the filter function with the customization manager (see “Registering a Filter
Function” on page 63-16).

For more information on Model Editor menu items, see:

Example: Disabling the New Model Command on the Simulink Editor's
File Menu

function sl_customization(cm)

 cm.addCustomFilterFcn('Simulink:NewModel',@myFilter);

end

function state = myFilter(callbackInfo)

 state = 'Disabled';

end

Creating a Filter Function

Your filter function must accept a callback info object and return a string that specifies
the state that you want to assign to the menu item. Valid states are

• 'Hidden'

63 Customizing the Simulink User Interface

63-16

• 'Disabled'

• 'Enabled'

Your filter function may have to compete with other filter functions and with Simulink
itself to assign a state to an item. Who succeeds depends on the strength of the state
that each assigns to the item. 'Hidden' is the strongest state. If any filter function or
Simulink assigns 'Hidden' to the item, it is hidden. 'Enabled' is the weakest state.
For an item to be enabled, all filter functions and the Simulink or Stateflow products
must assign 'Enabled'to the item. The 'Disabled' state is of middling strength. It
overrides 'Enabled' but is itself overridden by 'Hidden'. For example, if any filter
function or Simulink or Stateflow assigns 'Disabled' to a menu item and none assigns
'Hidden' to the item, the item is disabled.

Note: The Simulink software does not allow you to filter some menu items, for example,
the Exit MATLAB item on the Simulink File menu. An error message is displayed if
you attempt to filter a menu item that you are not allowed to filter.

Registering a Filter Function

Use the customization manager's addCustomFilterFcn method to register a filter
function. The addCustomFilterFcn method takes two arguments: a tag that identifies
the menu or menu item to be filtered (see “Displaying Menu Tags” on page 63-12) and
a pointer to the filter function itself. For example, the following code registers a filter
function for the New Model item on the Simulink File menu.

function sl_customization(cm)

 cm.addCustomFilterFcn('Simulink:NewModel',@myFilter);

end

 Disable and Hide Dialog Box Controls

63-17

Disable and Hide Dialog Box Controls

In this section...

“About Disabling and Hiding Controls” on page 63-17
“Disable a Button on a Dialog Box” on page 63-18
“Write Control Customization Callback Functions” on page 63-18
“Dialog Box Methods” on page 63-19
“Dialog Box and Widget IDs” on page 63-19
“Register Control Customization Callback Functions” on page 63-20

About Disabling and Hiding Controls

The Simulink product includes a customization API that allows you to disable and hide
controls (also referred to as widgets), such as text fields and buttons, on most of its dialog
boxes. The customization API allows you to disable or hide controls on an entire class of
dialog boxes, for example, parameter dialog boxes via a single method call.

Before attempting to customize a Simulink dialog box or class of dialog boxes, you must
first ensure that the dialog box or class of dialog boxes is customizable. Any dialog box
that appears in the dialog pane of Model Explorer is customizable. In addition, any dialog
box that has dialog and widget IDs is customizable. To determine whether a standalone
dialog box (i.e., one that does not appear in Model Explorer) is customizable, open the
dialog box, enable dialog and widget ID display (see “Dialog Box and Widget IDs” on page
63-19), and position the mouse over a widget. If a widget ID appears, the dialog box is
customizable.

Once you have determined that a dialog box or class of dialog boxes is customizable, you
must write MATLAB code to customize the dialog boxes. This entails writing callback
functions that disable or hide controls for a specific dialog box or class of dialog boxes (see
“Write Control Customization Callback Functions” on page 63-18) and registering
the callback functions via an object called the customization manager (see “Register
Control Customization Callback Functions” on page 63-20). Simulink then invokes
the callback functions to disable or hide the controls whenever a user opens the dialog
boxes.

For more information on Dialog Box controls, see:

63 Customizing the Simulink User Interface

63-18

Disable a Button on a Dialog Box

The following sl_customization.m file disables the Build button on the Code
Generation pane of the Configuration Parameters dialog box for any model whose name
contains “engine.”
function sl_customization(cm)

% Disable for standalone Configuration Parameters dialog box.

cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBuildButton)

% Disable for Configuration Parameters dialog box that appears in

% the Model Explorer.

cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBuildButton)

end

function disableRTWBuildButton(dialogH)

 hSrc = dialogH.getSource; % Simulink.RTWCC

 hModel = hSrc.getModel;

 modelName = get_param(hModel, 'Name');

 if ~isempty(strfind(modelName, 'engine'))

 % Takes a cell array of widget Factory ID.

 dialogH.disableWidgets({'Simulink.RTWCC.Build'})

 end

end

To test this customization:

1 Put the preceding sl_customization.m file on the path.
2 Register the customization by entering sl_refresh_customizations at

the command line or by restarting the MATLAB software (see “Registering
Customizations” on page 63-25).

3 Open the sldemo_engine model, for example, by entering the command
sldemo_engine at the command line.

Write Control Customization Callback Functions

A callback function for disabling or hiding controls on a dialog box should accept one
argument: a handle to the dialog box object that contains the controls you want to disable
or hide. The dialog box object provides methods that the callback function can use to
disable or hide the controls that the dialog box contains.

The dialog box object also provides access to objects containing information about the
current model. Your callback function can use these objects to determine whether

 Disable and Hide Dialog Box Controls

63-19

to disable or hide controls. For example, the following callback function uses these
objects to disable the Build button on the Code Generation pane of the Configuration
Parameters dialog box displayed in Model Explorer for any model whose name contains
“engine.”

function disableRTWBuildButton(dialogH)

 hSrc = dialogH.getSource; % Simulink.RTWCC

 hModel = hSrc.getModel;

 modelName = get_param(hModel, 'Name');

 if ~isempty(strfind(modelName, 'engine'))

 % Takes a cell array of widget Factory ID.

 dialogH.disableWidgets({'Simulink.RTWCC.Build'})

 end

Dialog Box Methods

Dialog box objects provide the following methods for enabling, disabling, and hiding
controls:

• disableWidgets(widgetIDs)

• hideWidgets(widgetIDs)

where widgetIDs is a cell array of widget identifiers (see “Dialog Box and Widget IDs”
on page 63-19) that specify the widgets to be disabled or hidden.

Dialog Box and Widget IDs

Dialog box and widget IDs are strings that identify a control on a Simulink dialog box.
To determine the dialog box and widget ID for a particular control, execute the following
code at the command line:

cm = sl_customization_manager;

cm.showWidgetIdAsToolTip = true

Then, open the dialog box that contains the control and move the mouse cursor
over the control to display a tooltip listing the dialog box and the widget IDs for the
control. For example, moving the cursor over the Start time field on the Solver pane
of the Configuration Parameters dialog box reveals that the dialog box ID for the

63 Customizing the Simulink User Interface

63-20

Solver pane is Simulink.SolverCC and the widget ID for the Start time field is
Simulink.SolverCC.StartTime.

Note: The tooltip displays “not customizable” for controls that are not customizable.

Register Control Customization Callback Functions

To register control customization callback functions for a particular installation of
the Simulink product, include code in the installation’s sl_customization.m file

 Disable and Hide Dialog Box Controls

63-21

(see “Registering Customizations” on page 63-25) that invokes the customization
manager’s addDlgPreOpenFcn on the callbacks.

The addDlgPreOpenFcn takes two arguments. The first argument is a dialog box
ID (see “Dialog Box and Widget IDs” on page 63-19) and the second is a pointer
to the callback function to be registered. Invoking this method causes the registered
function to be invoked for each dialog box of the type specified by the dialog box ID. The
function is invoked before the dialog box is opened, allowing the function to perform the
customizations before they become visible to the user.

The following example registers a callback that disables the Build button on the Code
Generation pane of the Configuration Parameters dialog box (see “Write Control
Customization Callback Functions” on page 63-18).
function sl_customization(cm)

 % Disable for standalone Configuration Parameters dialog box.

 cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBuildButton)

 % Disable for Configuration Parameters dialog box that appears in

 % the Model Explorer

 cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBuildButton)

end

Note: Registering a customization callback causes the Simulink software to invoke the
callback for every instance of the class of dialog boxes specified by the method’s dialog
box ID argument. This allows you to use a single callback to disable or hide a control for
an entire class of dialog boxes. In particular, you can use a single callback to disable or
hide the control for a parameter that is common to most built-in blocks. This is because
most built-in block dialog boxes are instances of the same dialog box super class.

63 Customizing the Simulink User Interface

63-22

Customize the Library Browser

In this section...

“Reorder Libraries” on page 63-22
“Disable and Hide Libraries” on page 63-22
“Reorder Blocks in Libraries” on page 63-23

Reorder Libraries

The order in which a library appears in the Library Browser is determined by its name
and its sort priority. Libraries appear in the Library Browser's tree view in ascending
order of priority, with all blocks having the same priority sorted alphabetically. The
Simulink library has a sort priority of -1 by default; all other libraries, a sort priority
of 0. This guarantees that the Simulink library is by default the first library displayed
in the Library Browser. You can reorder libraries by changing their sort priorities.
To change library sort priorities, insert a line of code of the following form in an
sl_customization.m file (see “Registering Customizations” on page 63-25) on the
MATLAB path:

cm.LibraryBrowserCustomizer.applyOrder({'LIBNAME1', PRIORITY1, ...

 'LIBNAME2, 'PRIORITY2, ...

 .

 .

 'LIBNAMEN', PRIORITYN});

where LIBNAMEn is the name of the library or its model file and PRIORITYn is an integer
indicating the library's sort priority. For example, the following code moves the Simulink
Extras library to the top of the Library Browser's tree view.

cm.LibraryBrowserCustomizer.applyOrder({'Simulink Extras', -2});

After adding or modifying the sl_customization.m file, enter
sl_refresh_customizations at the MATLAB command prompt to see the
customizations take effect.

Disable and Hide Libraries

To disable or hide libraries, sublibraries, or library blocks, insert code of the following
form in an sl_customization.m file (see “Registering Customizations” on page
63-25) on the MATLAB path:

 Customize the Library Browser

63-23

cm.LibraryBrowserCustomizer.applyFilter({'PATH1', 'STATE1', ...

 'PATH2', 'STATE2', ...

 .

 .

 'PATHN', 'STATEN'});

where PATHn is the path of the library, sublibrary, or block to be disabled or hidden
and 'STATEn' is 'Disabled' or 'Hidden'. For example, the following code hides the
Simulink Sources sublibrary and disables the Sinks sublibrary.

cm.LibraryBrowserCustomizer.applyFilter({'Simulink/Sources','Hidden'});

cm.LibraryBrowserCustomizer.applyFilter({'Simulink/Sinks','Disabled'});

After adding or modifying the sl_customization.m file, enter
sl_refresh_customizations at the MATLAB command prompt to see the
customizations take effect.

Reorder Blocks in Libraries

You can order blocks in the Library Browser alphabetically or based on their layout in
the underlying library model. This library model can be a built-in block library or your
custom library model.

To reorder the display of blocks in all libraries in the Library Browser, right-click in the
blocks pane and select Sort in library model order or Sort in alphabetical order.
This setting stays in effect from session to session.

63 Customizing the Simulink User Interface

63-24

Note: Customized sorting in the Library Browser takes precedence over library model
order or alphabetical order sorting. In the figure, the blocks pane for the Simulink
library shows the Additional Math & Discrete sublibrary last because of custom
sorting rules applied to this sublibrary.

 Registering Customizations

63-25

Registering Customizations

In this section...

“About Registering User Interface Customizations” on page 63-25
“Customization Manager” on page 63-25

About Registering User Interface Customizations

You must register your user interface customizations using a MATLAB function called
sl_customization.m. This is located on the MATLAB path of the Simulink installation
that you want to customize. The sl_customization function should accept one
argument: a handle to a customization manager object. For example:

function sl_customization(cm)

The customization manager object includes methods for registering menu and control
customizations (see “Customization Manager” on page 63-25). Your instance of the
sl_customization function should use these methods to register customizations
specific to your application. For more information, see the following sections on
performing customizations.

• “Add Items to Model Editor Menus” on page 63-2
• “Disable and Hide Model Editor Menu Items” on page 63-15
• “Disable and Hide Dialog Box Controls” on page 63-17

The sl_customization.m file is read when the Simulink software starts. If you
subsequently change the sl_customization.m file, you must restart the Simulink
software or enter the following command at the command line to effect the changes:

sl_refresh_customizations

Customization Manager

The customization manager includes the following methods:

• addCustomMenuFcn(stdMenuTag, menuSpecsFcn)

Adds the menus specified by menuSpecsFcn to the end of the standard Simulink
menu specified by stdMenuTag. The stdMenuTag argument is a string that specifies

63 Customizing the Simulink User Interface

63-26

the menu to be customized. For example, the stdMenuTag for the Simulink editor's
Tools menu is 'Simulink:ToolsMenu' (see “Displaying Menu Tags” on page 63-12
for more information). The menuSpecsFcn argument is a handle to a function that
returns a list of functions that specify the items to be added to the specified menu. See
“Add Items to Model Editor Menus” on page 63-2 for more information.

• addCustomFilterFcn(stdMenuItemID, filterFcn)

Adds a custom filter function specified by filterFcn for the standard Simulink
model editor menu item specified by stdMenuItemID. The stdMenuItemID
argument is a string that identifies the menu item. For example, the ID for the
New Model item on the Simulink editor's File menu is 'Simulink:NewModel'
(see “Displaying Menu Tags” on page 63-12 for more information) . The filterFcn
argument is a pointer to a function that hides or disables the specified menu item. See
“Disable and Hide Model Editor Menu Items” on page 63-15 for more information.

64

Frames for Printed Models

• “Print Frames” on page 64-2
• “Create a Print Frame” on page 64-6
• “Add Rows and Cells to Print Frames” on page 64-7
• “Add Content to Print Frame Cells” on page 64-9
• “Print Using Print Frames” on page 64-13

64 Frames for Printed Models

64-2

Print Frames

In this section...

“What are Print Frames?” on page 64-2
“PrintFrame Editor” on page 64-3
“Single Use or Multiple Use Print Frames” on page 64-4
“Text and Variable Content” on page 64-5

What are Print Frames?

Print frames are borders of a printed page that contain information about a block
diagram, such as the model name or the date of printing. After you create a print frame,
use the Simulink or Stateflow Editor to print a block diagram or chart with that print
frame.

The default print frame has two rows:

Rows contain one or more cells. You can add content entries to cells. You can also add
new rows and cells.

For example, the print frame below includes:

• An additional row at the top of the frame for a title

 Print Frames

64-3

• A middle row, which includes the block diagram
• A bottom row, in which one cell has the path to the subsystem and another cell has

the page number

PrintFrame Editor

Use the PrintFrame Editor to create and edit print frames.

To open the PrintFrame Editor, at the MATLAB command line, enter the frameedit
command.

64 Frames for Printed Models

64-4

Use the PrintFrame Editor to:

• Set up the printed page
• Add or remove rows and cells in the print frame
• Add content to cells, such as text, the date, and page numbers
• Format cell content

To open an existing print frame, use frameedit command with the filename
parameter, where filename is an existing print frame (a .fig file).

Single Use or Multiple Use Print Frames

You can design a print frame for one particular block diagram, or you can design a more
generic print frame for printing multiple block diagrams.

 Print Frames

64-5

Text and Variable Content

In cells, you can include text (such as the name and address of your organization) and
variable content (such as the current date).

64 Frames for Printed Models

64-6

Create a Print Frame

1 At the MATLAB prompt, type frameedit to open the PrintFrame Editor.
2 In the PrintFrame Editor, select File > Page Setup.

If necessary, change default page setup for the print frame, which is:

• Paper type — usletter
• Orientation — landscape

Note: The paper orientation you specify does not control the paper orientation
used for printing. For example, assume you specify a landscape-oriented print
frame in the PrintFrame Editor. If you want the printed page to have a landscape
orientation, you must specify that using the Print Model dialog box.

• Margins — .75 inches on all sides
3 Set up the layout of the print frame and add content. See:

• “Add Rows and Cells to Print Frames” on page 64-7
• “Add Content to Print Frame Cells” on page 64-9

4 Save the print frame as a .fig file. Select File > Save As.

 Add Rows and Cells to Print Frames

64-7

Add Rows and Cells to Print Frames
In this section...

“Add and Remove Rows” on page 64-7
“Add and Remove Cells” on page 64-7
“Resize Rows and Cells” on page 64-7

Tip Specify the print frame page setup before you create rows and cells or add content
(see “Create a Print Frame” on page 64-6.

Add and Remove Rows

You can add a row above the row that you select.

1 Click in a cell to select a row.

When you select a row, handles appear on all four corners. If you select only a line,
handles appear on two corners.

2 Click Add Row.

The new row appears above the row that you selected.

To remove a row, select the row and click Delete Row.

Add and Remove Cells

You can add cells within a row.

1 Select the cell that you want to split.
2 Click Split Cell.

The cell splits into two cells.

To remove a cell, select the cell and click Delete Cell.

Resize Rows and Cells

You can change the dimensions of a row or cell by selecting the bordering line.

64 Frames for Printed Models

64-8

1 Click the line you want to move.

A handle appears on both ends of the line.
2 Drag the line to resize the row or cell.

For example, to make a row taller, click on the top line that forms the row. Then drag the
line up and the height of the row increases.

To change the overall dimensions of the print frame, see “Create a Print Frame” on page
64-6.

 Add Content to Print Frame Cells

64-9

Add Content to Print Frame Cells

In this section...

“Types of Content” on page 64-9
“Add Content to Cells” on page 64-9
“Block Diagram” on page 64-10
“Variables” on page 64-10
“Text” on page 64-11
“Format Content in Cells” on page 64-12

Types of Content

You can add text or variables, or both, to a cell.

You must add a Block Diagram variable to one of the cells.

For details about the types of content, see:

• “Block Diagram” on page 64-10
• “Variables” on page 64-10
• “Text” on page 64-11

Add Content to Cells

1 Select the cell that you want to add content to.
2 From the list, select the type of content that you want to add.
3 Click Add.

The type of content that you added appears in the cell.

Tip If you click Add and nothing happens, it might be because you did not select a
cell first.

4 If you add text, select the edit box and type in the text. For details, see “Text” on
page 64-11.

64 Frames for Printed Models

64-10

Tip To make it easier to read and edit the content that you add, you can click the
Zoom in + button.

Include Multiple Entries in a Cell

1 Select a cell that has a content entry.
2 Add another content type item from the list.

The new entry is added after the last entry in that cell.

You can also add descriptive text to any of the variable entries without using the Text
item.

1 Double-click in the cell.
2 Type text in the edit box before or after the entry.
3 To end editing mode, click outside of the cell.

Note: You cannot include multiple entries or text in the cell that contains the Block
Diagram variable. %<blockdiagram> must be the only content in that cell.

Block Diagram

Use the Block Diagram variable to indicate the cell in which to print the block diagram.
Every print frame must include one Block Diagram variable. If you do not specify a
Block Diagram in one of the cells, you cannot save the print frame and cannot print a
block diagram with it.

Do not add any other content in a cell that contains a Block Diagram variable.

Variables

In addition to the Block Diagram variable, you can add other variables, such as the
current date, to cells. Simulink supplies variable content at the time of printing.

Variable entries include:

• Block Diagram — Add this variable in the cell in which you want the block diagram
to print. For details, see “Block Diagram” on page 64-10.

 Add Content to Print Frame Cells

64-11

• Date — The date that the block diagram and print frame are printed, in dd-mmm-
yyyy format.

• Time — The time that the block diagram and print frame are printed, in hh:mm
format.

• Page Number — The page of the block diagram being printed.
• Total Pages — The total number of pages being printed for the block diagram,

which depends on the printing options specified.
• System Name — The name of the block diagram being printed.
• Full System Name — The name of the block diagram being printed, including its

position from the root system through the current system, for example, engine/
Throttle & Manifold.

• File Name — The file name of the block diagram, for example,
sldemo_engine.mdl.

• Full File Name — The full path and file name for the block diagram, for example, \
\matlab\toolbox\simulink\simdemos\automotive\sldemo_engine.mdl.

When you enter a variable, the cell displays the type of content in brackets, <>, preceded
by a percent sign, %. For example, if you add a Page Number variable, it appears as
%<page>.

Note: Do not edit the text of a variable entry, because then the variable content does not
print. For example, if you accidentally remove the % from the %<page> entry, the text
<page> prints, instead of the actual page number.

Text

For Text content, type the text that you want to include in that cell (for example, the
name of your organization). To type additional text on a new line, press the Enter key.
When you are finished editing, click outside of the edit box.

You can copy and paste text from another document into a cell. Any formatting of the
copied text is lost.

To type special characters (for example, superscripts and subscripts, Greek letters, and
mathematical symbols), use embedded TeX sequences. For a list of allowable sequences,
see the text command String property (in Text Properties).

64 Frames for Printed Models

64-12

Format Content in Cells

You can align cell contents using the left, center, and right alignment buttons. (Block
diagrams are always center aligned.)

You can change font properties, such as size or style (for example, italics or bold). To
change font properties, select the cell, then right-click the contents and use the context
menu to format the text.

 Print Using Print Frames

64-13

Print Using Print Frames

To print using a print frame, you specify an existing print frame. If you want to build a
print frame, see “Create a Print Frame” on page 64-6.

Note: If you enable the print frame option, then Simulink does not use tiled printing.

1 In the Simulink Editor or Stateflow Editor, select File > Print > Print.
2 In the Print Model dialog box, select the Frame check box.

3 Supply the file name for the print frame you want to use. Either type the path
and file name directly in the edit box, or click the ... button and select a print
frame file you saved using the PrintFrame Editor. The default print frame file
name, sldefaultframe.fig, appears in the file name edit box until you specify a
different file name.

4 Specify other printing options in the Print Model dialog box.

64 Frames for Printed Models

64-14

Note: The paper orientation you specify with the PrintFrame Editor does not
control the paper orientation used for printing. For example, assume you specify a
landscape-oriented print frame in the PrintFrame Editor. If you want the printed
page to have a landscape orientation, you must specify that using the Print Model
dialog box.

5 Click OK.

The block diagram prints with the print frame that you specify.

Running Models on Target Hardware

65

About Run on Target Hardware
Feature

• “Simulink Supported Hardware” on page 65-2
• “Tune and Monitor Models Running on Target Hardware” on page 65-3
• “Block Produces Zeros or Does Nothing in Simulation” on page 65-7

65 About Run on Target Hardware Feature

65-2

Simulink Supported Hardware

As of this release, Simulink supports the following hardware.

Support Package Vendor Earliest Release
Available

Last Release
Available

Apple iOS Devices Apple R2015a Current
Arduino Hardware Arduino R2012a Current
BeagleBoard Hardware BeagleBoard R2012a Current
LEGO MINDSTORMS NXT Hardware LEGO R2012a Current
LEGO MINDSTORMS EV3 Hardware LEGO R2014a Current
Raspberry Pi Hardware Raspberry Pi R2013a Current
Samsung GALAXY Android Devices Android R2014a Current

For a complete list of supported hardware, see Hardware Support.

http://www.mathworks.com/hardware-support/index.html?q=product%3A%22Simulink%22

 Tune and Monitor Models Running on Target Hardware

65-3

Tune and Monitor Models Running on Target Hardware

In this section...

“Overview of Using External Mode” on page 65-3
“Run Your Simulink Model in External Mode” on page 65-4
“Stop External Mode” on page 65-5
“External Mode Control Panel” on page 65-5

Overview of Using External Mode

You can use External mode to tune parameters and monitor a model running on your
target hardware.

External mode enables you to tune model parameters and evaluate the effects of different
parameter values on model results in real time. Doing so helps you find the optimal
values to achieve desired performance. This process is called parameter tuning.

External mode accelerates parameter tuning because you do not have to rerun the
model each time you change parameters. You can also use External mode to develop and
validate your model using the actual data and hardware for which it is designed. This
software-hardware interaction is not available solely by simulating a model.

This workflow lists the tasks usually required to tune parameters with External mode:

1 In the model on your host computer, enable External mode.
2 (Optional) Place one or more sink blocks in your model. For example, use Display or

Scope blocks to visualize data, or use a To File block to log signal data.
3 Give the Simulink software command to run the model on the target hardware.
4 (Optional) Observe the data External mode sends from the target hardware to sink

blocks in the model on the host computer.
5 Change and apply parameter values in the model on your host computer.
6 Find the optimal parameter values by making adjustments and observing the

results.
7 Save the new parameter values, disable External mode, and save the model.

65 About Run on Target Hardware Feature

65-4

Run Your Simulink Model in External Mode

Note: If you have the Embedded Coder or Simulink Coder software, you can use External
mode with a model that contains Model blocks (uses the “Model reference”).

1 Connect the target hardware to your host computer.

Different types of target hardware can use different types of connections. Check the
External mode topic for your target hardware to determine which type of connection
to use.

2 On the model toolbar, set Simulation mode to External.

3 Set the Simulation stop time parameter, located to the left of Simulation mode
on the model toolbar. The default value is 10.0 seconds. To run the model for an
indefinite period, enter inf.

4 Click the Run button.

If your model does not contain a sink block, the MATLAB Command Window
displays a warning message. For example:

Warning: No data has been selected for uploading.

> In C:\Program Files (x86)\MATLAB\R2013a Student1\toolbox\

realtime\realtime\+realtime\extModeAutoConnect.p>

extModeAutoConnect at 17

In C:\Program Files (x86)\MATLAB\R2013a Student1\toolbox\

realtime\realtime\sl_customization.p>myRunCallback at 149

You can disregard this warning or add a sink block to the model.

After several minutes, Simulink starts running your model on the board.
5 Change parameter values in the model on your host computer.

Observe the corresponding changes in the model running on the hardware.

 Tune and Monitor Models Running on Target Hardware

65-5

Any Simulink Sinks blocks in your model receive data from the hardware and
display it on your host computer.

Note: External mode increases the processing burden of the model running on the board,
and can cause overruns.

Stop External Mode

To stop the model running in External mode, click the black square Stop button located
on the model toolbar, as shown here.

This action stops the process for the model running on the target hardware, and stops the
model simulation running on your host computer.

If the Simulation stop time parameter is set to a specific number of seconds, External
mode stops when that time elapses.

When you are finished using External mode, set Simulation mode back to Normal.

External Mode Control Panel

Using External Mode Control Panel provides additional control of External mode
operations, including:

• Connect or disconnect the model on the host computer to/from the model running on
the target hardware.

• Start and stop the model running on the target hardware.
• Gather changes to parameter values in a batch before applying them concurrently to

the model running on the target hardware.

To open the External Mode Control Panel dialog box, in the model window, select Code >
External Mode Control Panel.

65 About Run on Target Hardware Feature

65-6

The Connect/Disconnect button connects or disconnects the model on your host
computer to/from the model running on the target hardware. If the model is not running
on the target hardware, clicking Connect automatically deploys and runs the model on
the target hardware.

• The Start Real-Time Code/Stop Real-Time Code button starts or stops the model
running on the target hardware.

• Batch download enables you to gather changes before using the Download button
to simultaneously apply those changes to the model running on the hardware:

• While Batch download is disabled, clicking OK or Apply in a block dialog box
sends updated block parameter values from the block to the model running on the
target hardware.

• When you enable Batch download, clicking OK or Apply in a block dialog box
stores updated block parameter values on the host computer. You can complete a
set of changes before clicking Download to simultaneously send all of the updated
values to the model running on the target hardware. This feature is useful for
avoiding error conditions when a model contains blocks whose parameter values
must be changed concurrently.

External Mode Control Panel displays Parameter changes pending... to the right
of the Download button until the model running on the target hardware has applied the
new parameter values.

 Block Produces Zeros or Does Nothing in Simulation

65-7

Block Produces Zeros or Does Nothing in Simulation

If you simulate a model on your host computer without running it on your target
hardware:

• Input blocks produce zeros.
• Output blocks do nothing.

This is the expected behavior.

For example, in a model, if you select Simulation > Mode > Normal and then select
Simulation > Run, the following happens:

• The sensor block and Digital Input block send zeros to the model.
• The Digital Output block does nothing.

To see the blocks work normally, run your model on target hardware or use External
mode.

To run the model on target hardware, select Tools > Run on Target Hardware >
Prepare to Run. Then, click the Deploy to Hardware button.

To use External mode, select Simulation > Mode > External. Then, select Simulation
> Run.

66

Running Simulations in Fast Restart

• “How Fast Restart Improves Iterative Simulations” on page 66-2
• “Fast Restart Workflow” on page 66-4
• “Get Started with Fast Restart” on page 66-6
• “Simulate a Model Using Fast Restart” on page 66-8
• “Stop Simulation and Exit Fast Restart” on page 66-10
• “Fast Restart Methodology” on page 66-11
• “Factors Affecting Fast Restart” on page 66-14

66 Running Simulations in Fast Restart

66-2

How Fast Restart Improves Iterative Simulations
In the classic Simulink workflow, when you simulate a model, Simulink:

1 Compiles the model
2 Simulates the model
3 Terminates the simulation

While developing a model, you typically simulate a model repeatedly as you iterate
the design. For example, you might calibrate input values or block parameters for a
particular response. Changing these values or parameters does not always require
compiling the model before simulating again. However, in the classic workflow, each
simulation compiles the model, even if the changes do not alter the model structurally.
Each compile slows down the process and increases overall simulation time.

Fast restart allows you to perform iterative simulations without compiling a model or
terminating the simulation each time. Using fast restart, you compile a model only once.
You can then tune parameters and root inputs and simulate the model again without
spending time on compiling. Fast restart associates multiple simulation phases to a
single compile phase to make iterative simulations more efficient.

Use fast restart when your workflow does not require structural changes to the model.
Also, fast restart is better suited if the workflow involves any of these factors:

• The model requires multiple simulations in which simulation inputs or parameters
change in every iteration.

• The compile time of the model is several seconds or longer.

You can use fast restart in normal and accelerator simulation modes. When you use
fast restart in accelerator mode, you reduce simulation time and perform only a single
compilation.

Related Examples
• “Fast Restart Workflow” on page 66-4
• “Get Started with Fast Restart” on page 66-6
• “Simulate a Model Using Fast Restart” on page 66-8

More About
• “Simulation Phases in Dynamic Systems” on page 3-17

 How Fast Restart Improves Iterative Simulations

66-3

• “Tunable Block Parameters” on page 32-18
• “Choosing a Simulation Mode” on page 30-11
• “Factors Affecting Fast Restart” on page 66-14

66 Running Simulations in Fast Restart

66-4

Fast Restart Workflow

When you need to simulate a model iteratively to tune parameters, achieve a desired
response, or automate testing, use fast restart to avoid compiling again.

1 Turn on fast restart using the Fast restart button on the Simulink Editor toolbar or
from the command line.

2 Simulate the model. The first simulation requires the model to compile, initialize
and save a SimState. Once the simulation is complete, it does not terminate.
Instead, the model is initialized again in fast restart.

3 Perform any of these actions:

• Change tunable parameters.
• Tune root-level inputs.
• Modify base workspace, model workspace variables and data dictionary entries

that are referenced by tunable parameters.
• Change inputs to From File and From Workspace blocks.

Once you have initialized a model in fast restart, you cannot

• Change the dimension, type, or complexity of a signal or variable.
• Make changes to a nontunable parameter such as sample time.
• Make structural changes such as adding or deleting blocks or connections.

These changes require you to compile the model again. To make changes like these,
turn off fast restart, make your changes, and repeat this procedure.

4 Simulate the model. The model uses the new values of parameters and inputs that
you provided but does not compile again.

5 Once you have achieved the desired response, turn off fast restart.

Note: When you turn off fast restart, Simulink does not store any compile
information for the model. The model compiles when you next simulate the model.

Related Examples
• “Get Started with Fast Restart” on page 66-6

 Fast Restart Workflow

66-5

More About
• “How Fast Restart Improves Iterative Simulations” on page 66-2
• “Factors Affecting Fast Restart” on page 66-14
• “Save and Restore Simulation State as SimState” on page 22-36

66 Running Simulations in Fast Restart

66-6

Get Started with Fast Restart

In this section...

“Prepare a Model to Use Fast Restart” on page 66-6
“Enable Fast Restart” on page 66-6

Prepare a Model to Use Fast Restart

Before you simulate a model in fast restart, ensure that the model meets these
requirements:

• If you have enabled callbacks in the model, make sure they do not attempt to make
structural changes when the model is reinitialized. For example, callbacks such
as mask initialization commands get called at the beginning of each simulation.
Therefore, avoid using mask initialization code that makes structural changes to the
model.

• All blocks in the model must support SimState.
• The simulation mode is Normal or Accelerator mode.

Caution When fast restart is on, you cannot save changes to the model after it compiles.
Saving changes requires Simulink to discard information about the compiled state. To
save any changes to the model, turn off fast restart first.

Enable Fast Restart

Use one of these methods to enable fast restart:

•
Click the Fast restart button on the Simulink Editor toolbar.

• At the MATLAB Command prompt, use set_param to enable fast restart. Type

set_param(model,'FastRestart','on')

Related Examples
• “Fast Restart Workflow” on page 66-4

 Get Started with Fast Restart

66-7

• “Simulate a Model Using Fast Restart” on page 66-8

More About
• “Fast Restart Methodology” on page 66-11
• “Factors Affecting Fast Restart” on page 66-14

66 Running Simulations in Fast Restart

66-8

Simulate a Model Using Fast Restart

After you load your model and turn on fast restart, simulate the model.

1
Simulate the model by calling sim or clicking the Play button in the Simulink
Editor toolstrip. The first simulation in fast restart requires the model to compile
and save a SimState.

Once the simulation is complete, the status bar shows that the model is initialized in
fast restart.

2 Adjust tunable parameters in the model, such as the gain value of a Gain block, or
tune root-level input values. You can also make changes to base workspace variables.
You cannot adjust nontunable parameters such as sample time, because doing so
requires the model to compile once more.

3 Simulate the model again. This time, the model does not compile. When you click the
Play button or step forward, Simulink updates blocks that have new values as well
as blocks that reference workspace variables.

4 When you are satisfied with your results, turn off fast restart by clicking the Fast
restart button off.

5 To keep your changes, save the model.

Note: After a model is initialized in fast restart, Simulink displays a warning if you
attempt to make a structural change to the model. To make such changes, you must turn
off fast restart.

Related Examples
• “Fast Restart Workflow” on page 66-4

 Simulate a Model Using Fast Restart

66-9

More About
• “Stop Simulation and Exit Fast Restart” on page 66-10
• “Fast Restart Methodology” on page 66-11

66 Running Simulations in Fast Restart

66-10

Stop Simulation and Exit Fast Restart

In this section...

“Stop a Simulation” on page 66-10
“Exit Fast Restart” on page 66-10

Stop a Simulation

When you click Stop in the middle of a fast restart simulation:

• Simulation does not terminate.
• The model is in the initialized state.
• You can now change tunable parameters in the model
• You can terminate the simulation and exit fast restart by clicking the Fast restart

button off.

Exit Fast Restart

You can exit fast restart only when the model is in the initialized state. After simulating,
click the Fast restart button off. To do this programmatically, type:

set_param(model,'FastRestart','off')

• Simulink terminates simulation.
• Simulink discards any compiled information about the model.
• The model must compile again the next time you simulate.

Related Examples
• “Fast Restart Workflow” on page 66-4

More About
• “Fast Restart Methodology” on page 66-11

 Fast Restart Methodology

66-11

Fast Restart Methodology

In this section...

“Simulation Modes” on page 66-11
“Tuning Parameters Between Simulations” on page 66-11
“Model Methods and Callbacks in Fast Restart” on page 66-11
“SimState and Initial State Values” on page 66-13
“Analyze Data Using the Simulation Data Inspector” on page 66-13
“Custom Code in the Initialize Function” on page 66-13

Simulation Modes

You can use fast restart in Normal and Accelerator simulation modes.

Tuning Parameters Between Simulations

• When a model is initialized in fast restart, in addition to block values and base
workspace variables, you can tune parameters in the Data Import/Export and
Solver panes in the Simulation > Model Configuration Parameters dialog box.

• Certain parameters are tunable between simulations only when the model is
initialized in fast restart. They include:

• Initial Value parameter of the IC block
• Initial Output parameter of the Merge block
• Data parameter of the From Workspace block
• Signal parameter and signal groups of the Signal Builder block.

Model Methods and Callbacks in Fast Restart

When fast restart is on, Simulink calls model and block methods and callbacks as follows:

1 Call model Start method.

a Call mdlStart S-function method.

66 Running Simulations in Fast Restart

66-12

2 Call model InitFcn callback.
3 Call model Initialize method.

a Call mdlInitializeConditions S-function method.

Note: Use the ssIsFirstInitCond flag to guard code that should run only in the
first and subsequent initializations in fast restart.

4 Call model and block StartFcn callbacks.

Note: Steps 1–4 apply to all simulations in Simulink (with or without fast restart).

5 For the first simulation in fast restart, capture a simulation snapshot. A simulation
snapshot contains simulation state (SimState) and information related to
logged data and visualization blocks. As part of the snapshot capture, call
mdlGetSimState S-function method.

6 This is a standard execution phase of any simulation, with or without fast restart.

• Call model Outputs.
• Call model Update.
• Call model Derivatives.
• Repeat these steps in a loop until stop time or a stop is requested.

7 After simulation ends, call model and block StopFcn callbacks. This is a standard
phase of any simulation, with or without fast restart.

8 Restore the simulation snapshot taken for fast restart. As part of the restore, call
mdlSetSimState S-function method.

9 Wait in a reinitialized state until one of these actions:

• To run another simulation in fast restart, return to step 3 but skip step 5.
• To terminate the simulation, call the model terminate method.

a Call mdlTerminate S-function method.
b Do not call StopFcn callbacks again at this point.

For more information on model callbacks, see “Callbacks for Customized Model Behavior”
on page 4-68.

 Fast Restart Methodology

66-13

SimState and Initial State Values

You can change initial state values, including SimState, in between fast restart
simulations.

When a SimState object for initial state is used in fast restart, every new simulation
resets to the start time of the model and not the snapshot time of each SimState object.
Thereafter, on the first step forward, Simulink checks to see if a SimState has been
specified. If yes, Simulink restores it before computing the next step. Thus, the first
simulation step effectively fast forwards to the snapshot time of the specified SimState
object.

Analyze Data Using the Simulation Data Inspector

Fast restart supports data logging using the Simulation Data Inspector. Every
simulation in fast restart creates an SDI object with the name <modelname> fast
restart run <number>. The value of number increments for each simulation.

Custom Code in the Initialize Function

When you place custom code in the Configuration Parameters > Simulation Target
> Custom Code > Initialize function pane in the Model Configuration Parameters
dialog box, this gets called only during the first simulation in fast restart.

Related Examples
• “Fast Restart Workflow” on page 66-4

More About
• “Factors Affecting Fast Restart” on page 66-14
• “What Is a SimState?”

66 Running Simulations in Fast Restart

66-14

Factors Affecting Fast Restart

There are some limitations to simulating in fast restart.

• Fast restart does not support these modes:

• Rapid Accelerator
• External

• When a model is in the reinitialized state, you cannot:

• Make structural changes.
• Make changes to nontunable parameters such as sample time.
• Save changes to the model. You must turn off fast restart to save any changes to

the model.
• You cannot turn on fast restart in a model if it contains blocks that do not support

SimState. These blocks include:

• SimEvents blocks
• SimMechanics First Generation blocks
• MATLAB function blocks that contain system objects
• S-functions that do not implement SimState get and set methods but have Pwork

vectors declared
• From Multimedia File
• To Multimedia File
• From Audio Device
• To Audio Device
• Multipath Rician Fading Channel
• Multipath Rayleigh Fading Channel
• Derepeat
• DC Blocker
• Stack
• Queue
• Read Binary File
• Write Binary File

 Factors Affecting Fast Restart

66-15

• Video Viewer
• Frame Rate Display
• Video From Workspace
• Video To Workspace

• Between simulations, fast restart does not handle changes to design data, such as bus
properties.

• When you use fast restart for model references in Accelerator mode, you cannot tune
block parameters.

• The Fixed-Point Tool provides limited support when a model is simulated in fast
restart. You must exit fast restart to collect simulation and derived ranges, and
propose data types.

• When fast restart is on, you cannot change the variant that a variant subsystem or
variant model uses. This is because the inactive subsystems are not compiled in the
first simulation.

• When there are multiple model references to the same submodel, you cannot change
the model visibility when the model is in the reinitialized state.

• Fast restart does not support signal logging in the ModelDataLogs format.
• Fast restart is not compatible with these tools:

• Simulink Profiler
• Simulink Debugger

• When simulating a model in fast restart, you cannot run checks using Model Advisor.
• When you enable fast restart, the sim command supports only the single output

Simulink.SimulationOutput form, regardless of the syntax you use in the
command.

• When you enable fast restart, you cannot pass non-tunable parameters as arguments
to sim.

Related Examples
• “Fast Restart Workflow” on page 66-4

More About
• “How Fast Restart Improves Iterative Simulations” on page 66-2

